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Abstract—Manipulating sensor data can deceive cyber-physical
systems (CPSs), leading to hazardous conditions in physical
plants. An Anomaly Detection System (ADS) like CUSUM detects
ongoing attacks by comparing sensor signals with those generated
by a model. However, physics-based methods are threshold-
based, which can result in both false positives and undetectable
attacks. This can lead to undetected attacks impacting the system
state and potentially causing large deviations from the desired
behavior. In this paper, we introduce a metric called transparency
that uniquely quantifies the effectiveness of an ADS in terms of its
ability to prevent state deviation. While existing research focuses
on designing optimal zero-alarm stealth attacks, we address the
challenge of detecting more sophisticated multi-alarm attacks
that generate alarms at a rate comparable to the system noise.
Through our analysis, we identify the conditions that require
the inclusion of multi-alarm scenarios in worst-case impact
assessments. We also propose an optimization problem designed
to identify multi-alarm attacks by relaxing the constraints of
a zero-alarm attack problem. Our findings reveal that multi-
alarm attacks can cause a more significant state deviation than
zero-alarm attacks, emphasizing their critical importance in the
security analysis of control systems.

Index Terms—security, control systems, optimization

I. INTRODUCTION

Autonomous systems rely heavily on control systems, which

are investigated in this paper. Control theory techniques play a

significant role in advancing autonomic computing, leading to

more reliable and effective autonomous behavior. Self-defense

is crucial in detecting and countering malicious attacks, ul-

timately increasing system integrity and functionality. This

study aims to quantify the potential damage caused by suc-

cessful attacks, with the goal of strengthening the resilience of

autonomous systems. By understanding the maximum impact

of hostile activities, we provide valuable insights that can guide

the design process, ensuring the creation of systems capable

of withstanding worst-case scenarios.

Control systems face increasing cyber threats, necessitating

the development of intrusion detection methods for cyber-

physical systems [1]. Detection processes involve measur-

ing signal anomalies using a reference model, as redundant

execution alone cannot guarantee detection if compromised
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components are not part of the control software. Physics-

based detection is required for anomalies at interfaces, such as

sensors and actuators [2]. In this context, Anomaly Detection

Systems (ADS) compare interface signals between a physical

system (Plant) and a model to identify anomalies. Pre-defined

policies sanction the presence of an attack based on the run-

time measure of anomaly. Detection processes are probabilis-

tic due to unknown disturbances, model uncertainties, and

numerical approximations (noise). A residual represents the

difference vector between a signal from the system under

control, called Plant, and one from the Plant’s model. Anomaly
is a measure of distance between a residual and the origin,

which is subjected to a threshold to distinguish between H0

and H1 hypotheses (absence or presence of attacks).

This work advances the state-of-the-art in determining the

impact of cyberattacks on control systems. The Worst Case

Impact (WCI) quantifies the effects of an attack in terms of

state deviation. As defined in [3], [4], the WCI represents the

maximum displacement of a Plant’s state from the setpoint

induced by an attack. As discussed in [5], WCI quantifies a

state deviation independent of a specific attack strategy (e.g.,

denial of service, rerouting, sign alternation or replay).

As part of a WCI assessment, the worst-case scenario

considers powerful attackers with knowledge of the parameters

of the control system and the capability to compromise a

significant number of devices (e.g., all sensors). If the attacker

knows the specifics of the ADS (s)he can remain undetected to

maximize the impact (stealth attacks). Therefore, the presence

of an ADS could limit the impact of an attack, provided

that the attacker intends to remain stealthy. It is, therefore,

critical to perform a WCI assessment before deploying a

control system in the real world (especially for critical control

systems) since it can sanction the effectiveness of the ADS in

limiting the effects of stealth attacks.

CUSUM, a change-point detection procedure, has histori-

cally been employed for the monitoring of industrial processes.

In recent years, its application has expanded to encompass

anomaly detection aimed at enhancing security across a diverse

range of systems. Examples of these novel applications span

various domains, including autonomous systems [6], controller

area networks [7], and control systems [8]. In a CUSUM ADS,

anomalies are accumulated over time, triggering an alarm
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when the threshold τ ∈ R
≥0 is surpassed. The Average Run

Length under H0 hypotheses, ARL0, is the ratio between the

length of an observation window and the number of alarms,

under the assumption that no attack is underway. In other

words, ARL0 measures the average number of time samples

between successive false positives, which are unavoidable due

to noise. Increasing the threshold τ can result in a longer

ARL, but it reduces sensitivity to anomalies. Therefore tuning

the threshold τ involves a trade-off between shorter ARL and

sensitivity to anomalies.

A. Related works

Generally, the assessment of WCI entails solving optimiza-

tion problems that simultaneously model the control system

and the ADS, with the objective of maximizing the deviation in

the Plant’s state caused by the compromised control signal(s).

However, the methods for identifying solutions to the WCI are

restricted to a limited number of detection systems that can

be encapsulated as constraints within an optimization problem,

such as the chi-squared [9] and CUSUM [8] ADSs.

