Malardalen University Licentiate Thesis
No.42

Software Component
Technologies for Heavy
Vehicles

Anders Moller

January 2005

V A
\ ¥V 4
MALARDALEN UNIVERSITY

Department of Computer Science and Electronics
Malardalen University
Vasteras, Sweden

Copyright®© Anders Méller, 2005

ISSN 1651-9256

ISBN 91-88834-88-3

Printed by Arkitektkopia, Vasteras, Sweden
Distribution by Malardalen University Press

Abstract

Control-systems for heavy vehicles have advanced fromea\ahere mainly
mechanic and hydraulic solutions were used, to a highly egerfsed domain
using distributed embedded real-time computer systems.

To cope with the increasing level of end-customer demandsdvanced
features and functions in future vehicle systems, soplaitdd development
techniques are needed. The development techniques mysirsspftware in
numerous configurations and facilitate development ofesgstwith require-
ments on advanced functionality, timeliness, and safgticality. In order
to meet these requirements, we propose the use of compbaset software
engineering.

However, the software component-technologies availahléhe market
have not yet been generally accepted by the vehicular indugt order to
better understand why this is the case, we have conducedraysdridenti-
fying the industrial requirements that are deemed decisivéntroducing a
componenttechnology. We have used these requirementalicagy a number
of existing component technologies, and one of our conafissis that none of
the studied technologies is a perfect match for the indalsgguirements.

In addition, we have implemented and evaluated the novepooent mod-
el SaveCCM, which has been designed for safety-criticalraotive applica-
tions. Our evaluation indicates that SaveCCM is a promitgngnology which
has the potential to fulfil the industrial requirements. Hwer, tools are still
immature and incomplete.

In the final part of this work, we propose the use of monitorefiveare
components, as a general approach for engineering of erabdexydtems. In
our approach, a component’s execution is continuously tomed and experi-
ence regarding the behaviour is accumulated. As more and experience is
collected the confidence in the component grows.

Preface

The work presented in this thesis has been performed wik@rHEAVE (A
Component Technology for Heavy Vehicles) project. The wuak been sup-
ported by CC Systems, Volvo Construction Equipment, anchieykK Foun-
dation, and has been accomplished at Malardalen Real-TemedRch Centre,
Mélardalen University, Sweden.

Firstly, | would like to thank Dr. Mikael Nolin for extraordary supervi-
sion and for turning my confused thoughts into publishabkearch papers.
Secondly, | would like to thank Jérgen Hansson at CC System$sof. Hans
Hansson at Mélardalen Real-Time Research Centre for makiagesearch
project possible.

| owe my co-authors (especially Mikael Akerholm, Joakimiety, Daniel
Sundmark, and Johan Fredriksson) many thanks for helpingealsing re-
search ideas and for sharing memorable conference tripsoalhd the globe.

Also, many thanks to Nils-Erik Bankestad and Robert LarsabWolvo
Construction Equipment for fruitful research discussj@ml for their support
during my stay at Volvo.

Finally, thanks to my colleagues, both at the departmentédaialen Uni-
versity and at CC Systems, and to my friends and belovedsdkinyg life great
fun. After all, that is what it is all about!

Anders Méller
Vasteras, January 10, 2005

List of Publications

Publications Included in This Licentiate Thesis

Paper A: Industrial Requirements on Component Technologies fordeiuéd
SystemsAnders Moéller, Joakim Froberg and Mikael Nolin; In Proceed
ings of the ¥ International Symposium on Component-Based Software
Engineering, pages 146-161, Edinburgh, Scotland, May 2004

Paper B : Evaluation of Component Technologies with Respect to tridus
RequirementsAnders Méller, Mikael Akerholm, Johan Fredriksson and
Mikalel Nolin; In Proceedings of the 0Euromicro Conference, Com-
ponent-Based Software Engineering Track, pages 56—63id3eRrance,
September 2004.

Paper C: Towards a Dependable Component Technology for Embedded Sys
tem ApplicationsMikael Akerholm, Anders Méller, Hans Hansson and
Mikael Nolin; To Appear in the Proceedings of the Workshopiject-
Oriented Real-time Dependable Systems, Sedona, Arizo84, Beb-
ruary 2005.

Paper D: Monitored Software Components — A Novel Software Engingeri
Approach Daniel Sundmark, Anders Mdller and Mikael Nolin; In Pro-
ceedings of the 1M Asian-Pasific Conference on Software Engineer-
ing, Workshop on Software Architectures and Componentieldyies,
pages 624—631; Busan, Korea; November 2004.

Vi LIST OF PUBLICATIONS

Other Publications by the Author

Journals

e A Simulation Technology for CAN-based SysteArsders Moéller and
Per Aberg, CAN Newsletter, nr 4, CAN in Automation, Decemb@®4.

Conferences and Workshops

e Developing and Testing Distributed CAN-based Real-Timati©bSys-
tems in a single PC, — An Industrial Experience Papemders Mdller,
Per Aberg, Fredrik Léwenhielm, Jakob Engblom and Jérgerskiam
To Appear in the Proceedings of the International CAN Caiee,
CAN in Automation; Roma, Italy, February 2005.

e Software Component Technologies for Real-Time Systems|rdie-
trial Perspective Anders Méller, Mikael Akerholm, Johan Fredriksson,
Mikael Nolin; In Proceedings of the Work-in-Progress Saeissf the
24" |EEE Real-Time System Symposium (RTSS), Cancun, Mexice, De
cember 2003.

e Using Components to Facilitate Stochastic Schedulal#litslysis Tho-
mas Nolte, Anders Moller, Mikael Nolin; In Proceedings oé tWork-
In-Progress Session of the ?4EEE Real-Time Systems Symposium
(RTSS), Cancun, Mexico, December 2003.

e What are the needs for components in vehicular systems? rddstrial
perspectiveAnders Mdller, Joakim Fréberg and Mikael Nolin; In Real-
Time in Sweden (RTiS), Vasteras, Sweden, August, 2003.

e What are the needs for components in vehicular systems? adus-
trial perspective Anders Mdller, Joakim Fréberg and Mikael Nolin; In
Proceedings of the Work-in-Progress Session of tieEifromicro Con-
ference on Real-Time Systems, Porto, Portugal, July 2003.

Vii

Technical Reports

SAVEComp - a Dependable Component Technology for Embegided S
tems SoftwareMikael Akerholm, Anders Méller, Hans Hansson and
Mikael Nolin, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-165
/2004-1-SE, Malardalen Real-Time Research Centre, MalandUni-
versity, December 2004.

Predictable Assemblies using Monitored Software CompsnBaniel

Sundmark, Anders Méller, Mikael Nolin; MRTC Report ISSN 240
3041 ISRN MDH-MRTC-160/2004-1-SE, Mélardalen Real-Time-R
search Centre, Malardalen University, Vasteras, SwedshrLiary 2004.

An Industrial Evaluation of Component Technologies for Edded-
SystemsAnders Méller, Mikael Akerholm, Johan Fredriksson, Mikae
Nolin; MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-150/2004-
1-SE, Malardalen Real-Time Research Centre, Malardalenelsity,
Vasteras, Sweden, February 2004

Requirements on Component Technologies for Heavy Vehisteters
Moller, Joakim Froberg, Mikael Nolin; MRTC Report ISSN 14041
ISRN MDH-MRTC-150/2004-1-SE, Mélardalen Real-Time Redea
Centre, Malardalen University, Vasteras, Sweden, Jar2Goy.

Component Based Software Engineering for Embedded Systaris
erature SurveyMikael Nolin, Johan Fredriksson, Jerker Hammarberg,
Joel Huselius, John Hakansson, Annika Karlsson, Ola Lataskus
Lindgren, Goran Mustapic, Anders Moller, Thomas Nolte,alior-
berg, Dag Nystrém, Aleksandra Tesanovic, and Mikael AkenhMRTC
Report ISSN 1404-3041 ISRN MDH-MRTC-104/203-1-SE, Méaidet
Real-Time Research Centre, Malardalen University, VasteBweden,
June 2003.

Contents

List of Publications Y
1 Introduction 1
1.1 Background 2
1.1.1 CBSE for Embedded Systems 2
1.1.2 Heavy VehicleSystems 6
1.2 Motivation. 8
1.3 ThesisOutline. 10
2 Contribution 13
21 ResearchQuestions 13
2.2 Contribution. 15
2.3 IncludedPapers, 16
3 Research Work and Method 19
3.1 Preliminary Literature Study 20
3.2 Industrial Requirements Case-Study 20
3.3 Evaluation of Existing Technologies 21
3.4 Implementing and Evaluating a Component Technology .. . 22
3.5 Monitoring Software Components 22
4 Conclusion and Future Work 25
Bibliography 27
5 PaperA:

X Contents
Industrial Requirements on Component Technologies for Embd-
ded Systems 33
5.1 Introduction 35
5.2 Introducing CBSE in the Vehicular Industry 6 3
5.3 A Component Technology for Heavy Vehicles 38
5.3.1 The Business Segment of Heavy Vehicles 38
5.3.2 SystemDescription L. 40
5.4 Requirements on a Component Technology for Heavy \iehicl43
5.4.1 Technical Requirements 44
5.4.2 DevelopmentRequirements 47
5.4.3 Derived Requirements 49
5.4.4 Discussion 50
55 Conclusions 51
Bibliography 52
6 PaperB:
Evaluation of Component Technologies with Respect to Indusal
Requirements 57
6.1 Introduction 59
6.2 Requirements 60
6.2.1 Technical Requirements 60
6.2.2 DevelopmentRequirements 62
6.2.3 Derived Requirements 63
6.3 Component Technologies 64
6.3.1 PECT e 65
632 Koala 66
6.3.3 Rubus ComponentModel 67
6.34 PBO........ 68
6.35 PECOS 69
6.3.6 CORBA Based Technologies 70
6.4 Summary of Evaluation 71
6.5 Conclusion 73
Bibliography 73
7 PaperC:
Towards a Dependable Component Technology for Embedded Sys
tem Applications 77
7.1 Introduction 79

7.2 CBSE forEmbedded Systems 80

Contents Xi

7.3 OurComponentTechnology 81
7.3.1 Design-Time - The ComponentModel 83
7.3.2 Compile-Time Activities 86
7.3.3 TheRun-TimeSystem 88

7.4 ApplicatonExample oo 89
7.4.1 Introductionto ACC functionality 89
7.4.2 ImplementationusingSaveCCM 90
7.4.3 Application Test-Bed Environment 92

7.5 Evaluationand Discussion 92
7.5.1 Structural Properties 93
7.5.2 Behavioural Properties 94
753 ProcessRelated 95

7.6 Conclusionsand FutureWork 95

Bibliography 96

Paper D:

Monitored Software Components - A Novel Software Engineerig

Approach 101

8.1 Introduction 103

8.2 A Life-Cycle Approach to Component-Based Systems . . .04 1

8.3 EmbeddedSystems 105
8.3.1 CBSE for Embedded Systems 106
8.3.2 Embedded System Example 106
8.3.3 Prerequisites for Monitoring Component-Based Em-

beddedSystems. L. 107

8.4 RelatedWork 109

8.4.1 Monitoring Techniques for Component-Based Systeri8 1
8.4.2 Monitoring Support in Commercial Component Tech-

nologies 111
8.5 Monitoring Software Components 113
8.5.1 Temporal Behaviour 113
852 MemoryUsage 114
8.5.3 EventOrdering 115
854 SanityCheck 115
8.6 Using Monitored Information. 116
8.7 Conclusionand FutureWork 116

Bibliography 117

Chapter 1

Introduction

The business segment of heavy vehicles (including, e.gesfcharvesters,
rock-drilling equipment, and wheel loaders) has enteredva @ra, where the
traditional mechanic and hydraulic solutions are supplaeewith highly so-
phisticated distributed embedded computer control-gysténtroducing these
control-systems facilitates the use of advanced techfiigadtions, such as
support for advanced engine-control, built-in diagnosgistems and anti-lock
braking systems. The control-systems does also prolongfétiene of the
vehicle, by optimising, e.g., engine- and transmissionta.

Ever increasing end-customer demands on advanced feahddgnctions
in future control-systems (e.g., to increase productivitforest harvesting or
at a construction site) require new technical solutiongesBtdemands will call
for even more advanced electronic control-systems, caimgrelectronics and
software in numerous configurations and variants, moslylikepplied from
many different vendors.

However, most embedded system developers are in fact, tgadxtent,
using monolithic and platform dependent software devekaprtechniques, in
spite of the fact that this make software systems hard to taiainupgrade,
and modify. In order to introduce the new functionality venit the same
time increase control-system reliability and decreasesldgment time and
costs — the developers call for improved tools and methodsndJsoftware
components, and component-based development, is seenramsipg way
to meet the requirements on high functionality, reliapjlieal-timeliness, and
safety criticality while at the same time lower developmeaosts due to an
improved development process and improved conditionsiase.

2 Chapter 1. Introduction

Within this licentiate thesis, we have investigated theustdal require-
ments on a component technology from the perspective of tsabess seg-
ment of heavy vehicles. We have also evaluated the statieeedrt software
component technologies with respect to these requiremamisbased on the
evaluation, and the requirements, implemented a new téagmoTo be able
to predict the run-time behaviour of a component assembbrrpn-time, we
also present an engineering method to collect essentighapant information
by monitoring the system during execution.

1.1 Background

This section aims at providing a background to the researtttis thesis by de-
scribing Component-Based Software Engineering (CBSEgfobedded sys-
tems, and by illustrating the industrial settings for theemded domain (i.e.
heavy vehicles). For a more general and exhaustive pregentdcomponent-
based software engineering, see, e.g., [1, 2, 3].

1.1.1 CBSE for Embedded Systems

Component-based software engineering is the area of bgiklistem applica-
tions as assemblies of pre-fabricated software componemteake component-
based development attractive, mature techniques, mdtigids, and process-
es are needed. However, within the embedded system domainy, of these
are not mature. Some of the remaining challenges, like tble d¢& widely
adopted componenttechnology standards, unsatisfaatppost for extra-fun-
ctional properties (e.g. timing and memory consumptiomd,iasufficient tools
to support the component-based development, are desdnilpéd

The software components are, of course, at the heart of C&8Ea com-
ponent can be defined as a reusable unit of deployment andositiop [1]
(there are, however, an abundance of more detailed compdefimitions, e.g.
by Szyperski [2]). The components must have well specifi¢erfaces, and
should be easy to understand, adapt and deliver. Espeftakynbedded sys-
tems, the components must have well specified resourcereageits, as well
as a specification of other relevant properties, e.g., timieliability, safety,
and dependability.

When assembling these components into software systeomnponent
modettypically defines the different componenttypes and theauion schem-
es for components. Typically, in an embedded system compdaehnology,

1.1 Background 3

the component model also clarifies how different resourcesaund to the
software components. Based on the component assemblyharmdmponent
model, a compiler is usually used to generate the execusaftiare.

Component-based development can be approached from twoe-
ally different, points of view; distinguished by whetheetbomponents are
used as design philosophindependent from any concern for reusing existing
components, or seen esusable (off-the-shelf) building blockised to design
and implement a component-based system [5]. Irrespecfivehether the
developer uses software components as a design philosoplyeusable off-
the-shelf building blocks, efficient development of apalions is supported
by the component-based strategy (for more details, see Se2tand Sect.
5.3). Also, component-based development distinguisibesponent develop-
mentfrom system developmer@omponent development s the process of cre-
ating components that can be used and reused in many appigand system
development is concerned with assembling components pptications that
meet the system requirements.

In many cases, software reuse is seen as the main drivertfoditing a
component-based development approach. Component-tassslis by many
software engineers (and managers) seen as a promisingaappoaeduce high
costs of building complex software. LEG®Ilocks is often used to describe
the component-based design, where different kinds of Islaak be used for
constructing and endless variety of structures. Howerea., [6] and [7]
points out - the context of use for software components isrdghed by the
software architecture, and for a software project to dgvgknerally reusable
components the context of its use must be very well undedstdderefore,
(according to [7]) component-based reuse is only possi&ea@nsequence of
architecture-based reuse, and this understanding mustavedsby software
engineers as well as product and project managers.

Also, maintenance is supported by CBSE since the compossanly
is a model of the application, which is by definition congisteith the actual
system. During maintenance, adding new, and upgradingrexisomponents
are the most common activities. When using a componentizag@oach, this
is supported by extendable interfaces of the componenss, &lg., testing and
debugging is enhanced by CBSE, since components are ealsjicted to unit
testing and their interfaces can be monitored to ensureciehaviour.

CBSE has been successfully applied in development of letérffice ap-
plications (e.g. Enterprise Java Beans [8], and .NET [9}) for the domain of

1LEGO, Home page: http://www.lego.com/

4 Chapter 1. Introduction

embedded systems CBSE has not yet been widely adopted. @smnris the
inability of the existing commercial technologies to suggbe requirements
of the embedded applications. Component technologiesostipg different
types of embedded systems have recently been developedrengindustry
[10, 11], and from academia [12, 13]. However, as Crnkoviafsoout in [4],
there are many more issues to solve before a CBSE disciginenfibedded
systems can be established.

Component technologies are a concrete implementation oivgonent
model and a component framework, and can be used for buitdingponent-
based applications. To assemble the components into sefsyatems, differ-
ent activities are performed, and the central technicatepts and activities
for a typical embedded system setting, as approached vathinesearch, are
summarised in Fig.1.1, and further described in the rensaiatithis chapter.

Design-Time actions (1.1) in Fig. 1.1) comprise putting the software com-
ponents together into a component assembly (i.e. an afiphga This
is the industrial engineering phase of the component-badseslopment
process, and building with LEGO blocks often serve as a nhetafor
describing the component-based software design. The coemp® are
assembled based on the component interface, which can bedefs
a specification of its access point [2], and based on ruleSeo€bmpo-
nents interaction. These rules are specified within the corapt model,
and do usually define the different component types and tieeaiction
schemes between the components. In a typical embeddednsgsta-
ponent technology, the component model also clarifies héferdnt re-
sources are bound to the specific components. The rules defittdn
the component model should also impose that systems baitt the
components are predictable with respect to important ptigsen the
intended domain (e.g. timing and memory attributes).

Compile-Time activities (1.2) in Fig. 1.1) for an embedded system compo-
nent technology typically include support for transfegrthe component
assembly (i.e. the application) into an intermediate cdenine model.
These activities provide algorithms for synthesis of tightiével models
into attributes of the run-time model, e.g., operatingsystalls, task at-
tributes, and real-time constrains. The compile-timevé@s usually in-
clude task allocation({.2.1) in Fig. 1.1), attribute assignmerti(2.2)),
and code generation and analysis.2.3)). For more details of the dif-
ferent compile-time activities, see Sect. 7.3.2 of thistheFor CBSE to
be attractive for the embedded system industry this phasédho the

1.1 Background

5

@

Design-
Time

@)

Compile-
Time

@)

Run-
Time

®)

R'selati\l/je oi Max Current
peed Distance Speed Speed
o O

<<Assembly>>
O (O ACC Controllers O O
- -
= - =
2<assembly>HAOTD. o gsembig>
Distance Speed
Controller {HOKRI] controller
ﬁ Textual Description

Task Allocation

Attribute Assignment
Code Generation & Analysis
ﬁ Compiler

Component Assembly (i.e. Application)

Control

Interface

Component Run-Time Framework

RTOS
Hardware Abstraction Layer

Device Drivers

Hardware Platform

Figure 1.1: Overview of a component technology suitableefobedded sys-

tems

highest degree possible, be automated — and tools and nmaatheds
must be provided to the software engineers [4].

Run-Time activities (1.3) in Fig. 1.1) include the compiled component as-
sembly, a run-time component framework, and typically arraping
system and a set of device drivers. The component framewgk s
ports the components execution by handling componentictiens and
invocation of the different services provided by the comgus. For
embedded systems, the component framework typically meidight
weighted, and use predictable mechanisms. To enhanceiaaidity,
it is desirable to move as much as possible of the traditifraedework

6 Chapter 1. Introduction

functionality (compared to, e.g., [14]) from the run-timestem to the
pre-run-time compile stages.

1.1.2 Heavy Vehicle Systems

Our industrial partners, CC Systefrand Volvo Construction Equipmehte-
velop control-systems for heavy vehicles (like, e.g., whesders, forest har-
vesters, articulated haulers, and rock-drilling equipthefihese systems are
typically built to endure rough physical environments, anelcharacterised by
safety criticality, advanced functionality, and the reqaients on robustness
and availability are high. The control-systems are typyodpendable distrib-
uted embedded real-time systems, which must perform in &aree physical
environment with limited hardware resources.

Control-systems within the business segment of heavy leshare, com-
pared to, e.g., passenger cars, often less complex (a steseration of a
typical heavy vehicle system is available in Paper A, Se, &f this thesis,
and a more detailed description can be found in [15]). Theegys are usually
built up from a set of electronic control units communicgtina, one or more,
Controller Area Networks [16], and is typically used fordack control, dis-
crete control, diagnostics and service, infotainment,tafematics [15].

The product volumes of heavy vehicles are rather modengieély in the
range of thousands per year), compared to those of passearg€in the order
of millions per year). Also, customers tend to be more derimandith respect
to the technical specification (e.g., engine torque andgaahlof the vehicles,
and less demanding with respect to design, feel, and loois. CHuses a lower
emphasis on product cost and optimisation of control-systecompared to
automotive industry in general. The lower volumes, andiredly small num-
ber of customers, also make the manufacturers more wiltirdesign vehicle
variants to meet customer specific requests [15].

Companies developing control-systems for heavy vehidle<hallenged
by demands on shorter developmenttime along with minimé$ectronics and
software costs, while at the same time having to supporeasing customer
demands of vehicle features and functions, high demandslabitity and a
need to support many configurations, variants and suppliers

2CC Systems, Home page: http://www.cc-systems.com
3\oblvo Construction Equipment, Home page: http://www.\ame.com

1.1 Background 7

Industrial Partners

The work presented in this licentiate thesis is performeddoperation with

CC Systems and Volvo Construction Equipment. These two emies repre-
sent different types of actors in the heavy vehicle indusB¢ Systems acts
as a sub-contractor developing both electronics and softwaereas Volvo
Construction Equipment is an Original Equipment ManufeetfOEM) de-

veloping the main part of the vehicle in-house. The comparkirowledge

and experiences from using software components, and coenpdased de-
velopment, is also different.

e CC Systems is developing and supplying distributed embectd-time
control-systems for mobile applications, like, e.g., &irbarvesters
rock-drilling equipmertt, and combat-vehiclés

CC Systems’ goal is to use a component-based approach t®waitd
ware construction, to enhance the ability to reuse and aeapplica-
tions, and because it increases predictability by reduttinglegrees of
freedom for application developers. This reduction of fi@m, in turn,
will minimise the risk for software errors, since componasgembly can
only be done in a predefined manner. CC Systems has not yethladn
the use of a component technology for embedded systemsylpdrb
ticipating in this research — they wishes to strengtherr tkedwledge
about CBSE.

e \olvo Construction Equipment is one of the world’s major mattur-
ers of construction equipment, with a product range encasipg wheel
loaders, excavators, motor graders, and more. The prodactdrom
moderately small compact equipment (1.4 tons) all the watoupige
construction equipment (52 tons) [15].

To accommodate reuse of software components and methgdbésg
tween products, Volvo Construction Equipment has incafeat a com-
ponent model for the real-time application domain [10]. Hoer, they
wish to strengthen their competence in component-baseslajanent
in general. The results from this research project will bedu® extend
their current practices within CBSE.

