
Mälardalen University Licentiate Thesis
No.42

Software Component
Technologies for Heavy

Vehicles

Anders Möller

January 2005

Department of Computer Science and Electronics
Mälardalen University

Västerås, Sweden

Copyright c© Anders Möller, 2005
ISSN 1651-9256
ISBN 91-88834-88-3
Printed by Arkitektkopia, Västerås, Sweden
Distribution by Mälardalen University Press

Abstract

Control-systems for heavy vehicles have advanced from an area where mainly
mechanic and hydraulic solutions were used, to a highly computerised domain
using distributed embedded real-time computer systems.

To cope with the increasing level of end-customer demands onadvanced
features and functions in future vehicle systems, sophisticated development
techniques are needed. The development techniques must support software in
numerous configurations and facilitate development of systems with require-
ments on advanced functionality, timeliness, and safety-criticality. In order
to meet these requirements, we propose the use of component-based software
engineering.

However, the software component-technologies available on the market
have not yet been generally accepted by the vehicular industry. In order to
better understand why this is the case, we have conduced a survey – identi-
fying the industrial requirements that are deemed decisivefor introducing a
component technology. We have used these requirements to evaluate a number
of existing component technologies, and one of our conclusions is that none of
the studied technologies is a perfect match for the industrial requirements.

In addition, we have implemented and evaluated the novel component mod-
el SaveCCM, which has been designed for safety-critical automotive applica-
tions. Our evaluation indicates that SaveCCM is a promisingtechnology which
has the potential to fulfil the industrial requirements. However, tools are still
immature and incomplete.

In the final part of this work, we propose the use of monitored software
components, as a general approach for engineering of embedded systems. In
our approach, a component’s execution is continuously monitored and experi-
ence regarding the behaviour is accumulated. As more and more experience is
collected the confidence in the component grows.

i

Preface

The work presented in this thesis has been performed within the HEAVE (A
Component Technology for Heavy Vehicles) project. The workhas been sup-
ported by CC Systems, Volvo Construction Equipment, and by the KK Foun-
dation, and has been accomplished at Mälardalen Real-Time Research Centre,
Mälardalen University, Sweden.

Firstly, I would like to thank Dr. Mikael Nolin for extraordinary supervi-
sion and for turning my confused thoughts into publishable research papers.
Secondly, I would like to thank Jörgen Hansson at CC Systems and Prof. Hans
Hansson at Mälardalen Real-Time Research Centre for makingthis research
project possible.

I owe my co-authors (especially Mikael Åkerholm, Joakim Fröberg, Daniel
Sundmark, and Johan Fredriksson) many thanks for helping merealising re-
search ideas and for sharing memorable conference trips allaround the globe.

Also, many thanks to Nils-Erik Bånkestad and Robert Larssonat Volvo
Construction Equipment for fruitful research discussions, and for their support
during my stay at Volvo.

Finally, thanks to my colleagues, both at the department at Mälardalen Uni-
versity and at CC Systems, and to my friends and beloveds for making life great
fun. After all, that is what it is all about!

Anders Möller
Västerås, January 10, 2005

iii

List of Publications

Publications Included in This Licentiate Thesis

Paper A: Industrial Requirements on Component Technologies for Embedded
Systems; Anders Möller, Joakim Fröberg and Mikael Nolin; In Proceed-
ings of the 7th International Symposium on Component-Based Software
Engineering, pages 146–161, Edinburgh, Scotland, May 2004.

Paper B : Evaluation of Component Technologies with Respect to Industrial
Requirements; Anders Möller, Mikael Åkerholm, Johan Fredriksson and
Mikalel Nolin; In Proceedings of the 30th Euromicro Conference, Com-
ponent-Based Software Engineering Track, pages 56–63; Rennes, France,
September 2004.

Paper C: Towards a Dependable Component Technology for Embedded Sys-
tem Applications; Mikael Åkerholm, Anders Möller, Hans Hansson and
Mikael Nolin; To Appear in the Proceedings of the Workshop onObject-
Oriented Real-time Dependable Systems, Sedona, Arizona, USA, Feb-
ruary 2005.

Paper D: Monitored Software Components – A Novel Software Engineering
Approach; Daniel Sundmark, Anders Möller and Mikael Nolin; In Pro-
ceedings of the 11th Asian-Pasific Conference on Software Engineer-
ing, Workshop on Software Architectures and Component Technologies,
pages 624–631; Busan, Korea; November 2004.

v

vi LIST OF PUBLICATIONS

Other Publications by the Author

Journals

• A Simulation Technology for CAN-based Systems; Anders Möller and
Per Åberg, CAN Newsletter, nr 4, CAN in Automation, December2004.

Conferences and Workshops

• Developing and Testing Distributed CAN-based Real-Time Control-Sys-
tems in a single PC, – An Industrial Experience Paper; Anders Möller,
Per Åberg, Fredrik Löwenhielm, Jakob Engblom and Jörgen Hansson;
To Appear in the Proceedings of the International CAN Conference,
CAN in Automation; Roma, Italy, February 2005.

• Software Component Technologies for Real-Time Systems – AnIndus-
trial Perspective; Anders Möller, Mikael Åkerholm, Johan Fredriksson,
Mikael Nolin; In Proceedings of the Work-in-Progress Session of the
24th IEEE Real-Time System Symposium (RTSS), Cancun, Mexico, De-
cember 2003.

• Using Components to Facilitate Stochastic SchedulabilityAnalysis; Tho-
mas Nolte, Anders Möller, Mikael Nolin; In Proceedings of the Work-
In-Progress Session of the 24th IEEE Real-Time Systems Symposium
(RTSS), Cancun, Mexico, December 2003.

• What are the needs for components in vehicular systems? – An industrial
perspective; Anders Möller, Joakim Fröberg and Mikael Nolin; In Real-
Time in Sweden (RTiS), Västerås, Sweden, August, 2003.

• What are the needs for components in vehicular systems? – An indus-
trial perspective; Anders Möller, Joakim Fröberg and Mikael Nolin; In
Proceedings of the Work-in-Progress Session of the 15th Euromicro Con-
ference on Real-Time Systems, Porto, Portugal, July 2003.

vii

Technical Reports

• SAVEComp - a Dependable Component Technology for Embedded Sys-
tems Software, Mikael Åkerholm, Anders Möller, Hans Hansson and
Mikael Nolin, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-165-
/2004-1-SE, Mälardalen Real-Time Research Centre, Mälardalen Uni-
versity, December 2004.

• Predictable Assemblies using Monitored Software Components; Daniel
Sundmark, Anders Möller, Mikael Nolin; MRTC Report ISSN 1404-
3041 ISRN MDH-MRTC-160/2004-1-SE, Mälardalen Real-Time Re-
search Centre, Mälardalen University, Västerås, Sweden, February 2004.

• An Industrial Evaluation of Component Technologies for Embedded-
Systems; Anders Möller, Mikael Åkerholm, Johan Fredriksson, Mikael
Nolin; MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-150/2004-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
Västerås, Sweden, February 2004

• Requirements on Component Technologies for Heavy Vehicles; Anders
Möller, Joakim Fröberg, Mikael Nolin; MRTC Report ISSN 1404–3041
ISRN MDH–MRTC–150/2004–1–SE, Mälardalen Real–Time Research
Centre, Mälardalen University, Västerås, Sweden, January2004.

• Component Based Software Engineering for Embedded Systems– A lit-
erature Survey; Mikael Nolin, Johan Fredriksson, Jerker Hammarberg,
Joel Huselius, John Håkansson, Annika Karlsson, Ola Larses, Markus
Lindgren, Goran Mustapic, Anders Möller, Thomas Nolte, Jonas Nor-
berg, Dag Nyström, Aleksandra Tesanovic, and Mikael Åkerholm; MRTC
Report ISSN 1404-3041 ISRN MDH-MRTC-104/203-1-SE, Mälardalen
Real-Time Research Centre, Mälardalen University, Västerås, Sweden,
June 2003.

Contents

List of Publications v

1 Introduction 1
1.1 Background . 2

1.1.1 CBSE for Embedded Systems 2
1.1.2 Heavy Vehicle Systems 6

1.2 Motivation . 8
1.3 Thesis Outline . 10

2 Contribution 13
2.1 Research Questions . 13
2.2 Contribution . 15
2.3 Included Papers . 16

3 Research Work and Method 19
3.1 Preliminary Literature Study 20
3.2 Industrial Requirements Case-Study 20
3.3 Evaluation of Existing Technologies 21
3.4 Implementing and Evaluating a Component Technology 22
3.5 Monitoring Software Components 22

4 Conclusion and Future Work 25

Bibliography 27

5 Paper A:

ix

x Contents

Industrial Requirements on Component Technologies for Embed-
ded Systems 33
5.1 Introduction . 35
5.2 Introducing CBSE in the Vehicular Industry 36
5.3 A Component Technology for Heavy Vehicles 38

5.3.1 The Business Segment of Heavy Vehicles 38
5.3.2 System Description 40

5.4 Requirements on a Component Technology for Heavy Vehicles 43
5.4.1 Technical Requirements 44
5.4.2 Development Requirements 47
5.4.3 Derived Requirements 49
5.4.4 Discussion . 50

5.5 Conclusions . 51
Bibliography . 52

6 Paper B:
Evaluation of Component Technologies with Respect to Industrial
Requirements 57
6.1 Introduction . 59
6.2 Requirements . 60

6.2.1 Technical Requirements 60
6.2.2 Development Requirements 62
6.2.3 Derived Requirements 63

6.3 Component Technologies 64
6.3.1 PECT . 65
6.3.2 Koala . 66
6.3.3 Rubus Component Model 67
6.3.4 PBO . 68
6.3.5 PECOS . 69
6.3.6 CORBA Based Technologies 70

6.4 Summary of Evaluation . 71
6.5 Conclusion . 73
Bibliography . 73

7 Paper C:
Towards a Dependable Component Technology for Embedded Sys-
tem Applications 77
7.1 Introduction . 79
7.2 CBSE for Embedded Systems 80

Contents xi

7.3 Our Component Technology 81
7.3.1 Design-Time - The Component Model 83
7.3.2 Compile-Time Activities 86
7.3.3 The Run-Time System 88

7.4 Application Example . 89
7.4.1 Introduction to ACC functionality 89
7.4.2 Implementation using SaveCCM 90
7.4.3 Application Test-Bed Environment 92

7.5 Evaluation and Discussion 92
7.5.1 Structural Properties 93
7.5.2 Behavioural Properties 94
7.5.3 Process Related . 95

7.6 Conclusions and Future Work 95
Bibliography . 96

8 Paper D:
Monitored Software Components - A Novel Software Engineering
Approach 101
8.1 Introduction . 103
8.2 A Life-Cycle Approach to Component-Based Systems 104
8.3 Embedded Systems . 105

8.3.1 CBSE for Embedded Systems 106
8.3.2 Embedded System Example 106
8.3.3 Prerequisites for Monitoring Component-Based Em-

bedded Systems . 107
8.4 Related Work . 109

8.4.1 Monitoring Techniques for Component-Based Systems 109
8.4.2 Monitoring Support in Commercial Component Tech-

nologies . 111
8.5 Monitoring Software Components 113

8.5.1 Temporal Behaviour 113
8.5.2 Memory Usage . 114
8.5.3 Event Ordering . 115
8.5.4 Sanity Check . 115

8.6 Using Monitored Information 116
8.7 Conclusion and Future Work 116
Bibliography . 117

Chapter 1

Introduction

The business segment of heavy vehicles (including, e.g., forest harvesters,
rock-drilling equipment, and wheel loaders) has entered a new era, where the
traditional mechanic and hydraulic solutions are supplemented with highly so-
phisticated distributed embedded computer control-systems. Introducing these
control-systems facilitates the use of advanced technicalfunctions, such as
support for advanced engine-control, built-in diagnosticsystems and anti-lock
braking systems. The control-systems does also prolong thelifetime of the
vehicle, by optimising, e.g., engine- and transmission-control.

Ever increasing end-customer demands on advanced featuresand functions
in future control-systems (e.g., to increase productivityin forest harvesting or
at a construction site) require new technical solutions. These demands will call
for even more advanced electronic control-systems, comprising electronics and
software in numerous configurations and variants, most likely supplied from
many different vendors.

However, most embedded system developers are in fact, to a large extent,
using monolithic and platform dependent software development techniques, in
spite of the fact that this make software systems hard to maintain, upgrade,
and modify. In order to introduce the new functionality while at the same
time increase control-system reliability and decrease development time and
costs – the developers call for improved tools and methods. Using software
components, and component-based development, is seen as a promising way
to meet the requirements on high functionality, reliability, real-timeliness, and
safety criticality while at the same time lower developmentcosts due to an
improved development process and improved conditions for reuse.

1

2 Chapter 1. Introduction

Within this licentiate thesis, we have investigated the industrial require-
ments on a component technology from the perspective of the business seg-
ment of heavy vehicles. We have also evaluated the state-of-the-art software
component technologies with respect to these requirements, and based on the
evaluation, and the requirements, implemented a new technology. To be able
to predict the run-time behaviour of a component assembly’ pre-run-time, we
also present an engineering method to collect essential component information
by monitoring the system during execution.

1.1 Background

This section aims at providing a background to the research in this thesis by de-
scribing Component-Based Software Engineering (CBSE) forembedded sys-
tems, and by illustrating the industrial settings for the intended domain (i.e.
heavy vehicles). For a more general and exhaustive presentation of component-
based software engineering, see, e.g., [1, 2, 3].

1.1.1 CBSE for Embedded Systems

Component-based software engineering is the area of building system applica-
tions as assemblies of pre-fabricated software components. To make component-
based development attractive, mature techniques, methodologies, and process-
es are needed. However, within the embedded system domain, many of these
are not mature. Some of the remaining challenges, like the lack of widely
adopted component technology standards, unsatisfactory support for extra-fun-
ctional properties (e.g. timing and memory consumption), and insufficient tools
to support the component-based development, are describedin [4].

The software components are, of course, at the heart of CBSE,and a com-
ponent can be defined as a reusable unit of deployment and composition [1]
(there are, however, an abundance of more detailed component definitions, e.g.
by Szyperski [2]). The components must have well specified interfaces, and
should be easy to understand, adapt and deliver. Especiallyfor embedded sys-
tems, the components must have well specified resource requirements, as well
as a specification of other relevant properties, e.g., timing, reliability, safety,
and dependability.

When assembling these components into software systems, acomponent
modeltypically defines the different component types and the interaction schem-
es for components. Typically, in an embedded system component technology,

1.1 Background 3

the component model also clarifies how different resources are bound to the
software components. Based on the component assembly, and the component
model, a compiler is usually used to generate the executablesoftware.

Component-based development can be approached from two, conceptu-
ally different, points of view; distinguished by whether the components are
used as adesign philosophyindependent from any concern for reusing existing
components, or seen asreusable (off-the-shelf) building blocksused to design
and implement a component-based system [5]. Irrespective of whether the
developer uses software components as a design philosophy or as reusable off-
the-shelf building blocks, efficient development of applications is supported
by the component-based strategy (for more details, see Sect. 5.2 and Sect.
5.3). Also, component-based development distinguishescomponent develop-
mentfrom system development. Component development is the process of cre-
ating components that can be used and reused in many applications, and system
development is concerned with assembling components into applications that
meet the system requirements.

In many cases, software reuse is seen as the main driver for introducing a
component-based development approach. Component-based reuse is by many
software engineers (and managers) seen as a promising approach to reduce high
costs of building complex software. LEGO1 blocks is often used to describe
the component-based design, where different kinds of blocks can be used for
constructing and endless variety of structures. However, as, e.g., [6] and [7]
points out - the context of use for software components is determined by the
software architecture, and for a software project to develop generally reusable
components the context of its use must be very well understood. Therefore,
(according to [7]) component-based reuse is only possible as a consequence of
architecture-based reuse, and this understanding must be shared by software
engineers as well as product and project managers.

Also, maintenance is supported by CBSE since the component assembly
is a model of the application, which is by definition consistent with the actual
system. During maintenance, adding new, and upgrading existing components
are the most common activities. When using a component-based approach, this
is supported by extendable interfaces of the components. Also, e.g., testing and
debugging is enhanced by CBSE, since components are easily subjected to unit
testing and their interfaces can be monitored to ensure correct behaviour.

CBSE has been successfully applied in development of Internet/office ap-
plications (e.g. Enterprise Java Beans [8], and .NET [9]), but for the domain of

1LEGO, Home page: http://www.lego.com/

4 Chapter 1. Introduction

embedded systems CBSE has not yet been widely adopted. One reason is the
inability of the existing commercial technologies to support the requirements
of the embedded applications. Component technologies supporting different
types of embedded systems have recently been developed, e.g., from industry
[10, 11], and from academia [12, 13]. However, as Crnkovic points out in [4],
there are many more issues to solve before a CBSE discipline for embedded
systems can be established.

Component technologies are a concrete implementation of a component
model and a component framework, and can be used for buildingcomponent-
based applications. To assemble the components into software systems, differ-
ent activities are performed, and the central technical concepts and activities
for a typical embedded system setting, as approached withinour research, are
summarised in Fig.1.1, and further described in the remainder of this chapter.

Design-Time actions ((1.1) in Fig. 1.1) comprise putting the software com-
ponents together into a component assembly (i.e. an application). This
is the industrial engineering phase of the component-baseddevelopment
process, and building with LEGO blocks often serve as a metaphor for
describing the component-based software design. The components are
assembled based on the component interface, which can be defined as
a specification of its access point [2], and based on rules of the compo-
nents interaction. These rules are specified within the component model,
and do usually define the different component types and the interaction
schemes between the components. In a typical embedded system com-
ponent technology, the component model also clarifies how different re-
sources are bound to the specific components. The rules defined within
the component model should also impose that systems built from the
components are predictable with respect to important properties in the
intended domain (e.g. timing and memory attributes).

Compile-Time activities ((1.2) in Fig. 1.1) for an embedded system compo-
nent technology typically include support for transferring the component
assembly (i.e. the application) into an intermediate compile-time model.
These activities provide algorithms for synthesis of the high level models
into attributes of the run-time model, e.g., operating system calls, task at-
tributes, and real-time constrains. The compile-time activities usually in-
clude task allocation ((1.2.1) in Fig. 1.1), attribute assignment ((1.2.2)),
and code generation and analysis ((1.2.3)). For more details of the dif-
ferent compile-time activities, see Sect. 7.3.2 of this thesis. For CBSE to
be attractive for the embedded system industry this phase should, to the

1.1 Background 5

<<Assembly>>
ACC Controllers

<<Assembly>>
Distance

Controller

<<Assembly>>
Speed

Controller

Distance

Control

Relative
Speed

Max
Speed

Current
Speed

<<Assembly>>
ACC Controllers

<<Assembly>>
Distance

Controller

<<Assembly>>
Speed

Controller

Distance

Control

Relative
Speed

Max
Speed

Current
Speed

Task Allocation

Attribute Assignment

Code Generation & Analysis

Application Programmer’s Interface

Component Assembly (i.e. Application)

Hardware Platform

Component Run-Time Framework

Hardware Abstraction Layer

Device Drivers

RTOS

Textual Description

Compiler

Design-
Time

Compile-
Time

Run-
Time

1

1.1

1.3

1.2

1.2.1

1.2.2

1.2.3

Figure 1.1: Overview of a component technology suitable forembedded sys-
tems

highest degree possible, be automated – and tools and maturemethods
must be provided to the software engineers [4].

Run-Time activities ((1.3) in Fig. 1.1) include the compiled component as-
sembly, a run-time component framework, and typically an operating
system and a set of device drivers. The component framework sup-
ports the components execution by handling component interactions and
invocation of the different services provided by the components. For
embedded systems, the component framework typically must be light
weighted, and use predictable mechanisms. To enhance predictability,
it is desirable to move as much as possible of the traditionalframework

6 Chapter 1. Introduction

functionality (compared to, e.g., [14]) from the run-time system to the
pre-run-time compile stages.

1.1.2 Heavy Vehicle Systems

Our industrial partners, CC Systems2 and Volvo Construction Equipment3, de-
velop control-systems for heavy vehicles (like, e.g., wheel loaders, forest har-
vesters, articulated haulers, and rock-drilling equipment). These systems are
typically built to endure rough physical environments, andare characterised by
safety criticality, advanced functionality, and the requirements on robustness
and availability are high. The control-systems are typically dependable distrib-
uted embedded real-time systems, which must perform in an extreme physical
environment with limited hardware resources.

Control-systems within the business segment of heavy vehicles are, com-
pared to, e.g., passenger cars, often less complex (a short presentation of a
typical heavy vehicle system is available in Paper A, Sect. 5.3, of this thesis,
and a more detailed description can be found in [15]). The systems are usually
built up from a set of electronic control units communicating via, one or more,
Controller Area Networks [16], and is typically used for feedback control, dis-
crete control, diagnostics and service, infotainment, andtelematics [15].

The product volumes of heavy vehicles are rather moderate (typically in the
range of thousands per year), compared to those of passengercars (in the order
of millions per year). Also, customers tend to be more demanding with respect
to the technical specification (e.g., engine torque and payload) of the vehicles,
and less demanding with respect to design, feel, and look. This causes a lower
emphasis on product cost and optimisation of control-systems, compared to
automotive industry in general. The lower volumes, and relatively small num-
ber of customers, also make the manufacturers more willing to design vehicle
variants to meet customer specific requests [15].

Companies developing control-systems for heavy vehicles are challenged
by demands on shorter development time along with minimisedelectronics and
software costs, while at the same time having to support increasing customer
demands of vehicle features and functions, high demands on reliability and a
need to support many configurations, variants and suppliers.

2CC Systems, Home page: http://www.cc-systems.com
3Volvo Construction Equipment, Home page: http://www.volvoce.com

1.1 Background 7

Industrial Partners

The work presented in this licentiate thesis is performed incooperation with
CC Systems and Volvo Construction Equipment. These two companies repre-
sent different types of actors in the heavy vehicle industry. CC Systems acts
as a sub-contractor developing both electronics and software whereas Volvo
Construction Equipment is an Original Equipment Manufacturer (OEM) de-
veloping the main part of the vehicle in-house. The companies’ knowledge
and experiences from using software components, and component-based de-
velopment, is also different.

• CC Systems is developing and supplying distributed embedded real-time
control-systems for mobile applications, like, e.g., forest harvesters4,
rock-drilling equipment5, and combat-vehicles6.

CC Systems’ goal is to use a component-based approach towards soft-
ware construction, to enhance the ability to reuse and analyse applica-
tions, and because it increases predictability by reducingthe degrees of
freedom for application developers. This reduction of freedom, in turn,
will minimise the risk for software errors, since componentassembly can
only be done in a predefined manner. CC Systems has not yet launched
the use of a component technology for embedded systems, but by par-
ticipating in this research – they wishes to strengthen their knowledge
about CBSE.

• Volvo Construction Equipment is one of the world’s major manufactur-
ers of construction equipment, with a product range encompassing wheel
loaders, excavators, motor graders, and more. The productsvary from
moderately small compact equipment (1.4 tons) all the way upto huge
construction equipment (52 tons) [15].

To accommodate reuse of software components and methodology be-
tween products, Volvo Construction Equipment has incorporated a com-
ponent model for the real-time application domain [10]. However, they
wish to strengthen their competence in component-based development
in general. The results from this research project will be used to extend
their current practices within CBSE.

