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Abstract—Modular automation provides a challenge for tra-
ditional physics simulators, especially if they are used as a
simulator in the loop of a development or research project looking
at behavior from a systems level. In this paper, we present
extensions of a previously developed simulation environment that
is tailored to provide these characteristics. The extensions include
simulation engine level improvements, such as including better
modeling of the material flow, and sensor anomaly injections
to model sensor faults or tampering, as well as system-level
enhancements and functionality including certificate handling
and anomaly detection methods using machine learning. This
simulation environment has proven useful for education as well as
research and engineering work, and with the provided extensions
several new directions of use can be envisioned. The system is
demonstrated in the use case of a modular ice-cream factory,
including all the new and enhanced functionalities.

I. INTRODUCTION

To enhance flexibility and dynamicity, supporting mass
customization, shortened innovation cycles and novel busi-
ness requirements, manufacturing systems are being developed
in new directions [1]. One of the design strategies being
adopted in the process industry domain is Modular Automation
(MA) [2], [3]. Systems designed according to MA use indi-
vidual semi-autonomous modules, which are interconnected
through standardized physical and logical interfaces. The low-
level control of the process is up to the individual modules, on
the other hand, the high-level synchronization of the process is
controlled by orchestration units, using formalized workflows
or recipes. In this way, the MA system can be scaled and
adapted to suit fluctuating operational requirements.

When conducting research and developing products for
industrial systems, a common practice is to use a simulator
in the loop, providing the behavior of a physical system.
However, some characteristics of a MA system are difficult
to catch in a traditional physics simulator such as Modelica or
MATLAB. Specifically, in MA a system of controllers is con-
nected to the same physical process, individually controlling
separate interconnected modules of that process. No available
simulators, to the best of our knowledge, can be used as a
physical counterpart for several controllers while maintaining
the material flow between modules.

Our previous work [4] introduces a simulation environment
which sufficiently faithfully simulates a MA system. In the
simulation engine, physical modules and module intercon-
nections are defined in an XML file, along with sensors,

actuators, and sensor characteristics with the goal to allow
easy reconfiguration of the simulator. In runtime, the module
behavior is executed, and the sensor and actuator signals
are communicated using the Message Queuing Telemetry
Transport (MQTT) [5] protocol. The simulator is put in a
system environment, including controllers, orchestration units,
and supervision, which communicates using the Open Process
Communication Unified Automation (OPC UA) [6] protocol,
that is being increasingly adopted in industrial control system
components. Demonstration of the simulation environment is
done in a modular ice-cream factory system, designed for
research and education on cybersecurity in manufacturing
systems.

This work extends the simulation engine and system en-
vironment with crucial functions and components, making it
more realistic and useful for research purposes and prototype
development.

The simulation engine is extended with functionalities re-
lated to different internal and external threats that can affect
the normal behavior of the system. In particular, a dedicated
anomaly injection component is developed to allow users to
intentionally introduce anomalies into the signals of various
analog sensors during the production process. When discussing
anomalies, we are referring to data points or patterns in
the data that deviate from the expected or normal behavior.
These anomalies can occur due to various factors, including
malicious activity or system failures [7]. Additionally, to allow
for higher flexibility and scalability with regards to module in-
tegration, a complex material flow [8] handling is implemented
in the simulation engine. This allows a generic description of
material mixing, separated from the behavior modeling of the
physical modules. Also, a method for describing downstream
flow throttling is integrated into the material flow handling,
which was previously missing. In the prior version”, there was
no way of describing physical limitations of the inlet flow to a
module if it was dependent on an output from other modules.

On the other hand, the system functions are also extended
with different components. Firstly, when introducing new
modules, as well as other digital services, within the simulation
environment there are a number of actions required for them to
be accepted and recognized in the system. These actions were
previously done by manual certificate distribution, which is
a complex and error-prone task, especially when the system
is growing in complexity. To that avail, we have described



a simplified secure provisioning method and implemented a
generic support for OPC UA services for transitioning between
provisioning and production mode. Secondly, an orchestration
client is included with a user interface that allows the usage of
different recipes as well as the supervision of the current status.
Lastly, an anomaly detection component is developed with
the goal to generate an alert when an anomaly occurs within
the environment. We decided to employ Machine Learning
(ML) algorithms for performing the detection, given their
considerable success in addressing similar problems across
various domains in recent years [7], [9], [10].

