
Maintaining Consistency of Dynamic Cardinality
Constraints with Costs

Waldemar Kocjan1, Per Kreuger2, Björn Lisper1

1 Mälardalen University, Väster̊as, Sweden
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Abstract. This paper introduce a novel method for maintaining consis-
tency of cardinality constraints in context of dynamic constraint satis-
faction. The presented method adopt sensitivity analysis for feasible and
minimum cost flows underlying all cardinality constraints. Moreover, we
extend a dynamic all-pairs shortest path algorithm to support weight
changes, insertion and deletion of multiple edges and show how this al-
gorithm can be used to maintain consistency of values with the modified
constraint.

1 Introduction

Within constraint programming we have seen the development a number of
methods that adopt and extend assignment models known from optimization and
operation research for constraint consistency and filtering. Global constraints
which deal with the cardinality of the variables and values in a problem are
typical examples of such methods.

To this class of constraints belongs, e.g., the constraints of difference [14] and
the global cardinality constraint [15], as well as their weighted versions ([4, 9]
resp. [16, 17]). These models have recently [12] been extended to set constraint
satisfaction problems by the introduction of the symmetric cardinality constraint
and its weighted version [10].

Like most of the methods used in constraint programming, those mentioned
above deal mainly with problems which demand only a single solution, and they
assume completely known and persistent problem parameters. Unfortunately,
this is seldom the case in real life problems. Many assignments problems need
to be re-computed due to changes to, e.g., the costs of assignments or in the
bounds of individual variables, and even after adding and removing variables.

Constraint Programming problems in which parameters change over time
are usually solved by recomputation from scratch ([5, 11]). Some other methods
focus on modifying the current solution ([3, 19]). The only method which handles
dynamic versions of global constraints is described in [2]. However, this method
handles only monotonic changes, and relies on backtracking in the context of
Constraint Logic Programming.



In this paper we introduce a method for maintaining consistency of cardinal-
ity constraints in the context of dynamic constraint satisfaction. The methods
presented here are based on sensitivity analysis of the feasible and minimum cost
flows underlying every cardinality constraint.

This paper is organized as follows. In Section 2 we describe some basic con-
cepts in flow theory and constraint satisfaction. Section 3 gives a brief descrip-
tion the symmetric cardinality constraint with costs, and presents methods for
checking the consistency of the constraint and for filtering the domains of the
constrained variables. Section 4 introduces basic notions of sensitivity analysis,
and the following sections (5 – 7 describe how sensitivity analysis can be used
to maintain consistency of a cardinality constraint as well as for maintaining the
optimality of an underlying minimum cost flow in the value network of a car-
dinality constraint. Section 10, finally, concludes the paper and discusses future
work.

2 Preliminaries

2.1 Graphs

Definitions in this section follows the presentation in[1].
A directed graph G = (X, E) consists of a set of nodes (vertices) X and arcs

(edges) E, where every arc (u, v) ∈ E is an ordered pair of distinct nodes.
An arc (u, v) connects node u with node v, i.e. in directed graph it is an arc

oriented from node u to node v. A path in a graph G from v1 to vk is a sequence
of nodes [v1, . . . , vk] such that each (vi, vi+1) is an arc for i ∈ [1, . . . , k− 1]. The
path is simple if all its nodes are distinct.

2.2 Network Flows

Definition 1. A network G = (X, E) is a directed graph, in which each arc
e ∈ E is associated with two non-negative integers le and ue representing the
lower and upper bounds, respectively, on the flow on e.

The upper bound on the flow on an arc is also referred to as the capacity of
the arc.

A flow fe on an arc e represents the amount of commodity that the arc
accommodates. More formally:

Definition 2. A flow f in a network (X, E) is a function that assigns to each
arc (i, j) ∈ E a value fij in such way that for each node p ∈ X,∑

(i,p)∈E

fip =
∑

(p,j)∈E

fpj

This property is known as a conservation law and states that for each node
in G, the incoming amount of flow of some commodity equals the amount of
that commodity leaving that node.



Definition 3. A flow f in a network (X, E) is feasible if, for each e ∈ E, it
holds that le ≤ fe ≤ ue.

Associate furthermore with each arc (i, j) ∈ E a cost cij that denotes the
cost per unit of flow on the arc. For any flow f in G, we define

cost(f) =
∑

(i,j)∈E

cij ∗ fij (1)

A minimum cost flow problem is the problem of finding a feasible flow in G
with minimal cost.

In this paper we assume that all the parameters (cij , le and ue) of a flow
problem are integral, which guarantees the existence of an integral minimal solu-
tion to the problem. (For the integrality property of minimum cost flow problems
see, e.g., [1, p. 318]).

The residual graph R(f) is a graph representing the utilization and remaining
capacity in the flow graph with respect to a flow f .

Definition 4. Given a flow f from s to t in the network G, the residual graph
for f , denoted R(f), has the same set of nodes as G. The arc set of R(f) is
defined as follows. For all arcs (i, j) in G,

– if fij < uij then (i, j) is an arc of R(f) with residual capacity rij = uij−fij,
and cost cij

– if fij > lij then (j, i) is an arc of R(f) with residual capacity rji = fij − lij
and cost −cij

Moreover, the potential function and the reduced costs are defined as follows.

Definition 5. A potential function is a function π which associates with each
node i ∈ G a number π(i), which is referred to as a node potential. With respect
to the node potentials, the reduced cost cπ

ij of an arc (i, j) in R(f) is defined by
cπ
ij = cij − π(i) + π(j).

For minimum cost flows node potentials are typically defined by π(i) = −d,
where d is a shortest path distance from a given source to i.

2.3 Constraint Satisfaction

A constraint satisfaction problem (CSP) is a triple (X, D, C) where X is a finite
set of variables {x1, . . . , xn}, D = {D1, . . . , Dn} is a set of finite domains, where
Di is a set of values for the variable xi ∈ X, and C = {C1, . . . , Cn} is a set of
constraints between variables [18].