4Timberjack, Home page: http://www.timberjack.com/
5Atlas Copco, Home page: http://www.atlascopco.com/
6Land Systems Hägglunds, Home page: http://www.haggve.com/

8 Chapter 1. Introduction

1.2 Motivation

We are surrounded by computers. The majority of these computers are not
the ones we immediately think of, i.e. desktop- or laptop-computers. In fact,
more then 99.8% [17] of the total number of central processing units (CPUs)
produced today are embedded into other products than personal computers.
The applications of embedded computers range all the way from passenger
cars and consumer electronics down to small gadgets and toys.

Most OEMs, developing these embedded systems, face challenges of in-
creased customer-demands on functionality and features, while at the same
time having to meet customer expectations, based on the market competitive-
ness, on reduced costs. To facilitate the increased demandson functionality,
more and more electronics and software are introduced. In, e.g., BMW’s7 new
7-series luxury cars there are more then 65 ECUs (and [18] indicates that more
then half of the total development cost constitutes development of electron-
ics and software). In the Volvo XC90 (introduced in 2002), the maximum
configuration contains about 40 ECUs [15] connected via two Controller Area
Networks [16], one MOST ring [19] and a set of Local Interconnect Networks
[20]. And – most astounding – a kid’s PlayStation 28 has more computer power
than NASA9 had for its moon landings [17]

Today, within the embedded system market, software is oftenseen asthe
way to provide the required functionality in short time and at a reasonable
price. And, according to Moore’s law10 hardware is getting cheaper, still of-
fering more and more processing power. Hence, software constitute a growing
part of the total development costs, see Fig. 1.2 on the facing page, [21].

In response to this fact, industry calls for immediate improvement of soft-
ware development methods and tools. Software components and component-
based development is by industry, as well as by academia, seen as a promis-
ing way to address these issues. Component-based software engineering is a
method that supports software reuse, fast development, enhanced software in-
tegration support, more flexible configurations, and good reliability predictions
of component assemblies [1].

During the last decade, the Internet-/office-oriented software community

7BMW, Home Page: http://www.bmw.com
8Sony PlayStation 2, Home Page: http://www.sony.com
9National Aeronautics and Space Administration, NASA, HomePage: http://www.nasa.gov

10Moore observed an exponential growth in the number of transistors per integrated circuit and
predicted that this trend would continue. Through the processor developers relentless technology
advances, Moore’s law – the doubling of transistors every couple of years – has been maintained,
and still holds true today.

1.2 Motivation 9

1990 2000 2010

0

20

40

60

80

100
Total Costs %

Software Costs

Hardware Costs

Figure 1.2: Estimation of the distribution between hardware and software de-
velopment cost [21]

has proven that CBSE is a method with great potential, and thecommunity
has achieved remarkable progress with software components, and component-
based design. Today, it is possible to download components on the fly and have
them integrated, and executed, within the context of another program (such a
web browser or a word processor). When developing, e.g., Internet applica-
tions today, it is possible to purchase off-the-shelf components and combine
them into assemblies forming new software products. Technologies like, e.g.,
CORBA [14], Enterprise Java Beans [8], and .NET [9] are frequently used
to build applications out of software components. However,these component
technologies are not applicable to most embedded real-timecomputer systems,
due to extensive memory usage and unsatisfactory timing behaviour.

Some attempts have been made to adapt Internet/office component tech-
nologies to embedded systems (like, e.g., minimumCORBA [22]). However,
these adaptations have not been generally accepted by the embedded system
developers, and the reason for this failure is mainly the diversified nature of
the embedded system market. Different market segments havedifferent re-
quirements on a component technology, and often these requirements are not
fulfilled simply by stripping down existing component technologies.

There are also some international cooperation on standardising software
middleware for vehicular systems that might (and probably will) have influ-

10 Chapter 1. Introduction

ence on future control-systems for heavy vehicles, like, e.g., the EAST-EEA
[23] project and the AUTOSAR [24] consortium. The, nowadayscompleted,
EAST-EEA project was aiming to enable proper electronic integration through
definition of an open architecture allowing hardware and software interoper-
ability, and was the predecessor to AUTOSAR.

AUTOSAR is a consortium working to establish an open standard for the
automotive electrical engineering architecture serving as a basic infrastructure
for the management of functions within both future applications and standard
software modules.

It is important to follow this standardising work in order tobe prepared
for the future system design philosophy. Hence, a componenttechnology as
suggested within this licentiate thesis has to be flexible and adaptable in order
to cope with these standardisations.

Facing this reality, CC Systems and Volvo Construction Equipment ini-
tiated research cooperation with Mälardalen Real-Time Research Centre11 by
launching the HEAVE12, "A Component Technology for Heavy Vehicles", pro-
ject. This licentiate thesis is produced within the HEAVE project.

1.3 Thesis Outline

Section 2 aims at presenting the contribution of this thesisby introducing the
project hypothesis, the research questions, an outline of the included papers,
and a summary of the contribution from an academic point of view as well as
from an industrial point of view. Section 3 provides a summary of the research
and the methodologies used during different phases of the work. Section 4
concludes the thesis and suggests future work.

The final parts (Section 5 to Section 8) of this thesis summarises the work
by presenting four papers performed within this research project. The papers
are summarised below:

Paper A,Industrial Requirements on Component Technologies for Embed-
ded Systems, presents a requirements case-study on component-based software
engineering for heavy vehicles. The purpose of the study wasto build a solid
research platform for the continuous work within the HEAVE project. In pa-
per B,Evaluation of Component Technologies with Respect to Industrial Re-
quirements, we present a component technology evaluation, based on there-
quirements collected during the industrial case-study. The idea was to discover

11Mälardalen Real-Time Research Centre, Home Page: http://www.mrtc.mdh.se
12HEAVE project, Home page: http://www.mrtc.mdh.se/-projects/heave/

1.3 Thesis Outline 11

which of the requirements that are fulfilled by existing technologies, and which
are not. The study also includes a short survey description of each of the evalu-
ated component technologies, and a table summarising the evaluation. In Paper
C, Towards a Dependable Component Technology for Embedded System Ap-
plications, a prototype component technology, developed with safety-critical
automotive applications in mind, is presented. The technology is illustrated as
a case-study performed at CC Systems. Paper D,Monitored Software Com-
ponents - A Novel Software Engineering Approach -, describes monitoring of
software components, and the use of monitored software components as a gen-
eral approach for engineering of embedded computer systems.

Chapter 2

Contribution

This chapter presents the contribution of this thesis by introducing the research
questions and a summary of the contribution, together with an outline of the
included papers.

2.1 Research Questions

The predefined goal of our research project is to identify, define and evaluate
a suitable component technology for the business segment for heavy vehicles.
Our assumption is that there is nosingle component-technologysuitable for all
segments of the embedded systems market, neither can an existing component
technology for the Internet/office applications be adaptedin order to satisfy
the embedded system developer requirements. Instead, our idea was that dif-
ferent segments of the embedded systems market is best served by different
technologies, and that the best way to find out if the assumption is valid – is
to start unbiased and ask the involved companies about theirspecific needs,
before looking too deep into different technical solutions.

These answers where then to be used as the research platform for the con-
tinued work in which we evaluate existing component technologies and imple-
ment proposed changes in a new, or modified, component technology.

The issues considered in our research project can be summarised by the
following research questions:

13

14 Chapter 2. Contribution

Why are existing software component technologies for embedded system devel-
opment not used more frequently in industry?

(MainQuestion)

This question can be considered the main topic of this work. Trying to
find the answer to this question, we must examine the industrial development
process of today, the industrial requirements on component-based software de-
velopment, and the existing component technologies that could be suitable for
embedded systems. However, this question is very broad and,strictly speak-
ing, not suitable as a research question. Hence, the main question serve as a
guideline but is split up into four sub-questions that is more appropriate for
research, trying to identify the different aspects of the main question.

Which are the most important requirements on a component technology for
heavy vehicle developers in order to cope with the increasing demands on func-
tionality and product costs?

(Q1)

This question aims at finding the most important industrial requirements on
a component technology for the specific business segment of heavy vehicles.
The idea, stating this as the first research question, is thatby finding the in-
dustrial prerequisites to introduce a component technology before looking too
deep into technical solutions we can present an unbiased overview of the actual
industrial requirements.

What is (is not) offered in the existing component technologies, and how does
this match the industrial requirements?

(Q2)

Based on the requirements, i.e.(Q1), this question aims at finding parts
of the component technologies that are lacking, or parts of existing compo-
nent technologies that are particularly well addressed, and – in those cases –
if possible identify satisfying technical solutions. To find the answer to this
question, we must study a set of component technologies, andevaluate those
technologies based on the collected industrial requirements.

Is it possible, and sensible, to improve, extend, or simplify, existing component
technologies (or parts of existing technologies) in order to fulfil the industrial
requirements?

(Q3)

2.2 Contribution 15

This question is based on the answer to(Q1), and can be seen as an exten-
sion of (Q2). We aim at realising a deeper study, and a further investigation,
of specific parts of a smaller set of the existing technologies (i.e. the question
does not address the issues of developing a new component technology). The
answer to this question will, possibly, include areas that need to be improved in
order for the embedded systems developers to introduce a component technol-
ogy. This research question might also point out areas for future work and/or
include additional suggestions not thought of within the other research ques-
tions.

Is it possible to combine the industrial requirements and the technical solutions
in the state-of-the-art (and state-of-practice) component technologies, in order
to find a custom-made component technology for heavy vehicles?

(Q4)

This question intend to, based on existing techniques and the specified in-
dustrial requirements, find a technical, as well as development process related,
suggestion/solution to whether or not it is possible to define and implement a
component technology suitable for the market segment of heavy vehicles. This
question is an extension of(Q3) and does possibly addresses the development
of a new component technology.

2.2 Contribution

The contributions of this thesis are divided into two parts,the scientific contri-
butions and the contributions for the participating companies.

Scientific Contributions

The scientific contributions of this thesis project are mainly:

• The study of actual requirements from a specific industrial segment, and
the survey of to what extent those requirements are fulfilledby existing
component technologies.

• The implementation of a test-bed component technology, anda pilot-
project, have a scientific value, illustrating how a technology based on
industrial requirements can be used to solve problems that are not solved
by commodity technologies.

16 Chapter 2. Contribution

• The proposed technique for monitoring software components, and reuse
of monitored components as a general approach towards engineering
of resource constrained embedded real-time control-systems. This ap-
proach illustrates a pragmatic engineering solution to often discussed
scientific problems, e.g., how to ascertain worst-case execution-times.

Industrial Contributions

For the participating companies, the main contributions are:

• The compilation of requirements and the assessment of the suitability of
existing technologies.

• The test-bed implementation of an appropriate component technology
(based on the industrial requirements and solutions from publicly avail-
able documentation about existing component technologies).

• The industrial pilot project implementing an embedded control applica-
tion using the suggested component technology, will also provide valu-
able insight into how a component technology can be used at the partic-
ipating companies.

2.3 Included Papers

This section summarises, and presents my contribution, of the included papers
in this thesis.

Paper A

Industrial Requirements on Component Technologies for Embedded Systems;
Anders Möller, Joakim Fröberg and Mikael Nolin; In Proceedings of the 7th

International Symposium on Component-Based Software Engineering, pages
146–161, Springer Verlag, Edinburgh, Scotland, May 2004.

Summary: This paper presents a study of requirements on component-based
software engineering for heavy vehicles. The study was performed at Volvo
Construction Equipment1 and at CC Systems2, and the purpose of the study

1Volvo Construction Equipment, Eskilstuna, Sweden, http://www.volvoce.com/
2CC Systems, Uppsala, Sweden, http://www.cc-systems.com/

2.3 Included Papers 17

was to build a solid platform for the continuous research on component-based
software for heavy vehicles.

My contribution: The study was initiated and accomplished by Anders. The
work writing this paper was divided between the authors, butAnders was the
driving author and responsible for putting the requirements together.

Paper B

Evaluation of Component Technologies with Respect to Industrial Require-
ments; Anders Möller, Mikael Åkerholm, Johan Fredriksson and Mikalel No-
lin; In Proceedings of the 30th Euromicro Conference, Component-Based Soft-
ware Engineering Track, pages 56–63; Rennes, France, September 2004.

Summary: This evaluation of component technologies is based on the require-
ments collected in Paper A. The idea was to study which of the requirements
that are fulfilled by existing technologies, and which are not. The study also
includes a short survey description of each of the evaluatedcomponent tech-
nologies, and a table summarising the evaluation.

My contribution: The evaluation was initiated by Anders. Anders was also
responsible for summarising the industrial requirements,but the writing and
evaluation part of the paper was equally divided between theauthors.

Paper C

Towards a Dependable Component Technology for Embedded System Appli-
cations; Mikael Åkerholm, Anders Möller, Hans Hansson and Mikael Nolin;
To Appear in the Proceedings of the Workshop on Object-Oriented Real-time
Dependable Systems, Sedona, Arizona, USA, February 2005.

Summary: In this paper, a prototype component technology, developedwith
safety-critical automotive applications in mind, is presented. The technology is
based on a restrictive modelling language, and the technology implementation
is illustrated as a technical case-study performed at CC Systems.

My contribution: The case-study was initiated by Anders. The major part
of the component technology’s compile-time activities wasimplemented by
Mikael Å, and the run-time framework was implemented by Anders. Writing
was equally distributed between the authors.

18 Chapter 2. Contribution

Paper D

Monitored Software Components – A Novel Software Engineering Approach;
Daniel Sundmark, Anders Möller and Mikael Nolin; In Proceedings of the 11th

Asian-Pasific Conference on Software Engineering, Workshop on Software Ar-
chitectures and Component Technologies, pages 624–631; Busan, Korea; No-
vember 2004.

Summary: The paper describes monitoring of software components, anduse
of monitored software components as a general approach for engineering of
embedded computer systems.

My contribution: The idea writing this paper, and the idea of using monitor-
ing as a pragmatic approach towards predictable assembliescame from Anders.
Daniel was responsible for describing the monitoring techniques, and Anders
for describing the existing techniques and the embedded-system settings. Writ-
ing the paper was joint work between the authors.

Chapter 3

Research Work and Method

Instead of starting from an existing component technology (like, e.g., CORBA
[14] or Enterprise Java Beans [8]) and try to embed it into a heavy vehicle
system, this project took a different approach in that we started unbiased by
identifying specific industrial requirements from the heavy vehicle market seg-
ment.

Based on these requirements, we studied to what extent existing component
technologies fulfilled those industrial desires. We did also assess to what extent
existing technologies could be adapted in order to fulfil therequirements, or
whether selected parts (like, e.g., tools, middlewares, and file-formats) could
be reused if a new component technology were to be developed.

Equipped with this knowledge, we initiated the work of specifying a suit-
able component technology for the specific business segmentof heavy vehicles.
This specification covered issues like, e.g., component modelling, component-
framework functionality, analysability, and component interoperability. Based
on these specifications, and on similar work [10, 12, 25], we prepared a test-bed
implementation of the component technology.

The work can be divided into five different parts, in which different research
methods have been used. All phases have been performed in close cooperation
with industry, but also with a lot of influences from, and cooperation with, other
research groups, like, e.g., the SAVE1 project. In the following, we discuss the
specific research methods used in the different phases.

1SAVE project, Home Page: http://www.mrtc.mdh.se/SAVE

19

20 Chapter 3. Research Work and Method

3.1 Preliminary Literature Study

The research presented within this thesis started with a preliminary literature
study, summarised in the state-of-the-art report [26]. Thereport is based on
about 30 articles summarising the area of component-based software engineer-
ing for safety critical embedded applications, and is divided into six different
parts. The first part is a general part describing CBSE and embedded systems.
The second part describes different component technology independent tech-
niques that are considered useful for CBSE for embedded systems. The third
part presents a set of existing component models and technologies. Section
four describes general low-level technical issues of CBSE for embedded sys-
tems. Part five presents work done on architecture description languages, and
the last section, section six, presents aspect oriented design/programming.

The literature study aimed at establishes basic knowledge about the exist-
ing component technologies for embedded systems. Understanding the state-
of-the-art and state-of-practice component technologieswas a prerequisite for
the subsequent work. All the papers reviewed in the report have been read,
presented, and discussed by all the authors during several workshop meetings.

3.2 Industrial Requirements Case-Study

This part of the research was aiming at finding the most important industrial
requirements on a component technology for the business segment of heavy
vehicles. The idea was to find the industrial prerequisites to introduce a com-
ponent technology, before looking too deep into technical solutions. However,
there are many different aspects and methods to consider when looking into
questions regarding how to capture the most important requirements on a com-
ponent technology suited for heavy vehicles.

Based on the preliminary literature study - a qualitative case-study inter-
view protocol (i.e. a case-study questionnaire) [27] was put together focusing
on finding the answer to the research question(Q1), as stated in Sect. 2.1.
Qualitative research methods aims to give clear understanding of the phenom-
enon studied without generalising, and can be performed by collecting infor-
mation from a relatively small set of research objects. The qualitative methods
are often relatively unsystematic and unstructured [28]. However, the case-
study protocol is very important - and is used to keep the investigator targeted
on the subject. This is done by including an overview of the case-study project,
together with a description of the field procedures (i.e. having access to the in-

3.3 Evaluation of Existing Technologies 21

terviewees, having enough resources, etc) and a guide for the case-study report,
in the protocol in addition to the actual case-study questions [27].

The case-study was performed at Volvo Construction Equipment and at CC
Systems, and the respondents were senior technical staff from different parts of
the organisation (like, e.g., project managers, development process specialists,
programmers, and testing specialists). The case-study protocol questions were
open – meaning that attendant questions were dependent on the respondent’s
answer [27].

We also made an investigation to validate the reliability ofour case-study
results. This was realised by conducting interviews with industrial representa-
tives, and by participating in discussions with engineers and researchers with
heavy vehicle domain knowledge. The investigation confirmed our case-study
work and further strengthened our conclusion that not only technical issues are
of importance – also the development process related issue is deemed decisive
for introducing a component technology in an industrial context.

3.3 Evaluation of Existing Technologies

The next phase in our research was to look deeper into a smaller set of com-
ponent technologies, and evaluate those technologies based on the collected
industrial requirements. The technologies were selected based on the initial
literature study, and were examined in great detail. Many ofthe published pa-
pers available from each component technology project werecarefully studied.

The technologies described and evaluated are PECT [13], Koala [11], Rubus
Component Model [10], PBO [29], PECOS [30] and CORBA-CCM [14]. We
have chosen CORBA-CCM to represent the set of technologies existing in the
Internet/office domain (other examples are, .NET [9] and Enterprise Java Beans
[8]) since it is a technology that partly addresses embeddedand real-time is-
sues. Also, the Windows CE version of .NET [9] is omitted, since it is mainly
targeted towards embedded display-devices, which only constitute a small sub-
set of the devices in vehicular systems.

These technologies originate both from academia and industry, and the se-
lection criterion has firstly been that there is enough information available (the
evaluation is based on existing, publicly available, documentation), secondly
that the authors claim that the technology is suitable for embedded systems,
and finally we have tried to achieve a combination of both academic and indus-
trial technologies.

The evaluation work was performed in small workshops, wherethe au-

22 Chapter 3. Research Work and Method

thors discussed and evaluated the available written material from each of the
chosen component technologies, and finally compared it withthe industrial re-
quirements. The appropriateness of the technologies solution to each of the
requirements were summarised in a graded table (Sect. 6.4).

3.4 Implementing and Evaluating a Component
Technology

By combining the knowledge and experience collected from the previous parts
of the research, together with results from the SAVE project, we implemented
a prototype component technology. The component technology was based on
the SaveComp Component Model [25], suggested within the SAVE project,
developed with safety-critical dependable vehicle applications in mind.

The component technology is intended to provide three main benefits for
developers of embedded systems: efficient development, predictable behav-
iour, and run-time efficiency. The technology implementation includes design-
time, compile-time and run-time mechanisms and was implemented in cooper-
ation with CC Systems.

To evaluate the suitability of the component technology, weimplemented
a test-bed application using the company’s tools and techniques. The eval-
uation can be divided into three categories, the structuralproperties, the be-
havioural properties, and the process related properties.The evaluation was
accomplished using a check-list assembled from requirements for automotive
component technologies collected within this work, risks with using CBSE for
embedded systems by Larn and Vickers [31], and from identified needs by
Crnkovic [4].

3.5 Monitoring Software Components

The requirements study and the component technology evaluation, as well as
the evaluation of the component technology implementation, showed that one
of the most central issues when introducing component-based development is
the ability to analyse and predict the behaviour of a component assembly pre-
run-time [13].

We studied related work (e.g., [32, 33, 34]) and some work done within the
respective component technologies (e.g., [10, 35]). We found that not much

3.5 Monitoring Software Components 23

focus was put on monitoring as a solution to reach predictable component as-
semblies, and hence we presented a general engineering proposal to facilitate
certifiable components, system-level testing and debugging, run-time contract
checking and enhanced observability.

Hence, in the final part of this thesis – we propose a pragmaticmethod to
monitor software components, and use of monitored softwarecomponents, as
a general approach for engineering of embedded computer systems. Continu-
ous monitoring is to be used as the base for contract checking, and provides
means for post-mortem crash analysis [36]; important prerequisites for many
companies to start use 3rd party components in their dependable systems.

Monitoring software, as suggested, comprise (full or partial) solutions to
many of the collected requirements, like analysability (Sect. 5.4.1) with respect
to the enhanced ability to collect the information needed toperform schedu-
lability and memory-consumption analysis. Monitoring canalso be used to
support replay debugging [36], where erroneous system-executions are recre-
ated in a lab environment to allow tracing of bugs. Enhanced reusability (Sect.
5.4.2) and maintainable (Sect. 5.4.2) are one of the main benefits using mon-
itored software components, since the components are continuously observed
and at the end certified. However, there are contradicting aspects of monitor-
ing. The limited resources (Sect. 5.4.1) are put at risk since resources (e.g.
memory and CPU) are needed to drive the monitor.

Chapter 4

Conclusion and Future Work

To be able to address the main question (i.e.Why are existing software compo-
nent technologies for embedded system development not usedmore frequently
in industry?) of this thesis, we divided the work into smaller parts and tried to
answer the different sub-questions.

One of the main contributions with this thesis is that it straightens out some
of the question-marks regarding the actual industrial requirements placed on a
component technology within the business segment of heavy vehicles. When
trying to find an answer to(Q1) (Sect. 2.1), comprising the industrial require-
ments on a component technology, we have noticed that – for a component
technology to be fully accepted by industry, the whole system development
context needs to be considered. It is not only the technical properties that need
to be addressed, but also development process related requirements.

The requirements collected are used to evaluate a set of component tech-
nologies, so that the risks with component-based development can be min-
imised before being introduced in an industrial context. Thus, we hope that
this thesis can help companies take the step into tomorrow’stechnology. This
evaluation helped us answering research question(Q2) in Sect. 2.1, and the
conclusion is that non of the evaluated component technologies fulfil all the
requirements and that no single component technology stands out as being a
obvious best match for the requirements. However, it is interesting to see that
most requirements are fulfilled by one or more techniques, implying that there
exists solutions to each of the requirements. During the evaluation work we
identified different areas were component technology improvements could be
done. We also gathered valuable experience from this evaluation that was later

25

26 Chapter 4. Conclusion and Future Work

used when implementing a new component technology and when outlining fu-
ture work.

To answer research question(Q3) and(Q4), comprising the possible ar-
eas of improvements within CBSE for embedded systems, we have described
the initial implementation of our component technology suitable for vehicular
systems. This work also includes an evaluation of the results in an industrial
environment, using requirements identified in related research.

One area within component-based software engineering thatwe observed
to be slightly weaker than most other technical areas is the ability to predict
the component assembly behaviour pre-run-time. In this thesis we propose
monitoring of software components, and reuse of monitored components, as
a pragmatic engineering approach to facilitate predictability. The concept is
general and addresses not only the development phase, but rather the whole
product life-cycle. This work can be seen as a preliminary answer to research
question(Q3) but also as an example of a possible area for future work.

