
HERO-ML: A Very High-Level Array Language for
Executable Modelling of Data Parallel Algorithms

Björn Lisper
bjorn.lisper@mdu.se

Mälardalen University
Sweden

Linus Källberg
linus.kallberg@mdu.se

Mälardalen University
Sweden

Abstract

HERO-ML is an array language, on very high level, which is
intended for specifying data parallel algorithms in a concise
and platform-independent way where all the inherent data
parallelism is easy to identify. The goal is to support the soft-
ware development for heterogeneous systems with di�erent
kinds of parallel numerical accelerators, where programs
tend to be very platform-speci�c and di�cult to develop. In
this paper we describe HERO-ML, and a proof-of-concept
implementation.

CCS Concepts: • Computing methodologies → Parallel

programming languages; Neural networks; • Software

and its engineering → Very high level languages; Soft-
ware prototyping.

Keywords: data parallelism, array language

ACM Reference Format:

Björn Lisper and Linus Källberg. 2023. HERO-ML: A Very High-

Level Array Language for Executable Modelling of Data Parallel

Algorithms. In Proceedings of the 9th ACM SIGPLAN International

Workshop on Libraries, Languages and Compilers for Array Program-

ming (ARRAY ’23), June 18, 2023, Orlando, FL, USA. ACM, New York,

NY, USA, 9 pages. h�ps://doi.org/10.1145/3589246.3595370

1 Introduction

There is an ever-growing need for computational power.
An area where the need for heavy computing is increasing
rapidly is embedded systems, where applications like au-
tonomous vehicles require massive amounts of computing
for tasks like machine learning, advanced signal and image
processing, etc. These systems also often have strong con-
straints on energy consumption, memory, unit cost, etc. The

ARRAY ’23, June 18, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0169-6/23/06.

h�ps://doi.org/10.1145/3589246.3595370

response from the hardware industry has been to develop in-
creasingly integrated, heterogeneous hardware, where com-

putational accelerators are placed on the chip or board to of-
�oad computationally heavy tasks from the main processor.
In this way, large computational resources can be provided
at low cost.

Today we see a large proliferation of accelerator architec-
tures: GPGPU’s, many-cores, solutions involving FPGA, and
even ASICs. Although these architectures are quite di�erent,
they have in common that they typically rely on massive
data parallelism to obtain performance. Besides embedded
systems, these kinds of accelerators are also increasingly
being used in traditional HPC as well as cloud computing:
an example of the latter is Microsoft’s Catapult project that
integrates FPGAs into servers [10].

Developing software for these heterogeneous systems pro-
vides a challenge. Utilising the accelerators well requires
parallel code, but parallel programming can be very hard
and error-prone. The situation is aggravated by the fact that
current programming practices for the accelerators are very
dependent on the type of accelerator. For instance, code for a
GPGPU will typically be very di�erent from code for a many-
core. This makes the code less portable, and costly redesigns
may be needed if the hardware platform is changed.
A possible way forward is to consider model-based devel-

opment, where system and software is speci�ed by high-level
models. The models can capture di�erent aspects such as
system structure, or program logic. If the model is executable
then it can be used to simulate the aspect of the system that
it captures: such models can be used to �nd errors in the
design early, and they can also be used as test oracles in the
validation phase.

HERO-ML1 is a data-parallel executable modelling lan-
guage, intended to be used for very high level speci�cations
of data parallel algorithms. Such executable speci�cations
can serve as portable “blueprints” when developing acceler-
ator code, and they can help �nding �aws in the algorithms
at an early stage of development. HERO-ML is inspired by
data-parallel and array languages such as *lisp [20], NESL [2],
ZPL [6], and HPF [16]. These languages all implement a par-
allel model of computation where the parallelism resides in
collective operations over data structures, like arrays, rather

1ML here stands for “Modelling Language”, not “Meta-Language”, or “Ma-

chine Learning”.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

13

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589246.3595370
https://doi.org/10.1145/3589246.3595370

ARRAY ’23, June 18, 2023, Orlando, FL, USA Björn Lisper and Linus Källberg

than explicitly in threads or processes. This model of compu-
tation is conceptually much simpler than the control paral-
lelism given by parallel threads and processes, and languages
like the ones mentioned above introduce various high-level
concepts and constructs that help writing clear and concise
data parallel code. HERO-ML aims to generalise and unify
these concepts. Since HERO-ML is intended for high-level
modelling rather than high performance production code, its
design does not have to make compromises in order to allow
for e�cient implementations. Thus, its design rather focuses
on providing maximal support for the early modelling phase
in the design of software for parallel accelerators.
In this paper we give an overview of HERO-ML, and

its salient features. A full language speci�cation, including
an abstract syntax, and formal semantics, is found in [17].
HERO-ML documentation, as well as a proof-of-concept im-
plementation, is found at

https://hero-ml-language.github.io/.

2 HERO-ML in a Nutshell

HERO-ML has two parts: a sequential part, which is a simple
imperative language, and a data parallel part in the form of an
abstract array data type where operations on the arrays can
be done in parallel over the array elements. Since the focus
is on the parallel part, the sequential part is deliberately
kept simple: it is a standard WHILE language [18], with
assignments, conditionals, simple i/o, and While loops. It
is strongly and explicitly typed, with basic types 8=C , 5 ;>0C ,
1>>; . HERO-ML also has some builtin functions: these have
function types similar to what is found in some higher-order
functional languages.