The symmetric cardinality constraint used in this paper is defined in context
of the set constraint satisfaction problem (sCSP), which differs from CSP by the
fact that each xi ∈ X is assigned a subset of elements in Di [12].

Let P be a (set) constraint satisfaction problem. A dynamic constraint sat-
isfaction problem DCSP = {P1, . . . ,Pn} [6] is a sequence of (s)CSPs such that



any Pi differs from the consecutive Pi+1 by a set of added and a set of deleted
constraints.

Note, that a dynamic constraint satisfaction problem is a sequence of static
problems. Any constraint can be added to or deleted from the problem after the
solution to the previous problem was found.

3 The Symmetric Cardinality Constraint with Costs

In this section we will briefly describe the symmetric cardinality constraint with
costs, which we will use later to illustrate the sensitivity analysis. A detailed
description of this constraint can be found in [10].

Definition 6. A symmetric cardinality constraint with cost is a constraint C
over a set of variables X(C) and a set of values obtained from the domains of
these variables:

D(X(C)) =
⋃

x∈X(C)

Dx

The constraint associates with each value vj ∈ D(X(C)) two non-negative inte-
gers lvj

and uvj
, with each variable xi ∈ X(C) two other non-negative integers

lxi and uxi and with the occurrence of a value vj ∈ Dxi in a set assigned to a
variable xi a cost cost(xi, vj). Furthermore it associates a fixed integer limit H
on the total cost of the constraint as defined below.

1. ∀i (lxi
≤ #(xi, P ) ≤ uxi

)
2. ∀j

(
lvj

≤ #(vj , C, P ) ≤ uvj

)
.

3.
∑|X(C)|

i=1

∑
vj∈Dxi

cost(xi, vj) ≤ H

where #(xi, P ) is the cardinality of the set assigned to xi by P and #(vj , C, P )
the number of variables to which vj is assigned by P .

The symmetric cardinality constraint with costs extends the symmetric car-
dinality constraint of [12] with a cost associated with each assignment. The
constraint can also be seen as an extension of the global cardinality constraint
with costs [17] into the set constraint satisfaction setting.

For each global cardinality constraint with costs, there is an equivalent sym-
metric cardinality constraint with costs where the cardinality of each constraint
variable is restricted to be in the interval [1, 1]. Similarly, for a constraint of dif-
ference with costs there is a symmetric cardinality constraint with costs where
the bounds of each variable are restricted to [1, 1], the bounds of each value is
restricted to [0, 1], and H = ∞.

The first step of verifying the consistency of a symmetric cardinality con-
straint with costs C is to build its value network N(C).

Definition 7. A value network of a symmetric cardinality constraint is a net-
work obtained by



1. Adding a node for each variable xi ∈ X(C), a node for each value in vj ∈
D(X(C)), a source node s and a sink node t.

2. Adding an arc (s, vj) from s to each node vj and bounding the flow on it to
be between lvi and uvi at zero cost csvi = 0.

3. Adding an arc from each node vi ∈ Dxi
to xi, and bounding the flow on each

such arc to be between 0 and 1 at a cost equal to that of the occurrence of vi

in xi.
4. Adding an arc (xi, t) from each node xi to t and bounding the flow on it to

be between lxi
and uxi

at zero cost cxit = 0.
5. Adding an arc from t to s and bounding the flow on this arc to be between 0

and ∞ at a zero cost ct,s = 0.

The following theorem relates consistency of a symmetric cardinality con-
straint to a flow in its value network.

Theorem 1. A symmetric cardinality constraint with costs C is consistent if
and only if there exists a feasible flow fC in the value network N(C) such that
cost(fC) ≤ H.

Proof. See [10] for proof. ut
In practice, computing consistency of a symmetric cardinality constraint with

costs C is done by computing a minimum cost flow in N(C). Several algorithms
can be used. For the state of the art in computing minimum cost flow, see [1].

In this paper we assume that minimum cost flows are computed using the
successive shortest path algorithm. Briefly, the successive shortest path algorithm
searches for the shortest path from node j in an arc (i, j), whose lower bound
on the flow is not satisfied, iteratively to every other node in the graph. After
each iteration, the algorithm augments the flow on (i, j) along the shortest path
from j to i and updates the residual graph relative to the newly computed
flow. Moreover, the potential of each node k, initially set to 0, is updated by
subtracting its distance from j. For a detailed description see [1], pp. 320-324.

The best known algorithm for computing shortest path is Dijkstra’s algo-
rithm with Fibonacci heaps implementation. Using this algorithm, the worst
time complexity for verifying the consistency of C becomes equal to

O((
|X|∑
i=1

lxi
+

|D|∑
j=1

lvj
)× (m + n log n))

where m is the number of edges and n the number of nodes in the value network.
Dijkstra’s algorithm requires that the arcs in the network have non-negative
costs, which can be ensured by transforming original costs into reduced costs
(see [10] for details).

A minimum cost flow implies that the reduced cost of any arc in the graph is
non-negative ([1], p. 308-309, see also Theorem 3 in Section 4). Given a minimum
cost flow fC in the value network of N(C), we can compute the consistency of
each value vj in xi by computing the shortest path from xi to vj in the residual
graph of fC , and checking if there exists a feasible flow containing (vj , xi) which
cost is lower than or equal to H.



4 Sensitivity Analysis

The purpose of sensitivity analysis is to determine changes in the solution re-
sulting from the changes in the problem parameters. Here, we are interested in
a sensitivity analysis of the consistency of a symmetric cardinality constraint
with costs, as well as a sensitivity analysis of a minimum cost flow in the value
network of the constraint. The results apply also to global cardinality constraints
with costs and constraints of difference with costs, since these are instances of
the symmetric cardinality constraint with costs.