Our plans for future work include different extensions of the component
technology. We will be looking deeper into issues covering support for, e.g.,
multiple nodes, integration of legacy code with the components [37], enhanced
run-time monitoring support [38], and a real-time databasefor structured han-
dling of shared data [39].

An indication of the potential of our work within the HEAVE project is
that the companies involved, i.e. CC Systems and Volvo Construction Equip-
ment, find our ideas promising and has expressed a keen interest to continue
the cooperation.

Bibliography

[1] I. Crnkovic and M. Larsson.Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[2] C. Szyperski.Component Software – Beyond Object-Oriented Program-
ming. Addison-Wesley, ISBN: 0201745720, 1998.

[3] G. T. Heineman and W. T. Councill.Component-based Software Engi-
neering, Putting the Pieces Together. Prentice-Hall, 2001. ISBN: 0-201-
70485-4.

[4] I. Crnkovic. Componet-Based Approach for Embedded Systems. In
Proceedings of 9th International Workshop on Component-Oriented Pro-
gramming, June 2004. Oslo, Norway.

[5] A. Brown and K. Wallnau. The Current State of CBSE.IEEE Software,
September/October 1998.

[6] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. InProceedings of the Sev-
enteenth International Conference on Software Engineering, April 1995.
Seattle, USA.

[7] A. Ran. Software isn’t built from LEGO blocks – Towards Architecture
Based Reuse. Keynote speach by Alexander Ran (Nokia Research Cen-
ter) at the Symposium on Software Reusability, Collocated with the Inter-
national Conference on Software Engineering, May 1999. LosAngeles,
USA.

[8] Sun Microsystems. Enterprise Java Beans Technology. http://java.sun.-
com/products/ejb/.

27

28 Bibliography

[9] Microsoft Component Technologies. COM/DCOM/.NET. http://www.-
microsoft.com.

[10] K.L. Lundbäck, J. Lundbäck and M. Lindberg. Component-Based Devel-
opment of Dependable Real-Time Applications. InReal-Time in Sweden
– Presentation of Component-Based Software Development Based on the
Rubus concept, Arcticus Systems: http://www.arcticus.se. Västerås, Swe-
den.

[11] R. van Ommering et al. The Koala Component Model for Consumer
Electronics Software.IEEE Computer, 33(3):78–85, March 2000.

[12] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-Based Prediction of
Run-Time Resource Consupmption in Component-Based Software Sys-
tems. InProceedings of the 6th International Workshop on Component-
Based Software Engineering, May 2003. Portland, Oregon, USA.

[13] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003. Pittsburg,
USA.

[14] CORBA Component Model 3.0. Object Management Group, June 2002.
http://www.omg.org/technology/documents/formal/components.htm.

[15] J. Fröberg. Engineering of Vehicle Electronic Systems: Requirements
Reflected in Architecture. Technical report, Technology Licentiate Thesis
No.26, ISSN 1651-9256, ISBN 91-88834-41-7, Mälardalen Real-Time
Reseach Centre, Mälardalen University, March 2004. Västerås, Sweden.

[16] International Standards Organisation (ISO). Road Vehicles – Interchange
of Digital Information – Controller Area Network (CAN) for High-Speed
Communication, November 1993. vol. ISO Standard 11898.

[17] J. Turely. The Two Percent Solution.Embedded Systems Programming,
http://www.embedded.com, December 2002.

[18] N. Andersson. Halva bilens värde är elektronik. Automobil, NyTeknik,
September 2002. Swedish Technical Magazine.

[19] MOST. Specification framework rev 1.1. MOST Coopertion,
http://www.mostnet.de, November 1999.

Bibliography 29

[20] LIN. – Protocol, Development Tools, and Software for Local Interconnect
Networks. In 9th International Conference on Electronic Systems for
Vehicles, October 2000. Baden-Baden, Germany.

[21] I. Crnkovic, U. Askerlund, and A. Persson-Dahlqvist.Implementing and
Integrating Product Data Management and Software Configuration Man-
agement. Artech House Software Engineering Library, 2002. ISBN: 1-
58053-498-8.

[22] Object Management Group. MinimumCORBA 1.0, August 2002. http://-
www.omg.org/technology/documents/formal/minimum_CORBA.htm.

[23] EAST-EEA. ITEA-Project-Number 0009. http://www.east-eea.net/.

[24] AUTOSAR. The AUTOSAR consortium – Automotive Open System
Architecture. http://www.autosar.org/.

[25] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM -
a Component Model for Safety-Critical Real-Time Systems. In Proceed-
ings of 30th Euromicro Conference, Special Session Component Models
for Dependable Systems, September 2004.

[26] M. Nolin, J. Fredriksson, J. Hammarberg, J. Huselius, J. Håkansson,
A. Karlsson, O. Larses, M. Lindgren, G. Mustapic, A. Möller,T. Nolte,
J. Norberg, D. Nyström, A. Tesanovic, and M. Åkerholm. Component-
Based Software for Embedded Systems - A Literature Survey. Technical
report, MRTC Report No 104, ISSN 1404-3041, ISRN MDH-MRTC-
104/203-1-SE, Mälardalen Real-Time Reseach Centre, Mälardalen Uni-
versity, June 2003. Västerås, Sweden.

[27] R.K. Yin. Case Study Research – Design and Methods. Applied Social
Research Methods Series, Volume 5, SAGE Publications, 2003. ISBN
0-7619-2553-8.

[28] I.M. Holme and B.K. Solvang.Forskningsmetodik - Om kvalitativa och
kvantitativa metoder. Sudentlitteratur, Lund, ISBN 9144002114, 1997.
Andra Upplagan.

[29] D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of Dynamically Re-
configurable Real-Time Software Using Port-Based Objects.IEEE Trans-
actions on Software Engineering, pages 759 – 776, December 1997.

30 Bibliography

[30] M. Winter, T. Genssler, et al. Components for Embedded Software – The
PECOS Apporach. InThe 2nd International Workshop on Composition
Languages, in conjunction with the 16th ECOOP, June 2002. Malaga,
Spain.

[31] W. Lam and A.J. Vickers. Managing the Risks of Component-Based Soft-
ware Engineering. InProceedings of the 5th International Symposium on
Assessment of Software Tools, June 1997. Pittsburgh, USA.

[32] J. Gao, E. Zhu, and S. Shim. Tracking component-based software. In
Proceedings of the International Conference on Software Engineering,
2000’s COTS Workshop: Continuing Collaborations for Successful COTS
Development, 2000.

[33] A. Jhumka, M. Hiller, and N. Suri. An Approach to Specifyand Test
Component-Based Dependable Software. InProceedings of the 7th IEEE
International Symposium on High Assurance Systems Engineering, pages
211 – 218, 2002.

[34] J. Hörnstein and H. Edler. Test Reuse in CBSE Using Built-in Tests.
In Proceedings of Workshop on Component-based Software Engineering,
April 2002.

[35] T. Genssler, A. Christoph, B. Schuls, M. Winter, et al. PECOS in a Nut-
shell. PECOS project http://www.pecos-project.org.

[36] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson. Replay Debug-
ging of Real-Time Systems Using Time Machines. InProceedings of Par-
allel and Distributed Systems: Testing and Debugging (PADTAD), pages
288 – 295). ACM, April 2003.

[37] M. Åkerholm, K. Sandström, and J. Fredriksson. Interference Con-
trol for Integration of Vehicular Software Components. Technical re-
port, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-162/2004-1-
SE, MRTC, Mälardalen University, May 2004.

[38] D. Sundmark, A. Möller, and M. Nolin. Monitored Software Compo-
nents – A Novel Software Engineering Approach –. InProceedings of the
11th Asia-Pasific Software Engineering Conference, Workshop onSoft-
ware Architectures and Component Technologies, November 2004. Pu-
san, Korea.

[39] D. Nyström. COMET: A Component-Based Real-Time Database for Ve-
hicle Control Systems. Technical report, Technology Licentiate Thesis
No.26, ISSN 1651-9256, ISBN 91-88834-41-7, Mälardalen Real-Time
Reseach Centre, Mälardalen University, May 2003. Mälardalen Univer-
sity Press.

Chapter 5

Paper A:
Industrial Requirements on
Component Technologies for
Embedded Systems

Anders Möller, Joakim Fröberg and Mikael Nolin
In Proceedings of the 7th International Symposium on Component-Based Soft-
ware Engineering, pages 146–161, Edinburgh, Scotland, May2004

33

Abstract

Software component technologies have not yet been generally accepted by
embedded-systems industries. In order to better understand why this is the
case, we present a set of requirements, based on industrial needs, that are
deemed decisive for introducing a component technology. The requirements
we present can be used to evaluate existing component technologies before
introducing them in an industrial context. They can also be used to guide mod-
ifications and/or extensions to component technologies, tomake them better
suited for industrial deployment. One of our findings is thata major source
of requirements is non-technical in its nature. For a component technology to
become a viable solution in an industrial context, its impact on the overall de-
velopment process needs to be addressed. This includes issues like component
life-cycle management, and support for the ability to gradually migrate into the
new technology.

5.1 Introduction 35

5.1 Introduction

During the last decade, Component-Based Software Engineering (CBSE) for
embedded systems has received a large amount of attention, especially in the
software engineering research community. In the office/Internet area CBSE has
had tremendous impact, and today components are downloadedand on the fly
integrated into, e.g., word processors and web browsers. Inindustry however,
CBSE is still, to a large extent, envisioned as a promising future technology
to meet industry specific demands on improved quality and lowered cost, by
facilitating software reuse, efficient software development, and more reliable
software systems [1].

CBSE has not yet been generally accepted by embedded-systemdevelop-
ers. They are in fact, to a large extent, still using monolithic and platform
dependent software development techniques, in spite of thefact that this make
software systems difficult to maintain, upgrade, and modify. One of the reasons
for this status quo is that there are significant risks and costs associated with
the adoption of a new development technique. These risks must be carefully
evaluated and managed before adopting a new development process.

The main contribution of this paper is that it straightens out some of the
question-marks regarding actual industrial requirementsplaced on a compo-
nent technology. We describe the requirements on a component technology as
elicited from two companies in the business segment of heavyvehicles. Many
of the requirements are general for the automotive industry, or even larger parts
of the embedded systems market (specifically segments that deal with issues
about distributed real-time control in safety-critical environments), but there
are also some issues that are specific for the business segment of heavy vehi-
cles.

The list of requirements can be used to evaluate existing component tech-
nologies before introducing them in an industrial context,therefore minimising
the risk when introducing a new development process. Thus, this study can
help companies to take the step into tomorrow’s technology today. The list can
also be used to guide modifications and/or extensions to component technolo-
gies, to make them better suited for industrial deployment within embedded
system companies. Our list of requirements also illustrates how industrial re-
quirements on products and product development impact requirements on a
component technology.

This paper extends previous work, studying the requirements for compo-
nent technologies, in that the results are not only based on our experience, or
experience from a single company [2, 3]. We base most of our results on inter-

36 Paper A

views with senior technical staff at the two companies involved in this paper,
but we have also conducted interviews with technical staff at other companies.
Furthermore, since the embedded systems market is so diversified, we have
limited our study to applications for distributed embeddedreal-time control in
safety-critical environments, specifically studying companies within the heavy
vehicles market segment. This gives our results higher validity, for this class
of applications, than do more general studies of requirements in the embedded
systems market [4].

5.2 Introducing CBSE in the Vehicular Industry

Component-Based Software Engineering arouses interest and curiosity in in-
dustry. This is mainly due to the enhanced development process and the im-
proved ability to reuse software, offered by CBSE. Also, theincreased possi-
bility to predict the time needed to complete a software development project,
due to the fact that the assignments can be divided into smaller and more easily
defined tasks, is seen as a driver for CBSE.

CBSE can be approached from two, conceptually different, points of view;
distinguished by whether the components are (1) used as a design philoso-
phy independent from any concern for reusing existing components, or (2)
seen as reusable off-the-shelf building blocks used to design and implement a
component-based system [5]. When talking to industrial software developers
with experience from using a CBSE development process [6], such as Volvo
Construction Equipment1, the first part, (1), is often seen as the most impor-
tant advantage. Their experience is that the design philosophy of CBSE gives
rise to good software architecture and significantly enhanced ability to divide
the software in small, clearly-defined, development subprojects. This, in turn,
gives predictable development times and shortens the time-to-market. The sec-
ond part, (2), are by these companies often seen as less important, and the main
reason for this is that experience shows that most approaches to large scale
software reuse is associated with major risks and high initial costs. Rather few
companies are willing to take these initial costs and risks since it is difficult to
guarantee that money is saved in the end.

On the other hand, when talking to companies with less, or no,experience
from component-based technologies, (2) is seen as the most important motiva-
tion to consider CBSE. This discrepancy between companies with and without
CBSE experience is striking.

1Volvo Construction Equipment, Home Page: http://www.volvo.com

5.2 Introducing CBSE in the Vehicular Industry 37

However, changing the software development process to using CBSE does
not only have advantages. Especially in the short term perspective, introduc-
ing CBSE represents significant costs and risks. For instance, designing soft-
ware to allow reuse requires (sometimes significantly) higher effort than does
designing for a single application [7]. For resource constrained systems, de-
sign for reuse is even more challenging, since what are the most critical re-
sources may wary from system to system (e.g. memory or CPU-load). Fur-
thermore, a component designed for reuse may exhibit an overly rich interface
and an associated overly complex and resource consuming implementation.
Hence, designing for reuse in resource constrained environments requires sig-
nificant knowledge not only about functional requirements,but also about non-
functional requirements. These problems may limit the possibilities of reuse,
even when using CBSE.

With any software engineering task, having a clear and complete under-
standing of the software requirements is paramount. However, practice shows
that a major source of software errors comes from erroneous,or incomplete,
specifications [7]. Often incomplete specifications are compensated for by en-
gineers having good domain knowledge, hence having knowledge of implicit
requirements. However, when using a CBSE approach, one driving idea is that
each component should be fully specified and understandableby its interface.
Hence, the use of implicit domain knowledge not documented in the interface
may hinder reuse of components. Also, division of labour into smaller projects
focusing on single components, require good specificationsof what interfaces
to implement and any constraints on how that implementationis done, further
disabling use of implicit domain knowledge. Hence, to fullyutilise the benefits
of CBSE, a software engineering process that do not rely on engineers’ implicit
domain knowledge need to be established.

Also, when introducing reuse of components across multipleproducts and/-
or product families, issues about component management arise. In essence,
each component has its own product life-cycle that needs to be managed. This
includes version and variant management, keeping track of which versions and
variants is used in what products, and how component modifications should
be propagated to different version and variants. Components need to be main-
tained, as other products, during their life cycle. This maintenance needs to be
done in a controlled fashion, in order not to interfere aversively with ongoing
projects using the components. This can only be achieved using adequate tools
and processes for version and variant management.

38 Paper A

5.3 A Component Technology for Heavy Vehicles

Existing component technologies are in general not applicable to embedded
computer systems, since they do not consider aspects such assafety, timing,
and memory consumption that are crucial for many embedded systems [8, 9].
Some attempts have been made to adapt component technologies to embedded
systems, like, e.g., MinimumCORBA [10]. However, these adaptations have
not been generally accepted in the embedded system segments. The reason
for this is mainly due to the diversified nature of the embedded systems do-
main. Different market segments have different requirements on a component
technology, and often, these requirements are not fulfilledsimply by stripping
down existing component technologies; e.g. MinimumCORBA requires less
memory then does CORBA, however, the need to statically predict memory
usage is not addressed.

It is important to keep in mind that the embedded systems market is ex-
tremely diversified in terms of requirements placed on the software. For in-
stance, it is obvious that software requirements for consumer products, tele-
com switches, and avionics are quite different. Hence, we will focus on one
single market segment: the segment of heavy vehicles, including, e.g., wheel
loaders and forest harvesters. It is important to realise that the development
and evaluation of a component technology is substantially simplified by focus-
ing on a specific market segment. Within this market segment,the conditions
for software development should be similar enough to allow alightweight and
efficient component technology to be established [11].

5.3.1 The Business Segment of Heavy Vehicles

Developers of heavy vehicles faces a situation of (1) high demands on reliabil-
ity, (2) requirements on low product cost, and (3) supporting many configura-
tions, variants and suppliers. Computers offer the performance needed for the
functions requested in a modern vehicle, but at the same timevehicle reliabil-
ity must not suffer. Computers and software add new sources of failures and,
unfortunately, computer engineering is less mature than many other fields in
vehicle development and can cause lessened product reliability. This yields a
strong focus on the ability to model, predict, and verify computer functionality.

At the same time, the product cost for volume products must bekept low.
Thus, there is a need to include a minimum of hardware resources in a product
(only as much resources as the software really needs). The stringent cost re-
quirements also drive vehicle developers to integrate low cost components from

5.3 A Component Technology for Heavy Vehicles 39

suppliers rather than develop in-house. On top of these demands on reliabil-
ity and low cost, vehicle manufacturers make frequent use ofproduct variants
to satisfy larger groups of customers and thereby increase market share and
product volume.

In order to accommodate (1)-(3), as well as an increasing number of fea-
tures and functions, the electronic system of a modern vehicle is a complex
construction which comprise electronic and software components from many
vendors and that exists in numerous configurations and variants.

The situation described cause challenges with respect to verification and
maintenance of these variants, and integration of components into a system.
Using software components, and a CBSE approach, is seen as a promising
way to address challenges in product development, including integration, flex-
ible configuration, as well as good reliability predictions, scalability, software
reuse, and fast development. Further, the concept of components is widely
used in the vehicular industry today. Using components in software would be
an extension of the industry’s current procedures, where the products today are
associated with the components that constitute the particular vehicle configu-
ration.

What distinguishes the segment of heavy vehicles in the automotive indus-
try is that the product volumes are typically lower than thatof, e.g., trucks or
passenger cars. Also the customers tend to be more demandingwith respect to
technical specifications such as engine torque, payload etc, and less demand-
ing with respect to style. This causes a lower emphasis on product cost and
optimisation of hardware than in the automotive industry ingeneral. The lower
volumes also make the manufacturers more willing to design variants to meet
the requests of a small number of customers.

However, the segment of heavy vehicles is not homogeneous with respect
to software and electronics development practices. For instance, the industrial
partners in this paper face quite different market situations and hence employ
different development techniques:

• CC Systems2 (CCS) is developing and supplying advanced distributed
embedded real-time control systems with focus on mobile applications.
Examples, including both hardware and software, developedby CCS
are forest harvesters, rock drilling equipment and combat vehicles. The
systems developed by CCS are built to endure rough environments, and
are characterised by safety criticality, high functionality, and the require-
ments on robustness and availability are high.

2CC Systems, Home page: http://www.cc-systems.com

40 Paper A

CCS works as a distributed software development partner, and coop-
erates, among others, with Alvis Hägglunds3, Timberjack4 and Atlas
Copco5. Experience from these companies are included in this paper,
this makes our findings more representative for the businesssegment of
heavy vehicles.

CCS’ role as subcontractor requires a high degree of flexibility with re-
spect to supported target environments. Often, CCS’ customers have re-
quirements regarding what hardware or operating systems platforms to
use, hence CCS cannot settle to support only some predefined set of en-
vironments. Nevertheless, to gain competitive advantages, CCS desires
to reuse software between different platforms.

• Volvo Construction Equipment (VCE) is one of the world’s major manu-
facturers of construction equipment, with a product range encompassing
wheel loaders, excavators, motor graders, and more. What these prod-
ucts have in common is that they demand high reliability control systems
that are maintainable and still cheap to produce. The systems are charac-
terised as distributed embedded real-time systems, which must perform
in an environment with limited hardware resources.

VCE develops the vehicle electronics and most software in house. Some
larger software parts, such as the operating system, are bought from com-
mercial suppliers. VCE’s role as both system owner and system devel-
oper gives them full control over the system’s architecture. This, in turn,
has given them the possibility to select a small set of (similar) hardware
platforms to support, and select a single operating systemsto use. De-
spite this degree of control over the system, VCE’s experience is that
software reuse is still hindered; for instance by non-technical issues like
version and variant management, and configuration management.

5.3.2 System Description

In order to describe the context for software components in the vehicular indus-
try, we will first explore some central concepts in vehicle electronic systems.
Here, we outline some common and typical solutions and principles used in the
design of vehicle electronics. The purpose is to describe commonly used solu-

3Alvis Hägglunds, Home page: http://www.alvishagglunds.se
4Timerjack, Home page: http://www.timberjack.com
5Atlas Copco, Home page: http://www.atlascopco.com

5.3 A Component Technology for Heavy Vehicles 41

tions, and outline the de facto context for application development and thereby
also requirements for software component technologies.

The system architecture can be described as a set of computernodes called
Electronic Control Units (ECUs). These nodes are distributed throughout the
vehicle to reduce cabling, and to provide local control oversensors and actua-
tors. The nodes are interconnected by one or more communication bus forming
the network architecture of the vehicle. When several different organisations
are developing ECUs, the bus often acts as the interface between nodes, and
hence also between the organisations. The communication bus is typically low
cost and low bandwidth, such as the Controller Area Network (CAN) [12].

ECU
1

ECU
2

ECU
3

I/O

Sensor
Actuator

Bus 1

Gateway

ECU
5

ECU
4

Bus 2

Service
Computer

Intelligent
Sensor

Figure 5.1: Example of a vehicle network architecture

In the example shown in Fig. 5.1, the two communication busses are sep-
arated using a gateway. This is an architectural pattern that can be used for
several reasons, e.g., separation of criticality, increased total communication
bandwidth, fault tolerance, compatibility with standard protocols [13, 14, 15],
etc. Also, safety critical functions may require a high level of verification,
which is usually very costly. Thus, non-safety related functions might be sep-
arated to reduce cost and effort of verification. In some systems the network is
required to give synchronisation and provide a fault tolerance mechanisms.

The hardware resources are typically scarce due to the requirements on low

42 Paper A

product cost. Addition of new hardware resources will always be defensive,
even if customers are expected to embrace a certain new function. Because
of the uncertainty of such expectations, manufacturers have difficulties in es-
timating the customer value of new functions and thus the general approach is
to keep resources at a minimum.

In order to exemplify the settings in which software components are con-
sidered, we have studied our industrial partner’s currently used nodes. Below
we list the hardware resources of a typical ECU with requirements on sensing
and actuating, and with a relatively high computational capacity (this example
is from a typical power train ECU):

Processor: 25 MHz 16 bit processor (e.g. Siemens C167)
Flash: 1 MB used for applications
RAM: 128 kB used for the runtime memory usage
EEPROM: 64 kB used for system parameters
Serial interfaces: RS232 or RS485, used for service purpose
Communications: Controller Area Network (CAN) (one or moreinterfaces)
I/O: There is a number of digital and analogue in and out ports

Also, included in a vehicle’s electronic system can be display computer(s)
with varying amounts of resources depending on product requirements. There
may also be PC-based ECU’s for non-control applications such as telematics,
and information systems. Furthermore, in contrast to theseresource intense
ECU’s, there typically exists a number of small and lightweight nodes, such
as, intelligent sensors (i.e. processor equipped, bus enabled, sensors).

 Application

Application Programmers Interface

Software Framework
RTOS

Hardware

Communication

Hardware Abstraction Layer

Device Drivers

Software
Platform

Figure 5.2: Internals of an ECU - A software platform

5.4 Requirements on a Component Technology for Heavy Vehicles 43

Figure 5.2 on the facing page depicts the typical software architecture of
an ECU. Current practice typically builds on top of a reusable "software plat-
form", which consists of a hardware abstraction layer with device drivers and
other platform dependent code, a Real-Time Operating System (RTOS), one or
more communication protocols, and possibly a software (component) frame-
work that is typically company (or project) specific. This software platform
is accessible to application programmers through an Application Programmers
Interface (API). Different nodes, presenting the same API,can have different
realisation of the different parts in the software platform(e.g. using different
RTOSs).