The main contributions presented in this paper are the
following extensions of:

• Simulation Engine
– Support for complex and throttled material flow.
– Anomaly injection

• Simulation system
– A light-weight provisioning protocol, integrated with

certificate management.
– A recipe orchestration client.
– Anomaly detection

The remainder of this paper is organized as follows.
Section II provides details on the implementation of new
components of the simulation engine. Section III provides
information on new system-level functionalities. Section IV
contains the demonstration of the simulation environment on
the example of a modular ice-cream factory. In Section V we
discuss the potential applications, advantages and limitations,
and outline the future plans. Section VI concludes the paper.

II. SIMULATION ENGINE

In this section, contributions related to simulation engine
are further described.

A. Complex Material Flow

Modeling how the physical properties of the material prop-
agate in the simulator is challenging. Previously, the archi-
tecture was limited to communicate using scalar values, e.g,
volumetric flow (m3/s) and temperature. For simulation mod-
els utilizing just a few physical properties, this was a simple
and useful method. However, when new physical properties
needed to be added, the amount of scalar signals needed to
describe the system increased, and the logic for propagation
of properties when mixing materials typically ended up being
duplicated in several modules.

To alleviate this a special type of signal is introduced and
defined as complex material flow. The complex material flow
signal is defined as a hash-table, with pairs of (name, value).
Each module does not need to know about all aspects of the
complex material flow, properties of relevance for the module
are accessed and manipulated using their name.

When material is flowing from one module into another,
a mixture of materials is occurring. To allow this mixture
without modules needing detailed knowledge of the properties
of the complex material flow, a separate mixing engine is in-
troduced. For a specific set of physical properties, this method

must be implemented, so that the mixing is sufficiently precise
and physical property interactions are properly modeled.

Below, an example of a subset of the calculation for mixing
two materials from the ice-cream factory, with V being the
volume, ρ the density, T temperature and C the heat capacity:
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where ∆V , ∆ρ, ∆T , ∆C represents the resulting value

of the mixing of material 1 and material 2, with respect to
volume, density, temperature, and heat capacity, respectively.
Specifically, these values are calculated by the following
equations:

∆V = V1 + V2,

∆ρ =
V1ρ1 + V2ρ2

∆V
,

∆T =
T1C1 + T2C2

C1 + C2
,

∆C =
C1V1ρ1 + C2V2ρ2

V1ρ1 + V2ρ2

As can be seen, this is a simplified way of describing mixing
of materials, as we assume instant homogeneous mixture
without phase transfers, etc. For the simple scenario this is
sufficiently precise, but for other applications these formulas
would need to be elaborated. That is also supported in the
configuration of the simulator, with selection of calculation
engine being one of the introduced parameters.

B. Flow throttling

Flow of material in to a module has only been limited by the
output from the previous interconnected module(s). However,
the volume-flow between modules are in reality limited by
the physical properties of the interconnecting infrastructure
joining the modules, i.e., both the out-flow and in-flow of a
module are dependent not only on properties of the module,
but also on properties of the connected module. For example,
as illustrated in Fig. 1, the outlet of a tank t1 is connected
to another tank t2 through a pipe with a variable valve
control, meaning that the output of t1 is depending both
on gravitational pressure, outlet geometry, and the opening
level of the valve. This behavior is now modeled as flow
throttling, which simply implies that the output of a module
may be limited to a certain, potentially variable, value. Flow
throttling is part of the signal configuration of the simulator
configuration files.