Let C = {C1, . . . , Cn} be a dynamic constraint satisfaction problem consisting
of a sequence of symmetric cardinality constraint with costs. For each Ci ∈ C we
will denote its value network by N(Ci), the flow in is network by fCi , and the
residual graph of its flow by R(fCi).

Recall from Section 3 that a symmetric cardinality constraint with costs Ci is
consistent iff there exists a feasible flow fCi in N(Ci) such that cost(fCi) ≤ H,
where H is a non-negative integer. Moreover, a flow is feasible if it satisfies the
lower and upper bound constraints of each arc in the graph. Consequently, a
sensitivity analysis for consistency of a symmetric cardinality constraint with
costs is an analysis of how changes to the parameters of a problem influence the
feasibility of the flow in the value network of the constraint.

Computing a feasible flow is performed by augmenting and reducing a flow
on arcs in a graph. Given a feasible flow we can compute a new one using the
following theorem, due to J.-L. Laurière [13] .

Theorem 2. Let f be a feasible flow in a network N and R(f) be a residual
graph for f . If there is a simple path p from n to m in R(f) − {(n, m)} then
we can obtain a new feasible flow f ′ in N such that f

′

mn > fmn. Such a path is
referred to as an augmenting path.

Moreover, if there is a simple path p from m to n in R(f) − {(m,n)} then
we can obtain a new feasible flow f ′ in N such that f

′

mn < fmn. Such a path is
referred to as a reducing path.

If no augmenting path for fmn exists then fmn is a maximum flow through
(m,n). Similarly, if there is no reducing path for fmn then fmn is a minimum
cost flow through (m,n).

Performing sensitivity analysis of consistency of a cardinality constraint re-
quires information about the value network of the constraint and the feasible
flow found during the computation. To make this information accessible we can
store the residual graph resulting from computing a feasible flow in the value
network of the constraint. Let n denote a number of nodes in the graph and m
number of edges. Storing information about the residual graph requires at most
O(n + m) space, where n = |X| + |D| + 2 and m in the worst case is equal to∑|X|

i=1 |Dxi
|+ 2|D|+ 2|X|+ 2.

In many situations it is interesting to maintain the minimum cost flow in the
value network of a cardinality constraint. This is the case when a cardinality
constraint is a subject to an objective function which minimizes the cost of the



occurrence of all values, or when we are interested in maintaining the consistency
of each value with the constraint. In the second case, maintaining a minimum cost
flow makes it possible to use more powerful algorithms for computing shortest
paths in the graph.

There are several methods for verifying the optimality of a flow in a graph
(see [1], p. 306–315). Here we will use the reduced cost optimality condition.

Theorem 3. (Reduced Cost Optimality Condition). A feasible flow f is
a minimum cost flow if and only if some set of node potentials π satisfy the
following reduced cost optimality conditions:

cπ
ij ≥ 0 for every arc (i, j) in R(f) (2)

The reduced cost cπ
ij of an arc (i, j) indicates that augmenting or reducing a

flow through (i, j) with 1 unit of commodity will change the total cost of the flow
in a graph with cπ

ij (see [1], p. 43–44).Consequently, if cπ
ij < 0 then augmenting

a flow through (i, j) might reduce the total cost of the flow in the graph with
cπ
ij . Thus, if there exists a path p from j to i in R(f)−{(j, i)} then, by Theorem

2, we can obtain a new feasible flow f ′ by augmenting a flow along p. Moreover,
if dji < −cπ

ij then cost(f ′) < cost(f). If p is a shortest path from j to i then
dji + cπ

ij is a greatest possible reduction of cost(f).
If no reducing path p for (i, j) exists then, by Theorem 2, there is no feasible

flow in the graph containing (i, j) thus (i, j) is not contained in a minimum cost
flow. Similarly, if dji ≥ −cπ

ij then augmenting a flow through (i, j) does not
reduce the total cost of f . In these cases the reduced costs optimality conditions
are maintained by adjusting potential of i with cπ

ij . See [1] p. 339 for justification
and pp. 320-324 on relation between node potentials and minimum cost flow.

To perform a sensitivity analysis based on Theorem 3 we need additional
information about the previously computed node potentials for each node of the
graph. Storing this information requires an additional |X|+ |D|+ 2 space.

In the following Sections 5 – 8 we show how the sensitivity analysis can be
used to maintain the consistency of a cardinality constraint with costs and a
minimum cost flow in the value network of the constraint.

5 Changes to the Cost

By Definition 7 a change to the cost of an appearance of a value vi in xi corre-
sponds to a change of the cost associated with arc (vi, xi) in the value network
of a constraint.

Let Ci, Ci+1 be two consecutive cardinality constraints with costs and let
cost(Ci, P ) denote

∑|X(C)|
i=1

∑
vj∈Dxi

cost(xi, vj) assigned by P in Ci. Assume
that Ci is consistent and that Ci+1 differs from Ci by a change in the cost of
the occurrence of value vi in xi. By Definition 6 if Ci is consistent then there
exists an assignment P which satisfies cardinality and occurrence restrictions,
and such that cost(Ci, P ) ≤ H.



Proposition 1. The modified constraint Ci+1 is inconsistent if and only if the
cost of an occurrence of any value vj in xi such that fCi

vjxi
= 1 increases with

k > H − cost(Ci, P ) and there is no path from vj to xi in R(fCi)−{(vj , xi)} of
length dvjxi

≤ H − cost(Ci, P )− cost(xi, vj).

Proof. By Theorem 1 vj appears in a set assigned to xi by P if there exists,
corresponding to P , a feasible flow in the value network of Ci in which fCi

vjxi
= 1.

Thus, by Definition 6, if fCi
vjxi

= 0 then cost(Ci+1, P ) = cost(Ci, P ) and the
modified constraint is consistent.