4Timberjack, Home page: http://www.timberjack.com/
5Atlas Copco, Home page: http://www.atlascopco.com/
6Land Systems Hagglunds, Home page: http://iwww.haggve.com

8 Chapter 1. Introduction

1.2 Motivation

We are surrounded by computers. The majority of these caenpatre not
the ones we immediately think of, i.e. desktop- or laptopipaters. In fact,
more then 99.8% [17] of the total number of central procegsinits (CPUS)
produced today are embedded into other products than mdrsomputers.
The applications of embedded computers range all the way frassenger
cars and consumer electronics down to small gadgets and toys

Most OEMs, developing these embedded systems, face chefiesf in-
creased customer-demands on functionality and feature#e &t the same
time having to meet customer expectations, based on theetnesknpetitive-
ness, on reduced costs. To facilitate the increased denmemnfisictionality,
more and more electronics and software are introduced.dn,BMW’s’ new
7-series luxury cars there are more then 65 ECUs (and [1&]atet that more
then half of the total development cost constitutes dewakgt of electron-
ics and software). In the Volvo XC90 (introduced in 2002) thaximum
configuration contains about 40 ECUs [15] connected via teotfller Area
Networks [16], one MOST ring [19] and a set of Local IntercearNetworks
[20]. And —most astounding — a kid’s PlayStatidhr@as more computer power
than NASA had for its moon landings [17]

Today, within the embedded system market, software is aftem ashe
way to provide the required functionality in short time andaareasonable
price. And, according to Moore’s laf®hardware is getting cheaper, still of-
fering more and more processing power. Hence, softwarditsesa growing
part of the total development costs, see Fig. 1.2 on thedguage, [21].

In response to this fact, industry calls for immediate inyeraent of soft-
ware development methods and tools. Software componedtsanponent-
based development is by industry, as well as by academin,asea promis-
ing way to address these issues. Component-based softngireeering is a
method that supports software reuse, fast developmeraneel software in-
tegration support, more flexible configurations, and gotdidity predictions
of component assemblies [1].

During the last decade, the Internet-/office-orientedveaft community

"BMW, Home Page: http://www.bmw.com

8Sony PlayStation 2, Home Page: http://www.sony.com

9National Aeronautics and Space Administration, NASA, HdPage: http://www.nasa.gov

10Moore observed an exponential growth in the number of tstmisi per integrated circuit and
predicted that this trend would continue. Through the pseoedevelopers relentless technology
advances, Moore’s law — the doubling of transistors evepplmof years — has been maintained,
and still holds true today.

1.2 Motivation 9

Total Costs %
100

80 1

Hardware Costs
60

40
Software Costs

20

1990 2000 2010

Figure 1.2: Estimation of the distribution between hardwand software de-
velopment cost [21]

has proven that CBSE is a method with great potential, anddhemunity
has achieved remarkable progress with software compgreardsomponent-
based design. Today, it is possible to download componerttsfly and have
them integrated, and executed, within the context of amgitegram (such a
web browser or a word processor). When developing, e.gerret applica-
tions today, it is possible to purchase off-the-shelf comgrtds and combine
them into assemblies forming new software products. Telcignes like, e.g.,
CORBA [14], Enterprise Java Beans [8], and .NET [9] are feagly used
to build applications out of software components. Howetrexse component
technologies are not applicable to most embedded realetimmputer systems,
due to extensive memory usage and unsatisfactory timingvietr.

Some attempts have been made to adapt Internet/office canptacth-
nologies to embedded systems (like, e.g., minimumCORBA) [22owever,
these adaptations have not been generally accepted by thedded system
developers, and the reason for this failure is mainly themified nature of
the embedded system market. Different market segmentsdifigeent re-
guirements on a component technology, and often theseresgents are not
fulfilled simply by stripping down existing component tectogies.

There are also some international cooperation on starsiiagdsoftware
middleware for vehicular systems that might (and probakli) wave influ-

10 Chapter 1. Introduction

ence on future control-systems for heavy vehicles, likg,, ¢he EAST-EEA
[23] project and the AUTOSAR [24] consortium. The, nowadegmpleted,
EAST-EEA project was aiming to enable proper electroniegnation through
definition of an open architecture allowing hardware andverie interoper-
ability, and was the predecessor to AUTOSAR.

AUTOSAR is a consortium working to establish an open stath@iar the
automotive electrical engineering architecture serving hasic infrastructure
for the management of functions within both future applmas and standard
software modules.

It is important to follow this standardising work in order be@ prepared
for the future system design philosophy. Hence, a compaeehhology as
suggested within this licentiate thesis has to be flexibteadaptable in order
to cope with these standardisations.

Facing this reality, CC Systems and Volvo Construction BEment ini-
tiated research cooperation with Malardalen Real-TimesReh Centré by
launching the HEAVE?, "A Component Technology for Heavy Vehicles", pro-
ject. This licentiate thesis is produced within the HEAVBjerct.

1.3 Thesis Outline

Section 2 aims at presenting the contribution of this thegismtroducing the

project hypothesis, the research questions, an outlineeofnicluded papers,
and a summary of the contribution from an academic point efinas well as

from an industrial point of view. Section 3 provides a sumyrithe research
and the methodologies used during different phases of th&.w8ection 4

concludes the thesis and suggests future work.

The final parts (Section 5 to Section 8) of this thesis sunsearihe work
by presenting four papers performed within this researcliept. The papers
are summarised below:

Paper A Industrial Requirements on Component Technologies fordeinb
ded Systempresents a requirements case-study on component-bdsearso
engineering for heavy vehicles. The purpose of the studytwasild a solid
research platform for the continuous work within the HEAVi®jpct. In pa-
per B, Evaluation of Component Technologies with Respect to tridu&e-
quirementswe present a component technology evaluation, based amrethe
quirements collected during the industrial case-study iflea was to discover

1Mmalardalen Real-Time Research Centre, Home Page: htipw/mrtc.mdh.se
12HEAVE project, Home page: http://www.mrtc.mdh.se/-pot§gheave/

1.3 Thesis Outline 11

which of the requirements that are fulfilled by existing teglogies, and which
are not. The study also includes a short survey descripfieaah of the evalu-
ated componenttechnologies, and a table summarising #hgsgion. In Paper
C, Towards a Dependable Component Technology for Embeddésh®yg-
plications a prototype component technology, developed with safatical
automotive applications in mind, is presented. The teampois illustrated as
a case-study performed at CC Systems. Papévi@hitored Software Com-
ponents - A Novel Software Engineering Approactiescribes monitoring of
software components, and the use of monitored software coeris as a gen-
eral approach for engineering of embedded computer systems

Chapter 2

Contribution

This chapter presents the contribution of this thesis bpéhicing the research
questions and a summary of the contribution, together witlowatline of the
included papers.

2.1 Research Questions

The predefined goal of our research project is to identiffindeand evaluate
a suitable component technology for the business segmehe&vy vehicles.
Our assumption is that there is simgle component-technologyitable for all
segments of the embedded systems market, neither can éinggmmponent
technology for the Internet/office applications be adaptedrder to satisfy
the embedded system developer requirements. Insteadjemmias that dif-
ferent segments of the embedded systems market is best dgndifferent
technologies, and that the best way to find out if the assumpsi valid — is
to start unbiased and ask the involved companies aboutgpeific needs,
before looking too deep into different technical solutions

These answers where then to be used as the research platfaime ton-
tinued work in which we evaluate existing component tecbgi@s and imple-
ment proposed changes in a new, or modified, component tixno

The issues considered in our research project can be susaddy the
following research questions:

13

14 Chapter 2. Contribution

Why are existing software component technologies for eddzbslystem devel-
opment not used more frequently in industry?

(MainQuestion)

This question can be considered the main topic of this wonking to
find the answer to this question, we must examine the indlistevelopment
process of today, the industrial requirements on compebased software de-
velopment, and the existing component technologies thatidme suitable for
embedded systems. However, this question is very broadsamctly speak-
ing, not suitable as a research question. Hence, the mastigueserve as a
guideline but is split up into four sub-questions that is enappropriate for
research, trying to identify the different aspects of thémgaestion.

Which are the most important requirements on a componehnt#ogy for
heavy vehicle developers in order to cope with the increpgdemands on func-
tionality and product costs?

Q1)

This question aims at finding the most important industeguirements on
a component technology for the specific business segmerdasfyhvehicles.
The idea, stating this as the first research question, isbihéinding the in-
dustrial prerequisites to introduce a component techrydbagore looking too
deep into technical solutions we can present an unbiasedieweof the actual
industrial requirements.

What is (is not) offered in the existing component techriekgnd how does
this match the industrial requirements?

(Q2)

Based on the requirements, i(&)1), this question aims at finding parts
of the component technologies that are lacking, or partsxistiag compo-
nent technologies that are particularly well addressed,-am those cases —
if possible identify satisfying technical solutions. Todithe answer to this
question, we must study a set of component technologiesewdate those
technologies based on the collected industrial requirésnen

Is it possible, and sensible, to improve, extend, or sipifisting component
technologies (or parts of existing technologies) in oraefulfil the industrial
requirements?

(@Q3)

2.2 Contribution 15

This question is based on the answefd@), and can be seen as an exten-
sion of (Q2). We aim at realising a deeper study, and a further invesigat
of specific parts of a smaller set of the existing technolegie. the question
does not address the issues of developing a new componanbtegy). The
answer to this question will, possibly, include areas tlegtthto be improved in
order for the embedded systems developers to introduce parent technol-
ogy. This research question might also point out areas toréuvork and/or
include additional suggestions not thought of within thieestresearch ques-
tions.

Is it possible to combine the industrial requirements aredtéthnical solutions
in the state-of-the-art (and state-of-practice) compditiechnologies, in order
to find a custom-made component technology for heavy veRicle

(Q4)

This question intend to, based on existing techniques amdphcified in-
dustrial requirements, find a technical, as well as devetymprocess related,
suggestion/solution to whether or not it is possible to adeéind implement a
component technology suitable for the market segment afjhezhicles. This
question is an extension ¢§3) and does possibly addresses the development
of a new component technology.

2.2 Contribution

The contributions of this thesis are divided into two patts, scientific contri-
butions and the contributions for the participating comesan

Scientific Contributions

The scientific contributions of this thesis project are rain

e The study of actual requirements from a specific industeghsent, and
the survey of to what extent those requirements are fulfblgéxisting
component technologies.

e The implementation of a test-bed component technology,aapdot-
project, have a scientific value, illustrating how a tecloggl based on
industrial requirements can be used to solve problems thatat solved
by commodity technologies.

16 Chapter 2. Contribution

e The proposed technique for monitoring software componentsreuse
of monitored components as a general approach towards esrgig
of resource constrained embedded real-time control+systeT his ap-
proach illustrates a pragmatic engineering solution teroffiscussed
scientific problems, e.g., how to ascertain worst-caselgi@etimes.

Industrial Contributions

For the participating companies, the main contributioes ar

e The compilation of requirements and the assessment of ttadbaity of
existing technologies.

e The test-bed implementation of an appropriate componehntdogy
(based on the industrial requirements and solutions frobotigly avail-
able documentation about existing component technolngies

e The industrial pilot project implementing an embedded maratpplica-
tion using the suggested component technology, will alsvige valu-
able insight into how a component technology can be usedaidhtic-
ipating companies.

2.3 Included Papers

This section summarises, and presents my contributiohgoficluded papers
in this thesis.

Paper A

Industrial Requirements on Component Technologies fordeitiéd Systems
Anders Méller, Joakim Fréberg and Mikael Nolin; In Proceegi of the 1"
International Symposium on Component-Based Softwarerteging, pages
146-161, Springer Verlag, Edinburgh, Scotland, May 2004.

Summary: This paper presents a study of requirements on componsetba
software engineering for heavy vehicles. The study wasopmd at Volvo
Construction Equipmehtand at CC Systemisand the purpose of the study

Ivolvo Construction Equipment, Eskilstuna, Sweden, hitgutv.volvoce.com/
2CC Systems, Uppsala, Sweden, http://www.cc-systems.com/

2.3 Included Papers 17

was to build a solid platform for the continuous research@mmgonent-based
software for heavy vehicles.

My contribution: The study was initiated and accomplished by Anders. The
work writing this paper was divided between the authors Anders was the
driving author and responsible for putting the requirera¢ogether.

Paper B

Evaluation of Component Technologies with Respect to ndu&kequire-
ments Anders Méller, Mikael Akerholm, Johan Fredriksson and Mé No-

lin; In Proceedings of the 30Euromicro Conference, Component-Based Soft-
ware Engineering Track, pages 56—63; Rennes, France,rSia@t@004.

Summary: This evaluation of component technologies is based on tiénes
ments collected in Paper A. The idea was to study which of élqeirements
that are fulfilled by existing technologies, and which aré nche study also
includes a short survey description of each of the evaluedagponent tech-
nologies, and a table summarising the evaluation.

My contribution: The evaluation was initiated by Anders. Anders was also
responsible for summarising the industrial requiremelntis,the writing and
evaluation part of the paper was equally divided betweertitieors.

Paper C

Towards a Dependable Component Technology for EmbeddeenSyspli-
cations Mikael Akerholm, Anders Méller, Hans Hansson and MikaeliNp
To Appear in the Proceedings of the Workshop on Object-@egkReal-time
Dependable Systems, Sedona, Arizona, USA, February 2005.

Summary: In this paper, a prototype component technology, develoyptd
safety-critical automotive applications in mind, is preteel. The technology is
based on a restrictive modelling language, and the techgahoplementation
is illustrated as a technical case-study performed at C@&=8ys

My contribution: The case-study was initiated by Anders. The major part
of the component technology’s compile-time activities vimplemented by
Mikael A, and the run-time framework was implemented by Aisdé\riting
was equally distributed between the authors.

18 Chapter 2. Contribution

Paper D

Monitored Software Components — A Novel Software Engingekpproach
Daniel Sundmark, Anders Méller and Mikael Nolin; In Prociegs of the 11
Asian-Pasific Conference on Software Engineering, WorgsimoSoftware Ar-
chitectures and Component Technologies, pages 624—-63anBKorea; No-
vember 2004.

Summary: The paper describes monitoring of software componentsuyaad
of monitored software components as a general approacmfpneering of
embedded computer systems.

My contribution: The idea writing this paper, and the idea of using monitor-
ing as a pragmatic approach towards predictable asserhblies from Anders.
Daniel was responsible for describing the monitoring téghes, and Anders
for describing the existing techniques and the embeddstsysettings. Writ-
ing the paper was joint work between the authors.

Chapter 3

Research Work and Method

Instead of starting from an existing component technoldigg,(e.g., CORBA

[14] or Enterprise Java Beans [8]) and try to embed it into aviievehicle

system, this project took a different approach in that wetelaunbiased by
identifying specific industrial requirements from the hgsaehicle market seg-
ment.

Based on these requirements, we studied to what exteninexistmponent
technologies fulfilled those industrial desires. We didassess to what extent
existing technologies could be adapted in order to fulfil thguirements, or
whether selected parts (like, e.g., tools, middlewared, féeformats) could
be reused if a new component technology were to be developed.

Equipped with this knowledge, we initiated the work of sj)olg a suit-
able componenttechnology for the specific business segrhkaavy vehicles.
This specification covered issues like, e.g., componengtting, component-
framework functionality, analysability, and componerieioperability. Based
on these specifications, and on similar work [10, 12, 25], vepared a test-bed
implementation of the component technology.

The work can be divided into five different parts, in whictféiént research
methods have been used. All phases have been performed@adoperation
with industry, but also with a lot of influences from, and ceogiion with, other
research groups, like, e.g., the SAV{iroject. In the following, we discuss the
specific research methods used in the different phases.

1SAVE project, Home Page: http://www.mrtc.mdh.se/SAVE

19

20 Chapter 3. Research Work and Method

3.1 Preliminary Literature Study

The research presented within this thesis started with lavprary literature
study, summarised in the state-of-the-art report [26]. féport is based on
about 30 articles summarising the area of component-basedse engineer-
ing for safety critical embedded applications, and is diddnto six different
parts. The first part is a general part describing CBSE andeddda] systems.
The second part describes different component technoluigpendent tech-
niques that are considered useful for CBSE for embeddedragstThe third
part presents a set of existing component models and temffiesl Section
four describes general low-level technical issues of CB@&EeMmbedded sys-
tems. Part five presents work done on architecture desmmifgnguages, and
the last section, section six, presents aspect orientégrdpsogramming.

The literature study aimed at establishes basic knowledgaetahe exist-
ing component technologies for embedded systems. Undéiatathe state-
of-the-art and state-of-practice component technologa&sa prerequisite for
the subsequent work. All the papers reviewed in the report leeen read,
presented, and discussed by all the authors during severkshop meetings.

3.2 Industrial Requirements Case-Study

This part of the research was aiming at finding the most ingmbrindustrial
requirements on a component technology for the businesaesggof heavy
vehicles. The idea was to find the industrial prerequisitdatroduce a com-
ponent technology, before looking too deep into technigkit®ns. However,
there are many different aspects and methods to consider leb&ing into
questions regarding how to capture the most important reoénts on a com-
ponent technology suited for heavy vehicles.

Based on the preliminary literature study - a qualitativeecatudy inter-
view protocol (i.e. a case-study questionnaire) [27] wastpgether focusing
on finding the answer to the research questign), as stated in Sect. 2.1.
Qualitative research methods aims to give clear understgrd the phenom-
enon studied without generalising, and can be performedbgating infor-
mation from a relatively small set of research objects. Tiaitptive methods
are often relatively unsystematic and unstructured [28hweler, the case-
study protocol is very important - and is used to keep thedtigator targeted
on the subject. This is done by including an overview of theeestudy project,
together with a description of the field procedures (i.eitgeaccess to the in-

3.3 Evaluation of Existing Technologies 21

terviewees, having enough resources, etc) and a guidefoaie-study report,
in the protocol in addition to the actual case-study quast[@7].

The case-study was performed at Volvo Construction Equittiaved at CC
Systems, and the respondents were senior technical staffdifferent parts of
the organisation (like, e.g., project managers, developm®cess specialists,
programmers, and testing specialists). The case-studgquiqquestions were
open — meaning that attendant questions were dependen¢ sagpondent’s
answer [27].

We also made an investigation to validate the reliabilitpof case-study
results. This was realised by conducting interviews wittustrial representa-
tives, and by participating in discussions with engineeits @searchers with
heavy vehicle domain knowledge. The investigation confitrmgr case-study
work and further strengthened our conclusion that not ahnical issues are
of importance — also the development process related issieeimed decisive
for introducing a component technology in an industrialteah

3.3 Evaluation of Existing Technologies

The next phase in our research was to look deeper into a smatl®f com-
ponent technologies, and evaluate those technologies! lmaséhe collected
industrial requirements. The technologies were selectsgd on the initial
literature study, and were examined in great detail. Martphefpublished pa-
pers available from each component technology project wamefully studied.

The technologies described and evaluated are PECT [13laKbH, Rubus
Component Model [10], PBO [29], PECOS [30] and CORBA-CCM][1We
have chosen CORBA-CCM to represent the set of technologissre in the
Internet/office domain (other examples are, .NET [9] ancEprise Java Beans
[8]) since it is a technology that partly addresses embedadédeal-time is-
sues. Also, the Windows CE version of .NET [9] is omittedgsiiit is mainly
targeted towards embedded display-devices, which onlgtitate a small sub-
set of the devices in vehicular systems.

These technologies originate both from academia and indastd the se-
lection criterion has firstly been that there is enough imfation available (the
evaluation is based on existing, publicly available, doentation), secondly
that the authors claim that the technology is suitable fobedded systems,
and finally we have tried to achieve a combination of both ao#d and indus-
trial technologies.

The evaluation work was performed in small workshops, whbkesau-

22 Chapter 3. Research Work and Method

thors discussed and evaluated the available written nahfeoim each of the
chosen component technologies, and finally compared ittvélindustrial re-
quirements. The appropriateness of the technologiesisoltd each of the
requirements were summarised in a graded table (Sect. 6.4).

3.4 Implementing and Evaluating a Component
Technology

By combining the knowledge and experience collected froapiievious parts
of the research, together with results from the SAVE projeetimplemented
a prototype component technology. The component techpaleg based on
the SaveComp Component Model [25], suggested within theESpXbject,
developed with safety-critical dependable vehicle agpias in mind.

The component technology is intended to provide three mairefits for
developers of embedded systems: efficient developmerdjgtable behav-
iour, and run-time efficiency. The technology implememtaincludes design-
time, compile-time and run-time mechanisms and was imptéatkin cooper-
ation with CC Systems.

To evaluate the suitability of the component technology,mpglemented
a test-bed application using the company’s tools and tectesi. The eval-
uation can be divided into three categories, the strucfu@berties, the be-
havioural properties, and the process related properfibg. evaluation was
accomplished using a check-list assembled from requirésrienautomotive
component technologies collected within this work, riskhwsing CBSE for
embedded systems by Larn and Vickers [31], and from idedtifieeds by
Crnkovic [4].

3.5 Monitoring Software Components

The requirements study and the component technology di@yas well as
the evaluation of the component technology implementatbowed that one
of the most central issues when introducing componentebdseelopment is
the ability to analyse and predict the behaviour of a compbassembly pre-
run-time [13].

We studied related work (e.g., [32, 33, 34]) and some worledeithin the
respective component technologies (e.g., [10, 35]). Wadahat not much

3.5 Monitoring Software Components 23

focus was put on monitoring as a solution to reach predietabinponent as-
semblies, and hence we presented a general engineeringsptdp facilitate

certifiable components, system-level testing and debgggim-time contract
checking and enhanced observability.

Hence, in the final part of this thesis — we propose a pragmagitiod to
monitor software components, and use of monitored softeangponents, as
a general approach for engineering of embedded computensys Continu-
ous monitoring is to be used as the base for contract checlimdyprovides
means for post-mortem crash analysis [36]; important présites for many
companies to start use 3rd party components in their dejpéandgstems.

Monitoring software, as suggested, comprise (full or pdrsolutions to
many of the collected requirements, like analysabilityc{SB.4.1) with respect
to the enhanced ability to collect the information needegddorm schedu-
lability and memory-consumption analysis. Monitoring aso be used to
support replay debugging [36], where erroneous systerotgioms are recre-
ated in a lab environment to allow tracing of bugs. Enhaneedability (Sect.
5.4.2) and maintainable (Sect. 5.4.2) are one of the maieflismising mon-
itored software components, since the components arencamitsly observed
and at the end certified. However, there are contradictipgas of monitor-
ing. The limited resources (Sect. 5.4.1) are put at riskesi@sources (e.g.
memory and CPU) are needed to drive the monitor.

Chapter 4

Conclusion and Future Work

To be able to address the main question\(Vley are existing software compo-
nent technologies for embedded system development noinasedrequently
in industry? of this thesis, we divided the work into smaller parts anettto
answer the different sub-questions.

One of the main contributions with this thesis is that itigfinéens out some
of the question-marks regarding the actual industrial ireguents placed on a
component technology within the business segment of heakicles. When
trying to find an answer t6Q1) (Sect. 2.1), comprising the industrial require-
ments on a component technology, we have noticed that — fonmgonent
technology to be fully accepted by industry, the whole systievelopment
context needs to be considered. It is not only the technicgdgties that need
to be addressed, but also development process relatedeemgunts.

The requirements collected are used to evaluate a set ofamwenptech-
nologies, so that the risks with component-based develapean be min-
imised before being introduced in an industrial contextug,hwe hope that
this thesis can help companies take the step into tomoriteefmology. This
evaluation helped us answering research questii®t) in Sect. 2.1, and the
conclusion is that non of the evaluated component techiegdglfil all the
requirements and that no single component technology stantas being a
obvious best match for the requirements. However, it is@sting to see that
most requirements are fulfilled by one or more techniqueglyjiimg that there
exists solutions to each of the requirements. During théuatian work we
identified different areas were component technology imgneents could be
done. We also gathered valuable experience from this enafuthat was later

25

26 Chapter 4. Conclusion and Future Work

used when implementing a new component technology and winéining fu-
ture work.

To answer research questiéf3) and (Q4), comprising the possible ar-
eas of improvements within CBSE for embedded systems, we thescribed
the initial implementation of our component technologytaiiie for vehicular
systems. This work also includes an evaluation of the resulan industrial
environment, using requirements identified in relatedasge

One area within component-based software engineeringmbatbserved
to be slightly weaker than most other technical areas is itiléyato predict
the component assembly behaviour pre-run-time. In thisishee propose
monitoring of software components, and reuse of monitomdponents, as
a pragmatic engineering approach to facilitate predittgbiThe concept is
general and addresses not only the development phase,thet the whole
product life-cycle. This work can be seen as a preliminasyaar to research
question(Q3) but also as an example of a possible area for future work.

Our plans for future work include different extensions o tomponent
technology. We will be looking deeper into issues coveringport for, e.g.,
multiple nodes, integration of legacy code with the compt£37], enhanced
run-time monitoring support [38], and a real-time dataldfasstructured han-
dling of shared data [39].