A CUSUM-based ADS is modeled in [8] to identify stealth

attacks that maximize the infinity norm of the Plant’s state

deviation. By reformulating a problem as convex, the authors

determine the globally optimal solution (i.e., the most dan-

gerous attack). In [10], the authors introduce a novel metric

named the impact of undetected attacks. They argue that

metrics such as the false-positive rate may be misleading since

an omniscient attacker can always remain undetected. They

consider a stealth attack’s maximum deviation per second
and present a new paradigm for tuning a CUSUM detection

system. Instead of tuning the detection threshold as a trade-

off between the false positive rate and attack sensitivity, they

propose considering ARL as a trade-off between the usability

of a detection system and deviation per second due to stealth

attacks. While a short ARL can limit the impact of stealth

attacks by generating many false positives, it may also reduce

the usability of the ADS.

In [11], [12], the authors perform a WCI assessment for

a control system using a steady-state Kalman filter and a

CUSUM detection system. In their simulated experiments,

they decrease the ARL to the limit where the ADS is “prac-

tically usable”, i.e., they use different ARL values spanning

from 0.25 to 0.02 seconds (which we consider a short ARL).

However, they do not quantify the advantages of decreasing

the ARL.

In [13], the authors introduce a distinction between different

kinds of stealth attacks: zero-alarm attacks aim never to trigger

an alarm, while multi-alarms attacks, sometimes referred as to

hidden attack, produce alarms at a rate similar to the nominal

one, thus mimicking the nominal ARL. According to the study,

there is a need to go beyond traditional detectors to detect these

threats.

B. Contributions

To the best of our knowledge, no methods are currently

available in the literature for determining optimal multi-alarm
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Fig. 1: Control system, under sensor attack a, protected by an

attack detection system.

attacks considering an entire attack duration. The works men-

tioned in Section I-A provide solutions for zero-alarm attacks.

Furthermore, the literature needs to address why it might

be necessary to consider multi-alarm attacks instead of zero-

alarm. This work has the following research questions:

• RQ1: in which cases should multi-alarm attacks be

considered (instead of zero-alarm) in a Worst Case Impact

assessment?

• RQ2: how to find multi-alarm attacks?

For RQ1, we introduce a metric called transparency, which

measures how well an ADS limits stealth attacks; the greater

the transparency, the lower the ability of an ADS to prevent

state deviation. We then consider tuning a CUSUM-based

ADS, specifically choosing a threshold τ . We demonstrate

that to reduce the transparency of an ADS protecting a mass-

spring-damper system to acceptable levels, the value of τ may

need to decrease, resulting in a short ARL (e.g., 30 samples

at a sampling rate of 0.05 seconds). When the ARL is very

short, the WCI should not be measured by considering only

zero-alarm attacks, as this might underestimate the true impact

of attacks that are allowed to trigger alarms occasionally. In

other words, attacks that can trigger alarms occasionally (i.e.,

can produce greater anomaly) have the potential to deviate the

state more than attacks that are constrained by design not to

generate any alarm.

For RQ2, we propose to modify a problem designed for

zero-alarm attacks to allow occasional alarms without signifi-

cantly deviating from the nominal ARL.

II. MODEL AND ASSUMPTIONS

A. Control system and ADS

Consider a discrete-time feedback control system composed

of a physical Plant and a controller, subject to a “sensor

attack” [14], where the attacker can read and write to all

sensor readings. Fig. 1 illustrates the closed-loop and detection

systems. In gray, we highlight specific block parameters and,

in parenthesis, internal blocks state variables. The system is

sampled at prescribed times, indicated with k ∈ Z. We denote

with xk the (internal) state of the Plant at time k, and with xj
k,

the value of its j-th component. At every sampling instant k,

the controller receives a measurement ỹk of the Plant output yk
and produces an actuation signal uk, to drive the future Plant’s
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state towards a reference value, wk passed to the controller

as input (setpoint). The value of the control signal uk is

saturated to belong to the interval [umin, umax] due to physical

limitations, generating ũk. We assume that an attacker can

tamper with the system behavior by forging an attack signal

ak that is added to the actual measurement of the output,

ỹk = yk + ak. (1)

According to our threat model, the goal of the attacker is to

to divert the state of the Plant from its desired value wk to

reach a dangerous state.
We assume the Plant is linear, time-invariant, controllable,

and observable, with discrete-time dynamic equations

Plant =

{
xk+1 = Axk +B ũk + υk

yk = C xk +D ũk + ψk
(2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m,

n is the number of states, m is the number of inputs, p
is the number of outputs, and i.i.d. multivariate zero-mean

Gaussian noises υ ∈ R
n and ψ ∈ R

p with covariance matrices

respectively Υ ∈ R
n×n and Ψ ∈ R

p×p.
We consider a state-feedback controller with a steady state

Kalman filter as in [12], but, in addition, we also consider the

actuator’s saturation. Specifically, assuming without the loss

of generality setpoint wk = 0 the controller equations are

Controller =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rk = ỹk − ŷk
x̂k+1 = A x̂k +B ũk + Lrk

ŷk = C x̂k +D ũk

uk = −Kx̂k

ũk = sat (uk)