Moreover, if fCi
vjxi

= 1, and the cost of an appearance of vj in xi decreases
with any k ≤ cost(xi, vj), then cost(Ci+1, P ) ≤ (Ci, P ) ≤ H. Thus, the modified
constraint is consistent. Since, by Definition 6, cost(xi, vj) is non-negative it can
be decreased at most with k = cost(xi, vj).

Trivially, If fCi
vjxi

= 1 and cost(xi, vj) increases with k ≤ H − cost(Ci, P )
then cost(Ci+1, P )is lower than or equal to H, thus the modified constraint is
consistent.

If cost(xi, vj) increases with k > H − cost(Ci, P ), then the sum of the costs
assigned by P is greater than H. However if there exists a simple path from vi

to xi of length dvjxi in R(fCi) − {(vj , xi)} then, by Theorem 2, a new feasible
flow in the value network of the constraint can be obtained by reducing the
flow through (vj , xi). Moreover if dvjxi

≤ H − cost(Ci, P )− cost(xi, vj) then the
cost of the obtained flow is lower than H. Thus, by Theorem 1, the modified
constraint is consistent.

On the other hand, if no such path exists then the flow through (vj , xi)
can not be reduced, which implies that there is no assignment P , which sat-
isfies Property 3 of Definition 6. Similarly, if the length of the path dvjxi

>
H − cost(Ci, P )− cost(xi, vj), then there is no flow in the value network of the
modified constraint whose cost is lower than or equal to H. Thus by Theorem 1,
there exists no assignment which satisfies Property 3 of the Definition 6, which
indicates inconsistency of the modified constraint. ut

This theorem gives us a method for verifying the consistency of a cardinality
constraint with dynamically changed costs. However, in some situations it is in-
teresting to maintain the minimum cost flow in the value network of a constraint.
To maintain such a flow we use the sensitivity analysis as described in Section
4.

First, note that changing the cost of the occurrence of a value with k units
changes the cost of the corresponding arc with the same number of units (Defi-
nition 6). By Theorem 3, when decreasing the cost of the occurrence of a value
vj in xi we are concerned with recomputing the minimum cost flow in the value
network of a cardinality constraint only if the reduced cost of the corresponding
arc becomes lower than 0.

Proposition 2. Let fCi be a minimum cost flow in the value network of N(Ci).

1. If fCi
vjxi

= 1 then fCi is a minimum cost flow in the value network of the
modified constraint.



2. If fCi
vjxi

= 0 then a minimum cost flow in the value network of the modified
constraint is obtained by augmenting a flow through (vj , xi) along the shortest
path from xi to vj in R(fCi) − {(xi, vj)} if the length dxivj of this path is
less than k − dvjxi .

Proof. If fCi
vjxi

= 0 and there is no path from xi to vj in R(fCi)−{(xi, vj)} then,
by Theorem 2 there exists no feasible flow in the value network of the constraint
which contains (vj , xi). If such a path exists, then redirecting the flow along this
path will reduce the total cost of the flow if and only if dxivj + dvjxi − k < 0,
that is: dxivj < k − dvjxi .

If fCi
vjxi

= 1 then, by Definition 4 and 7, there exists an arc (xi, vj) in R(fCi)
such that cxivj

= −cvjxi
. If cost(xi, vj) decreases then the cost cxivj

increases
and by Definition 5 also cπ

xivj
increases. Since cπ

xivj
is non-negative for the original

problem it is positive for the modified problem. Thus, by Theorem 3, fCi is the
minimum cost flow in the value network of the modified constraint. ut

In the case when there is no new minimum cost flow which can be com-
puted according to Proposition 2, the reduced cost optimality conditions are
maintained by increasing potential of vj with k.

Decreasing the cost of an arc (vj , xi) where fCi
vjxi

= 0, in a way that forces
rerouting of the flow through (vj , xi), changes the total cost of the flow with
dxivj + cπ

vjxi
− k where cπ

vjxi
− k < 0. If decreasing the cost of (vj , xi) with k

units, when fCi
vjxi

= 1, then the total cost of the flow will also decrease with k.
The following proposition forms the basis for a method for recomputing a

minimum cost flow, in the value network of a constraint where the cost of the
occurrence of a value in a subset increases.

Proposition 3. Let fCi be a minimum cost flow in the value network of N(Ci)
and let the cost of the occurrence of a value vj in a subset xi increase with k
units.

1. If fCi
vjxi

= 0 then fCi is the minimum cost flow for also the modified con-
straint.

2. If fCi
vjxi

= 1, and the shortest path from vj to xi in R(fCi) − {(vj , xi)}
has length dvjxi

< cvjxi
+ k, then a new minimum cost flow is obtained by

reducing the flow through (vj , xi) along this path. If no such path exists, or
if the length of the shortest path dvjxi > cvjxi + k, then fCi is a minimum
cost flow for the modified problem.

Proof. If fCi
vjxi

= 0 and fCi is a minimum cost flow then cπ
vjxi

≥ 0 and cπ
vjxi

+k >
0 which satisfies the reduced costs optimality conditions of Theorem 3.

If fCi
vjxi

= 1 and there is no path from vj to xi in R(fCi) − {(vj , xi)} then,
by Theorem 2, the flow through (vj , xi) can not be reduced without violating
its feasibility. If such a path exists, but its length is greater then or equal to
cvjxi

+ k, then the cost of the flow obtained by redirecting the flow along this
path is greater than or equal to cost(fCi) + k; thus, the obtained flow is not a
minimum cost flow. On the other hand, if a path which satisfies this properties



exists, then a new flow can be obtained by redirecting the flow from (vj , xi)
along this path. Moreover, if this path is a shortest path from vj to xi, then
the obtained flow is a minimum cost flow in the value network of the modified
constraint. ut

In the case when fCi
vjxi

= 1 and fCi+1 = fCi , the cost of fCi+1 is equal to
cost(fCi) + k. Such case requires decreasing the potential of xi with k in order
to satisfy reduced cost optimality conditions. When the flow through (vj , xi) is
reduced, cost(fCi+1) = cost(fCi) + dvjxi

− cxivj
.