Today it is common to treat parts of the software platform as components,
e.g. the RTOS, device drivers, etc, in the same way as the ECU’s bus connectors
and other hardware modules. That is, some form of component management
process exists; trying to keep track of which version, variant, and configuration
of a component is used within a product. This component-based view of the
software platform is however not to be confused with the concept of CBSE
since the components does not conform to standard interfaces or component
models.

5.4 Requirements on a Component Technology for
Heavy Vehicles

There are many different aspects and methods to consider when looking into
questions regarding how to capture the most important requirements on a com-
ponent technology suited for heavy vehicles. Our approach has been to cooper-
ate with our industrial partners very closely, both by performing interviews and
by participating in projects. In doing so, we have extractedthe most important
requirements on a component-based technique from the developers of heavy
vehicles point of view.

The requirements are divided in two main groups, the technical require-
ments (Sect. 5.4.1) and the development process related requirements (Sect.
5.4.2). Also, in Sect. 5.4.3 we present some implied (or derived) require-
ments, i.e. requirements that we have synthesised from the requirements in
sections 5.4.1 and 5.4.2, but that are not explicit requirements from industry.
In Sect. 5.4.4 we discuss, and draw conclusions from, the listed requirements.

44 Paper A

5.4.1 Technical Requirements

The technical requirements describe the needs and desires that our industrial
partners have regarding the technically related aspects and properties of a com-
ponent technology.

Analysable

Vehicle industry strives for better analyses of computer system behaviour in
general. This striving naturally affects requirements placed on a component
model. System analysis, with respect to non-functional properties, such as the
timing behaviour and the memory consumption, of a system built up from well-
tested components is considered highly attractive. In fact, it is one of the single
most distinguished requirements defined by our industrial partners.

When analysing a system, built from well-tested, functionally correct, com-
ponents, the main issues is associated with composability.The composability
problem must guarantee non-functional properties, such asthe communication,
synchronisation, memory, and timing characteristics of the system [1].

When considering timing analysability, it is important to be able to ver-
ify (1) that each component meet its timing requirements, (2) that each node
(which is built up from several components) meet its deadlines (i.e. schedula-
bility analysis), and (3) to be able to analyse the end-to-end timing behaviour
of functions in a distributed system.

Because of the fact that the systems are resource constrained (Sect. 5.3), it
is important to be able to analyse the memory consumption. Tocheck the suf-
ficiency of the application memory, as well as the ROM memory,is important.
This check should be done pre-runtime to avoid failures during runtime.

In a longer perspective, it is also desirable to be able to analyse properties
like reliability and safety. However, these properties arecurrently deemed too
difficult to address on a component level and traditional methods (like testing
and reviewing) are considered adequate.

Testable and debuggable

It is required that there exist tools that support debuggingboth at component
level, e.g. a graphical debugging tool showing the components in- and out-
port values, and at the traditional white-box source code debugging level. The
test and debug environment needs to be "component aware" in the sense that
port-values can be monitored and traced and that breakpoints can be set on
component level.

5.4 Requirements on a Component Technology for Heavy Vehicles 45

Testing and debugging is by far the most commonly used technique to ver-
ify software systems functionality. Testing is a very important complement
to analysis, and it should not be compromised when introducing a component
technology.

In fact, the ability to test embedded-system software can beimproved when
using CBSE. This is possible because the component functionality can be
tested in isolation. This is a desired functionality asked for by our industrial
partners. This test should be used before the system tests, and this approach
can help finding functional errors and source code bugs at theearliest possible
opportunity.

Portable

The components, and the infrastructure surrounding them, should be platform
independent to the highest degree possible. Here, platformindependent means
hardware independent, RTOS independent and communicationprotocol inde-
pendent.

Components are kept portable by minimising the number of dependencies
to the software platform. Such dependencies are off course necessary to con-
struct an executable system, however the dependencies should be kept to a
minimum, and whenever possible dependencies should be generated automat-
ically by configuration tools.

Ideally, components should also be independent of the component frame-
work used during run-time. This may seem far fetched, since traditionally a
component model has been tightly integrated with its component framework.
However, support for migrating components between component frameworks
is important for companies cooperating with different customers, using differ-
ent hardware and operating systems, such as CC Systems.

Resource Constrained

The components should be small and light-weighted and the components in-
frastructure and framework should be minimised. Ideally, there should be no
run-time overhead compared to not using a CBSE approach.

Systems are resource constrained to lower the production cost and thereby
increase profit. When companies design new ECUs, future profit is the main
concern. Therefore the hardware is dimensioned for anticipated use but not
more.

46 Paper A

Provided that the customers are willing to pay the extra money, to be able
to use more complex software functionality in the future, more advanced hard-
ware may be appropriate. This is however seldom the case, usually the cus-
tomers are very cost sensitive. The developer of the hardware rarely takes the
extra cost to extend the hardware resources, since the margin of profit on elec-
tronics development usually is low.

One possibility, that can significantly reduce resource consumption of com-
ponents and the component framework, is to limit the possible run-time dy-
namics. This means that it is desirable to allow only static,off-line, configured
systems. Many existing component technologies have been design to support
high run-time dynamics, where components are added, removed and recon-
figured at run-time. However, this dynamic behaviour comes at the price of
increased resource consumption.

Component Modelling

A component technology should be based on a standard modelling language
like UML [16] or UML 2.0 [17]. The main reason for choosing UMLis that
it is a well known and thoroughly tested modelling techniquewith tools and
formats supported by third-party developers.

The reason for our industrial partners to have specific demands in these
details, is that it is belived that the business segment of heavy vehicles does
not have the possibility do develop their own standards and practices. Instead
they preferably relay on the use of simple and mature techniques supported by
a welth of third party suppliers.

Computational Model

Components should preferably be passive, i.e. they should not contain their
own threads of execution. A view where components are allocated to threads
during component assembly is preferred, since this is believed to enhance
reusability, and to limit resource consumption. The computational model should
be focused on a pipe-and-filter model [18]. This is partly dueto the well known
ability to schedule and analyse this model off-line. Also, the pipes-and-filters
model is a good conceptual model for control applications.

However, experience from VCE shows that the pipe-and-filtermodel does
not fit all parts of the system, and that force fitting applications to the pipe-and-
filter model may lead to overly complex components. Hence, itis desirable to

5.4 Requirements on a Component Technology for Heavy Vehicles 47

have support for other computational models; unfortunately, however, which
models to support is not obvious and is an open question.

5.4.2 Development Requirements

When discussing requirements for CBSE technologies, the research commu-
nity often overlooks requirements related to the development process. For
software developing companies, however, these requirements are at least as
important as the technical requirements. When talking to industry, earning
money is the main focus. This cannot be done without having anefficient de-
velopment processes deployed. To obtain industrial reliance, the development
requirements need to be considered and addressed by the component technol-
ogy and tools associated with the technology.

Introducible

It should be possible for companies to gradually migrate into a new develop-
ment technology. It is important to make the change in technology as safe and
inexpensive as possible.

Revolutionary changes in the development technique used ata company
are associated with high risks and costs. Therefore a new technology should be
possible to divide into smaller parts, which can be introduced separately. For
instance, if the architecture described in Fig. 5.2 is used,the components can
be used for application development only and independentlyof the real-time
operating system. Or, the infrastructure can be developed using components,
while the application is still monolithic.

One way of introducing a component technology in industry, is to start fo-
cusing on the development process related requirements. When the developers
have accepted the CBSE way of thinking, i.e. thinking in terms of reusable
software units, it is time to look at available component technologies. This
approach should minimise the risk of spending too much moneyin an initial
phase, when switching to a component technology without having the CBSE
way of thinking.

Reusable

Components should be reusable, e.g., for use in new applications or envi-
ronments than those for which they where originally designed [19]. The re-
quirement of reusability can be considered both a technicaland a development

48 Paper A

process related requirement. Development process relatedsince it has to deal
with aspects like version and variant management, initial risks and cost when
building up a component repository, etc. Technical since itis related to as-
pects such as, how to design the components with respect to the RTOS and
HW communication, etc.

Reusability can more easily be achieved if a loosely coupledcomponent
technology is used, i.e. the components are focusing on functionality and do
not contain any direct operating system or hardware dependencies. Reusability
is simplified further by using input parameters to the components. Parameters
that are fixed at compile-time, should allow automatic reduction of run-time
overhead and complexity.

A clear, explicit, and well-defined component interface is crucial to en-
hance the software reusability. To be able to replace one component in the
software system, a minimal amount of time should be spent trying to under-
stand the component that should be interchanged.

It is, however, both complex and expensive to build reusablecomponents
for use in distributed embedded real-time systems [1]. The reason for this is
that the components must work together to meet the temporal requirements, the
components must be light-weighted since the systems are resource constrained,
the functional errors and bugs must not lead to erroneous outputs that follow
the signal flow and propagate to other components and in the end cause unsafe
systems. Hence, reuse must be introduced gradually and withgrate care.

Maintainable

The components should be easy to change and maintain, meaning that develop-
ers that are about to change a component need to understand the full impact of
the proposed change. Thus, not only knowledge about component interfaces
and their expected behaviour is needed. Also, information about current de-
ployment contexts may be needed in order not to break existing systems where
the component is used.

In essence, this requirement is a product of the previous requirement on
reusability. The flip-side of reusability is that the ability to reuse and reconfig-
ure the components using parameters leads to an abundance ofdifferent config-
urations used in different vehicles. The same type of vehicle may use different
software settings and even different component or softwareversions. So, by
introducing reuse we introduce more administrative work.

Reusing software components lead to a completely new level of software
management. The components need to be stored in a repositorywhere different

5.4 Requirements on a Component Technology for Heavy Vehicles 49

versions and variants need to be managed in a sufficient way. Experiences from
trying to reuse software components show that reuse is very hard and initially
related with high risks and large overheads [1]. These typesof costs are usually
not very attractive in industry.

The maintainability requirement also includes sufficient tools supporting
the service of the delivered vehicles. These tools need to becomponent aware
and handle error diagnostics from components and support for updating soft-
ware components.

Understandable

The component technology and the systems constructed usingit should be easy
to understand. This should also include making the technology easy and intu-
itive to use in a development project.

The reason for this requirement is to simplify evaluation and verification
both on the system level and on the component level. Also, focusing on an
understandable model makes the development process fasterand it is likely
that there will be fewer bugs.

It is desirable to hide as much complexity as possible from system devel-
opers. Ideally, complex tasks (such as mapping signals to memory areas or
bus messages, or producing schedules or timing analysis) should be performed
by tools. It is widely known that many software errors occur in code that
deals with synchronisation, buffer management and communications. How-
ever, when using component technologies such code can, and should, be au-
tomatically generated; leaving application engineers to deal with application
functionality.

5.4.3 Derived Requirements

Here, we present two implied requirements, i.e. requirements that we have
synthesised from the requirements in sections 5.4.1 and 5.4.2, but that are not
explicit requirements from the vehicular industry.

Source Code Components

A component should be source code, i.e., no binaries. The reasons for this
include that companies are used to have access to the source code, to find func-
tional errors, and enable support for white box testing (Sect. 5.4.1). Since

50 Paper A

source code debugging is demanded, even if a component technology is used,
black box components is undesirable.

Using black-box components would, regarding to our industrial partners,
lead to a feeling of not having control over the system behaviour. However,
the possibility to look into the components does not necessary mean that you
are allowed to modify them. In that sense, a glass-box component model is
sufficient.

Source code components also leaves room for compile-time optimisations
of components, e.g., stripping away functionality of a component that is not
used in a particular application. Hence, souce code components will contribute
to lower resource consumption (Sect. 5.4.1).

Static Configuration

For a component model to better support the technical requirements of analysa-
bility (Sect. 5.4.1), testability (Sect. 5.4.1), and light-weightiness (Sect. 5.4.1),
the component model should be configured pre-runtime, i.e. at compile time.
Component technologies for use in the office/Internet domain usually focus on
a dynamic behaviour [8, 9]. This is of course appropriate in this specific do-
main, where powerful computers are used. Embedded systems,however, face
another reality - with resource constrained ECU’s running complex, depend-
able, control applications. Static configuration should also improve the devel-
opment process related requirement of understandability (Sect. 5.4.2), since
there will be no complex run-time reconfigurations.

Another reason for the static configuration is that a typicalcontrol node,
e.g. a power train node, does not interact directly with the user at any time.
The node is started when the ignition key is turned on, and is running as a self-
contained control unit until the vehicle is turned off. Hence, there is no need to
reconfigure the system during runtime.

5.4.4 Discussion

Reusability is perhaps the most obvious reason to introducea component tech-
nology for a company developing embedded real-time controlsystems. This
matter has been the most thoroughly discussed subject during our interviews.
However, it has also been the most separating one, since it isrelated to the
question of deciding if money should be invested in buildingup a repository of
reusable components.

5.5 Conclusions 51

Two important requirements that has emerged during the discussions with
our industrial partners are safety and reliability. These two are, as we see it, not
only associated with the component technology. Instead, the responsibility of
designing safe and reliable system rests mainly on the system developer. The
technology and the development process should, however, give good support
for designing safe and reliable systems.

Another part that has emerged during our study is the need fora quality rat-
ing of the components depending on their success when used intarget systems.
This requirement can, e.g., be satisfied using Execution Time Profiles (ETP’s),
discussed in [20]. By using ETPs to represent the timing behaviour of software
components, tools for stochastic schedulability analysiscan be used to make
cost-reliability trade offs by dimensioning the resourcesin a cost efficient way
to achieve the reliability goals. There are also emerging requirements regarding
the possibilities to grade the components depending on their software quality,
using for example different SIL (Safety Integrity Levels) [21] levels.

5.5 Conclusions

Using software components and a CBSE approach is, by industry, seen as a
promising way to address challenges in product developmentincluding integra-
tion, flexible configuration, as well as good reliability predictions, scalability,
reliable reuse, and fast development. However, changing the software devel-
opment process to using CBSE does not only have advantages. Especially in
the short term perspective, introducing CBSE represents significant costs and
risks.

The main contribution of this paper is that it straightens out some of the
question-marks regarding actual industrial requirementsplaced on a compo-
nent technology. We describe the requirements on a component technology as
elicited from two companies in the business segment of heavyvehicles. The
requirements are divided in two main groups, the technical requirements and
the development process related requirements. The reason for this division is
mainly to clarify that the industrial actors are not only interested in technical
solutions, but also in improvements regarding their development process.

The list of requirements can be used to evaluate existing component tech-
nologies before introducing them in an industrial context,therefore minimising
the risk when introducing a new development process. Thus, this study can
help companies to take the step into tomorrow’s technology today. They can
also be used to guide modifications and/or extensions to component technolo-

52 Paper A

gies, to make them better suited for industrial deployment within embedded
system companies.

We will continue our work by evaluating existing software component tech-
nologies with respect to these requirements. Our initial findings from this eval-
uation can be found in [22]. Using that evaluation we will (1)study to what
extent existing technologies can be adapted in order to fulfil the requirements of
this paper, (2) investigate if selected parts of standard technologies like tools,
middleware, and message-formats can be reused, (3) make a specification of
a component technology suitable for heavy vehicles, and (4)build a test bed
implementation based on the specification.

Acknowledgements

A special thanks to Nils-Erik Bånkestad and Robert Larsson,at Volvo Con-
struction Equipment, for fruitful discussions and for their helpfulness during
our stay. We would also like to thank Jörgen Hansson at CC Systems for inter-
esting discussions, new ideas, and for making this researchproject possible.

Bibliography

[1] I. Crnkovic and M. Larsson.Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[2] M. Winter, T. Genssler, et al. Components for Embedded Software – The
PECOS Apporach. InThe 2nd International Workshop on Composition
Languages, in conjunction with the 16th ECOOP, June 2002. Malaga,
Spain.

[3] R. van Ommering et al. The Koala Component Model for Consumer
Electronics Software.IEEE Computer, 33(3):78–85, March 2000.

[4] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003. Pittsburg,
USA.

[5] A. Brown and K. Wallnau. The Current State of CBSE.IEEE Software,
September/October 1998.

[6] C. Nordström, M. Gustafsson, et al. Experiences from Introducing State-
of-the-art Real-Time Techniques in the Automotive Industry. In Eigth
IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems, April 2001. Washington, USA.

[7] S. R. Schach. Classical and Object-Oriented Software Engineering.
McGraw-Hill Science/Engineering/Math; 3rd edition, 1996. ISBN 0-
256-18298-1.

[8] Microsoft Component Technologies. COM/DCOM/.NET. http://www.-
microsoft.com.

53

54 Bibliography

[9] Sun Microsystems. Enterprise Java Beans Technology. http://java.sun.-
com/products/ejb/.

[10] Object Management Group. MinimumCORBA 1.0, August 2002. http://-
www.omg.org/technology/documents/formal/minimum_CORBA.htm.

[11] A. Möller, J. Fröberg, and M. Nolin. What are the needs for components
in vehicular systems? – An Industrial Perspective –. InProceedings
of the Euromicro Conference on Real-Time Systems – Work-in-Progress
Session. IEEE Computer Society, July 2003. Porto, Portugal.

[12] International Standards Organisation (ISO). Road Vehicles – Interchange
of Digital Information – Controller Area Network (CAN) for High-Speed
Communication, November 1993. vol. ISO Standard 11898.

[13] CiA. CANopen Communication Profile for Industrial Systems, Based
on CAL, October 1996. CiA Draft Standard 301, rev 3.0, http://www.-
canopen.org.

[14] SAE Standard. SAE J1939 Standards Collection. http://www.sae.org.

[15] SAE Standard. SAE J1587, Joint SAE/TMC Electronic DataInterchange
Between Microcomputer Systems In Heavy-Duty Vehicle Applications.
http://www.sae.org.

[16] B. Selic and J. Rumbaugh. Using UML for modelling complex real-time
systems, 1998. Rational Software Corporation.

[17] Object Management Group. UML 2.0 Superstructure Specification, The
OMG Final Adopted Specification, 2003. http://www.omg.com/uml/.

[18] M. Shaw and D. Garlan.Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-
2.

[19] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. InProceedings of the Sev-
enteenth International Conference on Software Engineering, April 1995.
Seattle, USA.

[20] T. Nolte, A. Möller, and M. Nolin. Using Components to Facilitate Sto-
chastic Schedulability. InProceedings of the 24th Real-Time System Sym-
posium – Work-in-Progress Session. IEEE Computer Society, December
2003. Cancun, Mexico.

[21] SIL. Safety Integrity Levels – Does Reality Meet Theory?, 2002. Report
f. seminar held at the IEE, London, on 9 April 2002.

[22] A. Möller, M Åkerholm, J. Fredriksson, and M. Nolin. Software Compo-
nent Technologies for Real-Time Systems – An Industrial Perspective. In
Proceedings of the 24th Real-Time System Symposium – Work-in-Progress
Session. IEEE Computer Society, December 2003. Cancun, Mexico.

Chapter 6

Paper B:
Evaluation of Component
Technologies with Respect to
Industrial Requirements

Anders Möller, Mikael Åkerholm, Johan Fredriksson and Mikael Nolin
In Proceedings of the 30th Euromicro Conference, Component-Based Software
Engineering Track, pages: 56–63, Rennes, France, August 2004

57

Abstract

We compare existing component technologies for embedded systems with re-
spect to industrial requirements. The requirements are collected from the ve-
hicular industry, but our findings are applicable to similarindustries developing
resource constrained safety critical embedded distributed real-time computer
systems.

One of our conclusions is that none of the studied technologies is a per-
fect match for the industrial requirements. Furthermore, no single technology
stands out as being a significantly better choice than the others; each technol-
ogy has its own pros and cons.

The results of our evaluation can be used to guide modifications or ex-
tensions to existing technologies, making them better suited for industrial de-
ployment. Companies that want to make use of component-based software
engineering as available today can use this evaluation to select a suitable tech-
nology.

6.1 Introduction 59

6.1 Introduction

Component-Based Software Engineering (CBSE) has receivedmuch attention
during the last couple of years. However, in the embedded-system domain, use
of component technologies has had a hard time gaining acceptance; software-
developers are still, to a large extent, using monolithic and platform-dependent
software technologies.

We try to find out why embedded-software developers have not embraced
CBSE as an attractive tool for software development. We do this by evaluat-
ing a set of component technologies with respect to industrial requirements.
The requirements have been collected from industrial actors within the busi-
ness segment of heavy vehicles, and have been presented in our previous work
[1]. Examples of heavy vehicles include wheel loaders, excavators, forest har-
vesters, and combat vehicles. The software systems developed within this
market segment can be characterised as resource constrained, safety critical,
embedded, distributed, real-time, control systems. Our findings in this study
should be applicable to other domains with similar characteristics.

Our evaluation, between requirements and existing technologies, does not
only help to answer why component-based development has notyet been em-
braced by the embedded-systems community. It also helps us to identify what
parts of existing technologies could be enhanced, to make them more appropri-
ate for embedded-system developers. Specifically, it will allow us to select a
component technology that is a close match to the requirements, and if needed,
guide modifications to that technology.

The reason for studying component-based development in thefirst place,
is that software developers can achieve considerable business benefits in terms
of reduced costs, shortened time-to-market and increased software quality by
applying a suitable component technology. The component technology should
rely on powerful design and compile-time mechanisms and simple and pre-
dictable run-time behaviour.

There is however significant risks and costs associated withthe adoption of
a new development technique (such as component-based development). These
must be carefully evaluated before introduced in the development process. One
of the apparent risks is that the selected component technology turns out to be
inappropriate for its purpose; hence, the need to evaluate component technolo-
gies with respect to requirements expressed by software developers.

60 Paper B

6.2 Requirements

The requirements discussed and described in this section are based on a pre-
viously conducted investigation [1]. The requirements found in that investiga-
tion are divided into two main groups, the technical requirements (Sect. 6.2.1)
and the development process related requirements (Sect. 6.2.2). In addition,
Sect. 6.2.3 contains derived requirements, i.e. requirements that we have syn-
thesised from the requirements in sections 6.2.1 and 6.2.2 but that are not ex-
plicitly stated requirements from the vehicular industry [1].

6.2.1 Technical Requirements

The technical requirements describe industrial needs and desires regarding
technical aspects and properties of a component technology.

Analysable

System analysis, with respect to non-functional properties, such as timing be-
haviour and memory consumption is considered highly attractive. In fact, it is
one of the single most distinguished requirements found in our investigation.

When analysing a system built from well-tested, functionally correct, com-
ponents, the main issue is associated with composability. The composition
process must ensure that non-functional properties, such as the communica-
tion, synchronisation, memory, and timing characteristics of the system, are
predictabe [2].

Testable and debugable

It is required that tools exist that support debugging, bothat component level
(e.g., a graphical debugging tool), as well as on source codelevel.

Testing and debugging is one of the most commonly used techniques to
verify software systems functionality. Testing is a very important comple-
ment to analysis, and testability should not be compromisedwhen introducing
a component technology. Ideally, the ability to test embedded-system software
should be improved when using CBSE, since it adds the abilityto test compo-
nents in isolation.

6.2 Requirements 61

Portable

The components, and the infrastructure surrounding them, should be platform
independent to the highest degree possible. Here, platformindependency means
(1) hardware independent, (2) real-time operating system (RTOS) indepen-
dent and (3) communications protocol independent. The components are kept
portable by minimising the number of dependencies to the software platform.
Eventually such dependencies are off course necessary to construct an exe-
cutable system, however the dependencies should be kept to aminimum, and
whenever possible dependencies should be generated automatically by config-
uration tools.