An indication of the potential of our work within the HEAVE gject is
that the companies involved, i.e. CC Systems and Volvo Coctsbn Equip-
ment, find our ideas promising and has expressed a keenshtereontinue
the cooperation.

Bibliography

[1] I. Crnkovic and M. LarssonBuilding Reliable Component-Based Soft-
ware SystemsArtech House publisher, 2002. ISBN 1-58053-327-2.

[2] C. Szyperski.Component Software — Beyond Object-Oriented Program-
ming Addison-Wesley, ISBN: 0201745720, 1998.

[3] G. T. Heineman and W. T. CouncillComponent-based Software Engi-
neering, Putting the Pieces Togeth@&rentice-Hall, 2001. ISBN: 0-201-
70485-4.

[4] I. Crnkovic. Componet-Based Approach for Embedded &yst In
Proceedings of @ International Workshop on Component-Oriented Pro-
gramming June 2004. Oslo, Norway.

[5] A. Brown and K. Wallnau. The Current State of CBSIEEEE Software
September/October 1998.

[6] D. Garlan, R. Allen, and J. Ockerbloom. Architecturakmiatch or why
it's hard to build systems out of existing parts.Rroceedings of the Sev-
enteenth International Conference on Software Engingefpril 1995.
Seattle, USA.

[7] A. Ran. Software isn't built from LEGO blocks — Towardsdhitecture
Based Reuse. Keynote speach by Alexander Ran (Nokia Res€are
ter) at the Symposium on Software Reusability, Collocatih thie Inter-
national Conference on Software Engineering, May 1999. Ageles,
USA.

[8] Sun Microsystems. Enterprise Java Beans Technologp:/kdva.sun.-
com/products/ejb/.

27

28

Bibliography

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

Microsoft Component Technologies. COM/DCOM/.NET. phitwww.-
microsoft.com.

K.L. Lundbéck, J. Lundbéck and M. Lindberg. ComponBassed Devel-

opment of Dependable Real-Time Applications Real-Time in Sweden
— Presentation of Component-Based Software DevelopmeetBa the

Rubus concept, Arcticus Systems: http://www.arcticu¥&steras, Swe-
den.

R. van Ommering et al. The Koala Component Model for Comear
Electronics SoftwarelEEE Computer33(3):78—-85, March 2000.

M. de Jonge, J. Muskens, and M. Chaudron. ScenarioeBisaiction of
Run-Time Resource Consupmption in Component-Based Saftégs-
tems. InProceedings of the'®International Workshop on Component-
Based Software Engineeriniglay 2003. Portland, Oregon, USA.

K. C. Wallnau. Volume lll: A Component Technology fordelictable
Assembly from Certifiable Components. Technical reporfivéare En-
gineering Institute, Carnegie Mellon University, April @B. Pittsburg,
USA.

CORBA Component Model 3.0. Object Management GroupeR002.
http://www.omg.org/technology/documents/formal/caments.htm.

J. Fréberg. Engineering of Vehicle Electronic SysterRequirements
Reflected in Architecture. Technical report, Technologyelitiate Thesis
No0.26, ISSN 1651-9256, ISBN 91-88834-41-7, Malardalen|Reae

Reseach Centre, Malardalen University, March 2004. Vaste&weden.

International Standards Organisation (ISO). Roaddleh — Interchange
of Digital Information — Controller Area Network (CAN) forigh-Speed
Communication, November 1993. vol. ISO Standard 11898.

J. Turely. The Two Percent SolutioEmbedded Systems Programming,
http://www.embedded.cqecember 2002.

N. Andersson. Halva bilens véarde &r elektronik. Autdohd\yTeknik,
September 2002. Swedish Technical Magazine.

MOST. Specification framework rev 1.1. MOST Coopertion
http://www.mostnet.de, November 1999.

Bibliography 29

[20] LIN. - Protocol, Development Tools, and Software fochbinterconnect
Networks. In 9th International Conference on Electronist8gns for
Vehicles, October 2000. Baden-Baden, Germany.

[21] 1. Crnkovic, U. Askerlund, and A. Persson-Dahlqvishplementing and
Integrating Product Data Management and Software ConfigoneMan-
agement Artech House Software Engineering Library, 2002. ISBN: 1-
58053-498-8.

[22] Object Management Group. MinimumCORBA 1.0, August206Xtp://-
www.omg.org/technology/documents/formal/minimum_@&2Ehtm.

[23] EAST-EEA. ITEA-Project-Number 0009. http://www.éasea.net/.

[24] AUTOSAR. The AUTOSAR consortium — Automotive Open Syt
Architecture. http://www.autosar.org/.

[25] H. Hansson, M. Akerholm, I. Crnkovic, and M. Térngrenav8CCM -
a Component Model for Safety-Critical Real-Time SystemsProceed-
ings of 30" Euromicro Conference, Special Session Component Models
for Dependable SystenSeptember 2004.

[26] M. Nolin, J. Fredriksson, J. Hammarberg, J. HuseliusHdkansson,
A. Karlsson, O. Larses, M. Lindgren, G. Mustapic, A. Moll&r,Nolte,
J. Norberg, D. Nystréom, A. Tesanovic, and M. Akerholm. Comgrt-
Based Software for Embedded Systems - A Literature Surveghriical
report, MRTC Report No 104, ISSN 1404-3041, ISRN MDH-MRTC-
104/203-1-SE, Méalardalen Real-Time Reseach Centre, bilem Uni-
versity, June 2003. Vasteras, Sweden.

[27] R.K. Yin. Case Study Research — Design and Methodisplied Social
Research Methods Series, Volume 5, SAGE Publications, .208BN
0-7619-2553-8.

[28] 1.M. Holme and B.K. SolvangForskningsmetodik - Om kvalitativa och
kvantitativa metoder Sudentlitteratur, Lund, ISBN 9144002114, 1997.
Andra Upplagan.

[29] D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of @ymically Re-
configurable Real-Time Software Using Port-Based Obj¢EtsE Trans-
actions on Software Engineeringages 759 — 776, December 1997.

30

Bibliography

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

M. Winter, T. Genssler, et al. Components for Embeddefti&re — The
PECOS Apporach. Iifhe 29 International Workshop on Composition
Languages, in conjunction with the ®&COOPR, June 2002. Malaga,
Spain.

W. Lam and A.J. Vickers. Managing the Risks of ComporRased Soft-
ware Engineering. IProceedings of the'SInternational Symposium on
Assessment of Software Tqalane 1997. Pittsburgh, USA.

J. Gao, E. Zhu, and S. Shim. Tracking component-bastdiae. In
Proceedings of the International Conference on Softwargifgering,
2000’s COTS Workshop: Continuing Collaborations for Sssbd COTS
Development2000.

A. Jhumka, M. Hiller, and N. Suri. An Approach to Speckdyd Test
Component-Based Dependable SoftwareRioceedings of the7IEEE
International Symposium on High Assurance Systems Engigepages
211 - 218, 2002.

J. Hérnstein and H. Edler. Test Reuse in CBSE Using Bnilfests.
In Proceedings of Workshop on Component-based Software &ariyig
April 2002.

T. Genssler, A. Christoph, B. Schuls, M. Winter, et aEGOS in a Nut-
shell. PECOS project http://www.pecos-project.org.

H. Thane, D. Sundmark, J. Huselius, and A. Petterssapldy Debug-
ging of Real-Time Systems Using Time MachinesPlceedings of Par-
allel and Distributed Systems: Testing and Debugging (PAD)] pages
288 — 295). ACM, April 2003.

M. Akerholm, K. Sandstrém, and J. Fredriksson. Intesfee Con-
trol for Integration of Vehicular Software Components. Heical re-
port, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-162/2004-1
SE, MRTC, Malardalen University, May 2004.

D. Sundmark, A. Méller, and M. Nolin. Monitored SoftwaCompo-
nents — A Novel Software Engineering Approach —-Phmceedings of the
11" Asia-Pasific Software Engineering Conference, WorkshoSait-
ware Architectures and Component Technologidsvember 2004. Pu-
san, Korea.

[39] D. Nystrom. COMET: A Component-Based Real-Time Datatbfmr Ve-
hicle Control Systems. Technical report, Technology Liz#a Thesis
No0.26, ISSN 1651-9256, ISBN 91-88834-41-7, Malardalen|Reae
Reseach Centre, Mélardalen University, May 2003. Malamalniver-
sity Press.

Chapter 5

Paper A:

Industrial Requirements on
Component Technologies for
Embedded Systems

Anders Méller, Joakim Froberg and Mikael Nolin
In Proceedings of theInternational Symposium on Component-Based Soft-
ware Engineering, pages 146-161, Edinburgh, Scotland,20a4

33

Abstract

Software component technologies have not yet been gepacaépted by
embedded-systems industries. In order to better understhy this is the
case, we present a set of requirements, based on industgdsnthat are
deemed decisive for introducing a component technologye rElguirements
we present can be used to evaluate existing component teciem before
introducing them in an industrial context. They can also $exto guide mod-
ifications and/or extensions to component technologiesake them better
suited for industrial deployment. One of our findings is thahajor source
of requirements is non-technical in its nature. For a conepptechnology to
become a viable solution in an industrial context, its intarcthe overall de-
velopment process needs to be addressed. This includes ifseicomponent
life-cycle management, and support for the ability to gedijumigrate into the
new technology.

5.1 Introduction 35

5.1 Introduction

During the last decade, Component-Based Software Engine@CBSE) for
embedded systems has received a large amount of atterdjpegially in the
software engineering research community. In the officefirgt area CBSE has
had tremendous impact, and today components are downlaadeoh the fly
integrated into, e.g., word processors and web browseiisdlrstry however,
CBSE is still, to a large extent, envisioned as a promisirigreutechnology
to meet industry specific demands on improved quality anctted cost, by
facilitating software reuse, efficient software developimand more reliable
software systems [1].

CBSE has not yet been generally accepted by embedded-systeiop-
ers. They are in fact, to a large extent, still using monaitind platform
dependent software development techniques, in spite datehat this make
software systems difficult to maintain, upgrade, and modifiye of the reasons
for this status quo is that there are significant risks andscassociated with
the adoption of a new development technique. These risks neusarefully
evaluated and managed before adopting a new developmemstgsto

The main contribution of this paper is that it straightens same of the
guestion-marks regarding actual industrial requiremefgsed on a compo-
nent technology. We describe the requirements on a comptewrmology as
elicited from two companies in the business segment of heekicles. Many
of the requirements are general for the automotive industrgven larger parts
of the embedded systems market (specifically segments dahtndth issues
about distributed real-time control in safety-criticav@onments), but there
are also some issues that are specific for the business seghteravy vehi-
cles.

The list of requirements can be used to evaluate existingpoment tech-
nologies before introducing them in an industrial conttherefore minimising
the risk when introducing a new development process. This,study can
help companies to take the step into tomorrow’s technolodgy. The list can
also be used to guide modifications and/or extensions to oner technolo-
gies, to make them better suited for industrial deploymeittiizvembedded
system companies. Our list of requirements also illustratav industrial re-
quirements on products and product development impacirergants on a
component technology.

This paper extends previous work, studying the requiresnfemtcompo-
nent technologies, in that the results are not only basedioexperience, or
experience from a single company [2, 3]. We base most of @ultseon inter-

36 Paper A

views with senior technical staff at the two companies imedlin this paper,
but we have also conducted interviews with technical stadtlaer companies.
Furthermore, since the embedded systems market is so ifla@rsve have

limited our study to applications for distributed embeddeal-time control in

safety-critical environments, specifically studying canjes within the heavy
vehicles market segment. This gives our results highedilifor this class

of applications, than do more general studies of requirésiarihe embedded
systems market [4].

5.2 Introducing CBSE in the Vehicular Industry

Component-Based Software Engineering arouses interdstwaiosity in in-
dustry. This is mainly due to the enhanced development geoand the im-
proved ability to reuse software, offered by CBSE. Also, ittreased possi-
bility to predict the time needed to complete a software tgument project,
due to the fact that the assignments can be divided into sn@aid more easily
defined tasks, is seen as a driver for CBSE.

CBSE can be approached from two, conceptually differenttpof view;
distinguished by whether the components are (1) used asigndeisiloso-
phy independent from any concern for reusing existing camepts, or (2)
seen as reusable off-the-shelf building blocks used taydesid implement a
component-based system [5]. When talking to industriaisne developers
with experience from using a CBSE development process [&h sis Volvo
Construction Equipmehtthe first part, (1), is often seen as the most impor-
tant advantage. Their experience is that the design plulosof CBSE gives
rise to good software architecture and significantly enbdrability to divide
the software in small, clearly-defined, development sujepts. This, in turn,
gives predictable development times and shortens thettirmearket. The sec-
ond part, (2), are by these companies often seen as lesstanp@nd the main
reason for this is that experience shows that most appreachiarge scale
software reuse is associated with major risks and highainitists. Rather few
companies are willing to take these initial costs and rigksesit is difficult to
guarantee that money is saved in the end.

On the other hand, when talking to companies with less, oexperience
from component-based technologies, (2) is seen as the mpsttant motiva-
tion to consider CBSE. This discrepancy between comparitesand without
CBSE experience is striking.

IVolvo Construction Equipment, Home Page: http://www.ebom

5.2 Introducing CBSE in the Vehicular Industry 37

However, changing the software development process tg @&BSE does
not only have advantages. Especially in the short term petsfe, introduc-
ing CBSE represents significant costs and risks. For instatesigning soft-
ware to allow reuse requires (sometimes significantly) &igtffort than does
designing for a single application [7]. For resource cais&d systems, de-
sign for reuse is even more challenging, since what are thst oriical re-
sources may wary from system to system (e.g. memory or CBt)}loFur-
thermore, a component designed for reuse may exhibit atyaveh interface
and an associated overly complex and resource consumirigrimeptation.
Hence, designing for reuse in resource constrained enmieols requires sig-
nificant knowledge not only about functional requiremehbts,also about non-
functional requirements. These problems may limit the ibidgges of reuse,
even when using CBSE.

With any software engineering task, having a clear and cetapinder-
standing of the software requirements is paramount. Horypvactice shows
that a major source of software errors comes from erronamuscomplete,
specifications [7]. Often incomplete specifications are gensated for by en-
gineers having good domain knowledge, hence having knaeled implicit
requirements. However, when using a CBSE approach, oniaglitea is that
each component should be fully specified and understantglhite interface.
Hence, the use of implicit domain knowledge not documenmnidtié interface
may hinder reuse of components. Also, division of labour sthaller projects
focusing on single components, require good specificattbmghat interfaces
to implement and any constraints on how that implementasialone, further
disabling use of implicit domain knowledge. Hence, to fultilise the benefits
of CBSE, a software engineering process that do not rely gmerrs’ implicit
domain knowledge need to be established.

Also, when introducing reuse of components across mulipdducts and/-
or product families, issues about component managemesg. am essence,
each component has its own product life-cycle that needs todnaged. This
includes version and variant management, keeping trackhafhwersions and
variants is used in what products, and how component motiditashould
be propagated to different version and variants. Compasneggd to be main-
tained, as other products, during their life cycle. Thismanance needs to be
done in a controlled fashion, in order not to interfere awvetg with ongoing
projects using the components. This can only be achieved asiequate tools
and processes for version and variant management.

38 Paper A

5.3 A Component Technology for Heavy Vehicles

Existing component technologies are in general not appkcto embedded
computer systems, since they do not consider aspects sigdfedy, timing,
and memory consumption that are crucial for many embedd&émsg [8, 9].
Some attempts have been made to adapt component techisdimgimbedded
systems, like, e.g., MinimumCORBA [10]. However, thesemdaons have
not been generally accepted in the embedded system segnigdrgsreason
for this is mainly due to the diversified nature of the embeldsigstems do-
main. Different market segments have different requirelen a component
technology, and often, these requirements are not fulfdiegly by stripping
down existing component technologies; e.g. MinimumCORBAuires less
memory then does CORBA, however, the need to staticallyipresemory
usage is not addressed.

It is important to keep in mind that the embedded systems ahaskex-
tremely diversified in terms of requirements placed on tifensoe. For in-
stance, it is obvious that software requirements for comsymnoducts, tele-
com switches, and avionics are quite different. Hence, wefegus on one
single market segment: the segment of heavy vehicles,dimgye.g., wheel
loaders and forest harvesters. It is important to realiaé tte development
and evaluation of a component technology is substantiatiplified by focus-
ing on a specific market segment. Within this market segntleatconditions
for software development should be similar enough to alldigtgweight and
efficient component technology to be established [11].

5.3.1 The Business Segment of Heavy Vehicles

Developers of heavy vehicles faces a situation of (1) highateds on reliabil-
ity, (2) requirements on low product cost, and (3) suppgrtirany configura-
tions, variants and suppliers. Computers offer the peréome needed for the
functions requested in a modern vehicle, but at the sameuahiele reliabil-
ity must not suffer. Computers and software add new sourtkslores and,
unfortunately, computer engineering is less mature thanyno#her fields in
vehicle development and can cause lessened product ligfialbhis yields a
strong focus on the ability to model, predict, and verify ganer functionality.
At the same time, the product cost for volume products musieipe low.
Thus, there is a need to include a minimum of hardware resstinca product
(only as much resources as the software really needs). Tihgestt cost re-
quirements also drive vehicle developers to integrate lmst components from

5.3 A Component Technology for Heavy Vehicles 39

suppliers rather than develop in-house. On top of these désnan reliabil-
ity and low cost, vehicle manufacturers make frequent uggaduct variants
to satisfy larger groups of customers and thereby increast&etshare and
product volume.

In order to accommodate (1)-(3), as well as an increasingbeurof fea-
tures and functions, the electronic system of a modern ieeldca complex
construction which comprise electronic and software comepds from many
vendors and that exists in numerous configurations andntaria

The situation described cause challenges with respectrificadion and
maintenance of these variants, and integration of comgsrieto a system.
Using software components, and a CBSE approach, is seen m@srésing
way to address challenges in product development, inaiuidiegration, flex-
ible configuration, as well as good reliability predictipssalability, software
reuse, and fast development. Further, the concept of coemiers widely
used in the vehicular industry today. Using components ftwsoe would be
an extension of the industry’s current procedures, whergtbducts today are
associated with the components that constitute the péatigehicle configu-
ration.

What distinguishes the segment of heavy vehicles in thawatige indus-
try is that the product volumes are typically lower than th&te.g., trucks or
passenger cars. Also the customers tend to be more demamittingspect to
technical specifications such as engine torque, payloadgettless demand-
ing with respect to style. This causes a lower emphasis odugtccost and
optimisation of hardware than in the automotive industrgémeral. The lower
volumes also make the manufacturers more willing to desigiamts to meet
the requests of a small number of customers.

However, the segment of heavy vehicles is hot homogenedhgespect
to software and electronics development practices. Ftauiicg, the industrial
partners in this paper face quite different market situtiand hence employ
different development techniques:

e CC System’(CCS) is developing and supplying advanced distributed
embedded real-time control systems with focus on mobildieajons.
Examples, including both hardware and software, develdpe@CS
are forest harvesters, rock drilling equipment and combhicles. The
systems developed by CCS are built to endure rough envirotsyand
are characterised by safety criticality, high functiotyatnd the require-
ments on robustness and availability are high.

2CC Systems, Home page: http://www.cc-systems.com

40

Paper A

CCS works as a distributed software development partnet,caop-
erates, among others, with Alvis HaggluAdSimberjack and Atlas

Copco. Experience from these companies are included in this paper

this makes our findings more representative for the busisegmsent of
heavy vehicles.

CCS' role as subcontractor requires a high degree of fléililith re-
spect to supported target environments. Often, CCS’ custohmave re-
quirements regarding what hardware or operating systeatfophs to
use, hence CCS cannot settle to support only some predeéhetien-
vironments. Nevertheless, to gain competitive advantag€S desires
to reuse software between different platforms.

Volvo Construction Equipment (VCE) is one of the world’s majnanu-

facturers of construction equipment, with a product ramgmepassing
wheel loaders, excavators, motor graders, and more. Whsaé tbrod-
ucts have in common is that they demand high reliability cwstystems
that are maintainable and still cheap to produce. The syséeencharac-
terised as distributed embedded real-time systems, whigdt perform

in an environment with limited hardware resources.

VCE develops the vehicle electronics and most software us@oSome
larger software parts, such as the operating system, aghbfsam com-

mercial suppliers. VCE’s role as both system owner and syskevel-

oper gives them full control over the system’s architectiit@s, in turn,

has given them the possibility to select a small set of (simtardware
platforms to support, and select a single operating systernse. De-
spite this degree of control over the system, VCE'’s expegen that
software reuse is still hindered; for instance by non-tedmssues like
version and variant management, and configuration manageme

5.3.2 System Description

In order to describe the context for software componentsarvehicular indus-
try, we will first explore some central concepts in vehicleotlonic systems.
Here, we outline some common and typical solutions and jpliesused in the
design of vehicle electronics. The purpose is to describeneonly used solu-

3Alvis Hagglunds, Home page: http://www.alvishagglunds.s
4Timerjack, Home page: http://www.timberjack.com
SAtlas Copco, Home page: http://www.atlascopco.com

5.3 A Component Technology for Heavy Vehicles 41

tions, and outline the de facto context for application dtgwament and thereby
also requirements for software component technologies.

The system architecture can be described as a set of conmuates called
Electronic Control Units (ECUs). These nodes are disteduhroughout the
vehicle to reduce cabling, and to provide local control aesrsors and actua-
tors. The nodes are interconnected by one or more commigrnidats forming
the network architecture of the vehicle. When several dbffie organisations
are developing ECUs, the bus often acts as the interfacesketwodes, and
hence also between the organisations. The communicatiis ypically low
cost and low bandwidth, such as the Controller Area NetwGwN) [12].

Figure 5.1: Example of a vehicle network architecture

In the example shown in Fig. 5.1, the two communication baisse sep-
arated using a gateway. This is an architectural pattermnctirabe used for
several reasons, e.g., separation of criticality, inadastal communication
bandwidth, fault tolerance, compatibility with standardtocols [13, 14, 15],
etc. Also, safety critical functions may require a high les€ verification,
which is usually very costly. Thus, non-safety related tiors might be sep-
arated to reduce cost and effort of verification. In someesyistthe network is
required to give synchronisation and provide a fault toleeamechanisms.

The hardware resources are typically scarce due to theresgents on low

42 Paper A

product cost. Addition of new hardware resources will alsvag defensive,
even if customers are expected to embrace a certain newidondBecause
of the uncertainty of such expectations, manufacturers ldéfficulties in es-
timating the customer value of new functions and thus thegdmpproach is
to keep resources at a minimum.

In order to exemplify the settings in which software compusere con-
sidered, we have studied our industrial partner’s curyamted nodes. Below
we list the hardware resources of a typical ECU with requéets on sensing
and actuating, and with a relatively high computationabedty (this example
is from a typical power train ECU):

Processor: 25 MHz 16 bit processor (e.g. Siemens C167)
Flash: 1 MB used for applications

RAM: 128 kB used for the runtime memory usage
EEPROM: 64 kB used for system parameters

Serial interfaces: RS232 or RS485, used for service purpose
Communications: Controller Area Network (CAN) (one or monerfaces)
1/0: There is a number of digital and analogue in and out ports

Also, included in a vehicle’s electronic system can be @igglomputer(s)
with varying amounts of resources depending on productireauents. There
may also be PC-based ECU’s for non-control applicationf sisctelematics,
and information systems. Furthermore, in contrast to theseurce intense
ECU'’s, there typically exists a number of small and lightyginodes, such
as, intelligent sensors (i.e. processor equipped, budethadensors).

Application

Application Programmers Interface

Software Framework
Communication l RTOS Software
Platform

Hardware Abstraction Layer

| Device Drivers

Hardware

Figure 5.2: Internals of an ECU - A software platform

5.4 Requirements on a Component Technology for Heavy Vehies 43

Figure 5.2 on the facing page depicts the typical softwachisecture of
an ECU. Current practice typically builds on top of a reusdkbftware plat-
form", which consists of a hardware abstraction layer withiide drivers and
other platform dependent code, a Real-Time Operating 8yg OS), one or
more communication protocols, and possibly a software (mmrent) frame-
work that is typically company (or project) specific. Thidta@re platform
is accessible to application programmers through an Agtitio Programmers
Interface (API). Different nodes, presenting the same ABh have different
realisation of the different parts in the software platfqiery. using different
RTOSSs).