Theorem 4. If the cost of an occurrence of value vj in xi is changed, then
the consistency of the cardinality constraint can be checked, and the minimum
cost flow in its value network maintained in O(m + log n) time, where m =∑|X|

i=1 |Dxi
|+ |X|+ |D|+ 2 and n = |X|+ |D|+ 2.

Proof. By Proposition 1, verifying the consistency of a cardinality constraint
modified by changing the cost of the occurrence of a value in a subset assigned
to a variable yields in the worst case one iteration of the shortest path algorithm.
Similarly, by Proposition 2 and 3, restoring the minimum cost flow in the value
network of the modified constraint is achieved by one iteration of the same
algorithm.

Dijkstra’s algorithm, implemented with Fibonacci heaps, has time complex-
ity O(m + n log n). In the residual graph of a flow in the value network of a
cardinality constraint m =

∑|X|
i=1 |Dxi

| + |X| + |D| + 2 and n = |X| + |D| + 2
which proves the theorem. ut

Note that recomputing the consistency of a cardinality constraint from scratch
using the successive shortest path algorithm, which is one of the best algo-
rithms for computing a minimum cost flow (see [1] for comparison) requires
time O((

∑|X|
i=1 lxi

+
∑|D|

j=1 lvj
)× (m + n log n)).

6 Changes to Cardinality Bounds

By Definition 7 a change to a lower or upper bound of the cardinality of a
variable xi corresponds to a change of the lower and upper bounds imposed on
the flow from xi to t. Similarly, a change of the cardinality bound for a value vj

corresponds to a change of the bounds imposed on the flow through (s, vj) in
the value network of a cardinality constraint.

First assume that the lower bound of the cardinality of xi decreases with
k units. Trivially, since Ci is consistent then the flow fCi is feasible. Moreover
fCi also satisfies the lower bound on the flow through (xi, t) in the value net-
work of the modified constraint. Thus, by Theorem 1, the modified constraint is
consistent.

Furthermore, if fCi is a minimum cost flow in N(Ci) and the residual capacity
rtxi

> 0, then fCi satisfies the reduced costs optimality conditions for (xi, t) in



R(fCi). By Theorem 3 fCi is the minimum cost flow in the value network of the
modified constraint.

However, if rtxi
in R(fCi) is equal to 0, decreasing the lower bound of xi will

introduce a new arc (t, xi) in the residual graph of fCi with capacity k and with
the reduced cost cπ

txi
(Definition 4). Such a situation corresponds to changing

a “virtual” reduced cost of the introduced arc with ±cπ
txi

, and a new minimum
cost flow can be computed using the methods described in Section 5.

Similarly, if Ci is consistent and the upper bound of the cardinality of xi

increases, then the modified constraint is consistent. As in the case above, a new
minimum cost flow in the value graph of the modified constraint is computed
only if increasing this bound introduces a new arc (xi, t) into the residual graph
of fCi . Again, recomputing the minimum cost flow is done by methods described
in Section 5.

Consider now the case where the lower bound of xi increases with k units:

Proposition 4. The modified constraint is inconsistent if and only if there is
no sequence of k − rt,xi successive paths from t to xi in R(fCi)− {(t, xi)} such
that

∑k−rt,xi
i=1 di

txi
≤ H − cost(fCi).

Proof. If k ≤ rtxi
then the flow through (xi, t) is feasible also for the modified

problem.
If there exist k − rt,xi

such paths then, by Theorem 2 there exists a feasible
flow in the value network of the modified constraint. Moreover, if

∑k−rtxi
iter=1 diter

txi
≤

H − cost(fCi) then the cost of obtained flow is lower than or equal to H. Thus,
by Theorem 1 the modified constraint is consistent. ut

Furthermore, modifying the lower bound of the cardinality of xi with k ≤ rtxi

does not influence the reduced cost of (t, xi). Thus, if fCi is a minimum cost
flow in N(Ci), then it is also the minimum cost flow in the value network of the
modified constraint. If k > rtxi , then, if each one of the k− rtxi successive paths
is a shortest path, then at each iteration fCi will be augmented with a cheapest
flow. Consequently the obtained flow will be the minimum cost flow in the value
network of the modified constraint.

When a constraint is modified by decreasing the upper bound of the cardi-
nality of a variable, then the consistency of the new constraint can be checked
in the same way as when the lower bound is increased. The proof is similar to
the proof of Proposition 4. Even the minimum cost flow in the value network of
the modified constraint is maintained by computing k− rxit shortest paths from
xi to t in R(fCi)− {(xi, t)}.

The rules described above apply by symmetry to the changes in bounds
restraining the number of occurrence of each value. For each variable vj a change
to the bounds of its occurrence corresponds to the bounds imposed on the flow
through respective (s, vj) (see Definition 7).

Theorem 5. The consistency of a cardinality constraint Ci, modified by chang-
ing the bounds of the cardinality of a variable or the bounds of an occurrence of



a value with ±k units, can be done in O(|k| × (m + n log n) time. The same
goes for maintaining the minimum cost flow in the value network of the modified
constraint.

Proof. As shown above, verifying and recomputing the consistency of a cardinal-
ity constraint, modified by changing the bounds of the cardinality of a variable
by ±k, requires at most k iterations of the shortest path algorithm. The same
number of iterations of the algorithm is required when modifying the number of
occurrences of a value.

Moreover, it is shown that if fCi is a minimum cost flow in N(Ci), then by
augmenting and reducing flows along each shortest path a new minimum cost
flow is obtained. ut

7 Adding and Removing Variables and Values

Removing a variable xi can be seen as reducing the bounds of its cardinality
to the interval [0, 0]. This corresponds to modifying the bounds imposed on the
flow through (xi, t) to be in the interval [0, 0], as well as modifying the bounds
of each (vj , xi) such that vj ∈ Dxi is in the same interval. In this case, verifying
consistency of the modified constraint as well as computing a new minimum cost
flow is done in the same way as for decreasing the upper bound of the cardinality
of a variable (see Section 6).