3 Abstract Arrays, and Bounds

The arrays in HERO-ML are called abstract arrays (simi-
lar to the previously considered data �elds in Data Field
Haskell [13]). Their design is based on the observation that
arrays really correspond to functions from some index set to
the set of values for the array elements. HERO-ML extends
the standard WHILE language with the following array con-
structs: a set of array expressions, a statement to evaluate

such expressions and bind the resulting array to a program
variable, and a masked concurrent assignment where all el-
ements in an existing array that ful�l some condition are
updated in parallel.
Conventional arrays correspond to functions from inter-

vals, or products of intervals. Abstract arrays can map from
a larger variety of domains, including sparse, possibly multi-
dimensional sets of indices, and even in�nite sets. Every
abstract array has a bound, which is a set expression safely
over-approximating its domain. Arrays and bounds are both
�rst class citizens in HERO-ML, and can be freely passed
around.

In general an abstract array is a pair

(5 , 1=3)

where 1=3 is its bound, and 5 is a function de�ning the val-
ues of the array elements for the indices within the bound.
For an evaluated array, 5 is given by a table containing the
array elements. Evaluating an abstract array means to �rst
compute its bound, and then creating the table and popu-
lating it with the corresponding array elements. For this to
work, the bound must represent a �nite set. Some HERO-ML
bounds indeed represent in�nite sets, and array expressions
with such bounds cannot be evaluated. (In�nite bounds may
seem useless, but the evaluation of abstract arrays has a lazy
�avor where such bounds can make sense.)
HERO-ML supports the following kinds of bounds:

• dense bounds, representing intervals,
• sparse bounds, representing general �nite sets,
• predicate bounds, representing (possibly in�nite) sets
de�ned by a predicate,

• 4<?C~ and 0;; , representing the empty and universal
set, respectively, and

• product bounds, representing cartesian products.

Some two-dimensional bounds are illustrated in Fig. 1.
The HERO-ML bounds form a complete lattice [18], which

means that they have certain mathematical properties. In-
deed there is a strong relation to static program analysis, and
the computation of bounds for forall expressions (see below)
can be seen as a kind of run-time value analysis.

There are three major kinds of array expressions in HERO-
ML:

• explicit array expressions, which de�ne arrays through
listing their elements,

• array comprehensions, which de�ne arrays with ex-
plicit bounds where the elements are computed ac-
cording to some rule, and

• forall expressions, which are similar to array compre-
hensions but have their bounds de�ned implicitly from
the syntax of the expression. This construct is inspired
by lambda abstraction in the lambda calculus, and the
rules for computing bounds are designed to (over)ap-
proximate the domain of the partial function de�ned
by the forall expression. Forall expressions are further
described in Section 8.

In addition there is a masked concurrent assignment of ar-
rays, where array elements that ful�l some condition are
concurrently updated. Together, these array constructs can
express basically all data parallel constructs found in the
literature.
An array access out of bounds generates a run-time er-

ror. Also array elements within bounds may be unde�ned,
but in this case a “soft” error value, denoted “?”, is returned
when accessing the element. This can happen since bounds

14

HERO-ML: A Very High-Level Array Language for Executable Modelling of Data Parallel Algorithms ARRAY ’23, June 18, 2023, Orlando, FL, USA

Figure 1. A dense product bound, a product of a dense and a sparse bound, a product of two sparse bounds, and a 2D sparse
bound. (Adapted from [13].)

may be over-approximated: in particular, the rules for de-
riving implicit bounds for forall expressions may produce
such bounds. This has some consequences for collective op-
erations such as A43D24 and B20=, which will have to skip
such elements. “?” is not accessible at source code level, but
HERO-ML has a predicate 8B�4 5 that tests if its argument is
di�erent from “?”.

4 Types

HERO-ML is a strongly, and explicitly typed language. The
types are similar to those found in ML-like functional lan-
guages, such as OCaml or Haskell, but with some restric-
tions. It has basic types 8=C , 5 ;>0C , 1>>; , a polymorphic type
�AA0~] U for abstract arrays with indices of type] and ele-
ments of type U , and a type �>D=3] for bounds over indices
of type]. U can itself be an array data type: thus, HERO-
ML supports nested arrays. Array indices are either integers
(for one-dimensional arrays), or tuples of integers (for multi-
dimensional arrays). There is, however, no full-�edged data
type for tuples: they appear only as indices to arrays, within
expressions de�ning bounds, or as arguments to builtin func-
tions and operators, see below.
HERO-ML is not a full-�edged higher-order language.

However, builtin functions and operators have function types.
Contrary to what is customary in higher-order functional
languages these functions are on uncurried form, taking
a tuple of individual arguments as argument. For instance
the operator “+” has the type (8=C, 8=C) → 8=C , indicating
that it takes two arguments of type 8=C and returns an 8=C .
Arithmetic operators are overloaded over the numerical
types 8=C , and 5 ;>0C : thus, for example, “+” also has the type
(5 ;>0C, 5 ;>0C) → 5 ;>0C . Implicit type conversion is not per-
mitted: thus, numerical arguments of di�erent type are not
allowed for these operators. HERO-ML also has collective
array operations A43D24 , and B20=, which are higher-order in
that they take a binary function, or operator, as an argument.