Resource Constrained

The components should be small and light-weighted and the components in-
frastructure and framework should be minimised. Ideally there should be no
run-time overhead compared to not using a CBSE approach. Hardware used in
embedded real-time systems is usually resource constrained, to lower produc-
tion cost and thereby increase profit.

One possibility, that significantly can reduce resource consumption of com-
ponents and the component framework, is to limit run-time dynamics. This
means that it is desirable only to allow static, off-line, configured systems.
Many existing component technologies have been design to support high run-
time dynamics, where components are added, removed and reconfigured dur-
ing run-time.

Component Modelling

The component modelling should be based on a standard modelling language
like UML [3] or UML 2.0 [4]. The main reason to choose a standard like UML
is that it is well known and thoroughly tested, with tools andformats supported
by many third-party developers. The reason for the vehicular industry to have
specific demands in this detail, is that this business segment does not have the
knowledge, resources or desire to develop their own standards and practices.

Computational Model

Components should preferably be passive, i.e. they should not contain their
own threads of execution. A view where components are allocated to threads

62 Paper B

during component assembly is preferred, since this is conceptually simple, and
also believed to enhance reusability.

The computational model should be focused on a pipes-and-filters model
[5]. This is partly due to the well known ability to schedule and analyse this
model off-line. Also, the pipes-and-filters model is a good conceptual model
for control applications.

6.2.2 Development Requirements

When discussing component-baseddevelopment with idustry, development pro-
cess requirements are at least as important as the technicalrequirements. To
obtain industrial reliance, the development requirementsneed to be addressed
by the component technology and its associated tools.

Introducible

Appropriate support to gradually migrate to a new technology should be pro-
vided by the component technology. It is important to make the change in
development process and techniques as safe and inexpensiveas possible. Rev-
olutionary changes in development techniques are associated with high risks
and costs. Therefore a new technology should be possible to divide into smaller
parts, which can be introduced incrementally. Another aspect, to make a tech-
nology introducible, is to allow legacy code within systemsdesigned with the
new technology.

Reusable

Components should be reusable, e.g., for use in new applications or environ-
ments than those for which they where originally designed [6]. Reusability can
more easily be achieved if a loosely coupled component technology is used,
i.e. the components are focusing on functionality and do notcontain any direct
operating system or hardware dependencies. Reusability isfurther enhanced
by the possibility to use configuration parameters to components.

A clear, explicit, and well-defined component interface is crucial to en-
hance the software reusability. Also, specification of non-functional proper-
ties and requirements (such as execution time, memory usage, deadlines, etc.)
simplify reuse of components since it makes (otherwise) implicit assumptions
explicit. Behavioural descriptions (such as state diagrams or interaction dia-
grams) of components can be used to further enhance reusability.

6.2 Requirements 63

Maintainable

The components should be easy to change and maintain, developers that are
about to change a component need to understand the full impact of the pro-
posed change. Thus, not only knowledge about component interfaces and their
expected behaviour is needed. Also, information about current deployment
contexts may be needed in order not to break existing systems. The compo-
nents can be stored in a repository where different versionsand variants need
to be managed in a sufficient way. The maintainability requirement also in-
cludes sufficient tools supporting the service of deployed and delivered prod-
ucts. These tools need to be component aware and handle errordiagnostics
from components and support for updating software components.

Understandable

The component technology and the systems constructed usingit should be easy
to understand. This should also include making the technology easy and intu-
itive to use in a development project.

The reason for this requirement is to simplify evaluation and verification
both on the system level and on the component level. Focusingon an under-
standable model makes the development process faster and itis likely that there
will be fewer bugs. This requirement is also related to the introducible require-
ment (Sect. 6.2.2) since an understandable technique is more introducible.

It is desirable to hide as much complexity as possible from system devel-
opers. Ideally, complex tasks (such as mapping signals to memory areas or bus
messages, or producing schedules or timing analysis) should be performed by
tools.

6.2.3 Derived Requirements

Here, we present requirements that we have synthesised fromthe requirements
in sections 6.2.1 and 6.2.2, but that are not explicit requirements from industry.

Source Code Components

A component should be source code, i.e., no binaries. Companies are used to
have access to the source code, to find functional errors, andenable support
for white box testing (Sect. 6.2.1). Since source code debugging is demanded,
even if a component technology is used, black box componentsis undesirable.

64 Paper B

However, the desire to look into the components does not necessary imply a
desire to be allowed to modify them.1

Using black-box components would lead to a fear of loosing control over
the system behaviour (Sect. 6.2.2). Provided that all components in the systems
are well tested, and that the source code are checked, verified, and qualified for
use in the specific surrounding, the companies might alleviate their source code
availability.

Also with respect to the resource constrained requirement (Sect. 6.2.1),
source code components allow for unused parts of the component to be re-
moved at compile time.

Static Configurations

Better support for the technical requirements of analysability (Sect. 6.2.1),
testability (Sect. 6.2.1), and resource consumption (Sect. 6.2.1), are achieved
by using pre-runtime configuration. Here, configuration means both config-
uration of component behaviour and interconnections between components.
Component technologies for use in the Office/Internet domain usually focus
on dynamic configurations [7, 8]. This is of course appropriate in these spe-
cific domains, where one usually has access to ample resources. Embedded
systems, however, face another reality; with resource constrained nodes run-
ning complex, dependable, control applications.

However, most vehicles can operate in different modes, hence the technol-
ogy must support switches between a set of statically configured modes. Static
configuration also improves the development process related requirement of
understandability (Sect. 6.2.2), since each possible configuration is known be-
fore run-time.

6.3 Component Technologies

In this section, existing component technologies for embedded systems are
described and evaluated. The technologies originate both from academia and
industry. The selection criterion for a component technology has firstly been
that there is enough information available, secondly that the authors claim that

1This can be view as a "glass box" component model, where it possible to acquire a "use-only"
license from a third party. This license model is today quitecommon in the embedded systems
market.

6.3 Component Technologies 65

the technology is suitable for embedded systems, and finallywe have tried to
achieve a combination of both academic and industrial technologies.

The technologies described and evaluated are PECT, Koala, Rubus Compo-
nent Model, PBO, PECOS and CORBA-CCM. We have chosen CORBA-CCM
to represent the set of technologies existing in the PC/Internet domain (other
examples are COM, .NET [7] and Java Enterprise Beans [8]) since it is the
only technology that explicitly address embedded and real-time issues. Also,
the Windows CE version of .NET [7] is omitted, since it is targeted towards
embedded display-devices, which only constitute a small subset of the devices
in vehicular systems. The evaluation is based on existing, publically available,
documentation.

6.3.1 PECT

A Prediction-Enabled Component Technology (PECT) [9] is a development in-
frastructure that incorporates development tools and analysis techniques. PECT
is an ongoing research project at the Software Engineering Institute (SEI) at the
Carnegie Mellon University.2 The project focuses on analysis; however, the
framework does not include any concrete theories - rather definitions of how
analysis should be applied. To be able to analyse systems using PECT, proper
analysis theories must be found and implemented and a suitable underlying
component technology must be chosen.

A PECT include an abstract model of a component technology, consist-
ing of a construction framework and a reasoning framework. To concretise a
PECT, it is necessary to choose an underlying component technology, define
restrictions on that technology (to allow predictions), and find and implement
proper analysis theories. The PECT concept is highly portable, since it does
not include any parts that are bound to a specific platform, but in practise the
underlying technology may hinder portability. For modelling or describing a
component-based system, the Construction and CompositionLanguage (CCL)
[9] is used. The CCL is not compliant to any standards. PECT ishighly in-
troducible, in principle it should be possible to analyse a part of an existing
system using PECT. It should be possible to gradually model larger parts of a
system using PECT. A system constructed using PECT can be difficult to un-
derstand; mainly because of the mapping from the abstract component model
to the concrete component technology. It is likely that systems looking identi-
cal at the PECT-level behave differently when realised on different component
technologies.

2Software Engineering Institute, CMU; http://www.sei.cmu.edu

66 Paper B

PECT is an abstract technology that requires an underlying component
technology. For instance, how testable and debugable a system is depends
on the technical solutions in the underlying run-time system. Resource con-
sumption, computational model, reusability, maintainability, black- or white-
box components, static- or dynamic-configuration are also not possible to de-
termine without knowledge of the underlying component technology.

6.3.2 Koala

The Koala component technology [10] is designed and used by Philips3 for
development of software in consumer electronics. Typically, consumer elec-
tronics are resource constrained since they use cheap hardware to keep devel-
opment costs low. Koala is a light weight component technology, tailored for
Product Line Architectures [11]. The Koala components can interact with the
environment, or other components, through explicit interfaces. The compo-
nents source code is fully visible for the developers, i.e. there are no binaries
or other intermediate formats. There are two types of interfaces in the Koala
model, the provides- and the requires- interfaces, with thesame meaning as in
UML 2.0 [4]. The provides interface specify methods to access the compo-
nent from the outside, while the required interface defines what is required by
the component from its environment. The interfaces are statically connected at
design time.

One of the primary advantages with Koala is that it is resource constrained.
In fact, low resource consumption was one of the requirements considered
when Koala was created. Koala use passive components allocated to active
threads during compile-time; they interact through a pipes-and-filters model.
Koala uses a construction called thread pumps to decrease the number of pro-
cesses in the system. Components are stored in libraries, with support for ver-
sion numbers and compatibility descriptions. Furthermorecomponents can be
parameterised to fit different environments.

Koala does not support analysis of run-time properties. Research has pre-
sented how properties like memory usage and timing can be predicted in gen-
eral component-based systems, but the thread pumps used in Koala might cause
some problems to apply existing timing analysis theories. Koala has no explicit
support for testing and debugging, but they use source code components, and a
simple interaction model. Furthermore, Koala is implemented for a specific op-
erating system. A specific compiler is used, which routes allinter-component

3Phillips International, Inc; Home Page http://www.phillips.com

6.3 Component Technologies 67

and component to operating system interaction through Koala connectors. The
modelling language is defined and developed in-house, and itis difficult to see
an easy way to gradually introduce the Koala concept.

6.3.3 Rubus Component Model

The Rubus Component Model (Rubus CM) [12] is developed by Arcticus sys-
tems.4 The component technology incorporates tools, e.g., a scheduler and a
graphical tool for application design, and it is tailored for resource constrained
systems with real-time requirements. The Rubus Operating System (Rubus
OS) [13] has one time-triggered part (used for time-critical hard real-time ac-
tivities) and one event-triggered part (used for less time-critical soft real-time
activities). However, the Rubus CM is only supported by the time-triggered
part.

The Rubus CM runs on top of the Rubus OS, and the component model
requires the Rubus configuration compiler. There is supportfor different hard-
ware platforms, but regarding to the requirement of portability (Sect. 6.2.1),
this is not enough since the Rubus CM is too tightly coupled tothe Rubus
OS. The Rubus OS is very small, and all component and port configuration is
resolved off-line by the Rubus configuration compiler.

Non-functional properties can be analysed during desing-time since the
component technology is statically configured, but timing analysis on compo-
nent and node level (i.e. schedulability analysis) is the only analysable property
implemented in the Rubus tools. Testability is facilitatedby static scheduling
(which gives predictable execution patterns). Testing thefunctional behaviour
is simplified by the Rubus Windows simulator, enabling execution on a regular
PC.

Applications are described in the Rubus Design Language, which is a non-
standard modelling language. The fundamental building blocks are passive.
The interaction model is the desired pipes-and-filters (Sect. 6.2.1). The graphi-
cal representation of a system is quite intuitive, and the Rubus CM itself is also
easy to understand. Complexities such as schedule generation and synchroni-
sation are hidden in tools.

The components are source code and open for inspection. However, there is
no support for debugging the application on the component level. The compo-
nents are very simple, and they can be parameterised to improve the possibility
to change the component behaviour without changing the component source
code. This enhances the possibilities to reuse the components.

4Arcticus Systems; Home Page http://www.arcticus.se

68 Paper B

Smaller pieces of legacy code can, after minor modifications, be encapsu-
lated in Rubus components. Larger systems of legacy code canbe executed as
background service (without using the component concept ortiming guaran-
tees).

6.3.4 PBO

Port Based Objects (PBO) [14] combines object oriented design, with port au-
tomaton theory. PBO was developed as a part of the Chimera Operating Sys-
tem (Chimera OS) project [15], at the Advanced ManipulatorsLaboratory at
Carnegie Mellon University.5 Together with Chimera, PBO forms a framework
aimed for development of sensor-based control systems, with specialisation in
reconfigurable robotics applications. One important goal of the work was to
hide real-time programming and analysis details. Another explicit design goal
for a system based on PBO was to minimise communication and synchronisa-
tion, thus facilitating reuse.

PBO implements analysis for timeliness and facilitates behavioural models
to ensure predictable communication and behaviour. However, there are few
additional analysis properties in the model. The communication and compu-
tation model is based on the pipes-and-filters model, to support distribution in
multiprocessor systems the connections are implemented asglobal variables.
Easy testing and debugging is not explicitly addressed. However, the technol-
ogy relies on source code components and therefore testing on a source code
level is achievable. The PBOs are modular and loosely coupled to each other,
which admits easy unit testing. A single PBO-component is tightly coupled to
the Chimera OS, and is an independent concurrent process.

Since the components are coupled to the Chimera OS, it can notbe easily
introduced in any legacy system. The Chimera OS is a large anddynamically
configurable operating system supporting dynamic binding,it is not resource
constrained.

PBO is a simple and intuitive model that is highly understandable, both
at system level and within the components themselves. The low coupling be-
tween the components makes it easy to modify or replace a single object. PBO
is built with active and independent objects that are connected with the pipes-
and-filters model. Due to the low coupling between components through sim-
ple communication and synchronisation the objects can be considered to be
highly reusable. The maintainability is also affected in a good way due to the

5Carnegie Mellon University; Home Page http://www.cmu.edu

6.3 Component Technologies 69

loose coupling between the components; it is easy to modify or replace a single
component.

6.3.5 PECOS

PECOS6 (PErvasive COmponent Systems) [16, 17] is a collaborative project
between ABB Corporate Research Centre7 and academia. The goal for the
PECOS project was to enable component-based technology with appropri-
ate tools to specify, compose, validate and compile software for embedded
systems. The component technology is designed especially for field devices,
i.e. reactive embedded systems that gathers and analyse data via sensors and
react by controlling actuators, valves, motors etc. Furthermore, PECOS is
analysable, since much focus has been put on non-functionalproperties such
as memory consumption and timeliness.

Non-functional properties like memory consumption and worst-case exe-
cution-times are associated with the components. These areused by different
PECOS tools, such as the composition rule checker and the schedule generating
and verification tool. The schedule is generated using the information from
the components and information from the composition. The schedule can be
constructed off-line, i.e. a static pre-calculated schedule, or dynamically during
run-time.

PECOS has an execution model that describes the behaviour ofa field de-
vice. The execution model deals with synchronisation and timing related is-
sues, and it uses Petri-Nets [18] to model concurrent activities like component
compositions, scheduling of components, and synchronisation of shared ports
[19]. Debugging can be performed using COTS debugging and monitoring
tools. However, the component technology does not support debugging on
component level as described in Sect. 6.2.1.

The PECOS component technology uses a layered software architecture,
which enhance portability (Sect. 6.2.1). There is a Run-Time Environment
(RTE) that takes care of the communication between the application specific
parts and the real-time operating system. The PECOS component technology
uses a modelling language that is easy to understand, however no standard
language is used. The components communicate using a data-flow-oriented
interaction, it is a pipes-and-filters concept, but the component technology uses
a shared memory, contained in a blackboard-like structure.

6PECOS Project, Home Page: http://www.pecos-project.org/
7ABB Corporate Research Centre in Ladenburg, Home Page: http://www.abb.com/

70 Paper B

Since the software infrastructure does not depend on any specific hardware
or operating system, the requirement of introducability (Sect. 6.2.2) is to some
extent fulfilled. There are two types of components, leaf components (black-
box components) and composite components. These components can be pas-
sive, active, and event triggered. The requirement of openness is not considered
fulfilled, due to the fact that PECOS uses black-box components. In later re-
leases, the PECOS project is considering to use a more open component model
[20]. The devices are statically configured.

6.3.6 CORBA Based Technologies

The Common Object Request Broker Architecture (CORBA) is a middleware
architecture that defines communication between nodes. CORBA provides a
communication standard that can be used to write platform independent appli-
cations. The standard is developed by the Object ManagementGroup8 (OMG).
There are different versions of CORBA available, e.g., MinimumCORBA [21]
for resource constrains systems, and RT-CORBA [22] for time-critical systems.

RT-CORBA is a set of extensions tailored to equip Object Request Brokers
(ORBs) to be used for real-time systems. RT-CORBA supports explicit thread
pools and queuing control, and controls the use of processor, memory and net-
work resources. Since RT-CORBA adds complexity to the standard CORBA,
it is not considered very useful for resource-constrained systems. Minimum-
CORBA defines a subset of the CORBA functionality that is moresuitable for
resource-constrained systems, where some of the dynamics is reduced.

OMG has defined a CORBA Component Model (CCM) [23], which ex-
tends the CORBA object model by defining features and services that enables
application developers to implement, mange, configure and deploy compo-
nents. In addition the CCM allows better software reuse for server-applications
and provides a greater flexibility for dynamic configurationof CORBA appli-
cations.

CORBA is a middleware architecture that defines communication between
nodes, independent of computer architecture, operating system or program-
ming language. Because of the platform and language independence CORBA
becomes highly portable. To support the platform and language independence,
CORBA implements an Object Request Broker (ORB) that duringrun-time
acts as a virtual bus over which objects transparently interact with other ob-
jects located locally or remote. The ORB is responsible for finding a requested

8Object Management Group. CORBA Home Page. http://www.omg.org/corba/

6.4 Summary of Evaluation 71

objects implementation, make the method calls and carry theresponse back to
the requester, all in a transparent way. Since CORBA run on virtually any plat-
form, legacy code can exist together with the CORBA technology. This makes
CORBA highly introducible.

While CORBA is portable, and powerful, it is very run-time demanding,
since bindings are performed during run-time. Because of the run-time de-
cisions, CORBA is not very deterministic and not analysablewith respect to
timing and memory consumption. There is no explicit modelling language for
CORBA. CORBA uses a client server model for communication, where each
object is active. There are no non-functional properties orany specification of
interface behaviour. All these things together make reuse harder. The main-
tainability is also suffering from the lack of clearly specified interfaces.

6.4 Summary of Evaluation

In this section we assign numerical grades to each of the component technolo-
gies described in Sect. 6.3, grading how well they fulfil eachof the require-
ments of Sect. 6.2. The grades are based on the discussion summarised in
Sect. 6.3. We use a simple 3 level grade, where 0 means that therequirement
is not addressed by the technology and is hence not fulfilled,1 means that the
requirement is addressed by the technology and/or that is partially fulfilled,
and 2 means that the requirement is addressed and is satisfactory fulfilled. For
PECT, which is not a complete technology, several requirements depended on
the underlying technology. For these requirements we do notassign a grade
(indicated with NA, Not Applicable, in Fig. 6.1). For the CORBA-based tech-
nologies we have listed the best grade applicable to any of the CORBA flavours
mentioned in Sect. 6.3.6.

For each requirement we have also calculated an average grade. This grade
should be taken with a grain of salt, and is only interesting if it is extremely
high or extremely low. In the case that the average grade for arequirement is
extremely low, it could either indicate that the requirement is very difficult to
satisfy, or that component-technology designers have paidit very little atten-
tion.

In the table we see that only two requirements have average grades below
1.0. The requirement "Component Modelling" has the grade 0 (!), and "Testing
and debugging" has 1.0. We also note that no requirements have a very high
grade (above 1.5). This indicate that none of the requirement we have listed
are general (or important) enough to have been considered byall component-

72 Paper B

 A
na

ly
sa

bl
e

 T
es

ta
bl

e
an

d
de

bu
ga

bl
e

 P
or

ta
bl

e

 R
es

ou
rc

e
C

on
st

ra
in

ed

 C
om

po
ne

nt
 M

od
el

lin
g

 C
om

pu
ta

tio
na

l M
od

el

 In
tr

od
uc

ib
le

 R
eu

sa
bl

e

 M
ai

nt
ai

na
bl

e

 U
nd

er
st

an
da

bl
e

 S
ou

rc
e

C
od

e
C

om
po

ne
nt

s

 S
ta

tic
 C

on
fig

ur
at

io
n

A
ve

ra
ge

N
um

be
r

of
 2

’s

N
um

be
r

of
 0

’s

PECT 2 NA 2 NA 0 NA 2 NA NA 0 NA NA 1.2 3 2

Koala 0 1 1 2 0 2 0 2 2 2 2 2 1.3 7 3

Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 2 1.3 5 2

PBO 2 1 0 0 0 1 1 1 1 2 2 0 0.9 3 4

PECOS 2 1 2 2 0 2 1 2 1 2 0 2 1.4 7 2

CORBA Based Technologies 0 1 2 0 0 0 2 0 0 1 0 0 0.5 2 8

Average 1.2 1.0 1.2 1.2 0.0 1.4 1.4 1.2 1.0 1.5 1.2 1.2 1.1 4.3 3.5

Figure 6.1: Grading of component technologies with respectto the require-
ments

technology designers. However, if ignoring CORBA (which isnot designed
for embedded systems) and PECT (which is not a complete component tech-
nology) we see that there are a handful of our requirements that are addressed
and at least partially fulfilled by all technologies.

We have also calculated an average grade for each component technology.
Again, the average cannot be directly used to rank technologies amongst each
other. However, the two technologies PBO and CORBA stand outas having
significantly lower average values than the other technologies. They are also
distinguished by having many 0’s and few 2’s in their grades,indicating that
they are not very attractive choices. Among the complete technologies with
an average grade above 1.0 we notice Rubus and PECOS as being the most
complete technologies (with respect to this set of requirements) since they have
the fewest 0’s. Also, Koala and PECOS can be recognised as thetechnologies
with the broadest range of good support for our requirements, since they have
the most number of 2’s.

However, we also notice that there is no technology that fulfils (not even
partially) all requirements, and that no single technologystands out as being
the preferred choice.

6.5 Conclusion 73

6.5 Conclusion

In this paper we have compared some existing component technologies for em-
bedded systems with respect to industrial requirements. The requirements have
been collected from industrial actors within the business segment of heavy ve-
hicles. The software systems developed in this segment can be characterised
as resource constrained, safety critical, embedded, distributed, real-time, con-
trol systems. Our findings should be applicable to software developers whose
systems have similar characteristics.

We have noticed that, for a component technology to be fully accepted by
industry, the whole systems development context needs to beconsidered. It
is not only the technical properties, such as modelling, computation model,
and openness, that needs to be addressed, but also development requirements
like maintainability, reusability, and to which extent it is possible to gradually
introduce the technology. It is important to keep in mind that a component
technology alone cannot be expected to solve all these issues; however a tech-
nology can have more or less support for handing the issues.

The result of the investigation is that there is no componenttechnology
available that fulfil all the requirements. Further, no single component tech-
nology stands out as being the obvious best match for the requirements. Each
technology has its own pros and cons. It is interesting to seethat most re-
quirements are fulfilled by one or more techniques, which implies that good
solutions to these requirements exist.

The question, however, is whether it is possible to combine solutions from
different technologies in order to achieve a technology that fulfils all listed
requirements? Our next step is to assess to what extent existing technolo-
gies can be adapted in order to fulfil the requirements, or whether selected
parts of existing technologies can be reused if a new component technology
needs to be developed. Examples of parts that could be reusedare file and
message formats, interface description languages, or middleware specifica-
tions/implementations. Further, for a new/modified technology to be accepted
it is likely that it have to be compliant to one (or even more than one) existing
technology. Hence, we will select one of the technologies and try to make as
small changes as possible to that technology.