Moreover, it can be proved that due to properties of the value network of a
cardinality constraint, reducing the flow through (xi, t) to 0 will reduce the flow
through each arc (vj , xi) to 0.

Adding a variable xi with the cardinality [lxi , uxi ] and domain Dxi can be
seen as modifying the cardinality bounds from [0, 0] to [lxi

, uxi
], which in turns

modifies the bounds imposed on the flow through (xi, t) and bounds of the flow
on each (vj , xi) such that vj ∈ Dxi

to [0, 1] and its cost to cost(xi, vj). In this
case verifying consistency of the modified constraint, as well as recomputing the
minimum cost flow in the value network of the modified constraint, is done in
the same way as for increasing the lower bound of the cardinality of a variable
from 0 to lxi

units.
Note however, that if lxi

= 0 we need to verify that each of the arcs added to
the value graph satisfies the reduced costs optimality conditions. If the reduced
cost of any arc violates those conditions then the new minimum cost flow is
computed by the methods described in Theorem 2.

Removing and adding a value from/to a constraint corresponds to decreasing
and increasing, respectively, the bounds imposed on the occurrence of such a
value. Consequently, checking consistency of the modified constraint, as well
as maintaining a minimum cost flow in its value network, is done by methods
corresponding to the ones described in Section 6.

Theorem 6. If a cardinality constraint with costs Ci is modified by removing a
variable or value, then recomputing consistency of Ci and maintaining a mini-
mum cost flow in N(Ci) requires O(#(z, P )×(m+n log n)) time, where #(z, P )



is a cardinality of the set to a removed variable assigned by P in Ci or number
of occurrence of a removed value in sets assigned by P in Ci.

Recomputing consistency of a cardinality constraint with costs Ci and a min-
imum cost flow in N(Ci) modified by adding a variable or a value requires
O(uz × (m + n log n)) time, where uz is the upper bound of the cardinality
of the introduced variable or the upper bound of the number of occurrence of the
introduced value.

Proof. By the correspondence between the removal of a variable and restraining
the upper bound on the flow through (xi, t), since the new upper bound of the
flow through (xi, t) equals 0, all the flow through (xi, t) has to be reduced. By
Theorem 1 the amount of flow through (xi, t) corresponds to the cardinality of
the set assigned to xi by P in Ci.

By the same correspondences we can prove that removing a value vj requires
a number of iterations of the shortest path algorithm equal to the number of
occurrences of vj in the sets assigned to the variables of Ci by P .

Consider now the case of adding a variable. In the worst case augmenting the
flow on each (vj , xi) reduces the total cost of the flow in the value network of
the modified constraints. However, by Definition 7 the amount of flow through
(xi, t) is limited by the upper bound of the cardinality of xi.

Similarly, the amount of flow which can be augmented to (s, vj), where vj is
an added value, is limited by the upper bound of the number of occurrences of
vj . ut

As mentioned in Section 3 recomputing a symmetric cardinality constraint
from scratch requires O((

∑|X|
i=1 lxi

+
∑|D|

j=1 lvj
)× (m + n log n)) time. It is clear

that as long as
∑|X|

i=1 lxi +
∑|D|

j=1 lvj )−#(x,P ) > 0, where x is a variable removed
from the problem, we will have better time complexity than for computing the
consistency of the constraint from scratch. The same applies to the case of re-
moving a value from a constraint.

Moreover, if the amount of flow, required in the value network of a symmetric
cardinality constraint with costs, is greater than the upper bound of the intro-
duced variable or value, the time required to recompute the consistency of such
a constraint, by the means presented in this section, will be shorter than the
time for recomputing the modified constraint from scratch. The same applies
to recomputing the minimum cost flow in the value network of the modified
constraint.

For global cardinality constraints with costs and constraints of difference with
costs, the methods presented here will always have better time complexity.

8 Changes to the Global Cost Limit

Changing the global cost limit H does not have an influence neither on the
minimum cost flow in the value network of the constraint nor on the shortest
path distances between any pair of nodes in the network.



The value of H can decrease with at most H − cost(fCi) units without
violating consistency of Ci. If Ci is consistent and H increases with any number
of units then Ci+1 is consistent even for the modified problem.

9 Filtering

Given a consistent symmetric cardinality constraint with costs Ci we can com-
pute the consistency of each value vi in the domain of a variable xi by establish-
ing if there exists a feasible flow fCi in the value network N(Ci) which contains
(vi, xi). Typically, it is done by establishing if a minimum cost flow in N(Ci)
involves a flow through (vi, xi) or if there exists a shortest path from xi to vi in
R(fCi)− {(xi, vi)} of length dxivi ≤ H − cost(fCi) [10].

Although, it is not required by definition of the constraint to compute min-
imum cost flow in the value network to verify consistency of the constraint, it
has a great practical impact on the filtering phase. If the computed flow fCi in
N(Ci) is not a minimum cost flow then the residual graph of fCi will contain
arcs with negative costs (see Theorem 3). In such case verifying the consistency
of each value with the constraint would require less efficient algorithms.

Assuming that the minimum cost flow fCi+1 is maintained using the sensitiv-
ity analysis methods described in Sections 4 – 8 we can recompute the consistency
of each value vi in domain of xi, as in case of a static cardinality constraint, i.e.
by |X| iterations of Dijkstra’s algorithm. This gives overall time complexity for
filtering the constraint O(|X|∗(m+n log n)), where m = |X|+|D|+

∑|X|
i=1 Dxi

+2
and n = |X|+ |D|+ 2.