(3)

where x̂k and ŷk are respectively the estimated Plant state

and output, and uk and ũk are the control signals respectively

produced by the controller and received by the Plant, due to

saturation levels. The unique stabilizing solution P (covariance

matrix), state-feedback gain K, and closed-loop eigenvalues

are obtained by solving the following algebraic Riccati equa-

tion:

APAT − P − (APCT )(Ψ + CPCT )−1(APCT )T +Υ = 0

i.e., L = (APCT )(Σ + CPCT )−1 where

Σ = E[rk+1] = CPCT +Ψ, Σ ∈ R
p×p, is the covariance

of signal r. We assume Σ positive-definite (a standard

assumption that guarantees the convergence of the Kalman

filter employing P ). The function sat(·), saturates the

control signal within the values [umin, umax]. We assume the

saturation constraints are symmetric (umax = −umin).
We consider a non-parametric CUSUM ADS [15] with

equations

Detection =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk = rTk Σ
−1rk

Ek = max (0, Sk + zk − b)

Sk+1 =

{
Ek if Ek ≤ τ

0 if Ek > τ

Ck =

{
0 if Ek ≤ τ

1 if Ek > τ

S0 = 0

(4)

where the distance measure zk is the squared residual rk
scaled by the inverse of its covariance matrix Σ [11], [12], an

expression also known as the squared Mahalanobis distance.

The output of the CUSUM is a binary sequence C flagging

alarm times. When the sum S exceeds the threshold τ , the

detector generates an alarm and resets S to a value of zero.

Our work considers sequences of numbers as sets with

order preserved by operation. We denote with S1 \ S2 the

difference between sets S1 and S2. For a set S, we define

|S| = ∑
s∈S 1 (number of elements) and |S|=1 =

∑
s∈S:s=1 1

(number of elements equal to 1).

The ARL0 is the Average Run Length of the CUSUM under

the H0 hypothesis (absence of attacks). Having a sufficiently

long alarm sequence C, then

ARL0 =
|C| − |C|=1

|C|=1
(5)

where |C| − |C|=1 is the number of times τ is not exceeded.

Before deployment, the ARL0 has to be tuned by selecting the

CUSUM parameters τ and b. The Σ−1 factor in the definition

of zk rescales the distribution so that the CUSUM parameters

can be assigned independent of the specific statistics of the

noises υk, ψk. More specifically, being in our case rk a

Gaussian distribution with zero mean, zk follows a chi-squared

distribution with p degrees of freedom. Therefore the expected

value of zk is equal to the dimensionality of rk (see [11], [12])

e.g., if r has one dimension, then E[zk] = 1. To ensure mean

square boundedness of S independently on τ , the CUSUM

parameter b must be selected to be larger than E[z]. On

the other hand, as the value of b increases, the capacity of

minor deviations to impact S diminishes, thereby reducing the

sensitivity of the detection process. As a consequence, a good

choice for b is a slight excess over the dimensionality of r,

e.g., if r has one dimension, then b = 1.01 (as done in [12]).

Obtaining many run-length samples through simulation is

generally difficult because run times can be extremely long.

Knowing the expected value of zk enables estimating through

a Markov Chain the ARL resulting from a given τ (see [12])

- we call function tau2ARL(τ, b). Subsequently, it is possible

to obtain the CUSUM τ as a function of a (desired) ARL0 as

the solution of

minimize
τ

(
ARL0 −tau2ARL(τ, b)

)2
. (6)

B. Attacker

We are analyzing an attack with duration N steps. The

attack steps are indexed by i ∈ (1, . . . , N). The attacker aims

to maximize the impact at the final step N . The attacker has

access to system matrices (A, B, C, D), controller parameters

(L, K, sat), and ADS parameters (τ , b), and can read and

write sensor data to remain undetected. We assume that the

Plant’s state is near the setpoint at the start of the attack,

and the attacker plans an open-loop attack sequence without

considering random noise. While a closed-loop strategy could

be employed to counter or take advantage of noise, we assume

the noise is not significant, and the planned attack’s impact
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cannot be considerably greater than the actual one. We also

assume that the attacker plans the attack based on the Plant’s

state at the setpoint, but the actual state may differ slightly

at the start of the attack. This paper does not discuss specific

methods for realizing closed-loop attacks.

III. OPTIMIZATION PROBLEMS

A WCI assessment aims to determine whether an attack

might lead to at least one dangerous state. The maximal impact
is the solution to the problem

maximizeD (7)

where D is a measure of impact. The optimization variables

and constraints in Eq. (7) depend on the considered impact and

the model of the control system. We adopt the same approach

used by [5], [8], where they consider deviation the infinity

norm of the Plant’s state. In particular, [8] introduces a normal-

ization matrix Tnorm, i.e., D = ||Tnorm xN ||∞. A control system

is considered safe if the maximal impact cannot displace any of

the components of TnormxN over a value of 1, which, according

to [8], is equivalent to determining the maximum deviation

for the absolute value of each component of xN . To find

the most dangerous attack lasting N , we create a separate

optimization problem for each component of x throughout the

entire duration. This means we solve n optimization problems

having objective functions Dj = |xj
N |, j = 1, · · · , n.