5 Standard Functions, and Syntax

HERO-ML comes with a standard set of numerical and bool-
ean functions, and operators. There is also a conditional
function. The HERO-ML syntax is also very much standard,
with standard syntax for identi�ers, standard precedence
and associativity rules for operators, etc. Like in Python and
F#, the syntax is indentation-sensitive.

6 Functions and Operations on Bounds

HERO-ML has many functions on bounds. Many of these
are used to implement the automatic derivation of implicit
bounds that takes place when array-valued expressions, such
as 5 >A0;;-expressions, are evaluated. They are exposed at
the user level primarily to allow the manual tailoring of
bounds in cases when the implicit bound derivation does not
yield a satisfactory result. The functions can also be seen
as providing an interface for bounds: any set representation
that implements these functions (such that they have certain
prescribed properties) can in principle be used as bounds.

Below 8 stands for integer variables, 84 for integer expres-
sions, C8 for tuples of integer variables, or single variables,
C4 for tuples of integer expressions, 4 for general HERO-ML
expressions, 1=3 for bounds, 1 for boolean expressions, 0
for array variables, and 04 for array expressions. Array ex-
pressions also include expressions to access subarrays in
nested arrays, and similarly array variables may be indexed
to access subarrays of nested arrays: we omit these cases
below for notational simplicity.

6.1 Functions That Operate on Bounds

<4<14A : (], �>D=3]) → 1>>; . Membership in the set de-
�ned by a bound.

9>8=,<44C : (�>D=3], �>D=3]) → �>D=3]. Lattice-theo-
retical ⊔ and ⊓, respectively, in the lattice of bounds over
�>D=3] (approximating set union and -intersection). Fig. 1
shows the “type” of bound for join and meet for the di�erent

15

ARRAY ’23, June 18, 2023, Orlando, FL, USA Björn Lisper and Linus Källberg

Table 1. Result “types” of 9>8= (⊔), and<44C (⊓) as a func-
tion of the argument “types” (adapted from [13]). � = 4<?C~,
� = 0;; , (= B?0AB4 , � = 34=B4 , % = ?A43820C4 , × = product
bound. “(/%” in the table for 9>8= means that the result is
B?0AB4 if the product bound is �nite, and a ?A43820C4 other-
wise, and “−” means that the combination is not allowed.

⊔ � � (� % ×

� � � (� % ×

� � � � � �

((� % (/%

� � % −

% % %

× ×

⊓ � � (� % ×

� � � � � � �

� � (� % ×

(((((

� � (−

% % (/%

× ×

possible combinations of bounds. Exact de�nitions of join
and meet are found in [17].

Example (dense 1-D bounds): meet(1..10,5..30) = 5..10,
join(1..10,20..30) = 1..30.

8B�4=B4, 8B(?0AB4, 8B%A43820C4, 8B%A>3D2C : (�>D=3]) → 1>>; .
Tests for the di�erent kinds of bounds.

5 8=8C4 : (�>D=3]) → 1>>; : 5 8=8C4 (1=3) is true i� 1=3 is
classi�ed as �nite (i.e., if 1=3 is dense, sparse, 4<?C~, or a
product of �nite bounds).

B8I4 : (�>D=3]) → 8=C : returns the number of elements in a
�nite bound. Unde�ned for in�nite bounds.

4=D< : (�>D=3]) → �AA0~ 8=C]: provides an enumeration
of the elements in a �nite bound, in lexicographic order, in
the form of an array containing the elements in this order.
Unde�ned for in�nite bounds.

Example (4=D< of a sparse 1-D bound): enum({3,1,7}) =

[0..2 : 1,3,7].

Note: 4=D< is currently not visible inHERO-ML. It is however
visible (and used) in intermediate layers.

6.2 Constructs That De�ne Bounds

4<?C~, 0;; : bottom and top in the lattice of bounds, corre-
sponding to the empty and universal set, respectively.

84 ..84′: an interval bound (also called dense bound).

Example: 1..10

{C41, . . . , C4<}: a �nite, possibly irregular set, called a sparse
bound.

Example: {(0,1),(3,2),(0,-1),(2,2)}, a sparse two-di-
mensional bound with four elements.

{C8 : 1}: a so-called predicate bound, a possibly in�nite set
de�ned by a predicate.

Example: {(i,j) : i+j > 0}, the set of all (i,j) such that
i+j > 0.

(1=31, . . . , 1=3=): cartesian product bound formed from = 1-
dimensional bounds.

Example: (1..10,1..25), the 2-D bound for a 10× 25 dense
matrix, formed from two 1-D bounds.

7 Functions and Operations on Abstract
Arrays

7.1 Functions That Work on Abstract Arrays

1>D=3 : (�AA0~] U) → �>D=3]. 1>D=3 (04) extracts the
bound from the array expression 04 .

Example: bound([2..4 : 1,3,2]) = 2..4.

A43D24 : ((U, U) → U,�AA0~] U) → U . A43D24 (5 , 0) “sums”
the elements in the array expression 0 using the binary func-
tion/operator 5 .

Example: reduce(+,[2..4 : 1,3,2]) = 1 + 3 + 2 = 6.

B20= : ((U, U) → U,�AA0~] U) → �AA0~] U . Like A43D24 ,
but computes an array with all the “partial sums”. The bound
for B20=(5 , 0) is the same as for 0, and the “partial sums” are
computed in the lexicographic order over 1>D=3 (0).

Example: scan(+,[2..4 : 1,3,2]) = [2..4 : 1,4,6]

7.2 Constructs That De�ne Abstract Arrays

[4 : C8 8= 1=3]: array comprehension (de�nition of =-dimen-
sional array with explicit bound).