Bibliography

Bibliography

[1] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Com-
ponent Technologies for Embedded Systems. InProceedings of the 7th

International Symposium on Component-Based Software Engineering.
2004 Proceedings Series: Lecture Notes in Computer Science, Vol. 3054,
May 2004. Edinburgh, Scotland.

[2] I. Crnkovic and M. Larsson.Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[3] B. Selic and J. Rumbaugh. Using UML for modelling complexreal-time
systems, 1998. Rational Software Corporation.

[4] Object Management Group. UML 2.0 Superstructure Specification, The
OMG Final Adopted Specification, 2003. http://www.omg.com/uml/.

[5] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-
2.

[6] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. InProceedings of the Sev-
enteenth International Conference on Software Engineering, April 1995.
Seattle, USA.

[7] Microsoft Component Technologies. COM/DCOM/.NET. http://www.-
microsoft.com.

[8] Sun Microsystems. Enterprise Java Beans Technology. http://java.sun.-
com/products/ejb/.

74

Bibliography 75

[9] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003. Pittsburg,
USA.

[10] R. van Ommering et al. The Koala Component Model for Consumer
Electronics Software.IEEE Computer, 33(3):78–85, March 2000.

[11] P. Clements and L. Northrop.Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001. ISBN 0-201-70332-7.

[12] K.L. Lundbäck, J. Lundbäck and M. Lindberg. Component-Based Devel-
opment of Dependable Real-Time Applications. InReal-Time in Sweden
– Presentation of Component-Based Software Development Based on the
Rubus concept, Arcticus Systems: http://www.arcticus.se. Västerås, Swe-
den.

[13] K.L. Lundbäck. Rubus OS Reference Manual – General Concepts. Arcti-
cus Systems: http://www.arcticus.se.

[14] D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of Dynamically Re-
configurable Real-Time Software Using Port-Based Objects.IEEE Trans-
actions on Software Engineering, pages 759 – 776, December 1997.

[15] P.K. Khosla et al. The Chimera II Real-Time Operating System for Ad-
vanced Sensor-Based Control Applications.IEEE Transactions on Sys-
tems, 1992. Man and Cybernetics.

[16] M. Winter, T. Genssler, et al. Components for Embedded Software – The
PECOS Apporach. InThe 2nd International Workshop on Composition
Languages, in conjunction with the 16th ECOOP, June 2002. Malaga,
Spain.

[17] T. Genssler, A. Christoph, B. Schuls, M. Winter, et al. PECOS in a Nut-
shell. PECOS project http://www.pecos-project.org.

[18] M. Sgroi. Quasi-Static Scheduling of Embedded Software Using Free-
Choice Petri Nets. Technical report, University of California at Berkely,
May 1998. Berkely, USA.

[19] O. Nierstrass, G. Arevalo, S. Ducasse, et al. A Component Model for
Field Devices. InProceedings of the First International IFIP/ACM Work-
ing Conference on Component Deployment, June 2002. Germany.

[20] R. Wuyts and S. Ducasse. Non-functional requirements in a component
model for embedded systems. InInternational Workshop on Specification
and Verification of Component-Based Systems, 2001. OPPSLA.

[21] Object Management Group. MinimumCORBA 1.0, August 2002. http://-
www.omg.org/technology/documents/formal/minimum_CORBA.htm.

[22] D.C. Schmidt, D.L. Levine, and S. Mungee. The Design of the tao real-
time object request broker.Computer Communications Journal, Summer
1997.

[23] CORBA Component Model 3.0. Object Management Group, June 2002.
http://www.omg.org/technology/documents/formal/components.htm.

Chapter 7

Paper C:
Towards a Dependable
Component Technology for
Embedded System
Applications

Mikael Åkerholm, Anders Möller, Hans Hansson and Mikael Nolin
To Appear in Pre-Prints of the Proceedings of the Workshop onObject-Oriented
Real-Time Dependable Systems, Sedona, Arizona, USA, February 2005

77

Abstract

Component-Based Software Engineering is a technique that has proven effec-
tive to increase reusability and efficiency in development of office and web
applications. Though being promising also for developmentof embedded and
dependable systems, the true potential in this domain has not yet been realized.

In this paper we present a prototype component technology, developed with
safety-critical automotive applications in mind. The technology is illustrated
by a case-study, which is also used as the basis for an evaluation and a discus-
sion of the appropriateness and applicability in the considered domain. Our
study provides initial positive evidence of the suitability of our technology, but
does also show that it needs to be extended to be fully applicable in an indus-
trial context.

7.1 Introduction 79

7.1 Introduction

Software is central to enable functionality in modern electronic products, but
it is also the source of a number of quality problems and constitutes a major
part of the development cost. This is further accentuated bythe increasing
complexity and integration of products. Improving qualityand predictabil-
ity of Embedded Computer Systems (ECS) are prerequisites toincrease, or
even maintain, profitability. Similarly, there is a call forpredictability in the
ECS engineering processes; keeping quality under control,while at the same
time meeting stringent cost and time-to-market constraints. This calls for new
systematic engineering approaches to design, develop, andmaintain ECS soft-
ware. Component-Based Software Engineering (CBSE) is sucha technique,
currently used in office applications, but with a still unproven potential for em-
bedded dependable software systems. In CBSE, software is structured into
components and systems are constructed by composing and connecting these
components. CBSE can be seen as an extension of the object-oriented ap-
proach, where components may have additional interfaces compared to tradi-
tional method invocation of objects. Similarly to objects,simpler components
can be aggregated to produce more complex components.

In this paper, we present the ongoing work of devising a component tech-
nology for distributed, embedded, safety critical, dependable, resource con-
strained real-time systems. Systems with these characteristics are common in
most modern vehicles and in the robotics and automation industries. Hence, we
cooperate with leading product companies (e.g. ABB, Bombardier and Volvo)
and some of their suppliers (e.g. CC Systems) in order to establish this novel
component technology.

Support for dependability can be added at many different abstraction levels
(e.g. the source code and the operating system levels). At each level, differ-
ent methods and techniques can be used to increase the dependability of the
system. Our hypothesis is that dependability, together with other key charac-
teristics, such as resource efficiency and predictability,should be introduced
early in the software process and supported through all stages of the process.
Our view is that dependability, and similar cross-cutting characteristics, cannot
be achieved by addressing only one abstraction level or one phase in the soft-
ware life-cycle. Further, we argue that dependability of systems is enhanced by
systematic application of code synthesis. For code synthesis, models of com-
ponent behaviour and their resource requirements togetherwith application re-
quirements and models of the underlying hardware and operating system are
used. The models and requirements are used by resource and timing analysis

80 Paper C

algorithms to ensure that a feasible system is generated.
In this paper, we present the current implementation of our component

technology (Section 7.3), together with an example application that illustrates
its use (Section 7.4). Based on experiences with the exampleapplication, we
provide an evaluation of the technology (Section 7.5).

7.2 CBSE for Embedded Systems

Research in the CBSE community is targeting theories, processes, technolo-
gies, and tools, supporting and enhancing a component-based design strategy
for software. A component-based approach for software development distin-
guishescomponent developmentfrom system development. Component devel-
opment is the process of creating components that can be usedand reused in
many applications. System development with components is concerned with
assembling components into applications that meet the system requirements.
The central technical concepts of CBSE in an embedded setting are:

Software componentsthat have well specified interfaces, and are easy to un-
derstand, adapt and deliver. Especially for embedded systems, the com-
ponents must have well specified resource requirements, as well as spec-
ification of other, for the application relevant properties, e.g., timing,
memory consumptions, reliability, safety, and dependability.

Component models that define different component types, their possible in-
teraction schemes, and clarify how different resources arebound to com-
ponents. For embedded systems the component models should impose
design restrictions so that systems built from components are predictable
with respect to important properties in the intended domain.

Component frameworks i.e., run-time systems that supports the components
execution by handling component interactions and invocation of the dif-
ferent services provided by the components. For embedded systems, the
component framework typically must be light weighted, and use pre-
dictable mechanisms. To enhance predictability, it is desirable to move
as much as possible of the traditional framework functionality from the
run-time system to the pre-run-time compile stages.

Component technologiesi.e., concrete implementations of component mod-
els and frameworks that can be used for building component-based appli-
cations. Two of the most well known component technologies are Mi-

7.3 Our Component Technology 81

crosoft’s Components Object Model (COM)1 for desktop applications,
and Sun’s Enterprise Java Beans (EJB)2 for distributed enterprise appli-
cations.

Efficient development of applications is supported by the component-based
strategy, which addresses the whole software life-cycle. CBSE can shorten the
development-time by supporting component reuse, and by simplifying parallel
development of components. Maintenance is also supported since the compo-
nent assembly is a model of the application, which is by definition consistent
with the actual system. During maintenance, adding new, andupgrading ex-
isting components are the most common activities. When using a component-
based approach, this is supported by extendable interfacesof the components.
Also testing and debugging is enhanced by CBSE, since components are easily
subjected to unit testing and their interfaces can be monitored to ensure correct
behaviour.

CBSE has been successfully applied in development of desktop and enter-
prise business applications, but for the domain of embeddedsystems CBSE has
not been widely adopted. One reason is the inability of the existing commer-
cial technologies to support the requirements of the embedded applications.
Component technologies supporting different types of embedded systems have
recently been developed, e.g., from industry [1, 2], and from academia [3, 4].
However, as Crnkovic points out in [5], there are much more issues to solve
before a CBSE discipline for embedded systems can be established, e.g., ba-
sic issues such as light-weighted component frameworks andidentification of
which system properties that can be predicted by component properties.

Based on risks and requirements for applying CBSE for our class of appli-
cations, we have collected a check-list with evaluation points that we have used
to evaluate our component technology in an industrial environment. In Section
5 we provide a summary of the evaluation, for more details we refer to [6].

7.3 Our Component Technology

Our component technology implements the SaveComp Component Model [7]
and provides compile-time mappings to a set of operating systems, follow-
ing the technique described in [8]. The component technology is intended to
provide three main benefits for developers of embedded systems: efficient de-
velopment, predictable behaviour, and run-time efficiency.

1Microsoft Corporation, The Component Object Model, http://www.microsoft.com
2Sun Microsystems, Enterprise JavaBeans Specification, http://www.sun.com

82 Paper C

Task
Allocation

Win 32

APPLICATION

SaveCCM

XML - representation

Design-
Time

Compile-
Time

Run-
Time

<<SaveComp>>

PC

<<SaveComp>>

Compose

<<Assembly>>

P

Set Actual
Control

Attribute
Assignment

Code Generation
& Analysis

C-compiler

RTXC

APPLICATION

Simulation Target

Figure 7.1: An overview of our current component technology

Efficient development is provided by the SaveComp ComponentModel’s
efficient mechanisms for developing embedded control systems. This compo-
nent model is restricted in expressiveness (to support predictability and depend-
ability) but the expressive power has been focused to the needs of embedded
control designers.

Predictable behaviour is essential for dependable systems. In our tech-
nology, predictability is achieved by systematic use of simple, predictable,
and analysable run-time mechanisms; combined with a restrictive component
model with limited flexibility.

Run-time efficiency is important in embedded systems, sincethese systems
usually are produced in high volumes using inexpensive hardware. We employ
compile-time mappings of the component-based applicationto the used oper-
ating systems, which eliminates the need for a run-time component framework.
As shown in Figure 7.1, three different phases can be identified, where different

7.3 Our Component Technology 83

pieces of the component technology are used:

Design-time SaveCCM is used during design-time for describing the applica-
tion.

Compile-time during compile-time the high-level model of the application is
transformed into entities of the run-time model, e.g., tasks, system calls,
task attributes, and real-time constrains.

Run-time during run-time the application uses the execution model from an
underlying operating system. Currently our component technology sup-
ports the RTXC operating system3 and the Microsoft Win32 environ-
ment4. The Win32 environment is intended for functional test and debug
activities (using CCSimTech [15]), but it does not support real-time tests.

7.3.1 Design-Time - The Component Model

SaveCCM is a component model intended for development of software for ve-
hicular systems. The model is restrictive compared to commercial component
models, e.g., COM and EJB. SaveCCM provides three main mechanisms for
designing applications:

Components which are encapsulated units of behaviour.

Component interconnectionswhich may contain data, triggering for invoca-
tion of components, or a combination of both data and triggering.

Switches which allow static and dynamic reconfiguration of componentinter-
connections.

These mechanisms have been designed to allow common functionality in em-
bedded control systems to be implemented. Specific examplesof key function-
ality supported are:

• Support for implementation of feedback control, with a possibility to
separate calculation of a control signal, from the update ofthe controller
state. Something which is common in control applications tominimise
latency between sampling and control.

3Quadros Systems Inc, RTXC Kernel UserŠs Guide, http://www.quadros.com
4MSDN, Win32 Application ProgrammerŠs Interface, http://msdn.microsoft.com/

84 Paper C

• Support for system mode changes, something which is common in, e.g.,
vehicular systems.

• Support for static configuration of components to suit a specific product
in a product line.

Architectural Elements

The main architectural elements in SaveCCM are components,switches, and
assemblies. The interface of an architectural element is defined by a set of
associated ports, which are points of interaction between the element and its
external environment. We distinguish between input- and output ports, and
there are two complementary aspects of ports: the data that can be transferred
via the port, and the triggering of component executions. SaveCCM distinguish
between these two aspects, and allow three types of ports:

• Data ports are one element buffers that can be read and written. Each
write operation to the port will overwrite the previous value stored.

• Triggering ports are used for controlling the activation ofelements. An
element may have several triggering ports. The component istriggered
when all input triggering ports are activated. Several output triggering
ports may be connected to a single input triggering port, providing OR-
semantics.

• Combined ports (data and triggering), combine data and triggering ports,
semantically the data is written before the trigger is activated.

An architectural element emits trigger signals and data at its output ports,
and receives trigger signals and data at its input ports. Systems are built from
the architectural elements by connecting input ports to output ports. Ports can
only be connected if their types match, i.e. identical data types are transferred
and the triggering coincides.

The basis of the execution model is a control-flow (pipes-and-filters) par-
adigm [9]. On a high level, an element is either waiting to be activated (trig-
gered) or executing. In the first phase of its execution an element read all its
inputs, secondly it performs all computations, and finally it generates outputs.

Components

Components are the basic units of encapsulated behaviour. Components are
defined by an entry function, input and output ports, and, optionally, quality

7.3 Our Component Technology 85

attributes. The entry function defines the behaviour of the component during
execution. Quality attributes are used to describe particular characteristics of
components (e.g. worst-case execution-time and reliability). A component is
not allowed to have any dependencies to other components, orother external
software (e.g. the operating system), except the visible dependencies through
its input- and output-ports.

Switches

A switch provides means for conditional transfer of data and/or triggering be-
tween components. A switch specifies a set of connection patterns, each defin-
ing a specific way of connecting the input and output ports of the switch. Log-
ical expressions (guards; one for each pattern), based on the data available at
some of the input ports, are used to determine which connection pattern that is
to be used.

Switches can be used for specifying system modes, each mode correspond-
ing to a specific static configuration. By changing the port values at run-time,
a new mode can be activated. By setting a port value to a fixed value at design
time, the compiler can remove unused functionality.

Assemblies

Component assemblies allow composite behaviours to be defined, and make it
possible to form aggregate components from groups of components, switches,
and assemblies. In SaveCCM, assemblies are encapsulation of components and
switches, having an external functional interface (just asSaveCCM-components).

SaveCCM Syntax

The graphical syntax of SaveCCM is shown in 7.2, the syntax isderived from
symbols in UML 2.05, with additions to distinguish between the different types
of ports. The textual syntax is XML6 based, and the syntax definition is avail-
able in [6].

5Object Management Group, UML 2.0 Superstructure Specification,
http://www.omg.com/uml/

6World Wide Web Consortium (W3C), XML, http://www.w3.org/XML/

86 Paper C

 Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch,
corresponds to switches in SaveCCM

Assembly - components with the stereotype
Assembly, corresponds to assemblies in SaveCCM

Delegation -A delegation is a direct connection from
an input to –input or output to –output port, used
within assemblies

<<Assembly>>

<name>

<<Switch>>

<name>

<<SaveComp>>

<name>

Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch,
corresponds to switches in SaveCCM

Assembly - components with the stereotype
Assembly, corresponds to assemblies in SaveCCM

Delegation -A delegation is a direct connection from
an input to –input or output to –output port, used
within assemblies

Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch,
corresponds to switches in SaveCCM

Assembly - components with the stereotype
Assembly, corresponds to assemblies in SaveCCM

Delegation -A delegation is a direct connection from
an input to –input or output to –output port, used
within assemblies

<<Assembly>>

<name>

<<Switch>>

<name>

<<SaveComp>>

<name>

Figure 7.2: Graphical syntax of SaveCCM

7.3.2 Compile-Time Activities

During compile-time, the XML-description of the application is used as in-
put. The XML description contains no dependencies to the underlying system
software or hardware, all code that is dependent on the execution platform is
automatically generated during the compile-step. In the compiler, the modules
(see Figure 7.1) that are independent of the underlying execution platform are
separated from modules that are platform dependent. When changing platform,
it is possible to replace only the platform dependent modules of the compiler.

The four modules of the compiler (task allocation, attribute assignment,
analysis, and code generation) represent different activities during compile-
time, as explained below.

7.3 Our Component Technology 87

Task Allocation

During the task-allocation step, components are assigned to operating-system
tasks. This part of the compile-time activities is independent of the execution
platform, and the algorithm used for allocation of components to tasks strives to
reduce the number of tasks. This is done by allocating components to the same
task whenever possible, i.e.(i) when the components execute with the same
period-time, or are triggered by the same event, and,(ii) when all precedence
relations between interacting components are preserved. Adescription of the
algorithm is available in [6].

Attribute Assignment

Attribute assignment is dependent on the task-attributes of the underlying plat-
form, and possibly additional attributes depending on the analysis goals. In the
current implementation for the RTXC RTOS and Win32, the taskattributes are:

Period time (T) during code generation for specifying the period time for
tasks.

Priority (P) used by the underlying operating system for selecting the task to
execute among pending tasks.

Worst-case execution-time (WCET)used during analysis.

Deadline (D) used during analysis.

The period time, deadline, and WCET are directly derived from the compo-
nents included in each task. Priority is assigned in deadline monotonic order,
i.e., shorter deadline gives higher priority.

Analysis

The analysis step is optional, and is in many cases dependenton the underlying
platform, e.g., for schedulability analysis it is fundamental to have knowledge
of the scheduling algorithm of the used OS. But analysis is also dependent on
the assigned attributes (e.g., for schedulability analysis, WCET of the different
tasks are needed).

Examples of analysis include schedulability analysis [10], memory con-
sumption analysis [11], and reliability analysis [12].

Attributes that are usage and environment dependent cannotbe analysed
in this automated step, since it only relies on information from the component

88 Paper C

model. There are no usage profiles or physical environment descriptions in-
cluded in the component model. Additional information is needed to allow
such analysis, e.g., safety analysis [13]. Safety is an important attribute of
vehicular systems, and we plan to integrate safety aspects in future extensions.

In the current prototype implementation, schedulability analysis according
to FPS theory is performed [14].

Code Generation

The code generation module of the compile-time activities generates all source
code that is dependent on the underlying operating system. The code genera-
tion module is dependent on the Application Programming Interface (API) of
the component run-time framework. In the prototype implementation for the
RTXC operating system (see Figure 7.3 right) and the Win32 operating system
(see Figure 7.3 left), the code generation does not target any of the APIs di-
rectly. Instead, the automatic code generation generates source code for target
independent APIs: the SaveOS and SaveIO APIs. The APIs are later translated
using C-style defines to the desired target operating system.

7.3.3 The Run-Time System

The run-time system consists of the application software and a component run-
time framework. The application software is automaticallygenerated from the
XML-description using the SaveCCM Compiler. On the top-level, the run-time
framework has a transparent API, which always has the same interface towards
the application, but does only contain the run-time components needed (e.g.
the SaveCCM API does not include a CAN interface, a CAN protocol stack or
a device driver, if the application does not use CAN).

Pre-compilation settings are used to change the SaveCCM APIbehaviour
depending on the target environment. If the application is to be simulated in
a PC environment using CCSimTech [15], the SaveCCM API directs all calls
to the SaveOS to the RTOS simulator in the Windows environment. If the
system is to be executed on the target hardware using a RTOS (e.g. RTXC) the
SaveCCM API directs all system calls to the RTOS.

The framework also contains a variable set of run-time framework com-
ponents (e.g. CAN, IO, and Memory) used to support the application during
execution. These components are hardware platform independent, but might,
to some degree, be RTOS dependent. To obtain hardware independency, a

7.4 Application Example 89

hardware abstraction layer (HAL) is used. All communication between the
component run-time framework and the hardware passes through the HAL.

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN

SaveCCM Hardware Abstraction Layer

SaveIO

SaveRTOS

HW Platform

SaveMemory

Device Drivers

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN SaveIO

PC

SaveMemory

MS Windows

CCSimTech

T
argetF

ram
ew

ork

S
im

ulation F
ram

ew
ork

Figure 7.3: System architecture for simulation and target

The layered component run-time framework is designed to enhance porta-
bility, which is a strong industrial requirement [16].Thisapproach also en-
hances the ability to upgrade or update the hardware and change or upgrade
the operating system. The requirements on product service and the short life-
cycles of todayŠs CPUs also make portability very important.

7.4 Application Example

To evaluate SaveCCM and the compile-time and run-time partsof the compo-
nent technology, a typical vehicular application was implemented. The appli-
cation used for evaluation is an Adaptive Cruise Controller(ACC) for a vehi-
cle. When designing the application, much focus was put on using all different
possibilities in the component model (components, switches, assemblies, etc.)
with the purpose to verify the usefulness of these constructs, the compile-time
activities, and the automatically generated source code. In the remaining part
of this section, the basics of an ACC system is introduced, and the resulting
design using SaveCCM is presented.

7.4.1 Introduction to ACC functionality

An ACC is an extension to a regular Cruise Controller (CC). The purpose of
an ACC system is to help the driver keep a desired speed (traditional CC),
and to help the driver to keep a safe distance to a preceding vehicle (ACC
extension). The ACC autonomously adapt the distance depending on the speed
of the vehicle in front. The gap between two vehicles has to belarge enough to
avoid rear-end collisions.

90 Paper C

To increase the complexity of a basic ACC system, and therebyexercise
the component model more, our ACC system has two non-standard functional
extensions. One extension is the possibility for autonomous changes of the
maximum speed of the vehicle depending on the speed-limit regulations. This
feature would require actual speed-limit regulations to beknown to the ACC
system by, e.g., by using transmitters on the road signs or road map infor-
mation in cooperation with a Global Positioning System (GPS). The second
extension is a brake-assist function, helping the driver with the braking proce-
dure in extreme situations, e.g., when the vehicle in front suddenly brakes or if
an obstacle suddenly appears on the road.

7.4.2 Implementation using SaveCCM

On the top-level, we distinguish between three different sources of input to
the ACC application:(i) the Human Machine Interface (HMI) (e.g. desired
speed and on/off status of the ACC system),(ii) the vehicular internal sensors
(e.g. actual speed and throttle level), and,(iii) the vehicular external sensors
(e.g. distance to the vehicle in front). The different outputs can be divided in
two categories, the HMI outputs (returning driver information about the system
state), and the vehicular actuators for controlling the speed of the vehicle.