Let us define the sets of variables X and parameters P
X = {ai, xi, x̂i, ui, ũi, yi, ŷi, ỹi, ri, zi, Si | i ∈ {1, · · · , N}}
P = {N,A,B,C,D,K,L,Σ−1, umax, umin, τ, b, sat,Ω}

where Ω is a set of integers in the range (1, · · · , N − 1) (possi-

bly empty, i.e., |Ω| = 0). We define the following optimization

problem relative to the j-th component of the Plant’s state

variable x (Problem 1):

maximize
X

Dj (8a)

subject to:

x1 = 0 (8b)

x̂1 = 0 (8c)

xi+1 = Axi +B ũi i = 1, · · · , N − 1 (8d)

yi = C xi +D ũi i = 1, · · · , N (8e)

ỹi = yi + ai i = 1, · · · , N (8f)

x̂i+1 = A x̂i +B ũi + Lri i = 1, · · · , N − 1 (8g)

ŷi = C x̂i +D ũi i = 1, · · · , N (8h)

ui = −K x̂i i = 1, · · · , N (8i)

ri = ỹi − ŷi i = 1, · · · , N (8j)

zi = rTi Σ
−1ri i = 1, · · · , N (8k)

ũi = sat(ui) i = 1, · · · , N (8l)

0 ≤ Si ≤ τ i = 1, · · · , N (8m)

Si+1 ≥ Si + zi − b i ∈ {1, . . . , N − 1} \ Ω (8n)

S1 = 0 (8o)

Si+1 ≥ zi − b i ∈ Ω (8p)

An instance I of Problem 1 provides a solution

X ∗ = {a∗i , x∗
i , x̂

∗
i , u

∗
i , ũ

∗
i , y

∗
i , ŷ

∗
i , ỹ

∗
i , r

∗
i , z

∗
i , S

∗
i }.

based on parameters P .

Eqs. (8b) and (8c) model the state of the controller when the

attack begins according to the assumptions of Section II-B,

Eqs. (8d) to (8f) are equations of the Plant under attack, and

Eqs. (8g) to (8k) are the controller equations.

Eqs. (8m) to (8p) model the CUSUM dynamics. The set

of indexes in Eq. (8n) is complementary to the set of indexes

in Eq. (8p). The purpose of having |Ω| > 0, so that Eq. (8p)

is used, is relative to the multi-alarm case and is clarified

in Section V. If |Ω| = 0, so that Eq. (8p) is not used, it is

determined a convex reformulation of Eq. (4) for zero-alarm

attacks, as proved in [8]. The reformulation is valid because,

assuming S1 = S∗
1 and zi = z∗i , ∀i, then we have

Si = S∗
i , ∀i ∈ (1, · · · , N)

where Si describes the actual CUSUM ADS as defined in

Eq. (4), while S∗
i comes from the solution of I. Note that

assuming x1 = x∗
1 and x̂1 = x̂∗

1, the assumption zi = z∗i
necessarily holds because the constraints of I models exactly

all the relations between variables in eq. (1)–(4) . The advan-

tage of using constraints Eqs. (8m) to (8o) instead of Eq. (4)

is that the former provide linear constraints instead of non-

smooth constraints that the max operator would determine.

An instance I with |Ω| = 0 is similar to the one defined

by [8], where they obtain a convex problem to find the optimal

zero-alarm attack. However, in our problem: i) we employ

Σ−1 in the residual distance, as in [12], and ii) we also con-

sider the actuator’s saturation. The residual distance of Eq. (8k)

does not affect convexity because the covariance matrix Σ is

non-singular and positive semi-definite. Eq. (8l) describes the

actuators’ saturation. The resulting attack can be more or less

effective depending on how sat(·) is specialized. There are at

least two different ways to model the saturation [16]:

Overflow-prevent (Opt-P) constraint:

umin ≤ ũi ≤ umax, i = 1, · · · , N
ũi = ui, i = 1, · · · , N (9)

Overflow-allow (Opt-A) constraint:

ũi = max (min (ui, umax) , umin) , i = 1, · · · , N (10)

Using Opt-A results in a more relaxed optimization problem

compared to Opt-P, implying a potential to generate more dan-

gerous attacks. However, a significant drawback of Opt-A is

that it leads to a non-convex optimization problem, specifically

a mixed-integer linear programming problem, thus making it

challenging to identify a globally optimal solution. Conversely,

Opt-P, being linear, does not impede convexity.

To summarize, if an instance I has |Ω| = 0, then an optimal

zero-alarm attack sequence (a∗1, · · · , a∗N ) can be generated.

Using Opt-P will result in a convex problem, while using

Opt-A may lead to a better solution, but it is non-convex.
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One method to perform a WCI assessment is to find a

baseline solution using Opt-P, then use Opt-A to improve the

baseline solution progressively.

IV. TRANSPARENCY OF AN ADS

An ideal anomaly detection system (ADS) should have a

low false positive rate (a long ARL0) and be highly sensitive to

attacks. However, increasing the τ to achieve a long ARL0 can

decrease sensitivity. There is a need for a unified definition of

sensitivity in the literature. One informal interpretation of sen-

sitivity is the ability to detect attacks amidst background noise.