C. Anomaly Injection

The simulator has a functionality that enables injection
of anomalies in the analog sensors, which can occur during
the production process itself. Access to this functionality is
enabled through the graphical user interface where the user
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Fig. 1: Flow throttling.

can select type of an anomaly, corresponding parameters for
that anomaly, a module, an analog sensor of that module, and
a moment when the anomaly will be injected (immediately
or after the sensor has reached a specific value either with
an increasing or a decreasing trend). Additionally, there is a
production process visualization where the user can observe
how it is influenced by the anomaly. From the moment of
anomaly injection, the actual sensor value is replaced by a
modified value by inserting it directly into the MQTT queue.
This means that the ”physical” state of the system is not
affected, but the controllers access the wrong values, which
causes changes in the system behavior. The values can be
modified in different ways: freeze value, step change and
ramp change [11]. This functionality can be used to simulate
different scenarios, from malfunctioning sensors to external
intrusions.

III. SYSTEM FUNCTIONS

In this section, system-level contributions are outlined.

A. Certificates and Provisioning

Secure provisioning is the method of providing a digital
entity the knowledge and material required in order to be
functional in a specific system. Provisioning mode is when an
entity is waiting to be provisioned. In this state the server has
no reliable way of knowing how a legitimate client looks like,
and will often need to trust any client attempting to connect.

The OPCfoundation .NET stack1, which most server func-
tions in the system are developed with, contains no built-in
implementation of provisioning mode. For the access control
mechanisms to work, certain aspects of the provisioning
must be in place, especially with regards to certificate han-
dling. Therefore, a light-weight provisioning functionality is
provided. The implementation is inspired by the OPC UA
Part 212, which outlines device-onboarding practices, but our
implementation is limited to the functionalities required related
to access control.

The goal of the virtual provisioning implementation and
accompanying protocol is to introduce an OPC UA server
in the system and provide it with any needed information.
This is done by replacing the self-signed server application
instance certificate with a certificate signed by the Cerificate
Authority (CA), as well as by providing additional required

1github.com/OPCFoundation/
2OPC UA v1.05.02 10000-21 Device onboarding (reference.opcfoundation.

org/Onboarding/v105/docs/).

public certificates: for the issuing CA, and potentially other
CAs, and the token-signing certificate that the authorization
service will use for access tokens.

We created an extended base-class of the OPC UA
BaseServer, which checks the application instance certificate
on startup. If the certificate is self-signed, i.e., the issuer
of the certificate is the same as the subject, we consider
the server not being provisioned yet, and therefore it allows
connections from clients with non-trusted certificates (from
the server perspective), following the principle on trust on first
use. In this state only the server configuration capabilities are
available. The log-in is protected by a username/password.

When the server application instance certificate is not self-
signed at startup, the server is considered being in production
mode and therefore also start the node manager(s) exposing
server-specific functionality. In this mode, the server only
accepts connections from trusted certificates, or certificates
signed by trusted CAs.

This light-weight provisioning scheme is not intended for
actual production environments, as several components are
missing, but it can be used as a bare minimum on how to
onboard OPC UA servers by means of distributing common
root certificates, and providing the server with a CA-signed
certificate.

Fig. 2: Provisioning protocol.

For the CA functionality, the built-in CA part of the Global
Discovery Server (GDS) example-application provided in the
OPC UA .NET-stack3 is used. The provisioning protocol is
visualized in Fig 2. When the UA server starts, it first check the
status of its application instance certificate, and either enters
provisioning mode or production mode. If in provisioning
mode, only the server configuration methods are available. In

3github.com/OPCFoundation/UA-.NETStandard-Samples



this state a GDS client can connect to the UA server, register it
with the GDS, and update the trust list of the UA Server, i.e.,
provide it with different root certificates, certificate revocation
lists, etc. After that, the GDS Client can order the UA Server
to issue a Certificate Signing Request (CSR), which is handled
by the CA part of the GDS. When the certificate of the UA
Server is updated, the server must restart to transition into
production mode.