The application has two different trigger frequencies, 10 Hz and 50 Hz.
Logging and HMI outputs activities execute with the lower rate, and control
related functionality at the higher rate.

Furthermore, there is a number of operational system modes identified, in
which different components are active. The different modesare:Off, ACC En-
abledandBrake Assist. Off is the initial system mode. In theOff mode, none
of the control related functionality is activated, but system-logging, function-
ality related to determining distance to vehicles in front,and speed measuring
are active. During theACC enabledmode the control related functionality is
active. The controllers control the speed of the vehicle based on the parame-
ters:desired speed, distanceto vehicles in front, andspeed-regulations. In the
Brake Assistmode braking support for extreme situations is enabled.

The ACC system is implemented as an assembly (ACC Applicationin left
part of Figure 7.4) built-up from four basic components, oneswitch, and one
sub-assembly. The sub-assembly (ACC Controller) is in turn implemented as
shown in Figure 7.4, right.

7.4 Application Example 91

<<Assembly>>
ACC Controllers

<<Assembly>>
Distance

Controller

<<Assembly>>
Speed

Controller

Distance

Control

Relative
Speed

Max
Speed

<<Assembly>>
Distance

Controller

<<SaveComp>>

Calc Output

<<SaveComp>>

Update State

<<Assembly>>
Speed

Controller

<<SaveComp>>

Calc Output

<<SaveComp>>

Update State

Distance
Relative
Speed

Max
Speed

Current
Speed

Current
Speed

Control

Road Signs Enabled

Current Speed

Road Sign Speed
ACC Max Speed

Distance

ACC Enabled

Brake Pedal Used

<<Assembly>>
50 Hz

10 Hz

Brake Signal

Throttle

Brake Assist

<<SaveComp>>

Logger
HMI Outputs

<<SaveComp>>

Object
Recognition

<<SaveComp>>

Mode Switch

<<Switch>>

ACC
Controller

<<Assembly>>

Brake Assist

ACC

Max Speed

ACC Application
Speed Limit

<<SaveComp>>

Figure 7.4: ACC Application implementation

The ACC Application Assembly

The Speed Limitcomponent calculates the maximum speed, based on input
from the vehicle sensors (i.e. current vehicle speed) and the maximum speed
of the vehicle depending on the speed-limit regulations. The component runs
with 50 Hz and is used to trig theObject Recognitioncomponent.

TheObject Recognitioncomponent is used to decide whether or not there
is a car or another obstacle in front of the vehicle, and, in case there is, it
calculates the relative speed to this car or obstacle. The component is also used
to triggerMode Switchand to provideMode Switchwith information indicating
if there is a need to use the brake assist functionality or not.

Mode Switchis used to trigger the execution of theACC Controllerassem-
bly and theBrake Assistcomponent, based on the current system mode (ACC
Enabled, Brake Pedal Used) and information fromObject Recognition.

The Brake Assistcomponent is used to assist the driver, by slamming on
the brakes, if there is an obstacle in front of the vehicle that might cause a
collision.

The Logger HMI Outputscomponent is used to communicate the ACC
status to the driver via the HMI, and to log the internal settings of the ACC. The
log-memory can be used for aftermarket purposes (black-boxfunctionality),
e.g., checking the vehicle-speed before a collision.

TheACC Controllerassembly is built up of two cascaded controllers (see

92 Paper C

Figure 7.4, right), managing the throttle lever of the vehicle. This assembly
has two sub-level assemblies, theDistance Controllerassembly and theSpeed
Controller assembly.

The reason for using a control feedback solution between thetwo con-
trollers is that since the calculation is very time critical, it is important to de-
liver the response (throttle lever level) as fast as possible. Hence, the controllers
firstly calculate their output values and after these valueshave been sent to the
actuators, the internal state is updated (detailed presentation can be found in
[6].

7.4.3 Application Test-Bed Environment

For the evaluation the RTXC operating system was used together with a Cross
FIRE ECU7. RTXC is a pre-emptive multitasking operating system whichper-
mits a system to make efficient use of both time and system resources. RTXC
is packaged as a set of C language source code files that needs to be compiled
and linked with the object files of the application program.

The Cross FIRE is a C167-based8 IO-distributing ECU (Electronic Control
Unit) designed for CAN-based real-time systems. The ECU is developed and
produced by CC Systems, and intended for use on mobile applications in rough
environments.

During functional testing and debugging, CC Systems use a simulation en-
vironment called CCSimTech [15], which also was incorporated in this work.
Developing and testing of distributed embedded systems is very challenging
in their target environments, due to poor observability of application state and
internal behaviour. With CCSimTech, a complete system withseveral nodes
and different types of interconnection media, can be developed and tested on
a single PC without access to target hardware. This makes it possible to use
standard PC tools, e.g., for debugging, automated testing,fault injection, etc.

7.5 Evaluation and Discussion

CBSE addresses the whole life-cycle of software products. Thus, to fully eval-
uate the suitability of a component technology requires experiences from using
the technology in real projects (or at least in a pilot/evaluation project), by rep-

7CC Systems, Cross FIRE Electronic Control Unit, http://www.cc-systems.com
8Infineon, C-167 processor, http://www.infineon.com

7.5 Evaluation and Discussion 93

resentatives from the intended organisation, using existing tools, processes and
techniques.

Our experiment was conducted using CC Systems’ tools and techniques,
however we have not used the company’s development processes. Hence, we
can only give partial answers (indications) concerning thesuitability our com-
ponent technology.

We divide our evaluation in the following three categories:

Structural properties concerning the suitability of the imposed application
structure and architecture, and the ease to define and createthe desired
behaviour using the supported design patterns.

Behavioural properties concerning the application performance, in terms of
functional and non-functional behaviour.

Process propertiesconcerning the ease and possibility to integrate the tech-
nology with existing processes in the organisation.

The adaptive cruise controller application represents an advanced domain
specific function, which could have been ordered as a pilot study at the com-
pany. The hardware, operating system, compilers, and the simulation tech-
nique, have been selected among the companies repertoire, and are thus highly
realistic.

The implementation of the application has not been done according to the
process at the company, rather as an experiment by the authors. Thus, it is
mainly the structural-, and behavioural related evaluation that can be addressed
by our experience. However, to evaluate the process relatedissues, senior
process managers at the company have helped to relate the component tech-
nology to the processes.

The evaluation is conducted using a check-list assembled from require-
ments for automotive component technologies by Möller et al. [16], risks with
using CBSE for embedded systems by Larn and Vickers [17], andfrom identi-
fied needs, by Crnkovic [5].

7.5.1 Structural Properties

Based on the experiment performed we conclude that the component model is
sufficiently expressive for the studied application, and that it allows the soft-
ware developer to focus on the core functionality when designing applications.
The similarities with UML 2.0 provided important benefits byallowing us to
use a slightly modified UML 2.0 editor for modelling applications. Also, issues

94 Paper C

related to task mapping, scheduling, and memory allocationare taken care of
by the compilations provided by the component technology. Further allowing
the developer to concentrate on application functionality.

Since the components have visible source code, and since allbindings be-
tween components are automatically generated, making modifications of com-
ponents is facilitated, though there is not yet any specific support to handle
maintenance implemented in the component technology.

It is straight forward to compile the ACC system for both Win32 on a reg-
ular PC and RTXC on a Cross FIRE ECU. This is an indication of the portabil-
ity of our technology across hardware platforms and operating systems. As a
consequence, components can be reused in different applications regardless of
which RTOS or hardware is used.

Configurability is essential for component reuse, e.g., within a Product Line
Architecture (PLA) [18]. In SaveCCM, components can be configured by sta-
tic binding of values to ports. However, there is currently no explicit architec-
tural element to specify this. In our experiment, we could however achieve the
same effect by directly editing the textual representation. For instance, a switch
condition can be set statically during design-time, and partially evaluated dur-
ing compile-time, to represent a configuration in a PLA. A future extension
of SaveCCM is to add a new architectural element that makes itpossible to
visualise and directly express static configurations of input ports. This will
additionally facilitate version and variant management.

7.5.2 Behavioural Properties

With respect to behavioural properties, our component technology is quite ef-
ficient. The run-time framework provides a mapping to the used OS without
adding functionality, and the compile-time mechanisms strive to achieve an ef-
ficient application, by allocating several components to the same task. Some
data about our case-study:

• The compilation resulted in four tasks: one task including components
speed-limit, object recognition, andmode-switch; one task includinglog-
ger HMI outputs; one task including brake assist; and one task including
the four components in the ACC controller.

• The CPU utilisation in the different application modes are 7

• The total application size is 114 kb, of which 104 kb belongs to the oper-
ating system, and 10 kb to the application. The application part consists

7.6 Conclusions and Future Work 95

of 2 kb of components code, together with 8 kb run-time framework and
compiler generated operating system dependent data and code.

To allow analysis it is essential to derive task level quality attributes from
the corresponding component level attributes. In our case-study this was straight-
forward, since the only quality attribute considered is worst-case execution
time, which can be straightforwardly composed by addition of the values asso-
ciated to the components included in the task.

Furthermore, the CCSimTech simulation technique providedvery useful
support for verification and debugging of the application functionality.

7.5.3 Process Related

The process related evaluation concerns the suitability touse the existing pro-
cesses and organisation, when developing component-basedapplications. Tho-
ugh process related issues are not directly addressable by our experiment, based
on a set of interviews company engineers have expressed the following:

• The RTOS and platform independence is a major advantage of the ap-
proach.

• The integration with the simulation technique, CCSimTech,used in prac-
tically all development projects at CC Systems, will substantially facili-
tate the integration of SaveCCM in the development process.

• The tools included in the component technology, as well as the user-
documentation, have not reached an acceptable level of quality for use
in real industry projects.

• The maintainability aspects of CBD are attractive, since changes are sim-
plified by the tight relation between the applications description and the
source code.

7.6 Conclusions and Future Work

We have described the initial implementation of our component technology for
vehicular systems, and evaluated it in an industrial environment, using require-
ments and needs identified in related research.

The evaluation shows that the existing parts of the component technology
meet the requirements and needs related to them. However, tomeet overall
requirements and needs, extensions to the technology are needed.

96 Paper C

Plans for future work include extending the component technology with
support for multiple nodes, integration of legacy-code with the components
[19], run-time monitoring support [20], and a real-time database for structured
handling of shared data [21]. Implementation of more types of automated
analysis to prove the concept of determining system attributes from compo-
nent attributes is also a target for future work. However, there is also a need
for methods to determine component attributes. Furthermore, to make the pro-
totype useful in practice, there are needs for integrating our technology with
supporting tools, e.g., automatic generation of XML descriptions from UML
2.0 drawings, and connectivity with configuration management tools.

An indication of the potential of our component technology,and CBSE for
embedded systems development in general, is that the company involved in
the case-study finds our technology promising and has expressed interest to
continue the cooperation.

Acknowledgements
We would like to thank CC Systems for inviting and helping us to realise this

pilot project. Special thanks to Jörgen Hansson and Ken Lindfors for invitation
and to Johan Strandberg and Fredrik Löwenhielm for their support with all
kinds of technical issues. We would also like to thank Sasikumar Punnekat for
valuable feedback on early versions of this article.

Bibliography

[1] K.L. Lundbäck, J. Lundbäck and M. Lindberg. Component-Based Devel-
opment of Dependable Real-Time Applications. InReal-Time in Sweden
– Presentation of Component-Based Software Development Based on the
Rubus concept, Arcticus Systems: http://www.arcticus.se. Västerås, Swe-
den.

[2] R. van Ommering et al. The Koala Component Model for Consumer
Electronics Software.IEEE Computer, 33(3):78–85, March 2000.

[3] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-BasedPrediction of
Run-Time Resource Consupmption in Component-Based Software Sys-
tems. InProceedings of the 6th International Workshop on Component-
Based Software Engineering, May 2003. Portland, Oregon, USA.

[4] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003. Pittsburg,
USA.

[5] I. Crnkovic. Componet-Based Approach for Embedded Systems. In
Proceedings of 9th International Workshop on Component-Oriented Pro-
gramming, June 2004. Oslo, Norway.

[6] M. Åkerholm, A. Möller, H. Hansson, and M. Nolin. SAVEComp - a
Dependable Component Technology for Embedded Systems Software.
Technical report, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
165/2004-1-SE, Mälardalen Real-Time Research Centre, Mälardalen
University, December 2004.

97

98 Bibliography

[7] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM -
a Component Model for Safety-Critical Real-Time Systems. In Proceed-
ings of 30th Euromicro Conference, Special Session Component Models
for Dependable Systems, September 2004.

[8] K. Sandström, J. Fredriksson, and M. Åkerholm. Introducing a Com-
ponent Technology fo rSafety Critical Embedded Real-Time Systems.
In Proceedings of th 7th International Symposium on Component-Based
Softwrae Engineering, May 2004. Edinburgh, Scotland.

[9] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-
2.

[10] G.C. Butazzo. Hard Real-Time. Kluwer Academic Publishers, 1997.
ISBN: 0-7923-9994-3.

[11] A.V. Fioukov, E.M. Eskenazi, D.K. Hammer, and M. Chaudron. Evalua-
tion of Static Properties for Component-Based Architetures. InProceed-
ings of 28th Euromicro Conference, September 2002. Dortmund, Ger-
many.

[12] H.W. Schmidt and R.H. Reussner. Parameterized Contracts and Adapter
Synthesis. InProceedings of the 5th International Conference on Soft-
ware Engineering, Workshop on Component-Based Software Engineer-
ing, May 2001. Toronto, Canada.

[13] D.H. Stamatis.Failure Mode and Effect Analysis: FMEA from Theory to
Execution. ASQ Quality Press, 2nd Edition, 2003. ISBN 0-87389598-3.

[14] M.G. Harbour, M.H. Klein, and J.P. Lehoczky. Timing analysis for Fixed-
Priority Scheduling of Hard Real-Time Systsems.IEEE Transactions,
20(1), January 1994.

[15] A. Möller and P. Åberg. A Simulation Technology for CAN-based Sys-
tems.CAN Newsletter, 4, December 2004.

[16] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Com-
ponent Technologies for Embedded Systems. InProceedings of the 7th

International Symposium on Component-Based Software Engineering.
2004 Proceedings Series: Lecture Notes in Computer Science, Vol. 3054,
May 2004. Edinburgh, Scotland.

[17] W. Lam and A.J. Vickers. Managing the Risks of Component-Based Soft-
ware Engineering. InProceedings of the 5th International Symposium on
Assessment of Software Tools, June 1997. Pittsburgh, USA.

[18] P. Clements and L. Northrop.Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001. ISBN 0-201-70332-7.

[19] M. Åkerholm, K. Sandström, and J. Fredriksson. Interference Con-
trol for Integration of Vehicular Software Components. Technical re-
port, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-162/2004-1-
SE, MRTC, Mälardalen University, May 2004.

[20] D. Sundmark, A. Möller, and M. Nolin. Monitored Software Compo-
nents – A Novel Software Engineering Approach –. InProceedings of the
11th Asia-Pasific Software Engineering Conference, Workshop onSoft-
ware Architectures and Component Technologies, November 2004. Pu-
san, Korea.

[21] D. Nyström. COMET: A Component-Based Real-Time Database for Ve-
hicle Control Systems. Technical report, Technology Licentiate Thesis
No.26, ISSN 1651-9256, ISBN 91-88834-41-7, Mälardalen Real-Time
Reseach Centre, Mälardalen University, May 2003. Mälardalen Univer-
sity Press.

Chapter 8

Paper D:
Monitored Software
Components - A Novel
Software Engineering
Approach

Daniel Sundmark, Anders Möller and Mikael Nolin
In Proceedings of the 11th Asia-Pasific Software Engineering Conference, Work-
shop on Software Architectures and Component Technology, pages: 624–631,
Pusan, Korea, November 2004

101

Abstract

We propose monitoring of software components, and use of monitored soft-
ware components, as a general approach for engineering of embedded com-
puter systems. In our approach, a component’s execution is continuously mon-
itored and experience regarding component behaviour is accumulated. As more
and more experience is collected the confidence in the component grows; with
the goal to eventually allow certification of the component.Continuous mon-
itoring is also the base for contract checking, and providesmeans for post-
mortem crash analysis; an important prerequisite for many companies to start
use 3rd party component in their dependable systems.

In this paper we show how four software engineering goals canbe reached
by monitoring four component properties.

8.1 Introduction 103

8.1 Introduction

In this paper we propose monitoring of software components and use of moni-
tored software components as a general approach for engineering of embedded
computer systems. Industrial developers of distributed, heterogeneous, reli-
able, resource constrained, embedded, real-time control systems (in this paper
denoted embedded systems) are facing increased challengeswith respect to
demands on increased profitability, functionality and reliability, while at the
same time having to decrease development times, project costs and time-to-
market. Since development costs only constitute a fractionof the total project
cost for software projects (about 20% [1]), a general approach for engineering
embedded systems must consider not only the development phase; also the de-
bugging, testing and maintenance phases need to be addressed. Furthermore,
since most systems are developed incrementally, where new versions are based
on previous versions, and product-line architectures [2] are becoming increas-
ingly important, a general approach for engineering embedded systems needs
to consider reuse of components between product versions and product vari-
ants. Another emerging key-issue in engineering of embedded systems is safe
and predictable integration of third-party functions, andthe associated legal
matters regarding contract fulfilment and liability issues.

The main contributions of this paper are three-fold:

• We present a novel approach to engineering component-basedsystems,
using monitored software components.

• Our approach takes a life-cycle perspective on the engineering process,
and we identify four key-areas where monitored components will have
significant impact.

• We present four measurable properties that can be used to impact these
key-areas.

The outline of the rest of this paper is as follows: In Section8.2 we present
a life-cycle approach to engineering component-based systems, and Section 8.3
describes properties of embedded systems. In Section 8.4, we present a survey
of related work in built-in monitoring support for component-based systems
and existing monitoring practices in commercial componenttechnologies. In
Section 8.5, the impacts of monitorable components on predictable assemblies
are discussed. Section 8.6 illustrates how to make use of themonitored in-
formation, and finally, in Section 8.7, we summarise and present our ideas on
future work.

104 Paper D

8.2 A Life-Cycle Approach to Component-Based
Systems

This continuous increase of requirements for embedded-system developers can
be mitigated by deploying suitable software engineering methods. It is our
view that the whole system and component life-cycles need tobe considered
by an engineering method. Below we present four key-areas ofengineering
component-based systems where significant gains can be madeby using our
proposed concept of monitored components.

• Certifiable components. By monitoring component-based software, in-
formation about the component properties can be extracted.This infor-
mation can be used to fully (or partially) describe the components by
their externally visible properties. Such a description can be used as a
basis for certifying components.1 By reusing certified components, pre-
dictable component assemblies are facilitated.

• System-level testing and debugging. By monitoring individual compo-
nents and component interactions, errors can be found and traced. Moni-
toring can also be used to support replay debugging [3], where erroneous
system-executions are recreated in a lab environment to allow tracing of
bugs.

• Run-time contract checking. This will allow surveillance of third party
components. Both functional (e.g. range of output values) and non-
functional (e.g. memory usage) properties can be monitored. During
acceptance testing, the contract checking is used to validate that a com-
ponent does not violate its specification. In systems that fail after system
deployment, logs from the contract checking can be used in post-mortem
analysis to identify failing or contract-breaking components.

• Observability. Computer systems in general, and embedded systems in
particular, are infamous for the difficulty of observing their internal be-
haviour. This has drawbacks throughout the whole debugging, testing
and maintenance phases. Systems whose behaviour is unobservable be-
come very difficult to analyse and validate. Also after deployment, ob-
servability is an important feature, allowing inspection and performance
tuning of running systems.

1For some high integrity systems, monitored properties needto be combined with static analysis
to obtain safe bounds on properties.

8.3 Embedded Systems 105

Testing Usage

New component Certified component

Tested component

Property
refinement

Property
refinement

Guessed
properties

Testing Usage

New component Certified component

Tested component

Property
refinement

Property
refinement

Guessed
properties

Figure 8.1: A conceptual overview of monitoring software components for
certification.

The ultimate goal of component monitoring is to be able to compose pre-
dictable assemblies by reusing information gathered from well-tested software
components. The proposal of this paper is that this can be achieved by the it-
erative process of refinement described in Figure 8.1. When anew component
(or a 3rd party component) is included in an assembly, its run-time proper-
ties (such as execution time or memory consumption) are estimated by well-
founded guesses. During testing, these guesses are validated and refined. As
the tested component is deployed in a target-system assembly, its behaviour is
continuously monitored, allowing for further refinement ofthe component run-
time behaviour description. This refinement process will eventually lead to a
certified component, which can be used to compose predictable assemblies.

Monitoring of components will allow information about the dynamic be-
haviour of the component to be recorded. This information allows static and
dynamic properties of newly (or partly) constructed systems to be predicted.
Interesting aspects to monitor (on component level) and predict (on system
level) include timing properties, such as end-to-end response times, and re-
source utilisation, such as memory consumption.

8.3 Embedded Systems

This paper addresses software engineering aspects of resource-constrained,
embedded, distributed real-time control systems. To make clear in what con-
text the provided monitoring approach is supposed to work, we also provide a
brief example of a typical embedded system and an introduction to component
monitoring. In this section we also discuss prerequisites,placed on the com-
ponent technology and on the hardware, to be able to monitor the embedded

106 Paper D

system software.

8.3.1 CBSE for Embedded Systems

In Component-Based Software Engineering (CBSE), softwareapplications are
built by composing software components into component assemblies. CBSE
is gaining more and more acceptance in the business segment of office/Internet
applications [4, 5]. Unfortunately, the market segment of embedded real-time
systems is, to a large extent, left behind this positive development. Reusing
components, i.e. one of the main drivers for introducing CBSE, is both com-
plex and expensive for embedded real-time systems [6].

However, by building embedded-system software out of well-tested com-
ponents, we could gain an increase in the predictability of the behaviour of the
software; provided that experience from component behaviour has been col-
lected. In the area of embedded real-time systems, predictable run-time behav-
iour is crucial. A component assembly is predictable if its run-time behaviour
can be predicted from the properties of its components and their patterns of
interactions [7]. Predictability is achieved by analysis,and analysis techniques
require information about the system. When analysing a system built from
well-tested and functionally correct components, the mainissues are associ-
ated with composability. The composition process should beable to guarantee
the fulfilment of non-functional requirements of the system, such as communi-
cation, synchronisation, memory, and timing [6]. However,research projects
tend to focus on how to design and analyse component technologies, leaving
predictable assemblies using run-time information gathered from well-tested
and trusted components unexplored [8].

8.3.2 Embedded System Example

In order to exemplify the typical settings, in which the software components are
considered, we have studied some characteristic vehicularelectronic systems
[9]. An electronic vehicular control-system can be characterised as a resource
constrained, safety-critical, distributed real-time system. The computer nodes,
called Electronic Control Units (ECUs), are distributed toreduce cabling and
to allow for division into subsystems. Vehicular systems are usually heteroge-
neous, meaning that nodes of different architecture and computational power
cooperate in controlling the vehicle. The ECUs vary from extremely light-
weighted nodes, like intelligent sensors (i.e. processor-equipped, bus-enabled

8.3 Embedded Systems 107

sensors), to PC-like hardware for non-control applications, such as telematics,
and information systems.

Figure 8.2 gives an overview of the hardware resources of a typical ECU,
with requirements on sensing and actuating, and with a relatively high compu-
tational capacity.