However, since the specific attack is unknown beforehand, a

sensitivity value must be specified for each possible attack. To

quantify the impact of stealth attacks and the effectiveness of

an ADS, we introduce a new metric called transparency. We

define transparency as the percentage of maximal impact an

attacker can achieve despite the presence of the ADS. A highly

transparent ADS becomes irrelevant to the attacker regarding

the impact, and therefore such ADS is ineffective.

Having an instance I with solution X ∗, we denote with XU

the solution of a modified instance of I where all constraints

modeling the ADS are removed, that is, constraints (8m)–(8p).

We define the transparency of an ADS (relative to a certain

Plant’s state component) as

T =
|x∗

N−1|
|xU

N−1|
· 100 ∈ (0, 100]. (11)

Maximum impact uniquely defines transparency, and the

value of transparency remains invariant if deviation per unit

of time is used (instead of absolute deviation), as proposed

by [10].

Using simulated experiments, we demonstrate how trans-

parency decreases with ARL0 in zero-alarm attacks (|Ω| = 0).

As a Plant, we consider a simulated mass-spring-damper

system having, in continuous time, equations⎧⎪⎨
⎪⎩
ẋ1 (t) = x2 (t)

ẋ2 (t) = − k
m x1 (t)− d

m x2 (t) +
1
m u (t)

y (t) = x1 (t) ,

(12)

with mass m kg, elastic constant k N/m and damping d Ns/m.

The Plant has m = 0.4, k = 0.15, d = 0.095. Noises

covariance matrices are Υ = [8.3, 0; 0, 8.3] · 10−3, Ψ = 0.08.

The model is discretized through the zero-order hold with sam-

pling period Ts = 0.05 s, resulting in Σ = 0.11. In nominal

conditions (the Plant is on the setpoint), the covariance matrix

of the Plant’s state x is [0.41,−0.081;−0.081; 0.39].
To ensure a fair comparison across multiple solutions, in

what follows, we consider only the constraints of Opt-P for

the actuator’s saturation as they result in convex problems.

Thus, we are comparing the globally optimal solutions of each

problem. We noticed that employing Opt-A produces similar

results to those of Opt-P, affirming the applicability of our

considerations. We observed that depending on the specific

set of parameters considered, the use of Opt-A can lead to a
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Fig. 2: Effects of changing ARL0 in a zero-alarm attack scenario, with

attack duration N equal to ARL0. Smaller ARL0 reduces the impact (D),

the threshold τ and the transparency (T ). In all the simulations, the actuator’s

saturation umax = −umin = 4.

very long computation time and possibly an increase in the

introduced deviation up to approximately 15%.

We configure an instance I as in Problem 1, with |Ω| = 0
(zero-alarm), and focusing on maximizing the value of the first

component of the state, x1 (which corresponds to the position

of the mass). In the experiments, we tune τ to deliver values of

ARL0 equal to N and find solutions XU (absence of ADS) and

X ∗ (presence of ADS). Let DU and D denote the respective

impacts of XU and X ∗.

As N varies, the results are presented in Fig. 2. If ARL0

exceeds 150 samples (7.5 seconds), the transparency reaches

above 20%, implying an impact reduction of 80% due to the

presence of the ADS. To attain a transparency of 10%, which

is preferable since it denotes a 90% reduction in impact, it

becomes necessary that ARL0 falls below 60 samples.

V. MULTI-ALARM ATTACK SCENARIO

Ideally, CUSUM can be tuned to have a very long ARL0

so that hypothesis H0 can be set False upon any alarm.

However, a long ARL0 might make the transparency of the

ADS unacceptable. We denote a multi-alarm scenario where

the ARL0 must be short (e.g., 30 samples) to obtain acceptable

transparency. In a multi-alarm scenario, false positives are

expected; therefore, it is necessary to monitor the alarm

sequence C using an additional detector of higher level [17]

monitoring C in a sliding window of length M ∈ N
+ to decide

if H0 is False. We consider a high-level detector that monitors

the difference between the observed ARL and the nominal

ARL0, defined as

e = ARL0 −M − |C|=1

|C|=1
∈ R (13)
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Note that e = 0 =⇒ |C|=1 = M
ARL0 +1

, which could be

impossible for round-off error because |C|=1 ∈ N
≥0. There-

fore, we define the closest integer approximation of the aver-

age number of alarms under H0 as

|C|=1
TARGET = round

(
M

ARL0 +1

)
. (14)

There is the following policy for the higher lever detector.

H0 = True if and only if the two following conditions are both

True

|C|=1 ≤ |C|=1
TARGET + δD (15)

and

|C|=1 ≥ |C|=1
TARGET − δD (16)

where δD ∈ N
≥0 is a tolerance threshold on the number of

alarms in the observation window. An attack is characterized

as hidden if the correspondent alarm sequence C satisfies the

condition H0 = True.

Let us define a function E that describes the effect of an at-

tack (without considering noise), implemented using recursive

equations (1)–(4) with υk = 0, ψk = 0 and considering k = 1
as the onset of the attack.

E (x1, x̂1, S1, (a1, · · · , aN )) �→ X ∪C. (17)

where (a1, · · · , aN ) is an attack sequence. Function E yields

all the values of the variables in X and C obtained from

the recursive equations (actual control system and ADS),

assuming there is no noise.