Example: [2*i : i in 1..10], an array with bound 1..10,
and elements 2*i.

5 >A0;; C8 → 4: array de�nition with implicit bounds, and
syntax similar to lambda-abstraction. The bound is computed
from the syntactic structure of 4 . Rules for how to compute
the bounds are given in [17].

Example: forall i -> a[i] + b[i], element-wise addition
of a and b, computing the bound from those of a and b.

04 | 1=3 : subarray of 04 de�ned by 1=3 .

Example: a | 1..10, the subarray of a from 1 to 10.

[?A40<1;4 4;8BC (=)]: array with dense bounds, where the
elements are explicitly listed. There are several variations
that di�er in how the bound is speci�ed. “?A40<1;4” speci-
�es the (possibly multi-dimensional) dense bounds, whereas
“4;8BC (=)” speci�es the array elements.

Example 1: [2.. : 1,3,2], a dense one-dimensional array
with bound 2..4, and three elements 1, 3, 2.

16

HERO-ML: A Very High-Level Array Language for Executable Modelling of Data Parallel Algorithms ARRAY ’23, June 18, 2023, Orlando, FL, USA

Example 2: [..4 : 1,3,2], same array as above, but with
the bound speci�ed through its upper limit.

Example 3: [1,3,2], an array with the same elements as
above, but with bound 0..2 (similar to a C array).

Example 4: [(1..2,1..3) : 1,2,3; 4,5,6;], a 2D-array
(matrix) with rows 1,2,3, and 4,5,6. (The last semi-colon
can be dropped.)

Example 5: [1,2,3; 4,5,6;], a 2D-array like in Example 4,
but with default bounds (0..1,0..2).

Example 6: [(, , 98..100) : 1,2,3; 4,5,6;; 7,8,9;

10,11,12;; 13,14,15; 16,17,18;;], a 3D-array with
bounds (0..2,0..1,98..100). (The two �rst are default
bounds.) If we name the array “A”, then A[1,0,99] = 8.

[C41 : 41, . . . , C4= : 4=]: explicit sparse array expression.

Example: [(1,1):4.7, (2,3):0.01, (3,5):3.14], a sparse
two-dimensional array with bound {(1,1), (2,3), 3,5)},
and three elements 4.7, 0.01, 3.14.

7.3 Assignment of Abstract Arrays

0 = 04: creates a new abstract array by evaluating 04 , and
sets 0 to hold it.

Example: a = [2*i : i in 1..10], sets a to the new array
de�ned by the array expression.

5 >A402ℎ C8 8= 1=3 3> 0[C4] = 4 : destructive, masked, in-place
update where 0[C4] is set to 4 for all values of the tuple C8
that belong to 1=3 and where 4 is de�ned.

Example: foreach i in 1..10 do x[i+1] = y[i-1], sets
x[i+1] to y[i-1] for all i in 1..10where y[i-1] is de�ned.

Example (nested): foreach i in 1..10 do x[i][i+1] =

y[3][i-1], sets x[i][i+1] to y[3][i-1] for all i in 1..10

where y[3][i-1] is de�ned.

Note: it might be that the same element in the left-hand side
is targeted by the right-hand side for more than one value of
i. This implies a write con�ict, and the value of the targeted
array element is then non-deterministically set to one of the
values written there. An error also occurs if, for some i, the
target address for the left-hand side is out of bounds.

8 Forall-Expressions

The purpose of 5 >A0;;-expressions is to provide a convenient,
and generic syntax for arrays, which is close to mathemati-
cal notation. It builds on the fact that arrays really are par-
tial functions from indices to array values. In higher-order
functional languages functions can be de�ned through _-
abstractions _8.4 , and the forall-expression 5 >A0;; 8 → 4 is
similar except that it de�nes an array whose bound is auto-
matically derived from the syntax of 4 . The programmer is
thus relieved from the task of explicitly de�ning the bounds.

The implicit bounds also help making array de�nitions more
reusable across di�erent kinds of bounds.
The guiding principle is that the bound for 5 >A0;; 8 → 4

should safely over-approximate the domain of _8.4 , that is:
3><(_8.4) ⊆ 1>D=3 (5 >A0;; 8 → 4) where 3><(5) = { G |

5 (G) ≠ ? }. The rationale is that if we view the function _8.4

as the “ideal” array then 1>D=3 (5 >A0;; 8 → 4) will surely
contain all elements for which _8.4 is de�ned. Functions over
_8.4 can then be computed over 5 >A0;; 8 → 4 by �rst �ltering
out the relevant appearances of “?”.

The derivation of bounds is basically a simple value anal-
ysis by abstract interpretation [8, 18]. However, contrary
to a traditional static program analysis the derivation of
bounds is done at run-time, every time a 5 >A0;;-expression
is evaluated.