Today it is common to treat parts of the software platform@sponents,
e.g. the RTOS, device drivers, etc, in the same way as the &6tld’connectors
and other hardware modules. That is, some form of componanagement
process exists; trying to keep track of which version, vw@riand configuration
of a component is used within a product. This componentébsassv of the
software platform is however not to be confused with the ephof CBSE
since the components does not conform to standard interfaiceomponent
models.

5.4 Requirements on a Component Technology for
Heavy Vehicles

There are many different aspects and methods to considar lebking into
questions regarding how to capture the most important reoénts on a com-
ponent technology suited for heavy vehicles. Our approastbleen to cooper-
ate with our industrial partners very closely, both by perfimg interviews and
by participating in projects. In doing so, we have extra¢kedmost important
requirements on a component-based technique from theapmrsl of heavy
vehicles point of view.

The requirements are divided in two main groups, the teehmaquire-
ments (Sect. 5.4.1) and the development process relate@tertgnts (Sect.
5.4.2). Also, in Sect. 5.4.3 we present some implied (orveel) require-
ments, i.e. requirements that we have synthesised fromeifpgirements in
sections 5.4.1 and 5.4.2, but that are not explicit requareinfrom industry.
In Sect. 5.4.4 we discuss, and draw conclusions from, tteslliequirements.

44 Paper A

5.4.1 Technical Requirements

The technical requirements describe the needs and desaesur industrial
partners have regarding the technically related aspedtpraperties of a com-
ponent technology.

Analysable

Vehicle industry strives for better analyses of computetteay behaviour in
general. This striving naturally affects requirementcpthon a component
model. System analysis, with respect to non-functiongberties, such as the
timing behaviour and the memory consumption, of a systethigufrom well-
tested components is considered highly attractive. In fieistone of the single
most distinguished requirements defined by our industediers.

When analysing a system, built from well-tested, functliyraorrect, com-
ponents, the main issues is associated with composafility.composability
problem must guarantee non-functional properties, sutteasommunication,
synchronisation, memory, and timing characteristics efsystem [1].

When considering timing analysability, it is important te hble to ver-
ify (1) that each component meet its timing requirementsii{at each node
(which is built up from several components) meet its deadlifi.e. schedula-
bility analysis), and (3) to be able to analyse the end-tbtening behaviour
of functions in a distributed system.

Because of the fact that the systems are resource consti@eet. 5.3), it
is important to be able to analyse the memory consumptiorch@ck the suf-
ficiency of the application memory, as well as the ROM memisrimportant.
This check should be done pre-runtime to avoid failuresrgumintime.

In a longer perspective, it is also desirable to be able ttyaagroperties
like reliability and safety. However, these properties@araently deemed too
difficult to address on a component level and traditionalhods (like testing
and reviewing) are considered adequate.

Testable and debuggable

It is required that there exist tools that support debugdioilp at component
level, e.g. a graphical debugging tool showing the comptmiEn and out-
port values, and at the traditional white-box source codrigging level. The
test and debug environment needs to be "component awarké isense that
port-values can be monitored and traced and that brealgpoam be set on
component level.

5.4 Requirements on a Component Technology for Heavy Vehies 45

Testing and debugging is by far the most commonly used tgclerto ver-
ify software systems functionality. Testing is a very imgamt complement
to analysis, and it should not be compromised when intradpaicomponent
technology.

In fact, the ability to test embedded-system software campeoved when
using CBSE. This is possible because the component furaditiprcan be
tested in isolation. This is a desired functionality askedty our industrial
partners. This test should be used before the system testshiz approach
can help finding functional errors and source code bugs aaHeest possible
opportunity.

Portable

The components, and the infrastructure surrounding thbould be platform
independent to the highest degree possible. Here, platfatependent means
hardware independent, RTOS independent and communiqaiidocol inde-
pendent.

Components are kept portable by minimising the number oédédgncies
to the software platform. Such dependencies are off coesessary to con-
struct an executable system, however the dependenciekidhekept to a
minimum, and whenever possible dependencies should beajeda@utomat-
ically by configuration tools.

Ideally, components should also be independent of the copmgdrame-
work used during run-time. This may seem far fetched, siraditionally a
component model has been tightly integrated with its corepbframework.
However, support for migrating components between compioin@meworks
is important for companies cooperating with different ons¢rs, using differ-
ent hardware and operating systems, such as CC Systems.

Resource Constrained

The components should be small and light-weighted and thgpoaents in-
frastructure and framework should be minimised. Idealigré should be no
run-time overhead compared to not using a CBSE approach.

Systems are resource constrained to lower the product&tracal thereby
increase profit. When companies design new ECUSs, futuretjgsdfie main
concern. Therefore the hardware is dimensioned for amtiegpuse but not
more.

46 Paper A

Provided that the customers are willing to pay the extra maebe able
to use more complex software functionality in the futureyenradvanced hard-
ware may be appropriate. This is however seldom the casellyishe cus-
tomers are very cost sensitive. The developer of the harlreaely takes the
extra cost to extend the hardware resources, since themadrgiofit on elec-
tronics development usually is low.

One possibility, that can significantly reduce resourcesoamption of com-
ponents and the component framework, is to limit the possibh-time dy-
namics. This means that it is desirable to allow only stafficline, configured
systems. Many existing component technologies have besgrd® support
high run-time dynamics, where components are added, reinawe recon-
figured at run-time. However, this dynamic behaviour contethe price of
increased resource consumption.

Component Modelling

A component technology should be based on a standard muglédinguage
like UML [16] or UML 2.0 [17]. The main reason for choosing UMk that
it is a well known and thoroughly tested modelling techniguith tools and
formats supported by third-party developers.

The reason for our industrial partners to have specific deisiamthese
details, is that it is belived that the business segment afyheehicles does
not have the possibility do develop their own standards aadtiges. Instead
they preferably relay on the use of simple and mature teclesigupported by
a welth of third party suppliers.

Computational Model

Components should preferably be passive, i.e. they shautld¢dantain their
own threads of execution. A view where components are abact threads
during component assembly is preferred, since this is \mdi¢o enhance
reusability, and to limit resource consumption. The corapanal model should
be focused on a pipe-and-filter model [18]. This is partly tude well known
ability to schedule and analyse this model off-line. Ald® pipes-and-filters
model is a good conceptual model for control applications.

However, experience from VCE shows that the pipe-and-filtedel does
not fit all parts of the system, and that force fitting applimas to the pipe-and-
filter model may lead to overly complex components. Hends,desirable to

5.4 Requirements on a Component Technology for Heavy Vehies 47

have support for other computational models; unfortugatewever, which
models to support is not obvious and is an open question.

5.4.2 Development Requirements

When discussing requirements for CBSE technologies, tbeareh commu-
nity often overlooks requirements related to the develapnpeocess. For
software developing companies, however, these requirenzea at least as
important as the technical requirements. When talking tustry, earning
money is the main focus. This cannot be done without havingffizgient de-
velopment processes deployed. To obtain industrial rediathe development
requirements need to be considered and addressed by th@gentpechnol-
ogy and tools associated with the technology.

Introducible

It should be possible for companies to gradually migrate amnhew develop-
ment technology. It is important to make the change in teldgyoas safe and
inexpensive as possible.

Revolutionary changes in the development technique usedcampany
are associated with high risks and costs. Therefore a ndwodagy should be
possible to divide into smaller parts, which can be intratuseparately. For
instance, if the architecture described in Fig. 5.2 is uieglcomponents can
be used for application development only and independ&ftifie real-time
operating system. Or, the infrastructure can be developedcomponents,
while the application is still monolithic.

One way of introducing a component technology in indusgypistart fo-
cusing on the development process related requirementsn\ifie developers
have accepted the CBSE way of thinking, i.e. thinking in t®mh reusable
software units, it is time to look at available componenttedogies. This
approach should minimise the risk of spending too much mamew initial
phase, when switching to a component technology withouinigathe CBSE
way of thinking.

Reusable

Components should be reusable, e.g., for use in new agphesabr envi-
ronments than those for which they where originally desigii®]. The re-
guirement of reusability can be considered both a techaivdla development

48 Paper A

process related requirement. Development process redated it has to deal
with aspects like version and variant management, iniiskisrand cost when
building up a component repository, etc. Technical sinds felated to as-
pects such as, how to design the components with respece tBT®S and
HW communication, etc.

Reusability can more easily be achieved if a loosely coupt@dponent
technology is used, i.e. the components are focusing ortinaity and do
not contain any direct operating system or hardware depexnele Reusability
is simplified further by using input parameters to the congmts. Parameters
that are fixed at compile-time, should allow automatic reidumcof run-time
overhead and complexity.

A clear, explicit, and well-defined component interface lisctal to en-
hance the software reusability. To be able to replace onepoaent in the
software system, a minimal amount of time should be speirigrio under-
stand the component that should be interchanged.

It is, however, both complex and expensive to build reusabiaponents
for use in distributed embedded real-time systems [1]. Basan for this is
that the components must work together to meet the tempgainements, the
components must be light-weighted since the systems ayaen@sconstrained,
the functional errors and bugs must not lead to erroneoysitaithat follow
the signal flow and propagate to other components and in ttheaurse unsafe
systems. Hence, reuse must be introduced gradually andjvéth care.

Maintainable

The components should be easy to change and maintain, myehatrdevelop-
ers that are about to change a component need to underseafudl impact of
the proposed change. Thus, not only knowledge about commpanterfaces
and their expected behaviour is needed. Also, informatmutcurrent de-
ployment contexts may be needed in order not to break egististems where
the component is used.

In essence, this requirement is a product of the previousinement on
reusability. The flip-side of reusability is that the alyilib reuse and reconfig-
ure the components using parameters leads to an abundatifferaint config-
urations used in different vehicles. The same type of vehiy use different
software settings and even different component or softwarsions. So, by
introducing reuse we introduce more administrative work.

Reusing software components lead to a completely new |dafoware
management. The components need to be stored in a repasiterg different

5.4 Requirements on a Component Technology for Heavy Vehies 49

versions and variants need to be managed in a sufficient wagrtences from
trying to reuse software components show that reuse is \aydnd initially
related with high risks and large overheads [1]. These tgpessts are usually
not very attractive in industry.

The maintainability requirement also includes sufficiedl$ supporting
the service of the delivered vehicles. These tools need toiygponent aware
and handle error diagnostics from components and suppoufpftating soft-
ware components.

Understandable

The component technology and the systems constructeditisinould be easy
to understand. This should also include making the teclyyodasy and intu-
itive to use in a development project.

The reason for this requirement is to simplify evaluatiod &arification
both on the system level and on the component level. Alsqjdiag on an
understandable model makes the development process éamtet is likely
that there will be fewer bugs.

It is desirable to hide as much complexity as possible frogtesy devel-
opers. ldeally, complex tasks (such as mapping signals toaneareas or
bus messages, or producing schedules or timing analysig)jdshe performed
by tools. It is widely known that many software errors ocaurcode that
deals with synchronisation, buffer management and comeations. How-
ever, when using component technologies such code canhandds be au-
tomatically generated; leaving application engineersdal avith application
functionality.

5.4.3 Derived Requirements

Here, we present two implied requirements, i.e. requirdmérat we have
synthesised from the requirements in sections 5.4.1 and,%dt that are not
explicit requirements from the vehicular industry.

Source Code Components

A component should be source code, i.e., no binaries. Thsonsafor this
include that companies are used to have access to the sadega find func-
tional errors, and enable support for white box testing (Sed.1). Since

50 Paper A

source code debugging is demanded, even if a componentiegyris used,
black box components is undesirable.

Using black-box components would, regarding to our indalsprartners,
lead to a feeling of not having control over the system behavi However,
the possibility to look into the components does not necggsaan that you
are allowed to modify them. In that sense, a glass-box commomodel is
sufficient.

Source code components also leaves room for compile-tirtimizations
of components, e.g., stripping away functionality of a comgnt that is not
used in a particular application. Hence, souce code commsméll contribute
to lower resource consumption (Sect. 5.4.1).

Static Configuration

For a component model to better support the technical reménts of analysa-
bility (Sect. 5.4.1), testability (Sect. 5.4.1), and ligheightiness (Sect. 5.4.1),
the component model should be configured pre-runtime, ti.eompile time.
Component technologies for use in the office/Internet darmaually focus on
a dynamic behaviour [8, 9]. This is of course appropriatéhia specific do-
main, where powerful computers are used. Embedded systewsyer, face
another reality - with resource constrained ECU’s runniomplex, depend-
able, control applications. Static configuration shouttbamprove the devel-
opment process related requirement of understandab8iegt(5.4.2), since
there will be no complex run-time reconfigurations.

Another reason for the static configuration is that a typamaitrol node,
e.g. a power train node, does not interact directly with therwat any time.
The node is started when the ignition key is turned on, andrising as a self-
contained control unit until the vehicle is turned off. Henthere is no need to
reconfigure the system during runtime.

5.4.4 Discussion

Reusability is perhaps the most obvious reason to introdwmnponent tech-
nology for a company developing embedded real-time cosfsiems. This
matter has been the most thoroughly discussed subjectgdouininterviews.

However, it has also been the most separating one, sinceétated to the

question of deciding if money should be invested in buildipg repository of
reusable components.

5.5 Conclusions 51

Two important requirements that has emerged during theislssgns with
our industrial partners are safety and reliability. Thegedre, as we see it, not
only associated with the component technology. Insteadre¢bponsibility of
designing safe and reliable system rests mainly on thersydéxeloper. The
technology and the development process should, howewer ggiod support
for designing safe and reliable systems.

Another part that has emerged during our study is the neeaddaality rat-
ing of the components depending on their success when usadjat systems.
This requirement can, e.g., be satisfied using Executiore Hnofiles (ETP’s),
discussed in [20]. By using ETPs to represent the timing tiebaof software
components, tools for stochastic schedulability analyais be used to make
cost-reliability trade offs by dimensioning the resourirea cost efficient way
to achieve the reliability goals. There are also emergiggirements regarding
the possibilities to grade the components depending on sbéivare quality,
using for example different SIL (Safety Integrity Level&]] levels.

5.5 Conclusions

Using software components and a CBSE approach is, by ingdssten as a
promising way to address challenges in product developmeloding integra-
tion, flexible configuration, as well as good reliability gietions, scalability,
reliable reuse, and fast development. However, changiegadftware devel-
opment process to using CBSE does not only have advantagpsciglly in
the short term perspective, introducing CBSE represegtsfi&ant costs and
risks.

The main contribution of this paper is that it straightens snme of the
guestion-marks regarding actual industrial requiremefgsed on a compo-
nent technology. We describe the requirements on a comptewrmology as
elicited from two companies in the business segment of hgalcles. The
requirements are divided in two main groups, the techniegliirements and
the development process related requirements. The reastmid division is
mainly to clarify that the industrial actors are not onlyergsted in technical
solutions, but also in improvements regarding their dguelent process.

The list of requirements can be used to evaluate existingpoment tech-
nologies before introducing them in an industrial conttherefore minimising
the risk when introducing a new development process. This,study can
help companies to take the step into tomorrow’s technologgy. They can
also be used to guide modifications and/or extensions to coerg technolo-

52 Paper A

gies, to make them better suited for industrial deploymeittiizvembedded
system companies.

We will continue our work by evaluating existing softwaremonent tech-
nologies with respect to these requirements. Our initidifigs from this eval-
uation can be found in [22]. Using that evaluation we will §tjdy to what
extent existing technologies can be adapted in order tdthéfrequirements of
this paper, (2) investigate if selected parts of standasidrielogies like tools,
middleware, and message-formats can be reused, (3) malexificgtion of
a component technology suitable for heavy vehicles, anth{ddl a test bed
implementation based on the specification.

Acknowledgements

A special thanks to Nils-Erik Bankestad and Robert Larsson/olvo Con-

struction Equipment, for fruitful discussions and for theeélpfulness during
our stay. We would also like to thank Jérgen Hansson at CGeByssfor inter-

esting discussions, new ideas, and for making this resgaojéct possible.

Bibliography

[1] I. Crnkovic and M. LarssonBuilding Reliable Component-Based Soft-
ware SystemsArtech House publisher, 2002. ISBN 1-58053-327-2.

[2] M. Winter, T. Genssler, et al. Components for Embeddeith&re — The
PECOS Apporach. Iifhe 29 International Workshop on Composition
Languages, in conjunction with the ®&COOPR, June 2002. Malaga,
Spain.

[3] R. van Ommering et al. The Koala Component Model for Consu
Electronics SoftwarelEEE Computer33(3):78—-85, March 2000.

[4] K. C. Wallnau. Volume Ill: A Component Technology for Riietable
Assembly from Certifiable Components. Technical reporfivéare En-
gineering Institute, Carnegie Mellon University, April @®. Pittsburg,
USA.

[5] A. Brown and K. Wallnau. The Current State of CBSIEEEE Software
September/October 1998.

[6] C. Nordstrom, M. Gustafsson, et al. Experiences fromolddicing State-
of-the-art Real-Time Techniques in the Automotive Indystin Eigth
IEEE International Conference and Workshop on the Engingeof
Computer-Based Systemdgoril 2001. Washington, USA.

[7]1 S. R. Schach. Classical and Object-Oriented Software Engineering
McGraw-Hill Science/Engineering/Math; 3rd edition, 1996SBN 0-
256-18298-1.

[8] Microsoft Component Technologies. COM/DCOM/.NET. ghttwww.-
microsoft.com.

53

54 Bibliography

[9] Sun Microsystems. Enterprise Java Beans Technolodp:/fdva.sun.-
com/products/ejb/.

[10] Object Management Group. MinimumCORBA 1.0, August2Q@xtp://-
www.omg.org/technology/documents/formal/minimum_ &2Ehtm.

[11] A. Mdller, J. Froberg, and M. Nolin. What are the needsdomponents
in vehicular systems? — An Industrial Perspective —. Pmceedings
of the Euromicro Conference on Real-Time Systems — WoPkeigress
SessionlEEE Computer Society, July 2003. Porto, Portugal.

[12] International Standards Organisation (ISO). Roadialel — Interchange
of Digital Information — Controller Area Network (CAN) forigh-Speed
Communication, November 1993. vol. ISO Standard 11898.

[13] CiA. CANopen Communication Profile for Industrial Sgsts, Based
on CAL, October 1996. CiA Draft Standard 301, rev 3.0, higpaiw.-
canopen.org.

[14] SAE Standard. SAE J1939 Standards Collection. hitpi.sae.org.

[15] SAE Standard. SAE J1587, Joint SAE/TMC Electronic Datarchange
Between Microcomputer Systems In Heavy-Duty Vehicle Aggiions.
http://www.sae.org.

[16] B. Selic and J. Rumbaugh. Using UML for modelling comgieal-time
systems, 1998. Rational Software Corporation.

[17] Object Management Group. UML 2.0 Superstructure Sipation, The
OMG Final Adopted Specification, 2003. http://www.omg.daml/.

[18] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-
2.

[19] D. Garlan, R. Allen, and J. Ockerbloom. Architecturabmatch or why
it's hard to build systems out of existing parts.Rroceedings of the Sev-
enteenth International Conference on Software Engingefpril 1995.
Seattle, USA.

[20] T. Nolte, A. Méller, and M. Nolin. Using Components tod##tate Sto-
chastic Schedulability. IRroceedings of the 24Real-Time System Sym-
posium — Work-in-Progress SessidBEE Computer Society, December
2003. Cancun, Mexico.

[21] SIL. Safety Integrity Levels — Does Reality Meet The®r2002. Report
f. seminar held at the IEE, London, on 9 April 2002.

[22] A. Méller, M Akerholm, J. Fredriksson, and M. Nolin. Sefare Compo-
nent Technologies for Real-Time Systems — An Industriaspective. In
Proceedings of the 24Real-Time System Symposium — Work-in-Progress
SessionlEEE Computer Society, December 2003. Cancun, Mexico.

Chapter 6

Paper B:

Evaluation of Component
Technologies with Respect to
Industrial Requirements

Anders Méller, Mikael Akerholm, Johan Fredriksson and Mikslolin
In Proceedings of the $0Euromicro Conference, Component-Based Software
Engineering Track, pages: 56-63, Rennes, France, AugQ4t 20

57

Abstract

We compare existing component technologies for embeddsdrag with re-
spect to industrial requirements. The requirements aleatetd from the ve-
hicular industry, but our findings are applicable to simitatustries developing
resource constrained safety critical embedded distribreal-time computer
systems.

One of our conclusions is that none of the studied technefoigi a per-
fect match for the industrial requirements. Furthermocesingle technology
stands out as being a significantly better choice than thergiteach technol-
ogy has its own pros and cons.

The results of our evaluation can be used to guide modificatar ex-
tensions to existing technologies, making them betteeduitr industrial de-
ployment. Companies that want to make use of componentlssfevare

engineering as available today can use this evaluatiorleéatse suitable tech-
nology.

6.1 Introduction 59

6.1 Introduction

Component-Based Software Engineering (CBSE) has recaiveth attention

during the last couple of years. However, in the embeddsterydomain, use
of component technologies has had a hard time gaining aaoeptsoftware-

developers are still, to a large extent, using monolithit platform-dependent
software technologies.

We try to find out why embedded-software developers have mbraced
CBSE as an attractive tool for software development. We dolth evaluat-
ing a set of component technologies with respect to indalsteiquirements.
The requirements have been collected from industrial actathin the busi-
ness segment of heavy vehicles, and have been presentedarevious work
[1]. Examples of heavy vehicles include wheel loaders, exitas, forest har-
vesters, and combat vehicles. The software systems dedklijihin this
market segment can be characterised as resource condirsatfety critical,
embedded, distributed, real-time, control systems. Oulirfiys in this study
should be applicable to other domains with similar charésttes.

Our evaluation, between requirements and existing tecigied, does not
only help to answer why component-based development haghbeen em-
braced by the embedded-systems community. It also helgsiderttify what
parts of existing technologies could be enhanced, to maa thore appropri-
ate for embedded-system developers. Specifically, it Wilaus to select a
componenttechnology that is a close match to the requiresnemd if needed,
guide modifications to that technology.

The reason for studying component-based development ifirtiglace,
is that software developers can achieve considerabledmsirenefits in terms
of reduced costs, shortened time-to-market and increadbtgiase quality by
applying a suitable component technology. The componehhi@ogy should
rely on powerful design and compile-time mechanisms anglgirand pre-
dictable run-time behaviour.

There is however significant risks and costs associatedtéthdoption of
a new development technique (such as component-baseddmezit). These
must be carefully evaluated before introduced in the dgraént process. One
of the apparent risks is that the selected component teagpalirns out to be
inappropriate for its purpose; hence, the need to evalwagponent technolo-
gies with respect to requirements expressed by softwardajgers.

60 Paper B

6.2 Requirements

The requirements discussed and described in this sectobamed on a pre-
viously conducted investigation [1]. The requirementaibin that investiga-
tion are divided into two main groups, the technical requieats (Sect. 6.2.1)
and the development process related requirements (S2@).61n addition,
Sect. 6.2.3 contains derived requirements, i.e. requinésrtbat we have syn-
thesised from the requirements in sections 6.2.1 and 6&.that are not ex-
plicitly stated requirements from the vehicular industty; [

6.2.1 Technical Requirements

The technical requirements describe industrial needs asitess regarding
technical aspects and properties of a component technology

Analysable

System analysis, with respect to non-functional propgrsech as timing be-
haviour and memory consumption is considered highly attaclin fact, it is
one of the single most distinguished requirements foundimirvestigation.

When analysing a system built from well-tested, functibnedrrect, com-
ponents, the main issue is associated with composabilitye domposition
process must ensure that non-functional properties, ssitcheacommunica-
tion, synchronisation, memory, and timing charactersst€ the system, are
predictabe [2].

Testable and debugable

It is required that tools exist that support debugging, taitbomponent level
(e.g., a graphical debugging tool), as well as on source [veé
Testing and debugging is one of the most commonly used tqubsito

verify software systems functionality. Testing is a verypontant comple-
ment to analysis, and testability should not be compromigeeh introducing
a component technology. Ideally, the ability to test emleeldslystem software
should be improved when using CBSE, since it adds the abilitgst compo-
nents in isolation.