There are the following notational conventions to enhance

brevity in the presentation. A superscript ∗ on a variable

indicates its association with the solution X ∗ of an instance I
of Problem 1. When a sampling time subscript is absent, this

signifies a sequence that persists throughout the entire duration

of the attack. For instance, a∗ refers to an optimal attack

sequence (a∗1, · · · , a∗N ). Furthermore, whenever variables from

X or C are used without any supplementary notation, it is

implicitly understood that they are derived by supplying E
with the attack sequence a∗ extracted from a solution X ∗. For

example, S embodies the values of the actual CUSUM sum as

computed by E upon providing a∗. More precisely, the effects

of a solution X ∗ are

X ∪C = E (x1, x̂1, S1, a
∗) . (18)

Lemma V.1. Consider a solution X ∗, and its effect X ∪ C.
Assuming x∗

1 = x1 and x̂∗
1 = x̂1, we have:

X ∗ \ S∗ = X \ S
independently on the content of Ω.

Proof. Constraints of I models exactly all the variables of

eq. (1)–(4) except for S (independently on the content of

Ω). Consequently, Eq. (18) yields X , where, relative to X ∗,

discrepancies can only be introduced between S∗
k and Sk for

some k. Simultaneously, all other corresponding variables in

X ∗ and X must retain identical values for each time k.

According to the assumptions of Section II-B, we can affirm

that x1 = x∗
1 = 0 and x̂1 = x̂∗

1 = 0. Therefore Lemma V.1

assures that Eq. (18) correctly represents the Plant’s dynamics,

regardless of Ω. In the presence of process noise, the actual

evolution of the Plant’s state may differ from x∗, but we

assume the influence is negligible. On the other hand, sensor

noise does not introduce any changes in the planned attack

because the attacker can directly inject ỹ∗, independently on

y.

A. Upper bound on the number of alarms

In this section, we modify the optimization problem for

zero-alarm attacks to provide a solution guaranteeing that

condition of Eq. (15) is not violated.

Lemma V.2. Consider an instance I and sequence (interval)
of time instants Δ = (Δs, · · · ,Δe) with at least two elements,
chosen such that

∀k ∈ (Δs, · · · ,Δe), k /∈ Ω.

Assuming S∗
Δs

≥ SΔs
we have:

S∗
k ≥ Sk, k ∈ (Δs + 1, · · · , Δe).

Proof. In simpler terms, when instance I uses Eq. (8n) within

an interval, and the initial value of S∗ does not fall below

that of the initial CUSUM sum S, then S∗ will persistently

dominate S throughout the entire interval.

Within this proof, we consider without the loss of generality

Δs = 1. Hence we rewrite the assumption as S∗
1 ≥ S1.

For Eq. (4), either S2 = 0 or S2 > 0. If S2 = 0, for Eq. (8m)

S∗
2 ≥ 0 = S2 and the proof is valid in k = Δs + 1 = 2.

If, instead, S2 > 0, for Eq. (4) we have S2 = S1 + v1,

where we introduced v1 = z1 − b ∈ R. Define also the

discrete difference in the solution v∗1 = z∗1 − b. By virtue

of Lemma V.1, it follows that v∗1 = v1, and Eq. (8n)

becomes S∗
2 ≥ S∗

1 + v. Defining δ1 = S∗
1 − S1, we

have S∗
2 ≥ δ1 + S1 + v1. Using S2 = S1 + v1 we have

S∗
2 ≥ δ1 + S2. Being δ1 ≥ 0 for the hypothesis, then

S∗
2 ≥ S2, hence the proof is valid in k = Δs + 1 = 2.

By induction, the result holds for the entire sequence (i.e.,

by considering δ2 = S∗
2 − S2 ≥ 0 and so on).

Lemma V.3. Consider an interval Δ as defined in Lemma V.2.
Assuming S∗

Δs
≥ SΔs , no alarm can be generated during Δ,

i.e., (CΔs , · · · ,CΔe) = (0, · · · , 0).
Proof. Lemma V.2 and Eq. (8m) guarantees that τ ≥ S∗ ≥ S
during Δ. Therefore, no alarms can be generated during Δ,

as S cannot exceed the threshold τ .

For Lemma V.3, the solution of an instance I wherein

|Ω| = 0, and assuming S∗
Δs

≥ SΔs , will result in a zero-

alarm attack. This conclusion is drawn because we can apply

Lemma V.3 over the entire attack duration. Conversely, an

instance I where |Ω| > 0 does not establish a unique interval

Δ in which only Eq. (8n) is used. Therefore, we cannot apply

Lemma V.3 across the full attack duration. The condition

|Ω| > 0 may prompt S to go beyond τ , generating alarm(s),
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even if S∗ does not exceed τ . In what follows, we determine

the maximum number of alarms and discuss their location

within the alarm sequence C depending on |Ω|.
Lemma V.4. During an interval Δ defined as in Lemma V.2
there can be generated a maximum of one alarm by the
solution of I, independently on the value of S∗

Δs
and SΔs

.