B. Orchestration client

In order for operator to run recipe execution and monitor
the orchestration status, a simple orchestration client is imple-
mented (Fig 3). The orchestration client is part of the operator
workplace, and provides a graphical user interface that can
interact with the OPC UA server endpoint of the orchestrator
units in the system. Using the orchestration client, recipes can
be started, stopped, and recipe status can be supervised.

Fig. 3: Graphical user interface for orchestration client.

C. Anomaly Detection

The new functionality is developed to perform detection
of anomalies in the production process. This functionality
uses artificial intelligence to generate the alerts when an
anomaly occurs. More precisely, it is using Long Short-Term
Memory (LSTM) artificial neural network to perform binary
classification based on the current system state. This algorithm
was the most suitable since it considers the temporal nature
of the manufacturing process. Additionally, runtime adaptation
of LSTM predictions is implemented to prevent false negative
and false positive alarms as much as possible [12]. When
the alarm happens it remains on until the run ends or until
someone checks the systems.

IV. DEMONSTRATION

The feasibility of the simulation environment is demon-
strated in a use case of a modular ice-cream factory, illustrated
in Fig. 4, which is an extension of the use case provided in [4].
The following subsections demonstrate the new functionalities
in the scope of ice-cream factory use case.

A. Homogenization using flow throttling and complex material
flow

The simulation engine is extended with a separate homog-
enizer module, which implements the flow throttling, as the
homogenization is modeled as the material passing through

two valves under high preassure, i.e., there is no internal
storage tank part of the homogenization module, it is just
material flow. The complex material flow is a generalized
functionality, and thus integrated in the simulation engine, with
material mixing including heat transfer, fat globule size, sugar
content, density and a simplified model for bacterial growth.

B. Provisioning and certificate handling

The GDS represent the basic functions related to the pro-
visioning protocol and certificate handling. All the OPC UA
services in the system are provisioned using the protocol. The
Orchestrator unit is supervised and controlled by the Orches-
trator client, being run as part of the Operator Workplace.

The Authorization Service in the system is used for making
access control decisions on behalf of the resource servers
in the system, following a policy delegation protocol further
described in [13], which is utilizing an approach based on
signed JSON Web Tokens (JWT) [14]. The integration of this
access control functionality in the demonstration is relying on
the certificate distribution part of the provisioning protocol,
e.g., related to verifying the JWT signatures.
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Fig. 4: The modular ice-cream factory, the use case for the
simulation environment, with all extensions highlighted.

C. Dataset

The developed simulation environment and the simulation of
ice cream-making process with anomaly injection functionality
were used to record a dataset named Modular Ice-cream
Factory Dataset on Anomalies in Sensors (MIDAS) [11] that
is publicly available on GitHub4. The main purpose of the

4https://github.com/vujicictijana/MIDAS/



Fig. 5: Example of simulation environment graphical user
interface including: production process visualization,

anomaly injection and anomaly detection

TABLE I: Accuracy of different ML algorithms anomaly
detection and anomaly classification [11], [12]

ML algorithm Anomaly
detection

Anomaly
classification

LR 64.60 51.42
DT 69.97 56.53
RF 75.07 62.49
MLP 82.36 70.73
LSTM 85.06 70.85

dataset is to support machine learning research in analog
sensor data for manufacturing environments. The system be-
havior was recorded during 1000 runs (258 normal runs and
762 anomalous runs), resulting with 36,124,859 instances in
the dataset. Anomalous behavior was simulated by injecting
different types of anomalies into signals of analog sensors of
all modules. Values of different sensors were modified during
different stages of the simulated process using different values
of parameters for a specific anomaly that was injected.

D. Anomaly detection using machine learning

The MIDAS dataset was used to evaluate different ML
algorithms to find the best performing one that can be used
for anomaly detection functionality of the simulator. The
algorithms that were evaluated include four traditional, non-
time-series, ML algorithms (Decision Tree (DT), Random
Forest (RF), Multilayer Perceptron (MLP) and Logistic Re-
gression (LR)) and one time-series ML algorithm (LSTM).
Two different problems were addressed (anomaly detection
and anomaly classification) and the results are presented in
Table I.