6.2 Requirements 61

Portable

The components, and the infrastructure surrounding thbould be platform
independentto the highest degree possible. Here, platfmlependency means
(1) hardware independent, (2) real-time operating systeiOS) indepen-
dent and (3) communications protocol independent. The comapts are kept
portable by minimising the number of dependencies to thevsoé platform.
Eventually such dependencies are off course necessaryngirgot an exe-
cutable system, however the dependencies should be kephioiraum, and
whenever possible dependencies should be generated digtaipdy config-
uration tools.

Resource Constrained

The components should be small and light-weighted and thgoaents in-
frastructure and framework should be minimised. Idealgréhshould be no
run-time overhead compared to not using a CBSE approachivwdae used in
embedded real-time systems is usually resource congtrdméwer produc-
tion cost and thereby increase profit.

One possibility, that significantly can reduce resourcesoamption of com-
ponents and the component framework, is to limit run-timaaiyics. This
means that it is desirable only to allow static, off-linenfigured systems.
Many existing component technologies have been designpjoostihigh run-
time dynamics, where components are added, removed andfigao@d dur-
ing run-time.

Component Modelling

The component modelling should be based on a standard rmapelhguage
like UML [3] or UML 2.0 [4]. The main reason to choose a stardiéite UML
is that it is well known and thoroughly tested, with tools dadnats supported
by many third-party developers. The reason for the vehidntiustry to have
specific demands in this detalil, is that this business segduoas not have the
knowledge, resources or desire to develop their own stasdard practices.

Computational Model

Components should preferably be passive, i.e. they shatld¢antain their
own threads of execution. A view where components are dkadct threads

62 Paper B

during component assembly is preferred, since this is quioe#ly simple, and
also believed to enhance reusability.

The computational model should be focused on a pipes-aedsfinodel
[5]. This is partly due to the well known ability to scheduledaanalyse this
model off-line. Also, the pipes-and-filters model is a gooticeptual model
for control applications.

6.2.2 Development Requirements

When discussing component-based development with idusvelopment pro-
cess requirements are at least as important as the techeigaiements. To
obtain industrial reliance, the development requiremeats to be addressed
by the component technology and its associated tools.

Introducible

Appropriate support to gradually migrate to a new techngplstgpuld be pro-
vided by the component technology. It is important to male ¢hange in
development process and techniques as safe and inexpaagiessible. Rev-
olutionary changes in development techniques are asedcigith high risks

and costs. Therefore a new technology should be possibieittednto smaller

parts, which can be introduced incrementally. Another esppe make a tech-
nology introducible, is to allow legacy code within systedesigned with the
new technology.

Reusable

Components should be reusable, e.g., for use in new apphsabr environ-
ments than those for which they where originally designédRR@usability can
more easily be achieved if a loosely coupled component tdolyy is used,
i.e. the components are focusing on functionality and danotain any direct
operating system or hardware dependencies. Reusabifitytreer enhanced
by the possibility to use configuration parameters to corepts
A clear, explicit, and well-defined component interface rigcial to en-

hance the software reusability. Also, specification of fiametional proper-
ties and requirements (such as execution time, memory udegédlines, etc.)
simplify reuse of components since it makes (otherwise)itcit@ssumptions
explicit. Behavioural descriptions (such as state diagraminteraction dia-
grams) of components can be used to further enhance ratsabil

6.2 Requirements 63

Maintainable

The components should be easy to change and maintain, gevelthat are
about to change a component need to understand the full tnopaéice pro-

posed change. Thus, not only knowledge about componenfaoés and their
expected behaviour is needed. Also, information aboutectirdeployment
contexts may be needed in order not to break existing systéims compo-
nents can be stored in a repository where different versodsvariants need
to be managed in a sufficient way. The maintainability regmient also in-
cludes sufficient tools supporting the service of deployedi delivered prod-
ucts. These tools need to be component aware and handledagmostics
from components and support for updating software comptsnen

Understandable

The component technology and the systems constructeditisinould be easy
to understand. This should also include making the teclyyodasy and intu-
itive to use in a development project.

The reason for this requirement is to simplify evaluatiod agrification
both on the system level and on the component level. Focusiran under-
standable model makes the development process fasteriatillaty that there
will be fewer bugs. This requirement is also related to theoiucible require-
ment (Sect. 6.2.2) since an understandable technique isimooducible.

It is desirable to hide as much complexity as possible frogtesy devel-
opers. Ideally, complex tasks (such as mapping signals taneareas or bus
messages, or producing schedules or timing analysis) d@uberformed by
tools.

6.2.3 Derived Requirements

Here, we present requirements that we have synthesisedtieraquirements
in sections 6.2.1 and 6.2.2, but that are not explicit resnénts from industry.

Source Code Components

A component should be source code, i.e., no binaries. Coiepare used to
have access to the source code, to find functional errorseaaldle support
for white box testing (Sect. 6.2.1). Since source code dginggs demanded,
even if a component technology is used, black box comporentelesirable.

64 Paper B

However, the desire to look into the components does notssacg imply a
desire to be allowed to modify thém.

Using black-box components would lead to a fear of loosingtrab over
the system behaviour (Sect. 6.2.2). Provided that all corapts in the systems
are well tested, and that the source code are checked, dedfid qualified for
use in the specific surrounding, the companies might alietieeir source code
availability.

Also with respect to the resource constrained requiren®ett(6.2.1),
source code components allow for unused parts of the compdoode re-
moved at compile time.

Static Configurations

Better support for the technical requirements of analy$al{iSect. 6.2.1),
testability (Sect. 6.2.1), and resource consumption ($e2tl1), are achieved
by using pre-runtime configuration. Here, configuration nseboth config-
uration of component behaviour and interconnections batwemponents.
Component technologies for use in the Office/Internet danogually focus
on dynamic configurations [7, 8]. This is of course apprdpria these spe-
cific domains, where one usually has access to ample resouErabedded
systems, however, face another reality; with resourcetcained nodes run-
ning complex, dependable, control applications.

However, most vehicles can operate in different modes, éndrectechnol-
ogy must support switches between a set of statically corgfthonodes. Static
configuration also improves the development process telaguirement of
understandability (Sect. 6.2.2), since each possible goration is known be-
fore run-time.

6.3 Component Technologies

In this section, existing component technologies for endleedsystems are
described and evaluated. The technologies originate lboth &cademia and
industry. The selection criterion for a component techgglbas firstly been
that there is enough information available, secondly thatiuthors claim that

1This can be view as a "glass box" component model, where #ilplesto acquire a "use-only"
license from a third party. This license model is today qoitenmon in the embedded systems
market.

6.3 Component Technologies 65

the technology is suitable for embedded systems, and finadlfave tried to
achieve a combination of both academic and industrial telcigies.

The technologies described and evaluated are PECT, KoatteisSRCompo-
nent Model, PBO, PECOS and CORBA-CCM. We have chosen CORBMC
to represent the set of technologies existing in the PGArtedomain (other
examples are COM, .NET [7] and Java Enterprise Beans [8fesihis the
only technology that explicitly address embedded and tiea-issues. Also,
the Windows CE version of .NET [7] is omitted, since it is teted towards
embedded display-devices, which only constitute a smaksuof the devices
in vehicular systems. The evaluation is based on existinigligally available,
documentation.

6.3.1 PECT

A Prediction-Enabled Component Technology (PECT) [9] i@edopment in-
frastructure that incorporates developmenttools and/aisgechniques. PECT
is an ongoing research project at the Software Engineenmstguite (SEI) at the
Carnegie Mellon University. The project focuses on analysis; however, the
framework does not include any concrete theories - rath&mnitiens of how
analysis should be applied. To be able to analyse systemg B&CT, proper
analysis theories must be found and implemented and a Ruitaiolerlying
component technology must be chosen.

A PECT include an abstract model of a component technologysist-
ing of a construction framework and a reasoning frameworkcdncretise a
PECT, it is necessary to choose an underlying componemaéady, define
restrictions on that technology (to allow predictions)ddimd and implement
proper analysis theories. The PECT concept is highly ptataince it does
not include any parts that are bound to a specific platforrirbpractise the
underlying technology may hinder portability. For modwdfior describing a
component-based system, the Construction and Compokgioguage (CCL)
[9] is used. The CCL is not compliant to any standards. PECighly in-
troducible, in principle it should be possible to analyseast pf an existing
system using PECT. It should be possible to gradually maager parts of a
system using PECT. A system constructed using PECT can fieuttifo un-
derstand; mainly because of the mapping from the abstracpooent model
to the concrete component technology. It is likely that eyt looking identi-
cal at the PECT-level behave differently when realised fieidint component
technologies.

2Software Engineering Institute, CMU; http://www.sei.creau

66 Paper B

PECT is an abstract technology that requires an underlyimgponent
technology. For instance, how testable and debugable amsyist depends
on the technical solutions in the underlying run-time systéResource con-
sumption, computational model, reusability, maintaitighiblack- or white-
box components, static- or dynamic-configuration are atdgossible to de-
termine without knowledge of the underlying component tetbgy.

6.3.2 Koala

The Koala component technology [10] is designed and usedhilip$® for
development of software in consumer electronics. Typjcalbnsumer elec-
tronics are resource constrained since they use cheap dardovkeep devel-
opment costs low. Koala is a light weight component techggltailored for
Product Line Architectures [11]. The Koala components cd@ract with the
environment, or other components, through explicit irtees. The compo-
nents source code is fully visible for the developers, heré¢ are no binaries
or other intermediate formats. There are two types of iate$ in the Koala
model, the provides- and the requires- interfaces, witlséime meaning as in
UML 2.0 [4]. The provides interface specify methods to asctb& compo-
nent from the outside, while the required interface definkatis required by
the component from its environment. The interfaces areatht connected at
design time.

One of the primary advantages with Koala is that it is reseaemmstrained.
In fact, low resource consumption was one of the requiremeansidered
when Koala was created. Koala use passive components taltbta active
threads during compile-time; they interact through a piged-filters model.
Koala uses a construction called thread pumps to decreaseithber of pro-
cesses in the system. Components are stored in librarigssupport for ver-
sion numbers and compatibility descriptions. Furtherntomaponents can be
parameterised to fit different environments.

Koala does not support analysis of run-time propertieseReh has pre-
sented how properties like memory usage and timing can liigbee in gen-
eral component-based systems, but the thread pumps usedlmidight cause
some problems to apply existing timing analysis theoriezal& has no explicit
support for testing and debugging, but they use source amdpanents, and a
simple interaction model. Furthermore, Koala is impleradribr a specific op-
erating system. A specific compiler is used, which routemédr-component

3Phillips International, Inc; Home Page http://www.phiflicom

6.3 Component Technologies 67

and component to operating system interaction through&oahnectors. The
modelling language is defined and developed in-house, andifficult to see
an easy way to gradually introduce the Koala concept.

6.3.3 Rubus Component Model

The Rubus Component Model (Rubus CM) [12] is developed byiéus sys-
tems? The component technology incorporates tools, e.g., a sit&ednd a
graphical tool for application design, and it is tailoredfesource constrained
systems with real-time requirements. The Rubus Operatysie$ (Rubus
0S) [13] has one time-triggered part (used for time-critiad real-time ac-
tivities) and one event-triggered part (used for less tariteal soft real-time
activities). However, the Rubus CM is only supported by fheettriggered
part.

The Rubus CM runs on top of the Rubus OS, and the componentimode
requires the Rubus configuration compiler. There is sugpodifferent hard-
ware platforms, but regarding to the requirement of politsl(Sect. 6.2.1),
this is not enough since the Rubus CM is too tightly coupleth® Rubus
OS. The Rubus OS is very small, and all component and portgumation is
resolved off-line by the Rubus configuration compiler.

Non-functional properties can be analysed during desing-since the
component technology is statically configured, but timinglgsis on compo-
nent and node level (i.e. schedulability analysis) is tHg analysable property
implemented in the Rubus tools. Testability is facilitabydstatic scheduling
(which gives predictable execution patterns). Testindtinetional behaviour
is simplified by the Rubus Windows simulator, enabling exiecuon a regular
PC.

Applications are described in the Rubus Design Languagighafa non-
standard modelling language. The fundamental buildingkdare passive.
The interaction model is the desired pipes-and-filterst{$e2.1). The graphi-
cal representation of a system is quite intuitive, and theuRICM itself is also
easy to understand. Complexities such as schedule gamesatil synchroni-
sation are hidden in tools.

The components are source code and open for inspection.udowigere is
no support for debugging the application on the componeet.l&he compo-
nents are very simple, and they can be parameterised towafre possibility
to change the component behaviour without changing the oot source
code. This enhances the possibilities to reuse the compsmnen

4Arcticus Systems; Home Page http://www.arcticus.se

68 Paper B

Smaller pieces of legacy code can, after minor modificatibasencapsu-
lated in Rubus components. Larger systems of legacy codbearecuted as
background service (without using the component concefitrong guaran-
tees).

6.3.4 PBO

Port Based Objects (PBO) [14] combines object orientecgdesiith port au-
tomaton theory. PBO was developed as a part of the Chimerea€pg Sys-
tem (Chimera OS) project [15], at the Advanced Manipulataisoratory at
Carnegie Mellon University.Together with Chimera, PBO forms a framework
aimed for development of sensor-based control systemis,spicialisation in
reconfigurable robotics applications. One important géahe work was to
hide real-time programming and analysis details. Anothptieit design goal
for a system based on PBO was to minimise communication amchsgnisa-
tion, thus facilitating reuse.

PBO implements analysis for timeliness and facilitatessaural models
to ensure predictable communication and behaviour. Howvévere are few
additional analysis properties in the model. The commuitinaand compu-
tation model is based on the pipes-and-filters model, toatigiistribution in
multiprocessor systems the connections are implementgtbhal variables.
Easy testing and debugging is not explicitly addressed. ¢¥ew the technol-
ogy relies on source code components and therefore testimgsource code
level is achievable. The PBOs are modular and loosely cdupleach other,
which admits easy unit testing. A single PBO-componengistly coupled to
the Chimera OS, and is an independent concurrent process.

Since the components are coupled to the Chimera OS, it capeneasily
introduced in any legacy system. The Chimera OS is a largelgnamically
configurable operating system supporting dynamic binding,not resource
constrained.

PBO is a simple and intuitive model that is highly understid, both
at system level and within the components themselves. Tedupling be-
tween the components makes it easy to modify or replace &siject. PBO
is built with active and independent objects that are cotatbwith the pipes-
and-filters model. Due to the low coupling between compaotmrbugh sim-
ple communication and synchronisation the objects can bsidered to be
highly reusable. The maintainability is also affected inomgjway due to the

SCarnegie Mellon University; Home Page http://iwww.cmu.edu

6.3 Component Technologies 69

loose coupling between the components; it is easy to modifgglace a single
component.

6.3.5 PECOS

PECOS (PErvasive COmponent Systems) [16, 17] is a collaboratiogept
between ABB Corporate Research Cehtaad academia. The goal for the
PECOS project was to enable component-based technolotyyapipropri-
ate tools to specify, compose, validate and compile soéviar embedded
systems. The component technology is designed espeailfiefd devices,
i.e. reactive embedded systems that gathers and analys®idatensors and
react by controlling actuators, valves, motors etc. Funtwge, PECOS is
analysable, since much focus has been put on non-functiwopérties such
as memory consumption and timeliness.

Non-functional properties like memory consumption and sixmase exe-
cution-times are associated with the components. Thesasackby different
PECOS tools, such as the composition rule checker and teelstehgenerating
and verification tool. The schedule is generated using tferimation from
the components and information from the composition. THedale can be
constructed off-line, i.e. a static pre-calculated sctesdar dynamically during
run-time.

PECOS has an execution model that describes the behaviauiedfl de-
vice. The execution model deals with synchronisation amihtj related is-
sues, and it uses Petri-Nets [18] to model concurrent sietviilke component
compositions, scheduling of components, and synchraaisaf shared ports
[19]. Debugging can be performed using COTS debugging anaitoring
tools. However, the component technology does not suppitigging on
component level as described in Sect. 6.2.1.

The PECOS component technology uses a layered softwariesichne,
which enhance portability (Sect. 6.2.1). There is a Runeltmvironment
(RTE) that takes care of the communication between the egtjin specific
parts and the real-time operating system. The PECOS comptaahnology
uses a modelling language that is easy to understand, howevstandard
language is used. The components communicate using a dataiflented
interaction, it is a pipes-and-filters concept, but the congmt technology uses
a shared memory, contained in a blackboard-like structure.

8PECOS Project, Home Page: http://www.pecos-project.org/
"ABB Corporate Research Centre in Ladenburg, Home Page//Witpv.abb.com/

70 Paper B

Since the software infrastructure does not depend on amyjfedeardware
or operating system, the requirement of introducabiligatS6.2.2) is to some
extent fulfilled. There are two types of components, leaf ponents (black-
box components) and composite components. These compgaranbe pas-
sive, active, and eventtriggered. The requirement of opesis not considered
fulfilled, due to the fact that PECOS uses black-box comptmdn later re-
leases, the PECOS project is considering to use a more opgyor@nt model
[20]. The devices are statically configured.

6.3.6 CORBA Based Technologies

The Common Object Request Broker Architecture (CORBA) isddheware
architecture that defines communication between nodes. B2QRovides a
communication standard that can be used to write platfodapendent appli-
cations. The standard is developed by the Object Manage@reni? (OMG).
There are different versions of CORBA available, e.g., MinmCORBA [21]
for resource constrains systems, and RT-CORBA [22] fortamitical systems.

RT-CORBA is a set of extensions tailored to equip Object RstBrokers
(ORBs) to be used for real-time systems. RT-CORBA suppoificit thread
pools and queuing control, and controls the use of procgssanory and net-
work resources. Since RT-CORBA adds complexity to the stethCORBA,
it is not considered very useful for resource-constrairyestesns. Minimum-
CORBA defines a subset of the CORBA functionality that is nsurigable for
resource-constrained systems, where some of the dynasmieduced.

OMG has defined a CORBA Component Model (CCM) [23], which ex-
tends the CORBA object model by defining features and sesvftat enables
application developers to implement, mange, configure aplog compo-
nents. In addition the CCM allows better software reusedorer-applications
and provides a greater flexibility for dynamic configuratadrCORBA appli-
cations.

CORBA is a middleware architecture that defines commurupdietween
nodes, independent of computer architecture, operatiatgsyor program-
ming language. Because of the platform and language indepee CORBA
becomes highly portable. To support the platform and laggirrdependence,
CORBA implements an Object Request Broker (ORB) that duringtime
acts as a virtual bus over which objects transparently acterith other ob-
jects located locally or remote. The ORB is responsible fatifig a requested

80bject Management Group. CORBA Home Page. http://www.ongécorba/

6.4 Summary of Evaluation 71

objects implementation, make the method calls and carryethigonse back to
the requester, all in a transparent way. Since CORBA run dunally any plat-
form, legacy code can exist together with the CORBA techgwld his makes
CORBA highly introducible.

While CORBA is portable, and powerful, it is very run-timendanding,
since bindings are performed during run-time. Because @frtim-time de-
cisions, CORBA is not very deterministic and not analysatith respect to
timing and memory consumption. There is no explicit modellianguage for
CORBA. CORBA uses a client server model for communicatioimerg each
object is active. There are no non-functional propertiesnyr specification of
interface behaviour. All these things together make reasddr. The main-
tainability is also suffering from the lack of clearly spiéeil interfaces.

6.4 Summary of Evaluation

In this section we assign numerical grades to each of the ooerg technolo-
gies described in Sect. 6.3, grading how well they fulfil eatlthe require-
ments of Sect. 6.2. The grades are based on the discussionasiged in
Sect. 6.3. We use a simple 3 level grade, where 0 means thetghegement
is not addressed by the technology and is hence not fulfilledeans that the
requirement is addressed by the technology and/or thatrigaiba fulfilled,
and 2 means that the requirement is addressed and is satigfadfilled. For
PECT, which is not a complete technology, several requirgsngepended on
the underlying technology. For these requirements we dassign a grade
(indicated with NA, Not Applicable, in Fig. 6.1). For the CBR-based tech-
nologies we have listed the best grade applicable to anyedE®RBA flavours
mentioned in Sect. 6.3.6.

For each requirement we have also calculated an average. grag grade
should be taken with a grain of salt, and is only interestfngis extremely
high or extremely low. In the case that the average grade fegairement is
extremely low, it could either indicate that the requiremrisrvery difficult to
satisfy, or that component-technology designers haveipagty little atten-
tion.

In the table we see that only two requirements have averagegrbelow
1.0. The requirement "Component Modelling" has the gradg @rfd "Testing
and debugging” has 1.0. We also note that no requiremenesdaery high
grade (above 1.5). This indicate that none of the requirénverhave listed
are general (or important) enough to have been consideratl bgmponent-

72 Paper B

Analysable

Testable and debugable
Resource Constrained
Component Modelling
Computational Model
Introducible

Reusable

Maintainable
Understandable

Source Code Components
Static Configuration
Average

Number of 2's

Number of 0's

PECT NA 2 NA 0 NA 2 NA NA 0 NA NA 12 3 2
Koala 1 1 2 0 2 0 2 2 2 2 2 13 7 3
Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 13 52
PBO 2 1 0 0 0 1 1 1 1 2 2 [0 0.9 3 4
PECOS 2 1 2 2 0 2 1 2 1 2 0 14 7 2
CORBA Based Technologies 0 1 2 0 0 0 2 0 0 1 0 g 05 2 8
Average 12 10 12 12 00 14 14 12 10 15 122 11 43 35

Figure 6.1: Grading of component technologies with respet¢he require-
ments

technology designers. However, if ignoring CORBA (whichnist designed
for embedded systems) and PECT (which is not a complete coempdech-
nology) we see that there are a handful of our requiremeatstie addressed
and at least partially fulfilled by all technologies.

We have also calculated an average grade for each compecenbiogy.
Again, the average cannot be directly used to rank techied@nongst each
other. However, the two technologies PBO and CORBA standasutaving
significantly lower average values than the other techrie®ogThey are also
distinguished by having many 0’s and few 2’s in their gradedicating that
they are not very attractive choices. Among the completbrtelogies with
an average grade above 1.0 we notice Rubus and PECOS as heingst
complete technologies (with respect to this set of requénis) since they have
the fewest 0’s. Also, Koala and PECOS can be recognised dsd¢haologies
with the broadest range of good support for our requiremeirtse they have
the most number of 2’s.

However, we also notice that there is no technology thati$ulfiot even
partially) all requirements, and that no single technoletands out as being
the preferred choice.

6.5 Conclusion 73

6.5 Conclusion

In this paper we have compared some existing componentaéaias for em-
bedded systems with respect to industrial requirementsr@duirements have
been collected from industrial actors within the busineggreent of heavy ve-
hicles. The software systems developed in this segmenteamdracterised
as resource constrained, safety critical, embeddediklistd, real-time, con-
trol systems. Our findings should be applicable to softwanetbpers whose
systems have similar characteristics.

We have noticed that, for a component technology to be fudbepted by
industry, the whole systems development context needs twbhsidered. It
is not only the technical properties, such as modelling, puatattion model,
and openness, that needs to be addressed, but also devetapmqérements
like maintainability, reusability, and to which extentstpossible to gradually
introduce the technology. It is important to keep in mindtthacomponent
technology alone cannot be expected to solve all thesesshowever a tech-
nology can have more or less support for handing the issues.

The result of the investigation is that there is no componecitinology
available that fulfil all the requirements. Further, no $ingomponent tech-
nology stands out as being the obvious best match for theéresgents. Each
technology has its own pros and cons. It is interesting totkaemost re-
quirements are fulfilled by one or more techniques, whichliespthat good
solutions to these requirements exist.

The question, however, is whether it is possible to combahgtions from
different technologies in order to achieve a technology thHils all listed
requirements? Our next step is to assess to what exteningxisthnolo-
gies can be adapted in order to fulfil the requirements, orthéreselected
parts of existing technologies can be reused if a new comydeehnology
needs to be developed. Examples of parts that could be rewsefiile and
message formats, interface description languages, orlewdde specifica-
tions/implementations. Further, for a new/modified tedbgpto be accepted
it is likely that it have to be compliant to one (or even morarttone) existing
technology. Hence, we will select one of the technologiestanto make as
small changes as possible to that technology.