Proof. Suppose that S generates at least one alarm during

Δ, and denote the instant of the first alarm as l ≥ 1. For

Eq. (4) the CUSUM resets at k = l + 1, then can affirm that

Sl+1 = 0 ≤ S∗
l+1. According to Lemma V.3, no further alarms

can occur during the interval (l + 1, · · · ,Δe).

Lemma V.5. Consider an arbitrary interval Δ̃ chosen such
that

Δ̃ = (Δs − 1,Δs, · · · ,Δe) (19)

where Δs − 1 ∈ Ω and Δ = (Δs, · · · ,Δe) /∈ Ω. Then, during
the interval Δ̃, the solution of I can generate a maximum of
one alarm.

Proof. Interval Δ̃ is defined such that the instance I utilizes

Eq. (8p) at the initial instant and Eq. (8n) for the remaining

instants. In the case where an alarm is generated at k = Δs−1,

the CUSUM resets and we can affirm that SΔs = 0 ≤ S∗
Δs

.

Based on Lemma V.3, no further alarms can be triggered in

the interval Δ = (Δs, · · · ,Δe). Alternatively, if no alarm is

generated at k = Δs − 1, for Lemma V.4 a maximum of one

alarm can be generated in Δ = (Δs, · · · ,Δe).

Theorem V.6. The number of alarms generated by the solution
of an instance I is less or equal to the number of instants in
which I uses Eq. (8p) plus one unit, i.e.,

|C|=1 ≤ |Ω|+ 1

Proof. If |Ω| = 0, then |C|=1 ≤ 1 for Lemma V.4. If

|Ω| > 0, consider Ω = (Ω1, · · · , Ω|Ω|) and the partition of

(1, · · · , N − 1) consisting of the following |Ω|+1 intervals:

(1, · · · ,Ω1 − 1), (Ω1, · · · ,Ω2 − 1), · · · , (Ω|Ω|, · · · , N − 1)
(20)

Element (1, · · · ,Ω1 − 1) is an interval of the kind defined

in Lemma V.2 (symbol Δ), while all the remaining elements

are intervals of the type defined in Lemma V.5 (symbol Δ̃).

In both kinds of intervals, there can be a maximum of one

alarm, from which the proof can be derived.

Under Theorem V.6, it is possible to construct Ω to ensure

an upper limit on the number of alarms triggered by the

solution of an instance I. Notably, the outcome of Theo-

rem V.6 is independent of the CUSUM sum value when the

attack begins, S1. The S value, not being transmitted over

the network, could be unknown to a less powerful attacker. A

lack of knowledge regarding S1 could prevent an attacker from

maintaining stealthiness in a zero-alarm scenario. However, in

a multi-alarm scenario, the knowledge about the value of S1 is

less consequential. If S∗
1 ≥ S1 (for instance, both are zero), we

have |C|=1 ≤ |Ω|, since no alarm can occur in the initial time

interval (1, · · · ,Ω1−1) according to Lemma V.3. In contrast,

if S∗
1 < S1, then |C|=1 ≤ |Ω| + 1, as per Theorem V.6.

Hence, in a multi-alarm scenario, ignorance of the value of

S1 could potentially increase the number of alarms by just

one, emphasizing the increased risk in multi-alarm scenarios

compared to single-alarm ones.

Lemma V.7. For all possible Ω in an instance I, if an
additional index element is included in Ω, the impact cannot
decrease.

Proof. Because S∗
i , z

∗
i , b ≥ 0, constraint 8p of Problem 1

is more relaxed than constraint 8n. Therefore, including an

additional index to Ω relaxes the problem and can improve

the solution (i.e., the impact).

As per Lemma V.7, an instance I with |Ω| > 0 (multi-

alarm) is more relaxed than a modified instance where |Ω| = 0
(zero-alarm). Consequently, the impact of a single-alarm solu-

tion is less than or equal to the impact of any possible multi-

alarm solution.

When acceptable transparency implies a high probability of

alarms (short ARL), the WCI assessment should be performed

against multi-alarm attacks (response to RQ1). The reason

is that from Lemma V.7, performing WCI assessment by

considering I with |Ω| = 0 (zero-alarm) may underestimate

the actual deviation that |Ω| > 0 (multi-alarm) could achieve.

To answer RQ2, this paper proposes a new method to find

attacks that produce alarms at a rate substantially equal to

ARL0. Hence they are hidden to the detector defined in

Section V.

We propose to find multi-alarm attacks guaranteeing an

upper-bound on the number of alarms by using an instance

of Problem 1 where

|Ω| = |C|=1
TARGET + δD − 1 (21)

so that, for Theorem V.6, |C|=1 ≤ |C|=1
TARGET+δD and Eq. (15)

is True.

One possible criterion for the formation of Ω is to

space the presence of constraints Eq. (8p) at a distance of

|C|=1
TARGET + δD samples, so that in the absence of a priori

information we expect alarms to occur at the same distance.

We highlight that the proposed way to form Ω is just one

among the
(
N
|Ω|

)
possible, which suggests how finding a global

optimum in the multi-alarm case is inherently more complex

than the zero-alarm case.