The bound for 5 >A0;; 8 → 4 is given by a function�(4, 8, .)
where . is a set of variables that are bound in enclosing
expressions. On top level, . = ∅. �(4, 8, .) is then de�ned
recursively, over the structure of 4 . A full de�nition is found
in [17]. Here we exemplify by computing the bound for
5 >A0;; 8 → (�[8] + 8):

�(5 >A0;; 8 → (�[8] + 8), 8, ∅)

= �(�[8] + 8, 8, {8})

= �(�[8], 8, {8}) ⊓ �(8, 8, {8})

= 1>D=3 (�) ⊓ 0;;

= 1>D=3 (�)

The rationale for replacing + with ⊓ is that + is “?-strict” in
both arguments, that is: ? + G = G + ? = ?. Thus �[8] + 8 is
de�ned only when both �[8] and 8 are. This gives the eval-
uation of arrays a lazy �avour, since the initial evaluation
of bounds may reduce the access of in�nite arrays to �nite
pieces. The example above can be seen as element-wise ad-
dition of � with the in�nite array 5 >A0;; 8 → 8 , which yields
a �nite array whenever 1>D=3 (�) is �nite even though the
second argument is in�nite.

Multi-dimensional arrays are extremely important in many
computational applications. Di�erent data parallel and ar-
ray languages have therefore developed a multitude of con-
structs to express operations on matrices and arrays such
as selection of row or column vectors from a matrix, re-
duction over all row/column vectors, and other operations.
These constructs are however often a bit ad-hoc, often lack-
ing generality, and the semantics can be somewhat unclear.
forall-expressions provide a uniform, general, and seman-
tically well-de�ned syntax to express various operations on
higher-dimensional arrays. Below are some examples:

• forall i -> A[i,c] selection of column c from
matrix A

• forall j -> A[r,j] selection of row r from A

• forall i -> A[i,i] selection of main diagonal
from A

• forall (i,j) -> A[j,i] transpose of A

17

ARRAY ’23, June 18, 2023, Orlando, FL, USA Björn Lisper and Linus Källberg

output layer

hidden layers

input layer

layer l

layer l−1
wlij

i

j

Figure 2. Layers in a feed-forward network.

• forall i -> (forall j -> A[i,j]) conversion
of matrix A into a nested array of arrays (row vectors)

• forall i -> reduce(+,(forall j -> A[i,j]))

array of the sums of all rows in A

The current version of the � function derives exact bounds
for all these examples. Notably this is independent of the
kind of bound, so correct bounds are derived also when A

is, for instance, a sparse matrix. However, in general there
must always be cases where exact bounds cannot be auto-
matically derived. In such cases HERO-ML provides fallback
mechanisms such as subarrays, and array comprehensions,
which can be used to set bounds manually.

9 A Worked Example: Feed-Forward ANN

9.1 Feed-Forward Networks

Feed-forward networks [9] is a classical example of Deep Neu-
ral Network (DNN). In general a DNN consists of many small,
interconnected units, where outputs from units (“activity lev-
els”) are connected to inputs for other units. Some inputs
provide the input to the network, and some outputs yield the
corresponding response. The connections between units are
set by training the DNN on a set of examples. Once trained,
the DNN can be used for tasks like feature recognition.
In a feed-forward network the units are arranged in a

number of layers, where each interconnection goes from
some layer ; − 1 to layer ; . See Fig. 2. There are three kinds
of layers:

• an input layer, which provides the input to the ANN,
• a number of hidden layers, which contain units inter-
connected between layers, and

• an output layer, which provides the output (or re-
sponse) from the ANN given a certain input.

The input is basically an array of numbers. It can, for instance,
be a pixel matrix encoding a picture. The output is also an
array of numbers that encodes the output. It can, for instance,
represent a classi�cation of some object in the picture.
Each unit in a hidden layer computes its output as a

weighted, thresholded sum of the outputs of the connected
units in the previous layers. Mathematically, output I; 9 from

z

z[0]

z[1]

z[2]

w[1]

w[2]

w

Figure 3. A nested array representation of layers in a feed-
forward network.

unit 9 in layer ; is computed as

I;8 = B (
∑

9

F;8 9I;−19) (1)

where the sum ranges over the units 9 in layer ; − 1 that
are connected to unit 8 in layer ; . F;8 9 is the weight of the
connection from 9 in layer ; − 1 to 8 in layer ; . B is commonly
chosen as the sigmoid function, de�ned by

B (G) =
1

1 + 4−G
(2)

The interconnections between layers are typically sparse:
only a few units in layer ; − 1 are connected to each unit in
layer ; .

9.2 Modelling of Feed-Forward Network Computing

with HERO-ML

We will now show how to model one particular way of
computing the output from a trained feed-forward network,
given some input. We will use nested arrays, where the nest-
ing re�ects the structuring of the network into layers. More
speci�cally z will be an array of arrays, where z[l] holds
the output values of the units in layer l. The weights will
be stored in an array of matrices w, where w[l] is a matrix
where each element w[l][i,j] holds the weight for the con-
nection from unit j in layer l-1 to unit i in layer l. The
types of z and w are as follows:

z : Array int (Array int float)

w : Array int (Array (int,int) float)

Note that w[l]might be a sparse matrix, with a sparse bound.
We assume that the arrays z and w themselves have dense
bounds 0..n-1 and 1..n-1, respectively, where n is the num-
ber of layers. Fig. 3 shows an example with an input layer
with three units, a hidden layer with �ve units, and an output
layer with two units.

We now give HERO-ML code for the computation. We use
the following declarations2:

2HERO-ML does not have function de�nitions, but we can see these decla-

rations as macros.