Example Power train ECU in a Vehicular Control-System�
Processor: 25 MHz 16-bit processor�
Memory devices:�

Flash: 1 MB used for application code�
RAM: 128 kB used for the run-time memory usage�
EEPROM: 64 kB used for system parameters�

Serial interfaces: RS232 or RS485, used for service purpose�
Communications: Controller Area Network (CAN) (one or more interfaces)�
I/O: A number of digital and analogue in and out ports

Example Power train ECU in a Vehicular Control-System�
Processor: 25 MHz 16-bit processor�
Memory devices:�

Flash: 1 MB used for application code�
RAM: 128 kB used for the run-time memory usage�
EEPROM: 64 kB used for system parameters�

Serial interfaces: RS232 or RS485, used for service purpose�
Communications: Controller Area Network (CAN) (one or more interfaces)�
I/O: A number of digital and analogue in and out ports

Figure 8.2: Specification of a typical power train ECU.

An example of a typical vehicular system communication solution is shown
in Figure 8.3, where two buses are separated by a gateway. Thegateway is an
architectural pattern that is used for several reasons, e.g., separation of criti-
cality and real-timeliness, increased available bus bandwidth, increased fault
tolerance, or compatibility with standards [10]. Communicating functions may
require support for global synchronisation or fault tolerance mechanisms.

Looking at the software part of the system, there are some aspects that need
to be considered when building the assembly out of monitorable components.
A source of uncertainty is the frequency of interrupts in theassembly. Typ-
ically, a vehicular system is heavily loaded with interrupts. When interrupts
hit the assembly, these will pre-empt the execution of the running component,
thereby possibly perturbing its monitoring.

Dynamic memory allocation (and the garbage collection thatthis brings) is
usually not allowed in control applications, since it compromises the determin-
ism and predictability of the application behaviour. The only type of memory
that is allowed to dynamically shrink and grow in the system is the stack space
(albeit within a statically allocated stack memory area).

8.3.3 Prerequisites for Monitoring Component-Based Em-
bedded Systems

Monitoring component-based software requires support in the component tech-
nology, and the framework used during run-time. Usually, when looking at

108 Paper D

ECU
1

ECU
2

ECU
3

I/O

Sensor
Actuator

Bus 1

Gateway

ECU
5

ECU
4

Bus 2

Service
Computer

Intelligent
Sensor

Figure 8.3: Example sketch of a vehicle network.

today’s component technologies suitable for embedded systems with resource
constrained ECUs, considerable code optimisations are done during compile
time. This is mainly done to minimise the size of the application source code.
This code optimisation might lead to a loss of the design-time component con-
cept, meaning that clearly identifiable components with specified in- and out-
ports are reduced to regular source code functions, subjected to, e.g., function
in-lining and redundant instruction-sequence coalescing.

Thus, to be able to monitor the components in the form described during
design-time and to be able to reuse the information gatheredduring run-time
in the next generation of applications, information about the design-time com-
ponents have to be included in the source code. This should however not be a
problem, if the component technology satisfies the requirements described in
[9], i.e. a straight forward port-based object approach, illustrated in Figure 8.4,
using a pipes-and-filters model of computation.

Component monitoring also poses some requirements on the system hard-
ware. A fraction of the system memory needs to be allocated for monitor
recording purposes. In addition, the target system should support some suitable
means of communication through which monitor recordings can be uploaded to
a host computer. Furthermore, some of the debugging techniques discussed in

8.4 Related Work 109

this paper will benefit significantly from the support of an instruction counter.

y1

ym

x1

xn

y1

ym

y1

ym

x1

xn

Figure 8.4: Component with required in-portsx1 − xn and provided out-ports
y1 − ym.

8.4 Related Work

To summarise the available techniques that can be used to monitor software
components, we have studied some commercial component technologies that
include support for component monitoring and the state-of-the-art methods for
component monitoring. The methods and the different technologies are de-
scribed in Section 8.4.1 and Section 8.4.2.

8.4.1 Monitoring Techniques for Component-Based Systems

Currently, only a few component technologies provide support for run-time
monitoring of component behaviour. However, there is numerous ways of per-
forming this monitoring and there is a multitude of run-timeaspects to monitor.

Gao et al. identify three different methods for component tracking and
monitoring [8]: (A) framework-based code insertion, wheremonitoring code
(e.g. from a class library) can be inserted by component engineers, (B) auto-
matic code insertion, where monitoring code is inserted into the program by
a specialised monitoring tool, and (C) automatic componentwrapping, where
monitoring code is automatically added to the external interface of compo-
nents.

According to Gao et al., each of these methods has its own prosand cons.
As for framework-based code insertion, it is highly flexibleand can be used for
all types of monitoring. However, the method requires access to the compo-
nent source code, and the programming overhead is high. Automatic code in-
sertion also requires access to the source code, and is much more complex and

110 Paper D

inflexible compared to the framework-based code insertion.However, the pro-
gramming overhead is low, since the tracking code is automatically inserted.
Automatic component wrapping, on the other hand, has no needfor compo-
nent source code in order to insert tracking code. Therefore, not only in-house
components, but also Commercial-Off-The-Shelf (COTS) components can be
monitored. On the downside, automatic component wrapping is not suitable
for monitoring anything within components, since the monitoring is performed
exclusively outside the component.

Considering the use of these methods with respect to the restrictions posted
by component-based embedded systems, it should be noted that automatic
component wrapping can not be used in order to extract any component infor-
mation other than that available at the component ports. This makes the method
unsuitable for monitoring other component properties thanthose available from
outside the component. Automatic code insertion, on the other hand, could
be used for all types of monitoring, but would introduce a trade-off between
the complexity of the instrumentation tool and the amount ofdata needed to
record. Ideally, especially in resource-constrained systems, the amount of data
to record should be minimised. However, this calls for an elaborate analysis of
the internal workings of the component, requiring an inflexible (with respect to
portability) and highly advanced instrumentation tool. Using framework-based
code insertion, no instrumentation tool is required, allowing ad-hoc optimisa-
tions in the monitoring code. In a resource-constrained environment, this might
be useful, but it must be kept in mind that such optimisationsmight lead to un-
predictable probe-effects in system ordering and timing [11].

Jhumka et al. [12] propose the use of executable assertions in order to mon-
itor component behaviour. The assertions are included in component wrappers,
enabling them to test the validity of the input and output values of the compo-
nent. By using these wrapper assertions, the pre- and post-condition sanity
checks transforms a regular component into a fault-detecting component while
at the same time simplifying unit-, integration- and system-level testing due
to standardised means of extracting test information at component interfaces.
Being relatively small and straightforward, executable assertions could well be
used in order to perform sanity checks of embedded system components. How-
ever, executable assertions can not be used in order to monitor other properties,
such as execution time or memory usage.

Hörnstein and Edler [13] propose the use of Built-In Test (BIT) compo-
nents in the Component+ model [14] for reducing the time spent testing pre-
fabricated components in new environments. In order to perform these built-in
tests, the Component+ model makes use of three different types of components:

8.4 Related Work 111

BIT Components, Testers and Handlers. BIT Components are regular software
components with built-in test mechanisms, Testers are special components that
use the BIT testing interfaces of the BIT components and Handlers are spe-
cial components that can be used to obtain fault-tolerant systems by handling
error signals from BIT or Tester components. On the assumption that BIT
and Tester components are light-weighted, this can be an effective way of per-
forming component sanity checks or run-time contract checking. Even though
Handler components may be effective for achieving fault-tolerant systems, this
is not the primary subject of this paper.

Traditionally, software monitoring can be performed by using either hard-
ware- or software-based probes. Hardware probes come in theform of lab in-
strumentation tools, such as In-Circuit Emulators (ICE:s)or logic analysers, or
in the form of System-On-Chip (SOC) solutions [15]. ICE:s orlogic analysers
are not suitable for component monitoring, since they cannot be included in de-
ployed assemblies. SOC-based monitoring tools, however, are designed to be
resident in deployed systems. Unfortunately, being designed for system-level
event monitoring (e.g., task-switches), these tools are still far too inflexible
for component-level monitoring. Therefore, today, software probes seem to be
the preferred alternative for component monitoring. However, software-based
monitoring is not without drawbacks. By including softwaremonitoring in the
component technology, we also introduce problems concerning instrumenta-
tion perturbation. Software-based monitoring is performed by means of soft-
ware probes inserted in the code. These probes will consume execution time
and memory space; increasing the spatial and temporal resource consumption
of the components. Probes should be left permanently in deployed compo-
nents for two reasons: (1) If the probes are removed, the testing performed on
the component might no longer be valid [16], and (2) by leaving the probes in
the deployed component, information concerning executionbehaviour can be
gathered over long periods of time, while the component operates in its field
environment.

8.4.2 Monitoring Support in Commercial Component Tech-
nologies

There is a handful of available component technologies suitable for distributed
embedded real-time systems. Some of these technologies include various sup-
ports for monitoring the software. The reason for choosing these is that they
are deployed in industry today, and that they well satisfy the industrial require-
ments stated by the embedded-system domain [9].

112 Paper D

The Rubus Component Model (CM) [17] and the Rubus Operating Sys-
tem (OS) have support for some of the described monitoring aspects. Rubus
CM and OS are developed by Arcticus Systems2 and are used for develop-
ing heavy vehicle software systems by, e.g., Volvo Construction Equipment3

(VCE). When using the Rubus CM and OS, all resource allocation of the ap-
plication and the operating system is done at compile-time.

The temporal properties needed to obtain static timing analysis and sched-
ule generation, Best-Case Execution Time (BCET) and Worst-Case Execution
Time (WCET), are monitored by the Rubus OS during run-time. Apart from
the temporal aspects of the software, maximum stack usage for each thread
and the peak usage of, e.g., queues can be monitored using Rubus. The OS
also gives support for monitoring the CPU utilisation.

In multi-threaded embedded software, various types of relations, such as
precedence and exclusion relations, exist. To be able to guarantee the behaviour
of the system with respect to these issues, the Rubus CM includes support for
monitoring event traces of the program execution, i.e., theexecution order and
the release times of the components. This information is dumped on an external
interface (e.g., CAN or a serial interface like RS485) during run-time. Since
events are related only via time-stamps, this service requires a high-resolution
hardware timer. There will be a significant amount of data associated with this
monitoring, and the accuracy of the log reflects the size of the buffer used to
store it.

PECOS4 (PErvasive COmponent Systems) [18] is a collaborative project
between ABB Corporate Research Centre5 and academia. The goal for the
PECOS project is to enable component-based technology for embedded sys-
tems, especially for field devices, i.e., embedded reactivesystems. The project
tries to consider non-functional properties, such as memory consumption and
timeliness, very thoroughly in order to enable assessment of the properties dur-
ing construction time.

Non-functional properties cannot only be attached to components, but also
to ports and connectors, e.g., examining the min and max values for an out port,
(i.e., a built in sanity check). Since PECOS is developed to support resource
constrained embedded real-time systems, scheduling information and mem-
ory consumption are crucial properties to monitor. Hence, PECOS enables
support for instrumenting components during run-time. Every component is

2Arcticus Systems, www.arcticus.se
3Volvo Construction Equipment, www.volvo.com
4The PECOS Project, www.pecos-project.org
5ABB Corporate Research, www.abb.com

8.5 Monitoring Software Components 113

instrumented to extract information about the WCET and its cycle time. The
components are also instrumented with respect to their codesize and data (i.e.,
information on the heap).

8.5 Monitoring Software Components

Although a multitude of component properties are of interest when building
reliable and reusable software components, there are some aspects that would
significantly help increasing reusability and lower the time spent on integration
testing. We have identified four main aspects to monitor, in order to support
the key areas defined in Section 8.1.

8.5.1 Temporal Behaviour

Having knowledge of the temporal behaviour of an execution is particularly im-
portant for real-time systems. If the worst-case and best-case execution times
of a set of reusable components are known, the possibility ofsuccessfully pre-
dicting the temporal behaviour of the component assembly will radically in-
crease. Also, other execution time metrics, such as averageexecution time,
standard deviation, execution time histogram or other types of statistical rep-
resentations of component execution time behaviour can be helpful to estimate
statistical temporal properties of component assemblies [19].

When considering timeliness for embedded real-time systems, it is impor-
tant to be able to verify (1) that each component meets its timing requirements,
(2) that each node (which is built up from several components) meets its dead-
lines, and (3) to be able to analyse the end-to-end timing behaviour of functions
in a distributed system. In order to make sure that all deadlines are met, tem-
poral analysis is needed.

This type of analysis is performed using schedulability analysis techniques,
and requires information about the component’s execution time. Ideally, the
bounds for worst-case and best-case execution times shouldbe statically com-
puted by an analysis tool; this is the only way to be sure that the execution-time
bounds are safe (i.e. guaranteed not to be violated at run-time), see e.g. [16].
Unfortunately, tools for execution-time analysis are immature and few com-
mercial tools exist. Hence, the industrial practice is to rely on measurements
of execution-times. However, structured measurement of execution-times is a
tedious, error-prone and expensive process, which has to bere-done after each
modification to a component. Using monitored components, the correctness of

114 Paper D

the execution time values can be improved gradually, i.e., the more execution
hours, the better the accuracy [19]; this is achieved without any extra effort for
execution-time measurement.

In general, execution behaviour information is used for schedulability analy-
sis and scheduling. In hard real-time systems, where it is mandatory that
deadlines are met, deterministic schedulability analysisand scheduling (us-
ing worst-case assumptions for execution times) is preferable. However, in
practice, many systems would settle for high probabilitiesinstead of absolute
deadline guarantees. Therefore, stochastic schedulability analysis and schedul-
ing can be used. Depending on the type of analysis intended, either worst-case
or statistical timing metrics should be collected during monitoring.

8.5.2 Memory Usage

Since we are targeting resource-constrained systems, it isimportant to be able
to analyse the memory consumption and to check the sufficiency of the sys-
tem memory, as well as the ROM memory. This check should be done pre-
run-time to avoid failures during run-time. Memory is allocated in a static
(pre-run-time or during run-time initialisation) or a dynamic (run-time) fash-
ion. As mentioned in Section 8.3.1, dynamic memory allocation is usually not
allowed when developing embedded real-time systems. In order to improve the
possibility of achieving predictable assemblies, information of static memory
allocation (e.g., component binary size) is necessary, butsince this information
can be provided by means of compiler output, this property istypically not
necessary to monitor.

The stack memory, however, is statically allocated, but used in a dynamic
fashion. In order not to end up in a stack overflow situation, stack size is often
pessimistically over-dimensioned during system configuration. In resource-
constrained environments, this might lead to a situation where the high percent-
age of unused memory leads to increased requirements on the system hardware.
Therefore, monitoring the stack usage per component is mostimportant, since
this information can be used to predict the stack usage behaviour of future as-
semblies. Due to the high criticality of stack overflow, we are not interested in
anything but worst-case usage during the execution of the component. How-
ever, in a system allowing dynamic allocation, also heap size monitoring would
be important.

8.5 Monitoring Software Components 115

8.5.3 Event Ordering

When testing and debugging software, it is often helpful to be aware of the
occurrence and ordering of system events, such as mutex- andsemaphore op-
erations, message receipts and interrupt occurrences. Using the information
provided by an event log, system designers are able to detectimproperly syn-
chronised accesses to shared data or illegal pre-emption ofnon-reentrant code.
In addition, by including event monitoring in the componentmodel, we ensure
that all components conforming to the model will produce event-trace logs of
similar formats. This will reduce the problem of ad-hoc tracing code inserted
by system developers.

Using event traces, we can gain substantial insight regarding the internal
workings of current assemblies. This information can be used in order to guar-
antee precedence relations, mutual exclusion and to enhance the efficiency of
shared resource usage (e.g., field bus or third-level storage usage) in future
assemblies.

This type of monitoring provides a foundation to include full support for a
replay debugging method [3, 20, 21] in the component technology. Replay de-
bugging is a general term denoting methods for recording theexecution behav-
iour of multi-tasking or truly parallel systems in order to use this information
to reproduce system failures during debugging. Most replaymethods require
both event ordering information (such as interrupt, context switch and synchro-
nisation information) and data flow information (such as task state and external
input information) in order to reproduce executions. Provided that the assem-
bly infrastructure (e.g., real-time operating system mechanisms) includes sup-
port for replay debugging, including sufficient monitoringin the components
will ensure that the entire assembly can be debugged by meansof execution
replay.

8.5.4 Sanity Check

A sanity check is a way of determining the soundness of the functional op-
eration of a component during run-time with respect to the component input
and its current state. In other words, given a specific input,is the correspond-
ing output realistic? During testing, having access to the input values of the
component that produce erroneous output facilitates efficient testing.

Monitoring this during run-time will allow us to store erroneous operations
of the component and (hopefully) to correct these errors in future assemblies.
If we are unable to correct the faulty component, we could still able to prevent

116 Paper D

unsafe system behaviour by taking appropriate actions based on knowledge of
the errors. This type of monitoring could also include properties like Mean-
Time Between Failures (MTBF).

In addition, this type of monitoring could be used to ensure that 3rd party
software components provide the service they are supposed to. Typically a
component is equipped with a provided interface, specifying the services pro-
vided by that component, and a required interface, specifying the resources
needed by the component in order to provide the correct services. Formalis-
ing and standardising these interfaces allows for contractual-based component
development, where the behaviour of 3rd party components included in the as-
sembly can be specified by contracts. Using sanity checks of the inputs and
outputs at the component interfaces allows for run-time contract checking of
3rd party components.

8.6 Using Monitored Information

In Section 8.2, four key-areas that would benefit from component-level monitor
support were listed. Table 8.1 maps these areas to the four monitored compo-
nent aspects discussed in this Section. For instance, execution time- and mem-
ory information can be used in order to automatically check whether 3rd party
components do not violate their required interface (e.g., by memory leaks or
deadline misses), and sanity checks can be used to check the provided interface
during run-time. By using event ordering and sanity check traces, the observ-
ability and ability to easily test and debug the assembly canbe considerably
enhanced. Regardless of whether replay debugging methods are used or not,
event traces are helpful during debugging in order to visualise the behaviour of
the component assembly during run-time.

As for certifiable components, all monitoring aspects can behelpful in
order to successfully predict the future behaviour of components in different
types of assemblies. Including monitoring in a component technology will en-
sure that all components conforming to that technology willinclude identical
monitoring support. Hence, component properties can be easily compared us-
ing standardised means of comparison.

8.7 Conclusion and Future Work

In this paper we have proposed monitoring of software components, and reuse
of monitored components, as a general approach towards engineering of re-

8.7 Conclusion and Future Work 117

Exec. Event Sanity
Time Memory Ordering Check

Certifiable
Components x x x x
Debug/
Testing x x
R-T Contract
Checking x x x
Observability x x

Table 8.1: Mapping key-areas of interest to key component aspects.

source constrained, embedded, distributed, real-time control systems. The con-
cept is general in the sense that it addresses not only the development phase;
rather the whole product life cycle, including debugging, testing and mainte-
nance, is considered. The concept also extends well into product-line settings,
where components and architectures are reused over a set of related product
and product variants. We have identified four key-areas within engineering of
embedded systems: (i) certifiable components, (ii) system-level testing and de-
bugging, (iii) run-time contract checking, and (iv) observability. We have also
discussed how to meet the challenges within these areas, by identifying four
main component-aspects that are of particular interest to monitor: (1) the exe-
cution time behaviour of the components, (2) the static and dynamic memory
usage, (3) the event ordering of the execution and (4) a sanity check of the
components output based on the input. We have provided a summary of the
state-of-the-art of monitoring support for component models and presented a
brief survey of the practices used in today’s component models for embedded
real-time systems.

As for future work, there are a number of issues we would like to address.
We intend to look further into the problems of using the same component on
top of different hardware platforms, where some old monitoring information
might be reused, while other information needs to be discarded on the new plat-
form. Furthermore, the trade-off between minimisation of monitoring memory
and CPU usage and the level of detail of monitor information will be investi-
gated. In order to evaluate our ideas, we plan to use the SaveComp Component
Model, described in [22], as a test platform. The component model is designed
for embedded control-systems in vehicles, and much focus has been spend on
solving reliability, timelines and safety issues.

Bibliography

Bibliography

[1] NIST Report. The economic impacts of inadequate infrastructure for soft-
ware testing, May 2002.

[2] P. Clements and L. Northrop.Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001. ISBN 0-201-70332-7.

[3] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson. Replay Debug-
ging of Real-Time Systems Using Time Machines. InProceedings of Par-
allel and Distributed Systems: Testing and Debugging (PADTAD), pages
288 – 295). ACM, April 2003.

[4] Sun Microsystems. Enterprise Java Beans Technology. http://java.sun.-
com/products/ejb/.

[5] Microsoft Component Technologies. COM/DCOM/.NET. http://www.-
microsoft.com.

[6] I. Crnkovic and M. Larsson.Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[7] PACC Project Home Page. Home Page: http://www.sei.cmu.edu/pacc.

[8] J. Gao, E. Zhu, and S. Shim. Tracking component-based software. In
Proceedings of the International Conference on Software Engineering,
2000’s COTS Workshop: Continuing Collaborations for Successful COTS
Development, 2000.

[9] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Com-
ponent Technologies for Embedded Systems. InProceedings of the 7th

International Symposium on Component-Based Software Engineering.
2004 Proceedings Series: Lecture Notes in Computer Science, Vol. 3054,
May 2004. Edinburgh, Scotland.

118

Bibliography 119

[10] CiA. CANopen Communication Profile for Industrial Systems, Based
on CAL, October 1996. CiA Draft Standard 301, rev 3.0, http://www.-
canopen.org.

[11] J. Gait. A Probe Effect in Concurrent Programs.Software – Practice and
Experience, 16(3):225 – 233, March 1986.

[12] A. Jhumka, M. Hiller, and N. Suri. An Approach to Specifyand Test
Component-Based Dependable Software. InProceedings of the 7th IEEE
International Symposium on High Assurance Systems Engineering, pages
211 – 218, 2002.

[13] J. Hörnstein and H. Edler. Test Reuse in CBSE Using Built-in Tests.
In Proceedings of Workshop on Component-based Software Engineering,
April 2002.

[14] EC IST-1999-20162. Component+. www.component-plus.org, February
2004.

[15] M. El Shobaki and L. Lindh. A Hardware and Software Monitor for High-
Level System-on-Chip Verification. InProceedings of IEEE International
Symposium on Quality Electronic Design, pages 56 – 61, March 2001.

[16] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson, and H. Hans-
son. Worst-case execution-time analysis for embedded real-time systems.
Software Tools for Technology Transfer, 14, 2001.

[17] K.L. Lundbäck, J. Lundbäck and M. Lindberg. Component-Based Devel-
opment of Dependable Real-Time Applications. InReal-Time in Sweden
– Presentation of Component-Based Software Development Based on the
Rubus concept, Arcticus Systems: http://www.arcticus.se. Västerås, Swe-
den.

[18] T. Genssler, A. Christoph, B. Schuls, M. Winter, et al. PECOS in a Nut-
shell. PECOS project http://www.pecos-project.org.

[19] T. Nolte, A. Möller, and M. Nolin. Using Components to Facilitate Sto-
chastic Schedulability. InProceedings of the 24th Real-Time System Sym-
posium – Work-in-Progress Session. IEEE Computer Society, December
2003. Cancun, Mexico.

[20] T.J. LeBlanc and J.M. Mellor-Crummey. Debugging Parallel Programs
with Instant Replay.IEEE Transactions on Computers, 36(4):471 – 482,
April 1987.

[21] K.-C. Tai, R.H. Carver, and E.E. Obaid. Debugging Concurrent Ada Pro-
grams by Deterministic Execution.IEEE Transactions on Software En-
gineering, 17(1):45 – 63, January 1991.

[22] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM -
a Component Model for Safety-Critical Real-Time Systems. In Proceed-
ings of 30th Euromicro Conference, Special Session Component Models
for Dependable Systems, September 2004.