Note that the all-pairs shortest algorithm by Demetrescu, Italiano and Emil-
iozzi ([7], see even [8]) computes shortest paths between all nodes in a graph in
O(m + n2log n), where m is bounded by n2. Moreover, the algorithm supports
queries about shortest paths between nodes and their lengths in O(1). Assuming
that the information about the all-pairs shortest paths in a residual graph of a
minimum cost flow in the value network of Ci has been stored, we can use this
information during sensitivity analysis of a cardinality constraint with changed
costs of occurrence of a value in a subset of a variable. Moreover, the stored
information can be used to filter domain of variables in a cardinality constraint
with changed global cost limit H.

Demetrescu and Italiano even introduce a dynamic version of the all-pairs
shortest path algorithm [8], which recomputes all-pairs shortest paths in O(n2log2n)
for edge insertion, deletion or a edge weight change. Nevertheless, to use this al-
gorithm for our purpose we need to support addition, deletion and weight change
of multiple edges.

Dynamic shortest path for symmetric cardinality constraint

The update operation in the algorithm by Demetrescu and Italiano ([8]) propa-
gates changes in the path distances for each changed weight in a graph. Never-
theless, changes to the residual graph in a symmetric cardinality constraint with



costs can be more complex than that. Consider for example a situation where a
change to the cost of the occurrence of some value in a subset assigned to a vari-
able causes redirection of the flow in the value network of the constraint along
a path p consisting of |p| edges. Since any redirection of the flow would mean
deleting a (q, r) edge and inserting respective (r, q) edge each of the mentioned
algorithms would perform 2 ∗ |p| iterations. Moreover, assume that (q, r) and
(u, v) are i’th resp. j’th arcs in p and that i < j. After replacing (q, r) by (r, q)
each of described algorithms would update all shortest paths even those which
includes (u, v). Since (u, v) would be replaced at later iteration this would cause
a lot of unnecessary computation.

In the following sections we show how the algorithm by Demetrescu and
Italiano can be modified to support weight changes for the multiple edges.

Basic Definitions and Notation Let G = (V,E, w) be a directed graph with
non-negative edge weights, where V denote a set of nodes, E is a set of edges
and w a weight. Let wuv be a weight of (u, v) ∈ E and pxy a path from x ∈ V
to y ∈ V . The length of the path pxy is denoted by dxy and is the sum of the
weights of edges in pxy.

Moreover, let l(xy) be a path pxb such that pxy = pxb · (b, y), i.e. pxy is the
concatenation of path pxb and an edge (b, y). Similarly, let r(xy) denote a path
pay such that pxy = (x, a) · pay.

Definition 8. A path pxy is uniform in G if every proper subpath of pxy is a
shortest path in G.

By Definition 8 we can verify that if pxy is a uniform path in G then each
l(pxy) and r(pxy) are the shortest paths in G. Any path which contains a single
edge is a uniform path.

Definition 9. A path pxy is a zombie in G at time t if it is not a shortest path
but used to be a shortest path at a time t′ < t, and none of its edges have been
updated in the time interval [t′, t].

Moreover, a historical shortest path is a path which is either a shortest
path or a zombie.

Definition 10. A path pxy is potentially uniform in G at time t if every
proper subpath of pxy is a historical shortest path at that time.

Data Structures The following data structures are maintained for each pair
of nodes x ∈ V and y ∈ V .

– the distance dxy ≥ 0 of the edge (x, y) or +∞ if no such edge exists
– the time txy when the edge (x, y) was last updated
– a priority queue Pxy = {pxy : pxy is potentially uniform in G}, where each

item pxy ∈ Pxy has a priority equal to the length of pxy.



– P ∗
xy = {pxy : pxy is a historical shortest path in G} maintained as a set

For each path pxy ∈ Pxy the following data structures are maintained.

– dxy, the length of the path from x to y
– L(pxy) = {px′y = (x′, x) · pxy : px′y is potentially uniform in G
– L∗(pxy) = {px′y = (x′, x) · pxy : px′y is historically shortest path in G
– R(pxy) = {pxy′ = pxy · (y, y′) : pxy′ is potentially uniform in G
– R ∗ (pxy) = {pxy′ = pxy · (y, y′) : pxy′ is historically shortest path in G

Finally, a counter time keeps the number of performed update operations.

The Modified Algorithm To avoid unnecessary computation during the
update procedure we modify the Demetrescu-Italiano algorithm by allowing
weight changes to multiple edges. Both arc insertion and deletion are treated
as in the original algorithm: deletion by changing the weight of an arc to +∞
and insertion by changing the weight from +∞ to the actual weight.

Allowing changes to multiple arcs require, in first place, modifying the cleanup
procedure by allowing as a parameter to the procedure a list of edges with
changed weight. Furthermore each modified edge (u, v) such that (u, v) ∈ Puv

is added to the priority queue Q. After that cleanup procedure continues as in
Algorithm 1.

Note that each redirection of the flow between variable and value nodes will
result in deleting one edge and inserting an edge with opposite direction.

Similarly, we pass to fixup a list of modified edges. Moreover, during the
Phase 1 we parse the list of modified arcs and update respective paths with new
edges. Phase 2 and Phase 3 of the algorithm continue in the same way as in
Algorithm 1.

Note also that the Demetrescu-Italiano algorithm, even in its modified ver-
sion, recomputes all-pairs shortest paths in graphs with only non-negative edge
weights. Thus this computation need to be perform using reduced costs instead
of the original costs.

Theorem 7. The modified Demetrescu-Italiano algorithm which allows weight
changes to multiple edges computes recomputes all-pair shortest paths in O(n2log2n).
Moreover, path and distance queries are performed in optimal time.

Proof. First, querying procedures are the same as in the original algorithm. They
are proved in [8] to be optimal.

Furthermore, the cleanup operation removes in the worst case at most O(n2)
affected paths from the sets of potentially uniform and historical shortest paths.