18

HERO-ML: A Very High-Level Array Language for Executable Modelling of Data Parallel Algorithms ARRAY ’23, June 18, 2023, Orlando, FL, USA

s(x) = 1/(1 + exp (-x)) // sigmoid function

sum(a) = reduce(+,a) // sum over abstract array

We assume that the input to the computation is stored in
the array input. First, the input layer z[0] is assigned this
array. Then the code loops over the other layers, computing
z[l] from a matrix-array multiplication of z[l-1] and w[l]
followed by a thresholding of the elements in the resulting
array:

z[0] = input;

l = 1;

while l < n do

z[l] =

forall i ->

s(sum(forall j ->

(w[l][i,j] * z[l-1][j])));

l = l + 1;

This version creates a new abstract array for each array
assignment. As an alternative we can instead use a foreach
statement, which performs an in-place update:

foreach i in bound(z[0]) do z[0][i] = input[i];

l = 1;

while l < n do

foreach i in bound(z[l]) do

z[l][i] =

s(sum(forall j ->

(w[l][i,j] * z[l-1][j])));

l = l + 1;

The versions are very similar, and which one to choose is a
matter of taste. Possibly the �rst version is somewhat more
clear, whereas the second version avoids some dynamic mem-
ory handling due to the in-place updates of the arrays.

10 Formal Semantics

HERO-ML has been given an operational semantics [17]. The
semantics is structured into two parts:

1. For statements, the semantics is given as rules for state
transitions, and

2. for expressions, an 4E0; function is de�ned that evalu-
ates expressions relative to the current state.

The semantics for statements, excluding assignments involv-
ing abstract arrays, is quite standard. The rules for state
transitions have the form (B, () → (′ where B is a statement,
(is a function from program variables to values (a so-called
store), expressing the current contents of the memory before
executing the statement, and (′ is a store expressing the
memory contents after having executed B .
Computations can return the unde�ned value “?”. The

semantics has special rules covering the cases where boolean
conditions that a�ect the program �ow become unde�ned.
In such a case the program goes into a particular error state,
where it halts.

HERO-ML expressions are evaluated using the 4E0; func-
tion. Usually this function takes two arguments: the expres-
sion to be evaluated, and a store that gives the current mem-
ory contents. Here 4E0; also takes a third argument, which
is a set of variables that are bound on some outer level but
appear as free variables in the evaluated expression. This
turns out to be needed since HERO-ML has three variable-
binding constructs: predicate bounds, array comprehensions,
and forall expressions. Within such expressions 4E0; might
return symbolic variables rather than values.

We exemplify with evaluation of the predicate bound {8 :

8 < =} in an environment where ((=) = 10:

4E0; ({8 : 8 < =}, (, ∅)

= {8 : 4E0; (8 < =, (, {8})}

= {8 : 4E0; (8, (, {8})} < 4E0; (=, (, {8})}

= {8 : 8 < ((=)}

= {8 : 8 < 10}

This illustrates how symbolic expressions, like predicate
bounds, can be evaluated dynamically.
For array expressions 0 the evaluation phase above is

followed by a second phase. First the bound is computed.
Then, if 0 is applied to an index viz. 0[8], it is �rst checked
whether 8 is within the bound. If it is then 0[8] is computed
without evaluating the full array 0. Otherwise the full array
is evaluated by �rst checking whether its bound is �nite,
and then tabulating the array for all elements de�ned by the
bound.

11 Proof-of-Concept Implementation

A proof-of-concept HERO-ML interpreter has been imple-
mented. The interpreter is a command line application writ-
ten entirely in F#, and so should be supported on all major
platforms without modi�cations to the source code. It can
be freely downloaded from the HERO-ML web site3.

The overall design of the interpreter is straightforward. It
�rst parses a HERO-ML source �le to generate an abstract
syntax tree (AST). Then the AST undergoes a validation step
where any remaining static correctness checks that could
not practically be performed during parsing (such as type
checking) are carried out. Finally, if the program passed the
previous two steps, it is executed from start to �nish using
the AST as the program format.
Throughout the program execution, a representation of

the current HERO-ML program state is maintained in mem-
ory as a dictionary data structure (implemented using the
type"0? from the standard library of F#), which keeps an
entry for each program variable holding its current run-time
value. Variables that are local to, e.g., forall expressions are
only added to the dictionary temporarily while the expres-
sion in which they are bound is being evaluated. The actual

3https://hero-ml-language.github.io/

19

ARRAY ’23, June 18, 2023, Orlando, FL, USA Björn Lisper and Linus Källberg

program execution is an iterative process analogous to ap-
plying the semantic rules described in Section 10 to the AST
nodes and the program state in a repeated fashion, gener-
ating updated program states until the program terminates.
HERO-ML provides a simple out statement for writing val-
ues: Such a statement, when executed, will print a textual
representation of the speci�ed output value to the console.
To represent the run-time values of variables as well as

any intermediate results generated during expression eval-
uations, a custom type +0;D4 is used, which is an F# dis-
criminated union with one case for each HERO-ML type.
The scalar types of HERO-ML are represented using the cor-
responding primitive data types of F#. Bounds and arrays
are represented using custom aggregate types, described in
more detail below. In addition the+0;D4 union includes cases
for certain symbolic values, such as the special value “?”, as
well as an “ERROR” value which represents a program error
generated during expression evaluation. In most cases, occur-
rences of ERROR immediately cause execution to terminate
with an error message printed to the console.