Bibliography

Bibliography

[1] A. Mdller, J. Froberg, and M. Nolin. Industrial Requiremts on Com-
ponent Technologies for Embedded SystemsPioceedings of the''?
International Symposium on Component-Based Softwarengagng
2004 Proceedings Series: Lecture Notes in Computer Scigoke&054,
May 2004. Edinburgh, Scotland.

[2] I. Crnkovic and M. LarssonBuilding Reliable Component-Based Soft-
ware SystemsArtech House publisher, 2002. ISBN 1-58053-327-2.

[3] B. Selic and J. Rumbaugh. Using UML for modelling comptezl-time
systems, 1998. Rational Software Corporation.

[4] Object Management Group. UML 2.0 Superstructure Spetifin, The
OMG Final Adopted Specification, 2003. http://www.omg.¢aml/.

[5] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-
2.

[6] D. Garlan, R. Allen, and J. Ockerbloom. Architecturakmiatch or why
it's hard to build systems out of existing parts.Rroceedings of the Sev-
enteenth International Conference on Software Engingefypril 1995.
Seattle, USA.

[7] Microsoft Component Technologies. COM/DCOM/.NET. ghttwww.-
microsoft.com.

[8] Sun Microsystems. Enterprise Java Beans Technolodp:/kdva.sun.-
com/products/ejb/.

74

Bibliography 75

[9] K. C. Wallnau. Volume Ill: A Component Technology for Riietable
Assembly from Certifiable Components. Technical reporfivare En-
gineering Institute, Carnegie Mellon University, April @B. Pittsburg,
USA.

[10] R. van Ommering et al. The Koala Component Model for Comear
Electronics SoftwarelEEE Computer33(3):78-85, March 2000.

[11] P. Clements and L. NorthropSoftware Product Lines: Practices and
Patterns Addison-Wesley, 2001. ISBN 0-201-70332-7.

[12] K.L.Lundbéck, J. Lundbéack and M. Lindberg. ComponBased Devel-
opment of Dependable Real-Time Applications Real-Time in Sweden
— Presentation of Component-Based Software DevelopmeetBm the
Rubus concept, Arcticus Systems: http://www.arcticu¥/&steras, Swe-
den.

[13] K.L.Lundbéack. Rubus OS Reference Manual — General €ptsc Arcti-
cus Systems: http://www.arcticus.se.

[14] D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of @ymically Re-
configurable Real-Time Software Using Port-Based Obj¢EtsE Trans-
actions on Software Engineeringages 759 — 776, December 1997.

[15] P.K. Khosla et al. The Chimera Il Real-Time Operatingt®yn for Ad-
vanced Sensor-Based Control ApplicatiohBEE Transactions on Sys-
tems 1992. Man and Cybernetics.

[16] M. Winter, T. Genssler, et al. Components for Embeddafth&re — The
PECOS Apporach. IThe 29 International Workshop on Composition
Languages, in conjunction with the ®&COOPR June 2002. Malaga,
Spain.

[17] T. Genssler, A. Christoph, B. Schuls, M. Winter, et aEGOS in a Nut-
shell. PECOS project http://www.pecos-project.org.

[18] M. Sgroi. Quasi-Static Scheduling of Embedded Sofendsing Free-
Choice Petri Nets. Technical report, University of Califiarat Berkely,
May 1998. Berkely, USA.

[19] O. Nierstrass, G. Arevalo, S. Ducasse, et al. A CompbMadel for
Field Devices. IrProceedings of the First International IFIP/ACM Work-
ing Conference on Component Deploymdnne 2002. Germany.

[20] R. Wuyts and S. Ducasse. Non-functional requirements tcomponent
model for embedded systems.liternational Workshop on Specification
and Verification of Component-Based Syste2081. OPPSLA.

[21] Object Management Group. MinimumCORBA 1.0, August206tp://-
www.omg.org/technology/documents/formal/minimum_@&2Ehtm.

[22] D.C. Schmidt, D.L. Levine, and S. Mungee. The Designhef tao real-
time object request broke€omputer Communications Journ&ummer
1997.

[23] CORBA Component Model 3.0. Object Management GroupeR002.
http://www.omg.org/technology/documents/formal/caments.htm.

Chapter 7

Paper C:

Towards a Dependable
Component Technology for
Embedded System
Applications

Mikael Akerholm, Anders Méller, Hans Hansson and Mikael iNol
To Appear in Pre-Prints of the Proceedings of the Workshaplgject-Oriented
Real-Time Dependable Systems, Sedona, Arizona, USA, BebR005

77

Abstract

Component-Based Software Engineering is a technique tsapiroven effec-
tive to increase reusability and efficiency in developmédnoflice and web
applications. Though being promising also for developnoémbedded and
dependable systems, the true potential in this domain hgsehbeen realized.
In this paper we present a prototype component technoleggldped with
safety-critical automotive applications in mind. The teglogy is illustrated
by a case-study, which is also used as the basis for an eiaiw@aitd a discus-
sion of the appropriateness and applicability in the caergid domain. Our
study provides initial positive evidence of the suitakitif our technology, but
does also show that it needs to be extended to be fully aftdiéa an indus-
trial context.

7.1 Introduction 79

7.1 Introduction

Software is central to enable functionality in modern efauic products, but
it is also the source of a number of quality problems and diss a major

part of the development cost. This is further accentuatethbyincreasing
complexity and integration of products. Improving qualitgd predictabil-

ity of Embedded Computer Systems (ECS) are prerequisitésctease, or
even maintain, profitability. Similarly, there is a call fpredictability in the

ECS engineering processes; keeping quality under conttole at the same
time meeting stringent cost and time-to-market constsaifhis calls for new
systematic engineering approaches to design, developnamdain ECS soft-
ware. Component-Based Software Engineering (CBSE) is auelchnique,
currently used in office applications, but with a still ungea potential for em-
bedded dependable software systems. In CBSE, softwareuigtisied into

components and systems are constructed by composing andatony these
components. CBSE can be seen as an extension of the ohjetesk ap-

proach, where components may have additional interfacepaced to tradi-
tional method invocation of objects. Similarly to objectBnpler components
can be aggregated to produce more complex components.

In this paper, we present the ongoing work of devising a carepbtech-
nology for distributed, embedded, safety critical, dedid, resource con-
strained real-time systems. Systems with these charsiiterare common in
most modern vehicles and in the robotics and automatiorsinés. Hence, we
cooperate with leading product companies (e.g. ABB, Bomileaand Volvo)
and some of their suppliers (e.g. CC Systems) in order tdkstethis novel
component technology.

Support for dependability can be added at many differentadttion levels
(e.g. the source code and the operating system levels). oAt legel, differ-
ent methods and techniques can be used to increase the dbpindf the
system. Our hypothesis is that dependability, togethér aiher key charac-
teristics, such as resource efficiency and predictabsgitypuld be introduced
early in the software process and supported through alestafthe process.
Our view is that dependability, and similar cross-cuttihgmcteristics, cannot
be achieved by addressing only one abstraction level or basepin the soft-
ware life-cycle. Further, we argue that dependability steyns is enhanced by
systematic application of code synthesis. For code syisth@®dels of com-
ponent behaviour and their resource requirements togedtieapplication re-
quirements and models of the underlying hardware and dpgrsystem are
used. The models and requirements are used by resourcen@ng &inalysis

80 Paper C

algorithms to ensure that a feasible system is generated.

In this paper, we present the current implementation of aunponent
technology (Section 7.3), together with an example apftinghat illustrates
its use (Section 7.4). Based on experiences with the exaamplécation, we
provide an evaluation of the technology (Section 7.5).

7.2 CBSE for Embedded Systems

Research in the CBSE community is targeting theories, ps@se technolo-
gies, and tools, supporting and enhancing a componentloEségn strategy
for software. A component-based approach for softwareldpweent distin-

guishescomponent developmeiindbm system developmer@omponent devel-
opment is the process of creating components that can beanseckused in
many applications. System development with componentsriserned with

assembling components into applications that meet themsystquirements.
The central technical concepts of CBSE in an embedded gettan

Software componentsthat have well specified interfaces, and are easy to un-
derstand, adapt and deliver. Especially for embeddedragstiie com-
ponents must have well specified resource requirementglaasspec-
ification of other, for the application relevant propertiesy., timing,
memory consumptions, reliability, safety, and dependtsbil

Component modelsthat define different component types, their possible in-
teraction schemes, and clarify how different resourcebauad to com-
ponents. For embedded systems the component models shquide
design restrictions so that systems built from componeaetpiedictable
with respect to important properties in the intended domain

Component frameworks i.e., run-time systems that supports the components
execution by handling component interactions and invooatf the dif-
ferent services provided by the components. For embeddxersy, the
component framework typically must be light weighted, arsé pre-
dictable mechanisms. To enhance predictability, it isrdéd® to move
as much as possible of the traditional framework functityélom the
run-time system to the pre-run-time compile stages.

Component technologiesi.e., concrete implementations of component mod-
els and frameworks that can be used for building componasgdbappli-
cations. Two of the most well known component technologieshai-

7.3 Our Component Technology 81

crosoft's Components Object Model (COMpr desktop applications,
and Sun’s Enterprise Java Beans (EJB) distributed enterprise appli-
cations.

Efficient development of applications is supported by thmgonent-based
strategy, which addresses the whole software life-cycBSE can shorten the
development-time by supporting component reuse, and bglijimg parallel
development of components. Maintenance is also suppdrted the compo-
nent assembly is a model of the application, which is by dédimiconsistent
with the actual system. During maintenance, adding new,uggglading ex-
isting components are the most common activities. Whergusicomponent-
based approach, this is supported by extendable interéddbe components.
Also testing and debugging is enhanced by CBSE, since coemeare easily
subjected to unit testing and their interfaces can be madtto ensure correct
behaviour.

CBSE has been successfully applied in development of desktd enter-
prise business applications, but for the domain of embesdgstéms CBSE has
not been widely adopted. One reason is the inability of thistiey commer-
cial technologies to support the requirements of the eméebdgbplications.
Component technologies supporting different types of eidbd systems have
recently been developed, e.g., from industry [1, 2], anchfexademia [3, 4].
However, as Crnkovic points out in [5], there are much moseés to solve
before a CBSE discipline for embedded systems can be edtetllie.g., ba-
sic issues such as light-weighted component frameworksdamtification of
which system properties that can be predicted by compomepepties.

Based on risks and requirements for applying CBSE for owsatd appli-
cations, we have collected a check-list with evaluatiomfzaihat we have used
to evaluate our component technology in an industrial @mirent. In Section
5 we provide a summary of the evaluation, for more detailseferito [6].

7.3 Our Component Technology

Our component technology implements the SaveComp Compdaatel [7]

and provides compile-time mappings to a set of operatintesys, follow-
ing the technique described in [8]. The component technoi®dntended to
provide three main benefits for developers of embeddedmsgstefficient de-
velopment, predictable behaviour, and run-time efficiency

IMicrosoft Corporation, The Component Object Model, httpaw.microsoft.com
2Sun Microsystems, Enterprise JavaBeans Specificatiqu//tmivw.sun.com

82 Paper C

<<Assembly>>
P

<<SaveComp>>

SaveCCM pC Compose
Design-
St Adual o Time
XML - representation
Il A
Task
Allocation I%I
Attribute I:I
Assignment > Compile-
Code Generation Time
1
& Analysis I:I
‘f %C—compiler
J
Simulation Target
| APPLICATION || APPLICATION | RuUn-
. Time
| Win 32 | | RTXC |

Figure 7.1: An overview of our current component technology

Efficient development is provided by the SaveComp Compohtrdel's
efficient mechanisms for developing embedded control systé his compo-
nent model is restricted in expressiveness (to supportqiedulity and depend-
ability) but the expressive power has been focused to thdsneeembedded
control designers.

Predictable behaviour is essential for dependable systdmsur tech-
nology, predictability is achieved by systematic use ofen predictable,
and analysable run-time mechanisms; combined with a cég&ricomponent
model with limited flexibility.

Run-time efficiency is importantin embedded systems, dimese systems
usually are produced in high volumes using inexpensiveviare. \We employ
compile-time mappings of the component-based applicatiacghe used oper-
ating systems, which eliminates the need for a run-time aorapt framework.
As shown in Figure 7.1, three different phases can be idedtivhere different

7.3 Our Component Technology 83

pieces of the component technology are used:

Design-time SaveCCM is used during design-time for describing the appli
tion.

Compile-time during compile-time the high-level model of the applicatie
transformed into entities of the run-time model, e.g., $askstem calls,
task attributes, and real-time constrains.

Run-time during run-time the application uses the execution modehfan
underlying operating system. Currently our componentrietdgy sup-
ports the RTXC operating systénand the Microsoft Win32 environ-
ment. The Win32 environment is intended for functional test aabu
activities (using CCSimTech [15]), but it does not suppeat itime tests.

7.3.1 Design-Time - The Component Model

SaveCCM is a component model intended for development bf/aoé for ve-
hicular systems. The model is restrictive compared to corimecomponent
models, e.g., COM and EJB. SaveCCM provides three main mésrha for
designing applications:

Components which are encapsulated units of behaviour.

Component interconnectionswhich may contain data, triggering for invoca-
tion of components, or a combination of both data and trigger

Switches which allow static and dynamic reconfiguration of componetetr-
connections.

These mechanisms have been designed to allow common foalityoin em-
bedded control systems to be implemented. Specific examplkey function-
ality supported are:

e Support for implementation of feedback control, with a o/ to
separate calculation of a control signal, from the updateetontroller
state. Something which is common in control applicationsitoimise
latency between sampling and control.

3Quadros Systems Inc, RTXC Kernel UserSs Guide, http:/vquradros.com
4MSDN, Win32 Application ProgrammerSs Interface, httpgén.microsoft.com/

84 Paper C

e Support for system mode changes, something which is commeang.,
vehicular systems.

e Support for static configuration of components to suit a gjggaroduct
in a product line.

Architectural Elements

The main architectural elements in SaveCCM are compongnitshes, and
assemblies. The interface of an architectural elementfinatbby a set of
associated ports, which are points of interaction betwbheretement and its
external environment. We distinguish between input- anghutuports, and
there are two complementary aspects of ports: the datadnaie transferred
via the port, and the triggering of component executionseS&M distinguish
between these two aspects, and allow three types of ports:

e Data ports are one element buffers that can be read andmwritach
write operation to the port will overwrite the previous valsiored.

e Triggering ports are used for controlling the activatioretdments. An
element may have several triggering ports. The componerigigered
when all input triggering ports are activated. Several autgggering
ports may be connected to a single input triggering portyipging OR-
semantics

e Combined ports (data and triggering), combine data angerigg ports,
semantically the data is written before the trigger is atéd.

An architectural element emits trigger signals and datésaiutput ports,
and receives trigger signals and data at its input portsteSysare built from
the architectural elements by connecting input ports tputytorts. Ports can
only be connected if their types match, i.e. identical dgpes are transferred
and the triggering coincides.

The basis of the execution model is a control-flow (pipes-fitets) par-
adigm [9]. On a high level, an element is either waiting to bevated (trig-
gered) or executing. In the first phase of its execution amefd read all its
inputs, secondly it performs all computations, and finallyenerates outputs.

Components

Components are the basic units of encapsulated behavimmp@nents are
defined by an entry function, input and output ports, andiooptly, quality

7.3 Our Component Technology 85

attributes. The entry function defines the behaviour of tmonent during

execution. Quality attributes are used to describe pdatiatharacteristics of
components (e.g. worst-case execution-time and relighilA component is

not allowed to have any dependencies to other componentgher external

software (e.g. the operating system), except the visibpeeddencies through
its input- and output-ports.

Switches

A switch provides means for conditional transfer of data/anttiggering be-
tween components. A switch specifies a set of connectioanpatteach defin-
ing a specific way of connecting the input and output porthiefdwitch. Log-
ical expressions (guards; one for each pattern), basedeoddta available at
some of the input ports, are used to determine which cororeptttern that is
to be used.

Switches can be used for specifying system modes, each modspond-
ing to a specific static configuration. By changing the poltesa at run-time,
a new mode can be activated. By setting a port value to a fixee e design
time, the compiler can remove unused functionality.

Assemblies

Component assemblies allow composite behaviours to beediefamd make it
possible to form aggregate components from groups of commgsnswitches,
and assemblies. In SaveCCM, assemblies are encapsulbtiomponents and
switches, having an external functional interface (jusSasgeCCM-components).

SaveCCM Syntax

The graphical syntax of SaveCCM is shown in 7.2, the syntabeis/ed from
symbols in UML 2.6, with additions to distinguish between the different types
of ports. The textual syntax is XMLbased, and the syntax definition is avail-
able in [6].

5Object Management Group, UML 2.0 Superstructure Spedificat
http://iwww.omg.com/uml/
6World Wide Web Consortium (W3C), XML, http://www.w3.0orgkL/

86 Paper C

Symbol Interpretation
Input port - with triggering only

Q—D Input port - with data only
Q‘D Input port — combined with data and triggering

) — Output port - with triggering
—1] Output port - with data
)‘E[> Output port - combined with data and triggering

Component - A component with the stereotype

<<SaveComp>> changed to SaveComp corresponds to a SaveCCM
<name> component
<<Switch>> Switch - (;:ortnpon:nlzs w_ith Sthe séeéz)type switch,
<name> corresponds to switches in Save

Assembly - components with the stereotype

<<Assembly>> =7
Y Assembly, corresponds to assemblies in SaveCCM

<name>

Delegation -A delegation is a direct connection from
> an input to —input or output to —output port, used
within assemblies

Figure 7.2: Graphical syntax of SaveCCM

7.3.2 Compile-Time Activities

During compile-time, the XML-description of the appliaati is used as in-
put. The XML description contains no dependencies to thestpithg system
software or hardware, all code that is dependent on the &érequlatform is

automatically generated during the compile-step. In thregiter, the modules
(see Figure 7.1) that are independent of the underlyingugixeatplatform are
separated from modules that are platform dependent. Whaergahg platform,
it is possible to replace only the platform dependent maslafehe compiler.

The four modules of the compiler (task allocation, attrébassignment,
analysis, and code generation) represent different esvduring compile-
time, as explained below.

7.3 Our Component Technology 87

Task Allocation

During the task-allocation step, components are assignegédrating-system
tasks. This part of the compile-time activities is indepemicbf the execution
platform, and the algorithm used for allocation of compdeémtasks strives to
reduce the number of tasks. This is done by allocating comptsrio the same
task whenever possible, i.¢:) when the components execute with the same
period-time, or are triggered by the same event, &g when all precedence
relations between interacting components are preservetbsAription of the
algorithm is available in [6].

Attribute Assignment

Attribute assignment is dependent on the task-attributéeeaunderlying plat-
form, and possibly additional attributes depending on tiayssis goals. In the
currentimplementation for the RTXC RTOS and Win32, the &ttbutes are:

Period time (T) during code generation for specifying the period time for
tasks.

Priority (P) used by the underlying operating system for selecting thletta
execute among pending tasks.

Worst-case execution-time (WCET)used during analysis.
Deadline (D) used during analysis.

The period time, deadline, and WCET are directly derivedhftbe compo-
nents included in each task. Priority is assigned in deadtionotonic order,
i.e., shorter deadline gives higher priority.

Analysis

The analysis step is optional, and is in many cases depeadémé underlying
platform, e.g., for schedulability analysis it is fundartao have knowledge
of the scheduling algorithm of the used OS. But analysisds dependent on
the assigned attributes (e.g., for schedulability ana/\&iCET of the different
tasks are needed).

Examples of analysis include schedulability analysis [XT0gmory con-
sumption analysis [11], and reliability analysis [12].

Attributes that are usage and environment dependent cdrenanalysed
in this automated step, since it only relies on informatiamf the component

88 Paper C

model. There are no usage profiles or physical environmesarigtions in-
cluded in the component model. Additional information isded to allow
such analysis, e.g., safety analysis [13]. Safety is an itapbattribute of
vehicular systems, and we plan to integrate safety aspefitlire extensions.

In the current prototype implementation, schedulabilitglgsis according
to FPS theory is performed [14].

Code Generation

The code generation module of the compile-time activitesegates all source
code that is dependent on the underlying operating systdra.cbde genera-
tion module is dependent on the Application Programmingrfate (API) of
the component run-time framework. In the prototype impletaton for the
RTXC operating system (see Figure 7.3 right) and the Win22atpng system
(see Figure 7.3 left), the code generation does not targebfthe APIs di-
rectly. Instead, the automatic code generation generatgses code for target
independent APIs: the SaveOS and SavelO APIs. The APIsterddanslated
using C-style defines to the desired target operating system

7.3.3 The Run-Time System

The run-time system consists of the application softwateeatomponent run-
time framework. The application software is automaticgiyerated from the
XML-description using the SaveCCM Compiler. On the topelethe run-time
framework has a transparent API, which always has the saeane towards
the application, but does only contain the run-time comptseeeded (e.g.
the SaveCCM API does not include a CAN interface, a CAN protetack or
a device driver, if the application does not use CAN).

Pre-compilation settings are used to change the Save CCMélrdviour
depending on the target environment. If the applicatiomibd simulated in
a PC environment using CCSimTech [15], the SaveCCM API thralt calls
to the SaveOS to the RTOS simulator in the Windows environménthe
system is to be executed on the target hardware using a RTQSREXC) the
SaveCCM API directs all system calls to the RTOS.

The framework also contains a variable set of run-time fiaork com-
ponents (e.g. CAN, 10, and Memory) used to support the agidic during
execution. These components are hardware platform indeménbut might,
to some degree, be RTOS dependent. To obtain hardware mdiepey, a

7.4 Application Example 89

hardware abstraction layer (HAL) is used. All communicati®etween the
component run-time framework and the hardware passesghtbe HAL.

SaveCCM Application SaveCCM Application

SaveCCM Application Programmer’s Interface SaveCCM Application Programmer’s Interface

SaveMemory| SaveCAN SavelO SaveMemory| SaveCAN SavelO

SLERICS CcCSimTech

MS Windows

SaveCCM Hardware Abstraction Layer

Device Drivers

HW Platform PC

Momawel jobre)
iomaLel uoneInwIS

Figure 7.3: System architecture for simulation and target

The layered component run-time framework is designed taecd porta-
bility, which is a strong industrial requirement [16].Thagpproach also en-
hances the ability to upgrade or update the hardware andyeh@amupgrade
the operating system. The requirements on product seraidéhe short life-
cycles of todaySs CPUs also make portability very important

7.4 Application Example

To evaluate SaveCCM and the compile-time and run-time péttse compo-
nent technology, a typical vehicular application was impdated. The appli-
cation used for evaluation is an Adaptive Cruise ContrdkezC) for a vehi-
cle. When designing the application, much focus was put orgul different
possibilities in the component model (components, swigchssemblies, etc.)
with the purpose to verify the usefulness of these condrtive compile-time
activities, and the automatically generated source cauéhd remaining part
of this section, the basics of an ACC system is introduced,tha resulting
design using SaveCCM is presented.

7.4.1 Introduction to ACC functionality

An ACC is an extension to a regular Cruise Controller (CC)e Parpose of
an ACC system is to help the driver keep a desired speed t{traali CC),
and to help the driver to keep a safe distance to a precedinigleg ACC
extension). The ACC autonomously adapt the distance dépgod the speed
of the vehicle in front. The gap between two vehicles has tatge enough to
avoid rear-end collisions.

90 Paper C

To increase the complexity of a basic ACC system, and theesbycise
the component model more, our ACC system has two non-stdifglactional
extensions. One extension is the possibility for autonesmzhanges of the
maximum speed of the vehicle depending on the speed-liguidagions. This
feature would require actual speed-limit regulations tkibewn to the ACC
system by, e.g., by using transmitters on the road signsad map infor-
mation in cooperation with a Global Positioning System (EHF®%e second
extension is a brake-assist function, helping the drivéi wie braking proce-
dure in extreme situations, e.g., when the vehicle in fradtenly brakes or if
an obstacle suddenly appears on the road.