Phase 1 of the fixup procedure involves an operation of inserting each mod-
ified edge into the priority queue. The insertion operation in a priority queue
can be performed in O(log n) time. The number of edges in the residual graph
is at most n2: thus, in the worst case, when all of existing edges are removed
and replaced by edges in the opposite direction the complexity of Phase 1 is



Algorithm 1 The original Demetrescu-Italiano algorithm for computing all-
pairs shortest paths in fully dynamic graphs
update(start-node u, end-node v, new wedge w)

1. time← time + 1
2. timeuv ← time
3. unsmoothed-update(u,v,w)

4. for each edge (x, y) : time− timexy = 2dlog2(time−timex,ye) do
5. unsmoothed-update(x,y,wxy)

unsmoothed-update(u,v,w)

1. cleanup(u,v)
2. fixup(u,v,w)

cleanup(u,v)
1. if (u, v) is potentially uniform then
2. Q← {(u, v)}
3. while Q 6= ∅ do
4. extract any path pxy from Q
5. remove pxy from Pxy

6. if pxy ∈ P ∗
xy then

7. remove pxy from P ∗
xy, L∗(r(pxy)) and R∗(l(pxy))

8. add paths in L(pxy) and paths in R(pxy) to Q
fixup(u, v, w)

1. duv ← w {Phase 1}
2. if w < +∞ then
3. duv ← w; l((u, v))← puu; r((u, v))← pvv

4. add (u, v) to Puv, L(puv), R(puv)
5. H ← ∅ {Phase 2}
6. for each (x, y) do
7. add pxy ∈ Pxy with minimum dxy to H
8. while H 6= ∅ do {Phase 3}
9. extract pxy from H with minimum dxy

10. if pxy is the first extract path for pair (x, y) then
11. if pxy 6∈ P ∗

xy then
12. add pxy to P ∗

xy, L∗(r(pxy)) and R∗(l(pxy))
13. for each px′b ∈ L∗(l(pxy)) do
14. px′y ← (x′, x) · pxy

15. dx′y ← dx′x + dxy

16. l(px′y)← px′b ; r(px′y)← pxy

17. add px′y to Px′y, L(pxy), R(px′b) and H
18. for each pay′ ∈ R∗(r(pxy)) do
19. pxy′ ← pxy · (y, y′)
20. dxy′ ← dxy + dyy′

21. l(pxy′)← pxy ; r(pxy′ ← pay′

22. add pxy′ to Pxy′ , L(pay′), R(pxy) and H
distance(x,y)

1. if Pxy = ∅ return +∞
2. else return minimum distance path in Pxy

path(x,y)
1. if Pxy = ∅ then return ∅
2. else return shortest path in Pxy



O(2n2 log n) = O(n2 log n), which is the same as for recomputing all-pairs
shortest paths from scratch.

Phase 2 and 3 of fixup have the same time complexity as in the original
algorithm. Extracting a minimum from the priority queue Pxy is performed in a
constant time. Similarly, inserting of an element into H, where H is a Fibonacci
heap, require a constant amortized time. Thus inserting O(n2) elements require
O(n2) amortized time.

In Phase 3 a path pxy is processed if it is not already in P ∗
xy before the

update. This implies that this phase requires O(n2 log n) time for extracting
O(n2) pairs initially in H, plus O(p) = O(n2 log n) amortized time for inserting
p new potentially uniform paths. The time required by the fixup procedure is
then in the worst cases O(2n2 log n + n2 + n2 log n) = O(n2 log n).

Finally, since update cause as much as O(log n) unsmoothed-update opera-
tions the overall complexity of the algorithm is O(n2 log n log n) = O(n2 log2n).

ut

The modified Demetrescu-Italiano algorithm can be used in a straightfor-
ward way to query paths during performing the sensitivity analysis in case of
changed cost of the occurrence of a value in a subset assigned to variable. Note
however, that shortest paths between the sink and a variable node as well as
paths between source and a value node, which are necessary while performing
sensitivity analysis in case of changed variable and value bounds and even in
case of adding and removing variables and values, has to be queried on a sub-
graph which does not contain the direct edge between the mentioned nodes. In
this case computing a single source shortest path is still faster than maintaining
all-pairs shortest paths.

Nevertheless, assuming that sensitivity analysis was already performed and
shortest paths in the residual graph are properly maintained, we can perform the
filtering phase by querying path lengths from each variable node xi to each value
node vi such that f

Ci+1
vixi = 0. The complexity of this operation is bounded by

O(
∑|X|

i=1 |Dxi
). In practice, the number of queries can be reduced further by lim-

iting queries only to values, whose consistency with the constraint is influenced
directly by the change in the problem, e.g. considering only values inconsistent
with Ci when the cost of the flow in N(Ci+1) decreases etc.

Finally, the overall worst case time complexity for the filtering phase using
the modified Demetrescu-Italiano algorithm is O(n2 log2n + n2) = O(n2 log2n)
which can be compared with O(n ∗ (m + n log n)) = O(n ∗ (n2 + n log n))
for filtering phase, which repeatedly computes single source shortest path from
each xi to each vi ∈ Dxi . However, advantages and drawbacks of both methods
require further investigations.

10 Conclusions and Future Work

In this paper we have introduced the concept of sensitivity analysis for cardinal-
ity constraints and show how sensitivity analysis of feasible and minimum cost



flows can be adopted to maintain the consistency and minimality of cardinality
constraints. We have also analyzed the performance of the methods introduced
and show that sensitivity analysis used in this context outperforms recomputing
cardinality constraint from the scratch. Analysis of this method is given here on
all types changes to a cardinality constraint.

Moreover, we adopt the dynamic all-pairs shortest paths algorithm to handle
weight changes on multiple edges. We discuss how the modified algorithm can be
used to maintain consistency of all values with a cardinality constraint. Further-
more, we analyze the complexity of the modified all-pairs shortest path algorithm
and compare it with the complexity of applying repeatedly single shortest path.

Finally, we give directions for further investigation of the algorithm.
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