The run-time representation used for bounds is fairly sim-
ple, using an F# discriminated union for the di�erent types
of bounds. Some bounds require additional parameters for
their de�nition: A dense bound ; ..D is given by a pair of in-
tegers, and a product bound (11, . . . , 1<) stores the factors
11, . . . , 1< in a list. For a sparse multi-dimensional bound
(see [17] for details), its set (uses the (4C datatype from the
F# standard library. The individual indices of (are repre-
sented using a custom type �=34G , which is simply a type
alias for an integer list. Predicate bounds are stored as an
F# function of type �=34G → 1>>; which, when applied to
an index value, evaluates the predicate with the local index
variable(s) of the predicate temporarily bound to the given
index.
To represent abstract arrays, two pieces of data are com-

bined: a bound, and a mechanism that looks up the array
element corresponding to some given index. Depending on
the kind of array expression this mechanism is either a func-
tion, of type �=34G → +0;D4 , or a table lookup.
Accessing a single array element a[i] now proceeds as

follows. First the index is checked for membership in the
bound. If this check fails, then the operation immediately
returns the symbolic ERROR value to signal an access out-
of-bounds. Otherwise, the lookup mechanism of the array is
used to retrieve the element.

Accessing a whole array a is a bit di�erent. First a check is
done whether the bound is �nite: if not, ERROR is returned.
If the test succeeds then the array is tabulated by evaluating
and storing the elements a[i] for all i in bound(a).
The data structure used for storing a tabulated array de-

pends on the kind of bound. In all cases the elements are
stored in a one-dimensional array. For dense arrays there is
a 1-1 mapping between the HERO-ML array indices and the
low-level indices in the array holding the elements: accessing

an element will take Θ(=) time, where = is the dimension of
the HERO-ML array. For sparse bounds the one-dimensional
array is augmented with a “cluster dictionary”, which is
space-e�cient and still allows access in Θ(=) + $ (log<)

time where< is the number of array elements. For details,
see [17].

12 Related Work

Array languages have a long history. Already APL [15] had
many of the array primitives that are found in later array
languages. Later, Fortran dialects such as Fortran 90 [14], and
HPF [16] were equipped with array primitives. Of these, the
masked array assignment of HPF has inspired the 5 >A402ℎ

masked concurrent assignment of HERO-ML. Also *lisp [20],
a production language for the massively parallel CM-200
SIMD machine, could execute most of its array primitives
conditionally relative to a bit mask selecting which array
elements that should participate.
ZPL [6] is another source of inspiration for HERO-ML.

In ZPL bounds (called regions) are �rst-class citizens. The
recent parallel language Chapel [5] has inherited from ZPL.
HERO-ML’s nested arrays provide the ability to express

nested data parallelism. Nested data parallelism �rst ap-
peared in NESL [2]. A dialect of Haskell that supports nested
data parallelism is Nepal [3].
There have been several attempts to integrate functional

and array programming. One way of doing it is like in [11],
where lambda-calculus is used as an abstract speci�cation
language for array algorithms. A more concrete approach
is to extend some existing functional language with array
primitives. This can yield domain-speci�c languages such as
Obsidian [19], Feldspar [1], and Futhark [12], or general pur-
pose languages like Data Parallel Haskell [4] and Data Field
Haskell [13]. The latter is a direct predecessor to HERO-ML,
with a very similar array concept but in a purely functional
setting.
Array languages are typically used for data-parallel pro-

gramming. A systematic literature review on parallel lan-
guages [7] gives quantitative evidence that data parallelism
is a major approach to problem decomposition in parallel
computing. This indicates that the topic of array languages
is well worth further study in the future.

13 Conclusions and Further Research

We have described HERO-ML, a very high level array lan-
guage that supports a rich set of array operations, over a
variety of dense, sparse, nested, and multidimensional arrays,
in a uni�ed framework. A major goal is to support the early
modelling of data parallel algorithms where the HERO-ML
code can serve as a platform-independent, executable speci�-
cation. The proof-of-concept implementation can also serve
as a workbench for carrying out array language experiments.

20

HERO-ML: A Very High-Level Array Language for Executable Modelling of Data Parallel Algorithms ARRAY ’23, June 18, 2023, Orlando, FL, USA

HERO-ML is an experimental language. Thus, some fea-
tures are currently missing. An obvious omission is user-
de�ned functions, which should be present in a production
version of the language. A richer set of numerical types
would facilitate, e.g., experiments with limited precision
arithmetic for deep neural networks. There is also much
“syntactic sugar” that could be added. An example is “elemen-
tal intrinsics overloading”, where scalar operators are lifted
to operate on arrays. Another example is syntax for selecting
subarrays, e.g., writing a[k,*] for the k’th row of the matrix
a. These kinds of syntactic conveniences are straightforward
to resolve into forall expressions.

Acknowledgments

This research was funded by the KK-foundation, through the
HERO project, under grant no. 20180039.

References
[1] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård,

A. Persson, M. Sheeran, J. Svenningsson, and A. Vajdax. 2010. Feldspar:

A domain speci�c language for digital signal processing algorithms.

In Proc. Eighth ACM/IEEE International Conference on Formal Methods

and Models for Codesign (MEMOCODE 2010). 169–178. h�ps://doi.org/

10.1109/MEMCOD.2010.5558637

[2] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay

Sipelstein, and Marco Zagha. 1994. Implementation of a Portable

Nested Data-Parallel Language. J. Parallel Distrib. Comput. 21, 1 (April

1994), 4–14.

[3] Manuel M. T. Chakravarty, Gabriele Keller, Roman Lechtchinsky, and

Wolf Pfannenstiel. 2001. Nepal — Nested Data Parallelism in Haskell.