The results achieved by the ML algorithms showed that
MLP is the best non-time-series ML algorithm to detect
and classify these anomalies. However, the LSTM has better
performance than all non-time-series ML algorithms it was
compared with. That is why LSTM was used to develop

the anomaly detection functionality presented in III-C. More
details on this experiments can be found in [11] and [12].

V. DISCUSSION

This section suggests the potential use of our solution and
discusses its advantages and current limitations, as well as
planned future extensions.

The developed simulation environment has many advan-
tages as it can be used for research and educational purposes.
There are not many tools that can be used to simulate a
modular manufacturing system, so this tool and the data set
generated with it give the opportunity to the researchers in
manufacturing environments to further advance this research
area. The simulation environment has already been used for
many student projects and master thesis, and it will be used
further. Additionally, it can be used in the industrial context,
to create a digital twin for a real factory, or as simulator in
the loop for development projects within industrial control.

The proposed simulation engine is not meant to be high-
fidelity simulator, the goal is to have sufficiently accurate
behavior, which is a limitation making the system unfit for,
e.g., fine-tuning of control logic etc. The provisioning protocol
is a highly simplified variant of what would be required for
secure provisioning in a real scenario, but rather serves as the
basic functionality needed to support secure communication
and access control. When it comes to anomaly injection the
current version supports only a limited amount of anomalies
that can be simulated, and the anomalies can be injected only
in analog sensors. However, the code can be easily extended
with the simulation of new types of anomalies, as well as
the simulation of the anomalies in the digital sensors. In the
same direction, for anomaly detection/classification a limited
amount of ML algorithms were tested and only the best one
was integrated into the tool. The public dataset can be used
to evaluate more ML algorithms and any of them can be
integrated into the tool.

The simulation environment can be further extended with
additional functionalities. Some extensions that are already
planned include:

• Federated/Distributed learning [15], [16] - This envi-
ronment supports a perfect scenario to apply federated or
distributed learning, due to the modularity of the system.
ML models can be installed into the different modules, to
perform a first level of anomaly detection/classification.
Then, these individual ML models can be used to create
a global ML model on the orchestrator to have a second
security level.

• Feature selection [17], [18] - The current version of
anomaly detection uses values from all the sensors in
order to make the prediction. It is planned to evaluate
how using only specific sensor values (the most rele-
vant features) affects the performance of ML models.
Additionally, feature selection algorithms can help us to
determine which sensor are affected by certain anomalies.

• Industrial controller connectivity [19] - Currently, the
controllers being integrated in the simulation environment



are not real industrial controllers. Work has started to
implement MQTT connectivity for one of the control
platforms of ABB, which would allow integration of in-
dustral controllers for the detailed control of the modules.

• Workflow-based Authorization [20] - As MA systems
are modular and dynamic to their nature, configuring
and sustaining access control policies close to the prin-
ciple of least privilege is a huge challenge. Tightly
integrating knowledge of executing workflows as part
of the authorization protocol is currently on-going work,
which could be integrated and evaluated in the simulation
environment.

VI. CONCLUSIONS

In this paper, we present the extensions of the previously
developed simulation environment with respect to simulation
engine functionalities and main system functions. Extensions
of the simulation engine are done with regard to advanced
material flow and sensor anomaly injections. Extensions of
the system environment are done mainly in the area of cyber-
security, such as secure provisioning and anomaly detection.

The developed environment can be used to simulate the
physical process of a modular automation system which is
demonstrated by the example of a modular ice-cream factory.
The developed solutions benefit the research community, ed-
ucation, and industrial applications. Specifically, the system
has shown useful for research on industrial cybersecurity, with
several articles and master thesis on intrusion detection and
access control for industrial systems being conducted within
the InSecTT EU Project5.

As discussed in the previous section, we are planning
to further extend the simulation environment with feder-
ated/distributed learning, feature selection, industrial controller
connectivity, as well as workflow-based authorization.
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