7.4.2 Implementation using SaveCCM

On the top-level, we distinguish between three differentrses of input to
the ACC application:(i) the Human Machine Interface (HMI) (e.g. desired
speed and on/off status of the ACC syste(it),the vehicular internal sensors
(e.g. actual speed and throttle level), afii), the vehicular external sensors
(e.g. distance to the vehicle in front). The different otgpran be divided in
two categories, the HMI outputs (returning driver inforioatabout the system
state), and the vehicular actuators for controlling thesdp# the vehicle.

The application has two different trigger frequencies, 10dihd 50 Hz.
Logging and HMI outputs activities execute with the loweteraand control
related functionality at the higher rate.

Furthermore, there is a number of operational system maldesified, in
which different components are active. The different matesOff, ACC En-
abledandBrake AssistOff is the initial system mode. In theff mode, none
of the control related functionality is activated, but gystlogging, function-
ality related to determining distance to vehicles in fr@mtg speed measuring
are active. During th&CC enablednode the control related functionality is
active. The controllers control the speed of the vehicleedam the parame-
ters: desired speedlistanceto vehicles in front, andpeed-regulationdn the
Brake Assistode braking support for extreme situations is enabled.

The ACC system is implemented as an assem®yE Applicationin left
part of Figure 7.4) built-up from four basic components, enéch, and one
sub-assembly. The sub-assemiC Controlle)) is in turn implemented as
shown in Figure 7.4, right.

7.4 Application Example 91

Rss\a!e\\as o Max Current
peed Disince Speed Speed
0 O 0 0

o o
ACCCammHErs !
g
Y
Asssmmy 5[Contl
Distance 0

Controller {FO

<<Assembly>>
ACC Appication

]—(Throttle

Curent Speed O

Relative Current
Speeu D\s'ance Spssu Speeu

<<hssembly>>
Speed
’ Contoller
Contrl
SaveCnmp

D caicou lpu(

FHO10 Hz

- Spee
)—(Brake Assist
A (e

ACC Enabled O

Savecump
Cale Oulp ut

Logger
Hl Outputs
Brake Pedal Used ()

—(Evake Signal

Figure 7.4: ACC Application implementation

The ACC Application Assembly

The Speed Limittcomponent calculates the maximum speed, based on input
from the vehicle sensors (i.e. current vehicle speed) amdrthximum speed

of the vehicle depending on the speed-limit regulationse Gbmponent runs
with 50 Hz and is used to trig th@bject Recognitiomomponent.

The Object Recognitiomomponent is used to decide whether or not there
is a car or another obstacle in front of the vehicle, and, sedhere is, it
calculates the relative speed to this car or obstacle. Thpoaoent is also used
to triggerMode Switcland to providéMode Switclwith information indicating
if there is a need to use the brake assist functionality ar not

Mode Switchis used to trigger the execution of tA€C Controllerassem-
bly and theBrake Assistomponent, based on the current system maéda
Enabled, Brake Pedal Usgdnd information fromDbject Recognition

The Brake Assistomponent is used to assist the driver, by slamming on
the brakes, if there is an obstacle in front of the vehicld thmht cause a
collision.

The Logger HMI Outputscomponent is used to communicate the ACC
status to the driver via the HMI, and to log the internal seftiof the ACC. The
log-memory can be used for aftermarket purposes (blackfiostionality),
e.g., checking the vehicle-speed before a collision.

The ACC Controllerassembly is built up of two cascaded controllers (see

92 Paper C

Figure 7.4, right), managing the throttle lever of the véhicThis assembly
has two sub-level assemblies, thistance Controllelassembly and th8peed
Controller assembly.

The reason for using a control feedback solution betweertvilbecon-
trollers is that since the calculation is very time critidhis important to de-
liver the response (throttle lever level) as fast as possience, the controllers
firstly calculate their output values and after these vaha® been sent to the
actuators, the internal state is updated (detailed prasentcan be found in

[6].

7.4.3 Application Test-Bed Environment

For the evaluation the RTXC operating system was used tegaeitith a Cross
FIRE ECU. RTXC is a pre-emptive multitasking operating system wigeh

mits a system to make efficient use of both time and systenuress. RTXC
is packaged as a set of C language source code files that ndeelsdmpiled
and linked with the object files of the application program.

The Cross FIRE is a C167-ba$d®-distributing ECU (Electronic Control
Unit) designed for CAN-based real-time systems. The ECleigbbped and
produced by CC Systems, and intended for use on mobile agiplis in rough
environments.

During functional testing and debugging, CC Systems usmalation en-
vironment called CCSimTech [15], which also was incorpedah this work.
Developing and testing of distributed embedded systemerig ehallenging
in their target environments, due to poor observabilityflecation state and
internal behaviour. With CCSimTech, a complete system witheral nodes
and different types of interconnection media, can be dpezland tested on
a single PC without access to target hardware. This makessgilple to use
standard PC tools, e.g., for debugging, automated tedtioli,injection, etc.

7.5 Evaluation and Discussion

CBSE addresses the whole life-cycle of software produdtasTto fully eval-
uate the suitability of a component technology requiregerpces from using
the technology in real projects (or at least in a pilot/eatibn project), by rep-

7CC Systems, Cross FIRE Electronic Control Unit, http://waesystems.com
8Infineon, C-167 processor, http://www.infineon.com

7.5 Evaluation and Discussion 93

resentatives from the intended organisation, using exgjstiols, processes and
techniques.

Our experiment was conducted using CC Systems’ tools armhipaes,
however we have not used the company’s development praceldsace, we
can only give partial answers (indications) concerningsihigability our com-
ponent technology.

We divide our evaluation in the following three categories:

Structural properties concerning the suitability of the imposed application
structure and architecture, and the ease to define and theatiesired
behaviour using the supported design patterns.

Behavioural properties concerning the application performance, in terms of
functional and non-functional behaviour.

Process propertiesconcerning the ease and possibility to integrate the tech-
nology with existing processes in the organisation.

The adaptive cruise controller application representsdaargced domain
specific function, which could have been ordered as a pilatysat the com-
pany. The hardware, operating system, compilers, and thelaiion tech-
nigue, have been selected among the companies repertairarathus highly
realistic.

The implementation of the application has not been donerdowpto the
process at the company, rather as an experiment by the authbus, it is
mainly the structural-, and behavioural related evaludtiat can be addressed
by our experience. However, to evaluate the process relasegs, senior
process managers at the company have helped to relate thmonoent tech-
nology to the processes.

The evaluation is conducted using a check-list assembtad fiequire-
ments for automotive component technologies by Moller efld], risks with
using CBSE for embedded systems by Larn and Vickers [17]frama identi-
fied needs, by Crnkovic [5].

7.5.1 Structural Properties

Based on the experiment performed we conclude that the coemponodel is
sufficiently expressive for the studied application, anat ihallows the soft-
ware developer to focus on the core functionality when desigapplications.
The similarities with UML 2.0 provided important benefits jowing us to

use a slightly modified UML 2.0 editor for modelling applicats. Also, issues

94 Paper C

related to task mapping, scheduling, and memory allocatiertaken care of
by the compilations provided by the component technologytHer allowing
the developer to concentrate on application functionality

Since the components have visible source code, and sinbamdihgs be-
tween components are automatically generated, makingfivatitbins of com-
ponents is facilitated, though there is not yet any speciffgpsrt to handle
maintenance implemented in the component technology.

It is straight forward to compile the ACC system for both \Wanéh a reg-
ular PC and RTXC on a Cross FIRE ECU. This is an indication efabrtabil-
ity of our technology across hardware platforms and opagatystems. As a
consequence, components can be reused in different ajiplisaegardless of
which RTOS or hardware is used.

Configurability is essential for componentreuse, e.ghiwia Product Line
Architecture (PLA) [18]. In SaveCCM, components can be gafid by sta-
tic binding of values to ports. However, there is currentlyaxplicit architec-
tural element to specify this. In our experiment, we couldi&eer achieve the
same effect by directly editing the textual representatir instance, a switch
condition can be set statically during design-time, andiglér evaluated dur-
ing compile-time, to represent a configuration in a PLA. Aufiet extension
of SaveCCM is to add a new architectural element that makgssiible to
visualise and directly express static configurations ofitnports. This will
additionally facilitate version and variant management.

7.5.2 Behavioural Properties

With respect to behavioural properties, our componentteldyy is quite ef-
ficient. The run-time framework provides a mapping to thedu®& without
adding functionality, and the compile-time mechanismigeatio achieve an ef-
ficient application, by allocating several components wghme task. Some
data about our case-study:

e The compilation resulted in four tasks: one task includingmponents
speed-limitobject recognitionandmode-switchone task includingpg-
ger HMI outputs one task including brake assist; and one task including
the four components in the ACC controller.

e The CPU utilisation in the different application modes are 7

e The total application size is 114 kb, of which 104 kb belomghe oper-
ating system, and 10 kb to the application. The applicatanm gonsists

7.6 Conclusions and Future Work 95

of 2 kb of components code, together with 8 kb run-time fraomvand
compiler generated operating system dependent data aed cod

To allow analysis it is essential to derive task level gyadittributes from
the corresponding component level attributes. In our casey this was straight-
forward, since the only quality attribute considered is starase execution
time, which can be straightforwardly composed by additibthe values asso-
ciated to the components included in the task.

Furthermore, the CCSimTech simulation technique providay useful
support for verification and debugging of the applicationdiipnality.

7.5.3 Process Related

The process related evaluation concerns the suitabilibséothe existing pro-
cesses and organisation, when developing component-appkcations. Tho-

ugh process related issues are not directly addressable kxperiment, based
on a set of interviews company engineers have expressedlitwihg:

e The RTOS and platform independence is a major advantageeafph
proach.

e The integration with the simulation technique, CCSimTexs®d in prac-
tically all development projects at CC Systems, will substdly facili-
tate the integration of SaveCCM in the development process.

e The tools included in the component technology, as well asuser-
documentation, have not reached an acceptable level otyytal use
in real industry projects.

e The maintainability aspects of CBD are attractive, sinaGngfes are sim-
plified by the tight relation between the applications diggicm and the
source code.

7.6 Conclusions and Future Work

We have described the initial implementation of our commbiechnology for
vehicular systems, and evaluated it in an industrial emvirent, using require-
ments and needs identified in related research.

The evaluation shows that the existing parts of the compieehnology
meet the requirements and needs related to them. Howeveredd overall
requirements and needs, extensions to the technology edede

96 Paper C

Plans for future work include extending the component tetdgy with
support for multiple nodes, integration of legacy-codehvitie components
[19], run-time monitoring support [20], and a real-timeatzdse for structured
handling of shared data [21]. Implementation of more typeautomated
analysis to prove the concept of determining system ate#from compo-
nent attributes is also a target for future work. Howevegre¢his also a need
for methods to determine component attributes. Furtheeptomake the pro-
totype useful in practice, there are needs for integratungtechnology with
supporting tools, e.g., automatic generation of XML dgswns from UML
2.0 drawings, and connectivity with configuration managet@ols.

An indication of the potential of our component technolayl CBSE for
embedded systems development in general, is that the conipaoived in
the case-study finds our technology promising and has esguleisterest to
continue the cooperation.

Acknowledgements

We would like to thank CC Systems for inviting and helpingasdalise this
pilot project. Special thanks to Jérgen Hansson and Kenfansdor invitation
and to Johan Strandberg and Fredrik Léwenhielm for theipettpwith all
kinds of technical issues. We would also like to thank SasikuPunnekat for
valuable feedback on early versions of this article.

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

K.L. Lundbéck, J. Lundbéack and M. Lindberg. ComponerisBd Devel-

opment of Dependable Real-Time Applications Real-Time in Sweden
— Presentation of Component-Based Software DevelopmeetBm the

Rubus concept, Arcticus Systems: http://www.arcticu¥&steras, Swe-
den.

R. van Ommering et al. The Koala Component Model for Consu
Electronics SoftwarelEEE Computer33(3):78—-85, March 2000.

M. de Jonge, J. Muskens, and M. Chaudron. Scenario-Basatiction of
Run-Time Resource Consupmption in Component-Based Saftégs-
tems. InProceedings of the'®International Workshop on Component-
Based Software Engineerinilay 2003. Portland, Oregon, USA.

K. C. Wallnau. Volume IIl: A Component Technology for Riietable
Assembly from Certifiable Components. Technical reporfivéare En-
gineering Institute, Carnegie Mellon University, April @B. Pittsburg,
USA.

I. Crnkovic. Componet-Based Approach for Embedded &yst In
Proceedings of @ International Workshop on Component-Oriented Pro-
gramming June 2004. Oslo, Norway.

M. Akerholm, A. Méller, H. Hansson, and M. Nolin. SAVECqm a
Dependable Component Technology for Embedded Systemwaeft
Technical report, MRTC report ISSN 1404-3041 ISRN MDH-MRTC
165/2004-1-SE, Malardalen Real-Time Research Centre afddlen
University, December 2004.

97

98

Bibliography

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

H. Hansson, M. Akerholm, I. Crnkovic, and M. Térngren.vB&CM -

a Component Model for Safety-Critical Real-Time SystemsProceed-

ings of 30" Euromicro Conference, Special Session Component Models
for Dependable SystemSeptember 2004.

K. Sandstrém, J. Fredriksson, and M. Akerholm. Intradgca Com-
ponent Technology fo rSafety Critical Embedded Real-Tinyst&ns.

In Proceedings of th International Symposium on Component-Based
Softwrae Engineeringay 2004. Edinburgh, Scotland.

M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-
2.

G.C. Butazzo. Hard Real-Time Kluwer Academic Publishers, 1997.
ISBN: 0-7923-9994-3.

A.V. Fioukov, E.M. Eskenazi, D.K. Hammer, and M. Chaonr Evalua-
tion of Static Properties for Component-Based Architetuta Proceed-
ings of 28" Euromicro ConferengeSeptember 2002. Dortmund, Ger-
many.

H.W. Schmidt and R.H. Reussner. Parameterized Cdsteaml Adapter
Synthesis. IrProceedings of the's International Conference on Soft-
ware Engineering, Workshop on Component-Based Softwag@&er-
ing, May 2001. Toronto, Canada.

D.H. StamatisFailure Mode and Effect Analysis: FMEA from Theory to
Execution ASQ Quality Press, 2nd Edition, 2003. ISBN 0-87389598-3.

M.G. Harbour, M.H. Klein, and J.P. Lehoczky. Timing d&ysas for Fixed-
Priority Scheduling of Hard Real-Time Systsemi&EE Transactions
20(1), January 1994.

A. Méller and P. Aberg. A Simulation Technology for CAbased Sys-
tems.CAN Newsletter4, December 2004.

A. Méller, J. Froberg, and M. Nolin. Industrial Requinents on Com-
ponent Technologies for Embedded SystemsProceedings of the''?
International Symposium on Component-Based Softwarengagng

2004 Proceedings Series: Lecture Notes in Computer Scignce&054,
May 2004. Edinburgh, Scotland.

(17]

(18]

(19]

(20]

(21]

W. Lam and A.J. Vickers. Managing the Risks of Comporgased Soft-
ware Engineering. IProceedings of the'SInternational Symposium on
Assessment of Software Toalane 1997. Pittsburgh, USA.

P. Clements and L. NorthropSoftware Product Lines: Practices and
Patterns Addison-Wesley, 2001. ISBN 0-201-70332-7.

M. Akerholm, K. Sandstrém, and J. Fredriksson. Intesfee Con-
trol for Integration of Vehicular Software Components. Heical re-
port, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-162/2004-1
SE, MRTC, Malardalen University, May 2004.

D. Sundmark, A. Méller, and M. Nolin. Monitored SoftwaCompo-

nents — A Novel Software Engineering Approach —-Phmceedings of the
11" Asia-Pasific Software Engineering Conference, WorkshoSait-

ware Architectures and Component Technologidsvember 2004. Pu-
san, Korea.

D. Nystrom. COMET: A Component-Based Real-Time Datsbir Ve-
hicle Control Systems. Technical report, Technology Liz#a Thesis
No.26, ISSN 1651-9256, ISBN 91-88834-41-7, MélardalenlHeae

Reseach Centre, Mélardalen University, May 2003. Malamalniver-
sity Press.

Chapter 8

Paper D:

Monitored Software
Components - A Novel
Software Engineering
Approach

Daniel Sundmark, Anders Moéller and Mikael Nolin

In Proceedings of the MAsia-Pasific Software Engineering Conference, Work-
shop on Software Architectures and Component Technolages 624—631,
Pusan, Korea, November 2004

101

Abstract

We propose monitoring of software components, and use ofitored soft-
ware components, as a general approach for engineering loédaad com-
puter systems. In our approach, a component’s executi@ntinziously mon-
itored and experience regarding component behaviour isagiated. As more
and more experience is collected the confidence in the coemtgmnows; with
the goal to eventually allow certification of the componedontinuous mon-
itoring is also the base for contract checking, and providesns for post-
mortem crash analysis; an important prerequisite for mamypanies to start
use 3rd party component in their dependable systems.

In this paper we show how four software engineering goaldeareached
by monitoring four component properties.

8.1 Introduction 103

8.1 Introduction

In this paper we propose monitoring of software componemdsuse of moni-
tored software components as a general approach for emgige¢ embedded
computer systems. Industrial developers of distributedefogeneous, reli-
able, resource constrained, embedded, real-time conystms (in this paper
denoted embedded systems) are facing increased challeiitfpesespect to
demands on increased profitability, functionality andatellity, while at the
same time having to decrease development times, projets aod time-to-
market. Since development costs only constitute a fractfdhe total project
cost for software projects (about 20% [1]), a general apghidar engineering
embedded systems must consider not only the developmesd plao the de-
bugging, testing and maintenance phases need to be adiiréss¢thermore,
since most systems are developed incrementally, where emsions are based
on previous versions, and product-line architectures{@gcoming increas-
ingly important, a general approach for engineering embddystems needs
to consider reuse of components between product versiahgraauct vari-
ants. Another emerging key-issue in engineering of embetdgstems is safe
and predictable integration of third-party functions, dhd associated legal
matters regarding contract fulfilment and liability issues
The main contributions of this paper are three-fold:

e We present a novel approach to engineering component-isgstzms,
using monitored software components.

e Our approach takes a life-cycle perspective on the engimgprocess,
and we identify four key-areas where monitored componeithave
significant impact.

e We present four measurable properties that can be used axiniese
key-areas.

The outline of the rest of this paper is as follows: In Sec8dhwe present
a life-cycle approach to engineering component-basedsystand Section 8.3
describes properties of embedded systems. In Section 8.gregent a survey
of related work in built-in monitoring support for comporndrased systems
and existing monitoring practices in commercial componechnologies. In
Section 8.5, the impacts of monitorable components on ptatole assemblies
are discussed. Section 8.6 illustrates how to make use ahthétored in-
formation, and finally, in Section 8.7, we summarise andgmesur ideas on
future work.

104 Paper D

8.2 A Life-Cycle Approach to Component-Based
Systems

This continuous increase of requirements for embeddesydevelopers can
be mitigated by deploying suitable software engineeringhas. It is our

view that the whole system and component life-cycles nedzbtoonsidered
by an engineering method. Below we present four key-areangineering

component-based systems where significant gains can be nyagksng our

proposed concept of monitored components.

e Certifiable components. By monitoring component-basethsoé, in-
formation about the component properties can be extradteid.infor-
mation can be used to fully (or partially) describe the congrds by
their externally visible properties. Such a description ba used as a
basis for certifying componentsBy reusing certified components, pre-
dictable component assemblies are facilitated.

e System-level testing and debugging. By monitoring indisiticompo-
nents and component interactions, errors can be found acedr Moni-
toring can also be used to support replay debugging [3], &#agpneous
system-executions are recreated in a lab environmentdw &lhcing of
bugs.

e Run-time contract checking. This will allow surveillancktloird party
components. Both functional (e.g. range of output values) @on-
functional (e.g. memory usage) properties can be monitoEaring
acceptance testing, the contract checking is used to valttdat a com-
ponent does not violate its specification. In systems tlildftar system
deployment, logs from the contract checking can be usedstiportem
analysis to identify failing or contract-breaking compotse

e Observability. Computer systems in general, and embedgstdras in
particular, are infamous for the difficulty of observingithiaternal be-
haviour. This has drawbacks throughout the whole debuggésting
and maintenance phases. Systems whose behaviour is uetiiedye-
come very difficult to analyse and validate. Also after dgpient, ob-
servability is an important feature, allowing inspectiongerformance
tuning of running systems.

1For some high integrity systems, monitored properties t@bd combined with static analysis
to obtain safe bounds on properties.

8.3 Embedded Systems 105

New component Certified component

Guessed
properties

Property Testin :> |:“> Property Usage
refinement 9 ° : refinement 9

M Tested component

Figure 8.1: A conceptual overview of monitoring softwarengmnents for
certification.

The ultimate goal of component monitoring is to be able to pose pre-
dictable assemblies by reusing information gathered fratttested software
components. The proposal of this paper is that this can biewsthby the it-
erative process of refinement described in Figure 8.1. Whmwecomponent
(or a 3rd party component) is included in an assembly, itstime proper-
ties (such as execution time or memory consumption) arenastd by well-
founded guesses. During testing, these guesses are edlidad refined. As
the tested component is deployed in a target-system asgdmtilehaviour is
continuously monitored, allowing for further refinementloé component run-
time behaviour description. This refinement process wilndually lead to a
certified component, which can be used to compose predictessemblies.

Monitoring of components will allow information about thgrshmic be-
haviour of the component to be recorded. This informatidoved static and
dynamic properties of newly (or partly) constructed systémbe predicted.
Interesting aspects to monitor (on component level) andipréon system
level) include timing properties, such as end-to-end raspdimes, and re-
source utilisation, such as memory consumption.

8.3 Embedded Systems

This paper addresses software engineering aspects ofrcesoaenstrained,
embedded, distributed real-time control systems. To médar én what con-
text the provided monitoring approach is supposed to woekalgo provide a
brief example of a typical embedded system and an introdiuitti component
monitoring. In this section we also discuss prerequisjiées;ed on the com-
ponent technology and on the hardware, to be able to momhigoembedded

106 Paper D

system software.

8.3.1 CBSE for Embedded Systems

In Component-Based Software Engineering (CBSE), softappdications are
built by composing software components into componentraskes. CBSE
is gaining more and more acceptance in the business seghudfite/Internet
applications [4, 5]. Unfortunately, the market segmentrabedded real-time
systems is, to a large extent, left behind this positive bgment. Reusing
components, i.e. one of the main drivers for introducing EBS both com-
plex and expensive for embedded real-time systems [6].

However, by building embedded-system software out of wedted com-
ponents, we could gain an increase in the predictabilithefitehaviour of the
software; provided that experience from component belahas been col-
lected. In the area of embedded real-time systems, prétkatan-time behav-
iour is crucial. A component assembly is predictable if ita-time behaviour
can be predicted from the properties of its components agid fatterns of
interactions [7]. Predictability is achieved by analysisd analysis techniques
require information about the system. When analysing aeaydiuilt from
well-tested and functionally correct components, the nisénes are associ-
ated with composability. The composition process shouldidle to guarantee
the fulfilment of non-functional requirements of the systsoch as communi-
cation, synchronisation, memory, and timing [6]. Howevegearch projects
tend to focus on how to design and analyse component teafies|deaving
predictable assemblies using run-time information gatthérom well-tested
and trusted components unexplored [8].

8.3.2 Embedded System Example

In order to exemplify the typical settings, in which the sadte components are
considered, we have studied some characteristic vehieldatronic systems
[9]. An electronic vehicular control-system can be chagdséd as a resource
constrained, safety-critical, distributed real-timeteys. The computer nodes,
called Electronic Control Units (ECUs), are distributedéduce cabling and
to allow for division into subsystems. Vehicular systens asually heteroge-
neous, meaning that nodes of different architecture andpbatational power

cooperate in controlling the vehicle. The ECUs vary fromrextely light-

weighted nodes, like intelligent sensors (i.e. processpiipped, bus-enabled

8.3 Embedded Systems 107

sensors), to PC-like hardware for non-control applicatj@uch as telematics,
and information systems.

Figure 8.2 gives an overview of the hardware resources opiaayECU,
with requirements on sensing and actuating, and with aivelathigh compu-
tational capacity.