In Proc. Euro-Par 2001 Parallel Processing, Rizos Sakellariou, John Gurd,

Len Freeman, and John Keane (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 524–534.

[4] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,

Gabriele Keller, and Simon Marlow. 2007. Data Parallel Haskell: A Sta-

tus Report. In Proc. 2007 Workshop on Declarative Aspects of Multicore

Programming (Nice, France) (DAMP ’07). ACM, New York, NY, USA,

10–18. h�ps://doi.org/10.1145/1248648.1248652

[5] Bradford L. Chamberlain. 2015. Chapel. In Programming Models for

Parallel Computing, Pavan Balaji (Ed.). MIT Press, Cambridge, MA,

Chapter 6, 129–159.

[6] Bradford L. Chamberlain, Sung-Eun Choi, E. Christopher Lewis, Calvin

Lin, Lawrence Snyder, and W. Derrick Weathersby. 1998. The Case for

High Level Parallel Programming in ZPL. IEEE Computational Science

and Engineering 5, 3 (1998), 76–86.

[7] Federico Ciccozzi, Lorenzo Addazi, Sara Abbaspour, Björn Lisper,

Abu Naser Masud, and Saad Mubeen. 2022. A Comprehensive Ex-

ploration of Languages for Parallel Computing. Comput. Surveys 55, 2

(Jan. 2022), 1–39. h�p://www.es.mdu.se/publications/6282-

[8] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A

Uni�ed Lattice Model for Static Analysis of Programs by Construc-

tion or Approximation of Fixpoints. In Proc. 4th ACM Symposium on

Principles of Programming Languages. Los Angeles, 238–252.

[9] Terrence L. Fine. 1999. Feedforward Neural Network Methodology.

Springer-Verlag, New York.

[10] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Mas-

sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Lo-

gan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek,

Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steve Reinhardt, Adrian
Caul�eld, Eric Chung, and Doug Burger. 2018. A Con�gurable Cloud-

Scale DNN Processor for Real-Time AI. In Proc. 45th International

Symposium on Computer Architecture, 2018 (proc. 45th international

symposium on computer architecture, 2018 ed.). ACM.

[11] Per Hammarlund and Björn Lisper. 1993. On the Relation between

Functional and Data Parallel Programming Languages. In Proc. Sixth

Conference on Functional Programming Languages and Computer Ar-

chitecture. ACM Press, 210–222.

[12] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein,

and Cosmin E. Oancea. 2017. Futhark: Purely Functional GPU-

programming with Nested Parallelism and In-place Array Updates. In

Proc. 38th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Barcelona, Spain) (PLDI 2017). ACM, New York,

NY, USA, 556–571. h�ps://doi.org/10.1145/3062341.3062354

[13] Jonas Holmerin and Björn Lisper. 2000. Data Field Haskell. In Proc.

Fourth Haskell Workshop, Graham Hutton (Ed.). Montreal, Canada,

106–117.

[14] International Organization for Standardization and International Elec-

trotechnical Commission 1991. Fortran 90 [ISO/IEC 1539: 1991 (E)].

International Organization for Standardization and International Elec-

trotechnical Commission.

[15] K. E. Iverson. 1962. A Programming Language. Wiley, London.

[16] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L.

Steele, Jr., and Mary E. Zosel. 1994. The High Performance Fortran

Handbook. MIT Press, Cambridge, MA.

[17] Björn Lisper and Linus Källberg. 2023. HERO-ML Speci�cation. Tech-

nical Report. h�p://www.es.mdh.se/publications/6649-

[18] Flemming Nielson, Hanne Ries Nielson, and Chris Hankin. 2005. Prin-

ciples of Program Analysis, 2nd edition. Springer.

[19] Joel Svensson, Koen Claessen, and Mary Sheeran. 2010. GPGPU kernel

implementation and re�nement using Obsidian. Procedia Computer

Science 1, 1 (2010), 2065–2074. h�ps://doi.org/10.1016/j.procs.2010.04.

231

[20] Thinking Machines Corporation 1991. Getting Started in *Lisp. Think-

ing Machines Corporation, Cambridge, MA.

Received 2023-03-31; accepted 2023-04-21

21

https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1145/1248648.1248652
http://www.es.mdu.se/publications/6282-
https://doi.org/10.1145/3062341.3062354
http://www.es.mdh.se/publications/6649-
https://doi.org/10.1016/j.procs.2010.04.231
https://doi.org/10.1016/j.procs.2010.04.231

	Abstract
	1 Introduction
	2 HERO-ML in a Nutshell
	3 Abstract Arrays, and Bounds
	4 Types
	5 Standard Functions, and Syntax
	6 Functions and Operations on Bounds
	6.1 Functions That Operate on Bounds
	6.2 Constructs That Define Bounds

	7 Functions and Operations on Abstract Arrays
	7.1 Functions That Work on Abstract Arrays
	7.2 Constructs That Define Abstract Arrays
	7.3 Assignment of Abstract Arrays

	8 Forall-Expressions
	9 A Worked Example: Feed-Forward ANN
	9.1 Feed-Forward Networks
	9.2 Modelling of Feed-Forward Network Computing with HERO-ML

	10 Formal Semantics
	11 Proof-of-Concept Implementation
	12 Related Work
	13 Conclusions and Further Research
	Acknowledgments
	References