Example Power train ECU in a Vehicular Control-System

» Processor: 25 MHz 16-bit processor
» Memory devices:

v Flash: 1 MB used for application code

v RAM: 128 kB used for the run-time memory usage

v' EEPROM: 64 kB used for system parameters
Serial interfaces: RS232 or RS485, used for service purpose
Communications: Controller Area Network (CAN) (one or more interfaces)
1/0: A number of digital and analogue in and out ports

YV VY

Figure 8.2: Specification of a typical power train ECU.

An example of a typical vehicular system communicationsotus shown
in Figure 8.3, where two buses are separated by a gatewaygakeeay is an
architectural pattern that is used for several reasons, separation of criti-
cality and real-timeliness, increased available bus béadttiwincreased fault
tolerance, or compatibility with standards [10]. Commuatiieg functions may
require support for global synchronisation or fault tofera mechanisms.

Looking at the software part of the system, there are sonectsthat need
to be considered when building the assembly out of monitereiimponents.
A source of uncertainty is the frequency of interrupts in #ssembly. Typ-
ically, a vehicular system is heavily loaded with intersupiWhen interrupts
hit the assembly, these will pre-empt the execution of tmaing component,
thereby possibly perturbing its monitoring.

Dynamic memory allocation (and the garbage collectiontthiatbrings) is
usually not allowed in control applications, since it compises the determin-
ism and predictability of the application behaviour. Théydgpe of memory
that is allowed to dynamically shrink and grow in the systsrihe stack space
(albeit within a statically allocated stack memory area).

8.3.3 Prerequisites for Monitoring Component-Based Em-
bedded Systems

Monitoring component-based software requires suppohigrcomponent tech-
nology, and the framework used during run-time. UsuallyewHooking at

108 Paper D

Actuator S —_

Sensor jl f Intelligent \I
| H

.. Senso ~

\J

ECU
3

ECU
2

R . -
[T Service i
Computer *

Figure 8.3: Example sketch of a vehicle network.

today’s component technologies suitable for embeddeémsystiith resource
constrained ECUs, considerable code optimisations are daring compile

time. This is mainly done to minimise the size of the applarasource code.
This code optimisation might lead to a loss of the desigretimmponent con-
cept, meaning that clearly identifiable components witlcige in- and out-

ports are reduced to regular source code functions, seljést e.g., function
in-lining and redundant instruction-sequence coalescing

Thus, to be able to monitor the components in the form desdrduring
design-time and to be able to reuse the information gathdweidg run-time
in the next generation of applications, information abbtetdesign-time com-
ponents have to be included in the source code. This showeé\es not be a
problem, if the component technology satisfies the requerégmdescribed in
[9], i.e. a straight forward port-based object approadirstiated in Figure 8.4,
using a pipes-and-filters model of computation.

Component monitoring also poses some requirements on gtensyhard-
ware. A fraction of the system memory needs to be allocatedrfonitor
recording purposes. In addition, the target system shayddart some suitable
means of communication through which monitor recordingdeauploaded to
a host computer. Furthermore, some of the debugging tegbsidiscussed in

8.4 Related Work 109

this paper will benefit significantly from the support of astiuction counter.

=

Y1

Ym

Figure 8.4: Component with required in-po#ts — z,, and provided out-ports
Y1 — Ym-

8.4 Related Work

To summarise the available techniques that can be used td@aneaftware

components, we have studied some commercial componemdiecfies that
include support for component monitoring and the statéhefart methods for
component monitoring. The methods and the different teldyies are de-
scribed in Section 8.4.1 and Section 8.4.2.

8.4.1 Monitoring Techniques for Component-Based Systems

Currently, only a few component technologies provide supfm run-time
monitoring of component behaviour. However, there is nusmways of per-
forming this monitoring and there is a multitude of run-tiaspects to monitor.

Gao et al. identify three different methods for componeatking and
monitoring [8]: (A) framework-based code insertion, wherenitoring code
(e.g. from a class library) can be inserted by componentneags, (B) auto-
matic code insertion, where monitoring code is inserted the program by
a specialised monitoring tool, and (C) automatic compomgapping, where
monitoring code is automatically added to the externalrfate of compo-
nents.

According to Gao et al., each of these methods has its owngmsons.
As for framework-based code insertion, it is highly flexibled can be used for
all types of monitoring. However, the method requires asd¢eshe compo-
nent source code, and the programming overhead is high.n#aito code in-
sertion also requires access to the source code, and is marelcomplex and

110 Paper D

inflexible compared to the framework-based code insertitowever, the pro-
gramming overhead is low, since the tracking code is auticalbt inserted.
Automatic component wrapping, on the other hand, has no fezetbmpo-
nent source code in order to insert tracking code. Therefamteonly in-house
components, but also Commercial-Off-The-Shelf (COTS) ponents can be
monitored. On the downside, automatic component wrappanpt suitable
for monitoring anything within components, since the moniitg is performed
exclusively outside the component.

Considering the use of these methods with respect to thrctesis posted
by component-based embedded systems, it should be notedutmmatic
component wrapping can not be used in order to extract anypooent infor-
mation other than that available at the component ports filakes the method
unsuitable for monitoring other component properties thase available from
outside the component. Automatic code insertion, on therdtland, could
be used for all types of monitoring, but would introduce alé&raff between
the complexity of the instrumentation tool and the amoundatfa needed to
record. Ideally, especially in resource-constrainedesyst the amount of data
to record should be minimised. However, this calls for abetate analysis of
the internal workings of the component, requiring an infiéxi{with respect to
portability) and highly advanced instrumentation toolingsframework-based
code insertion, no instrumentation tool is required, ailfayad-hoc optimisa-
tions in the monitoring code. In a resource-constrainedenment, this might
be useful, but it must be kept in mind that such optimisatioight lead to un-
predictable probe-effects in system ordering and timirig.[1

Jhumka et al. [12] propose the use of executable assertiamdér to mon-
itor component behaviour. The assertions are includedritpoment wrappers,
enabling them to test the validity of the input and outputiesl of the compo-
nent. By using these wrapper assertions, the pre- and pasiition sanity
checks transforms a regular component into a fault-detgcomponent while
at the same time simplifying unit-, integration- and systewel testing due
to standardised means of extracting test information atpmrant interfaces.
Being relatively small and straightforward, executabkeasons could well be
used in order to perform sanity checks of embedded systemaoemts. How-
ever, executable assertions can not be used in order toonottier properties,
such as execution time or memory usage.

Hoérnstein and Edler [13] propose the use of Built-In TestT)Btompo-
nents in the Component+ model [14] for reducing the time spesting pre-
fabricated components in new environments. In order tooperthese built-in
tests, the Component+ model makes use of three differeastyfcomponents:

8.4 Related Work 111

BIT Components, Testers and Handlers. BIT Components gtdanesoftware
components with built-in test mechanisms, Testers araapEsmponents that
use the BIT testing interfaces of the BIT components and Kasdcre spe-
cial components that can be used to obtain fault-tolerastesys by handling
error signals from BIT or Tester components. On the assumghat BIT
and Tester components are light-weighted, this can be ant&# way of per-
forming component sanity checks or run-time contract chmeckEven though
Handler components may be effective for achieving fauisent systems, this
is not the primary subject of this paper.

Traditionally, software monitoring can be performed byngseither hard-
ware- or software-based probes. Hardware probes come fortneof lab in-
strumentation tools, such as In-Circuit Emulators (IC&rdpgic analysers, or
in the form of System-On-Chip (SOC) solutions [15]. ICE:dagic analysers
are not suitable for component monitoring, since they cabadincluded in de-
ployed assemblies. SOC-based monitoring tools, howekedesigned to be
resident in deployed systems. Unfortunately, being desidor system-level
event monitoring (e.g., task-switches), these tools allefat too inflexible
for component-level monitoring. Therefore, today, sofisyarobes seem to be
the preferred alternative for component monitoring. Hoeresoftware-based
monitoring is not without drawbacks. By including softwanenitoring in the
component technology, we also introduce problems conegrinistrumenta-
tion perturbation. Software-based monitoring is perfaidrbg means of soft-
ware probes inserted in the code. These probes will consuamiton time
and memory space; increasing the spatial and temporaln@soansumption
of the components. Probes should be left permanently inogedl compo-
nents for two reasons: (1) If the probes are removed, thimgeserformed on
the component might no longer be valid [16], and (2) by leguhre probes in
the deployed component, information concerning execuighmaviour can be
gathered over long periods of time, while the componentatgesrin its field
environment.

8.4.2 Monitoring Support in Commercial Component Tech-
nologies

There is a handful of available component technologieablatfor distributed
embedded real-time systems. Some of these technologladénarious sup-
ports for monitoring the software. The reason for choosirege is that they
are deployed in industry today, and that they well satiséyittdustrial require-
ments stated by the embedded-system domain [9].

112 Paper D

The Rubus Component Model (CM) [17] and the Rubus Operatysg S
tem (OS) have support for some of the described monitoripgas. Rubus
CM and OS are developed by Arcticus Systéraad are used for develop-
ing heavy vehicle software systems by, e.g., Volvo ConsisacEquipment
(VCE). When using the Rubus CM and OS, all resource allonaifahe ap-
plication and the operating system is done at compile-time.

The temporal properties needed to obtain static timingyasisbnd sched-
ule generation, Best-Case Execution Time (BCET) and WOeste Execution
Time (WCET), are monitored by the Rubus OS during run-timpar from
the temporal aspects of the software, maximum stack usageafdh thread
and the peak usage of, e.g., queues can be monitored using .Rlihe OS
also gives support for monitoring the CPU utilisation.

In multi-threaded embedded software, various types ofioglg, such as
precedence and exclusion relations, exist. To be able tagtee the behaviour
of the system with respect to these issues, the Rubus CMdeslsupport for
monitoring event traces of the program execution, i.e.gettexution order and
the release times of the components. This information isphehon an external
interface (e.g., CAN or a serial interface like RS485) dgnian-time. Since
events are related only via time-stamps, this service regai high-resolution
hardware timer. There will be a significant amount of dat@eissed with this
monitoring, and the accuracy of the log reflects the size efutinffer used to
store it.

PECOS (PErvasive COmponent Systems) [18] is a collaborativegatoj
between ABB Corporate Research Cehtaed academia. The goal for the
PECOS project is to enable component-based technologyribedded sys-
tems, especially for field devices, i.e., embedded reastiseems. The project
tries to consider non-functional properties, such as mgroonsumption and
timeliness, very thoroughly in order to enable assessnfehegroperties dur-
ing construction time.

Non-functional properties cannot only be attached to camepts, but also
to ports and connectors, e.g., examining the min and maesdtr an out port,
(i.e., a built in sanity check). Since PECOS is developedifipsrt resource
constrained embedded real-time systems, schedulingniafiton and mem-
ory consumption are crucial properties to monitor. HendeC®S enables
support for instrumenting components during run-time. rig\@®mponent is

2Arcticus Systems, www.arcticus.se

S\olvo Construction Equipment, www.volvo.com
4The PECOS Project, www.pecos-project.org
SABB Corporate Research, www.abb.com

8.5 Monitoring Software Components 113

instrumented to extract information about the WCET andytdectime. The
components are also instrumented with respect to their siadeand data (i.e.,
information on the heap).

8.5 Monitoring Software Components

Although a multitude of component properties are of intevesen building
reliable and reusable software components, there are sepeeta that would
significantly help increasing reusability and lower thedispent on integration
testing. We have identified four main aspects to monitor,rdeoto support
the key areas defined in Section 8.1.

8.5.1 Temporal Behaviour

Having knowledge of the temporal behaviour of an execusqgrarticularly im-
portant for real-time systems. If the worst-case and basg-execution times
of a set of reusable components are known, the possibilisyoéessfully pre-
dicting the temporal behaviour of the component assembllyradically in-
crease. Also, other execution time metrics, such as averagaution time,
standard deviation, execution time histogram or othersygfestatistical rep-
resentations of component execution time behaviour carlpé to estimate
statistical temporal properties of component assemhligk [

When considering timeliness for embedded real-time systérs impor-
tant to be able to verify (1) that each component meets iisitjrequirements,
(2) that each node (which is built up from several componanests its dead-
lines, and (3) to be able to analyse the end-to-end timing\aebr of functions
in a distributed system. In order to make sure that all deadlare met, tem-
poral analysis is needed.

This type of analysis is performed using schedulabilitylgsia techniques,
and requires information about the component’s executioe.t Ideally, the
bounds for worst-case and best-case execution times sheuthtically com-
puted by an analysis tool; this is the only way to be sure timekecution-time
bounds are safe (i.e. guaranteed not to be violated at me)tsee e.g. [16].
Unfortunately, tools for execution-time analysis are inuma and few com-
mercial tools exist. Hence, the industrial practice is fg o, measurements
of execution-times. However, structured measurement ef@ion-times is a
tedious, error-prone and expensive process, which hasre-téene after each
modification to a component. Using monitored componenésctrectness of

114 Paper D

the execution time values can be improved gradually, he.ntore execution
hours, the better the accuracy [19]; this is achieved withoy extra effort for
execution-time measurement.

In general, execution behaviour information is used foesictability analy-
sis and scheduling. In hard real-time systems, where it isda@ry that
deadlines are met, deterministic schedulability analgsid scheduling (us-
ing worst-case assumptions for execution times) is prbferaHowever, in
practice, many systems would settle for high probabilitssead of absolute
deadline guarantees. Therefore, stochastic schedtyadiklysis and schedul-
ing can be used. Depending on the type of analysis intenitbdy &orst-case
or statistical timing metrics should be collected duringitaring.

8.5.2 Memory Usage

Since we are targeting resource-constrained systemsnipisrtant to be able
to analyse the memory consumption and to check the suffigiehthe sys-

tem memory, as well as the ROM memory. This check should be goe-

run-time to avoid failures during run-time. Memory is alided in a static
(pre-run-time or during run-time initialisation) or a dyn& (run-time) fash-
ion. As mentioned in Section 8.3.1, dynamic memory allagais usually not
allowed when developing embedded real-time systems. kerdéodmprove the
possibility of achieving predictable assemblies, infotioraof static memory
allocation (e.g., component binary size) is necessangihae this information
can be provided by means of compiler output, this propertypsgcally not

necessary to monitor.

The stack memory, however, is statically allocated, butlisea dynamic
fashion. In order not to end up in a stack overflow situatiteglssize is often
pessimistically over-dimensioned during system confijoina In resource-
constrained environments, this might lead to a situatioarethe high percent-
age of unused memory leads to increased requirements oystieeshardware.
Therefore, monitoring the stack usage per component is impstrtant, since
this information can be used to predict the stack usage lalmaof future as-
semblies. Due to the high criticality of stack overflow, we apt interested in
anything but worst-case usage during the execution of thepooent. How-
ever, in a system allowing dynamic allocation, also heapsianitoring would
be important.

8.5 Monitoring Software Components 115

8.5.3 Event Ordering

When testing and debugging software, it is often helpful ¢calvare of the
occurrence and ordering of system events, such as mutexseandphore op-
erations, message receipts and interrupt occurrencesig tts¢ information
provided by an event log, system designers are able to datpobperly syn-
chronised accesses to shared data or illegal pre-emptiommefeentrant code.
In addition, by including event monitoring in the componerttdel, we ensure
that all components conforming to the model will producengsteace logs of
similar formats. This will reduce the problem of ad-hoc ingccode inserted
by system developers.

Using event traces, we can gain substantial insight reggritlie internal
workings of current assemblies. This information can belus®rder to guar-
antee precedence relations, mutual exclusion and to eatthacfficiency of
shared resource usage (e.g., field bus or third-level stouagge) in future
assemblies.

This type of monitoring provides a foundation to includd &upport for a
replay debugging method [3, 20, 21] in the component tedgylReplay de-
bugging is a general term denoting methods for recordingtieeution behav-
iour of multi-tasking or truly parallel systems in order tseuthis information
to reproduce system failures during debugging. Most replathods require
both event ordering information (such as interrupt, corgesitch and synchro-
nisation information) and data flow information (such a& &tate and external
input information) in order to reproduce executions. Pded that the assem-
bly infrastructure (e.g., real-time operating system nag@itms) includes sup-
port for replay debugging, including sufficient monitorimgthe components
will ensure that the entire assembly can be debugged by ndamecution
replay.

8.5.4 Sanity Check

A sanity check is a way of determining the soundness of thetifomal op-
eration of a component during run-time with respect to theponent input
and its current state. In other words, given a specific inguhe correspond-
ing output realistic? During testing, having access to tipui values of the
component that produce erroneous output facilitates efficesting.
Monitoring this during run-time will allow us to store erreous operations
of the component and (hopefully) to correct these errorsifuré assemblies.
If we are unable to correct the faulty component, we coultiaile to prevent

116 Paper D

unsafe system behaviour by taking appropriate actionsdo@s&nowledge of
the errors. This type of monitoring could also include pmbigs like Mean-
Time Between Failures (MTBF).

In addition, this type of monitoring could be used to ensted 8rd party
software components provide the service they are suppasedypically a
component is equipped with a provided interface, spedifyire services pro-
vided by that component, and a required interface, spegjfffie resources
needed by the component in order to provide the correctesviFormalis-
ing and standardising these interfaces allows for conteddiased component
development, where the behaviour of 3rd party componenbsded in the as-
sembly can be specified by contracts. Using sanity checkiseofrputs and
outputs at the component interfaces allows for run-timereanh checking of
3rd party components.

8.6 Using Monitored Information

In Section 8.2, four key-areas that would benefit from congmdilevel monitor
support were listed. Table 8.1 maps these areas to the fownitoned compo-
nent aspects discussed in this Section. For instance, xetme- and mem-
ory information can be used in order to automatically chebletiver 3rd party
components do not violate their required interface (e.g.memory leaks or
deadline misses), and sanity checks can be used to checlothidqd interface
during run-time. By using event ordering and sanity cheakds, the observ-
ability and ability to easily test and debug the assemblylmaronsiderably
enhanced. Regardless of whether replay debugging methedsead or not,
event traces are helpful during debugging in order to visadhe behaviour of
the component assembly during run-time.

As for certifiable components, all monitoring aspects carhéipful in
order to successfully predict the future behaviour of congrs in different
types of assemblies. Including monitoring in a componestinelogy will en-
sure that all components conforming to that technology wilude identical
monitoring support. Hence, component properties can Ly easnpared us-
ing standardised means of comparison.

8.7 Conclusion and Future Work

In this paper we have proposed monitoring of software coraptm and reuse
of monitored components, as a general approach towardsesgig of re-

8.7 Conclusion and Future Work 117

Exec. Event Sanity
Time | Memory | Ordering | Check
Certifiable
Components X X X X
Debug/
Testing X X
R-T Contract
Checking X X X
Observability X X

Table 8.1: Mapping key-areas of interest to key compongrgcs.

source constrained, embedded, distributed, real-timgamystems. The con-
cept is general in the sense that it addresses not only tredagement phase;
rather the whole product life cycle, including debuggiresting and mainte-
nance, is considered. The concept also extends well intdugtdine settings,
where components and architectures are reused over a sgatfdr product
and product variants. We have identified four key-areasimighgineering of
embedded systems: (i) certifiable components, (ii) sydesml-testing and de-
bugging, (iii) run-time contract checking, and (iv) obsability. We have also
discussed how to meet the challenges within these areasiebyifying four
main component-aspects that are of particular interestoitor: (1) the exe-
cution time behaviour of the components, (2) the static antachic memory
usage, (3) the event ordering of the execution and (4) aysahéck of the
components output based on the input. We have provided a anyrofithe
state-of-the-art of monitoring support for component medad presented a
brief survey of the practices used in today’s component isdde embedded
real-time systems.

As for future work, there are a number of issues we would likeddress.
We intend to look further into the problems of using the samm@mmonent on
top of different hardware platforms, where some old monigpinformation
might be reused, while other information needs to be diszhoth the new plat-
form. Furthermore, the trade-off between minimisation ohitoring memory
and CPU usage and the level of detail of monitor informatidlhlve investi-
gated. In order to evaluate our ideas, we plan to use the $avpComponent
Model, described in [22], as a test platform. The componerdehis designed
for embedded control-systems in vehicles, and much focadban spend on
solving reliability, timelines and safety issues.

Bibliography

Bibliography

[1] NIST Report. The economicimpacts of inadequate infrastire for soft-
ware testing, May 2002.

[2] P. Clements and L. NorthropSoftware Product Lines: Practices and
Patterns Addison-Wesley, 2001. ISBN 0-201-70332-7.

[3] H. Thane, D. Sundmark, J. Huselius, and A. Petterssomplayedebug-
ging of Real-Time Systems Using Time MachinesPhceedings of Par-
allel and Distributed Systems: Testing and Debugging (PAD)T pages
288 — 295). ACM, April 2003.

[4] Sun Microsystems. Enterprise Java Beans Technolodp:/fdva.sun.-
com/products/ejb/.

[5] Microsoft Component Technologies. COM/DCOM/.NET. ghttwww.-
microsoft.com.

[6] I. Crnkovic and M. LarssonBuilding Reliable Component-Based Soft-

ware SystemsArtech House publisher, 2002. ISBN 1-58053-327-2.
[7] PACC Project Home Page. Home Page: http://www.sei.edw/pacc.

[8] J. Gao, E. Zhu, and S. Shim. Tracking component-baseacd. In
Proceedings of the International Conference on Softwargifgering,
2000's COTS Workshop: Continuing Collaborations for Sestd COTS
Development2000.

[9] A. Mdller, J. Fréberg, and M. Nolin. Industrial Requiremts on Com-
ponent Technologies for Embedded SystemsProceedings of the'?
International Symposium on Component-Based Softwarengagng
2004 Proceedings Series: Lecture Notes in Computer Scignte&054,
May 2004. Edinburgh, Scotland.

118

Bibliography 119

[10] CiA. CANopen Communication Profile for Industrial Sgsts, Based
on CAL, October 1996. CiA Draft Standard 301, rev 3.0, higpaw.-
canopen.org.

[11] J. Gait. A Probe Effect in Concurrent PrograrBgftware — Practice and
Experiencel6(3):225 — 233, March 1986.

[12] A. Jhumka, M. Hiller, and N. Suri. An Approach to Speciynd Test
Component-Based Dependable SoftwarePioceedings of the'VIEEE
International Symposium on High Assurance Systems Entjigepages
211 - 218, 2002.

[13] J. Hornstein and H. Edler. Test Reuse in CBSE Using Bniltests.
In Proceedings of Workshop on Component-based Software &ariig
April 2002.

[14] EC IST-1999-20162. Component+. www.component-joitgs.February
2004.

[15] M. El Shobakiand L. Lindh. A Hardware and Software Monitor High-
Level System-on-Chip Verification. Iaroceedings of IEEE International
Symposium on Quality Electronic Desjgrages 56 — 61, March 2001.

[16] J. Engblom, A. Ermedahl, M. Sjédin, J. Gustafsson, andHdns-
son. Worst-case execution-time analysis for embeddedimalsystems.
Software Tools for Technology Transféd, 2001.

[17] K.L. Lundbéck, J. Lundb&ack and M. Lindberg. ComponBased Devel-
opment of Dependable Real-Time Applications Real-Time in Sweden
— Presentation of Component-Based Software DevelopmeetBm the
Rubus concept, Arcticus Systems: http://www.arcticu¥/&steras, Swe-
den.

[18] T. Genssler, A. Christoph, B. Schuls, M. Winter, et acGOS in a Nut-
shell. PECOS project http://www.pecos-project.org.

[19] T. Nolte, A. Méller, and M. Nolin. Using Components todH#tate Sto-
chastic Schedulability. IRroceedings of the 24Real-Time System Sym-
posium — Work-in-Progress SessidBEE Computer Society, December
2003. Cancun, Mexico.

[20] T.J. LeBlanc and J.M. Mellor-Crummey. Debugging PatdPrograms
with Instant ReplaylEEE Transactions on Computei36(4):471 — 482,
April 1987.

[21] K.-C. Tai, R.H. Carver, and E.E. Obaid. Debugging Canent Ada Pro-
grams by Deterministic ExecutiolEEE Transactions on Software En-
gineering 17(1):45 - 63, January 1991.

[22] H. Hansson, M. Akerholm, I. Crnkovic, and M. Térngrenav8CCM -
a Component Model for Safety-Critical Real-Time SystemsProceed-
ings of 30" Euromicro Conference, Special Session Component Models
for Dependable SystenSeptember 2004.