The proposed I has Ω such that

{i ∈ Ω | mod(i, |C|=1
TARGET + δD) = 0}, i ∈ (1, · · · , N − 1)

(22)

where mod is the modulus operator. Eq. (22) deter-

mines |C|=1
TARGET + δD intervals as in Eq. (20) i.e.,

Ω =
(
|C|=1

TARGET + δD, 2(|C|=1
TARGET + δD), · · ·

)
. For exam-

ple, if δD = 1, |C|=1
TARGET = 30, and M = 330 sam-

ples, then elements in Ω has a spacing of 31 i.e.,

Ω = (31, 62, 93, · · · , 310).
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B. Lower bound on the number of alarms

The optimization problem defined in section V-A guarantees

an upper bound on the number of alarms, but there are no

guarantees on the minimum number of alarms, which could

lead to detection for Eq. (16). On the one hand, it is intuitive

that maximizing the deviation tends to increase the anomaly,

hence, producing alarms whenever possible (one alarm in

each interval determined by Ω). On the other hand, it is not

said that the optimal solution will generate the maximum

number of alarms |Ω| + 1. The actuators’ saturation prevents

an unbounded energy rate from being injected into the system.

Consequently, there can be time intervals in which providing

more anomalies is not useful to increase the deviation.

Since the attacker can always check the effect of an attack

before injecting it into the real system, (s)he can adjust

Ω accordingly to the number of alarms |C|=1, as obtained

through Eq. (18). The Algorithm 1 details at a high level

of abstraction the process of finding an attack sequence that

delivers several alarms in a prescribed range.

Algorithm 1 Sub-optimal hidden multi-alarm attack sequence

1: Input: I, |C|=1
TARGET, δD

2: numelC ← |C|=1
TARGET + δD − 1

3: Initialize Ω based on numelC
4: Form instance I based on Ω
5: Solve I to obtain X ∗

6: ObtainC fromX ∗ and function E
7: compute low = −|C|=1 + |C|=1

TARGET − δD

8: compute up = |C|=1 − |C|=1
TARGET − δD

9: while (low > 0 OR up > 0) do
10: Update numelC
11: Form Ω based on numelC
12: Repeat lines 4− 8 updating C
13: end while
14: Output: attack sequence a∗ fromX ∗

In the Algorithm, at line 2, the variable numelC is initial-

ized so that the first time an attack sequence is obtained, it

will not exceed the prescribed maximum number of alarms.

At line 3, the attacker could equally distribute constraints of

Eq. (8p) as in Eq. (22). At line 9, the algorithm ensures that

the attack sequence remains hidden. When line 9 is visited

for the first time, the while loop is only entered if not enough

alarms are produced. At line 11, the value of Ω is modified,

which may increase or decrease the number of alarms. There

exists at least one criterion to change Ω such that an infinite

loop is prevented and a hidden attack is found, as explained

by Lemma V.8.

Lemma V.8. Consider a generic Ω such that
|C|=1 < |C|=1

TARGET − δD (meaning, there are insufficient
alarms for the attack to remain hidden). Assume
Ω = (1, · · · , N − 1) =⇒ |C|=1 ≥ |C|=1

TARGET − δD. Then,
by progressively incorporating new index elements into Ω
following any criteria, it becomes possible to eventually find
an attack sequence where |C|=1 = |C|=1

TARGET − δD (thus the
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Fig. 3: Results for an optimal zero-alarm attack on a mass-spring-damper

system, with umax = −umin = 4.

attack is hidden), and this holds for all δ. Moreover, every
time a new index element is incorporated into Ω, the value of
the optimal solution (or the impact) cannot decrease.

Proof. The assumption is justifiable given that if

Ω = (1, · · · , N − 1), the corresponding optimization problem

becomes sufficiently relaxed such that a solution may

potentially generate an alarm sequence exhibiting ARL = 1.

As per the results in Section V, including a new index

element in Ω increases by one the number of intervals

as defined in Theorem V.6, hence it might generate an

additional alarm. As per our assumption, under any criteria

by which a new index is iteratively incorporated into Ω, there

must exist an iteration before reaching Ω = (1, · · · , N − 1)
where |C|=1 = |C|=1

TARGET − δD. Furthermore, whenever

an additional index is incorporated, the problem becomes

more relaxed as per Lemma V.7; hence the impact cannot

decrease.

VI. SIMULATED RESULTS

This section presents the results of simulated attacks on a

mass-spring-damper system, particularly on the first compo-

nent x1.

A. Zero vs multi alarm

We tune a CUSUM ADS to yield ARL0 = 30. Per Eq. (6),

this corresponds to a CUSUM threshold, τ , of 5.44. The

higher-level ADS operates with an observation window of

M = 330 and an alarm count tolerance of δD = 1. As per

Eq. (14), the target CUSUM output, |C|=1
TARGET, is set at 11.

For Eqs. (15) and (16), an attack of duration N = M is hidden

if it results in CUSUM alarm count, |C|=1, within the range

of [10,12].

The graph presented in Fig. 3 pertains to an optimal zero-

alarm attack, which, given |C|=1 = 0, is not hidden. In this
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Fig. 4: Results for an optimal multi-alarm attack on a mass-spring-damper

system, with umax = −umin = 4.

context, z−b illustrates the incremental change of the CUSUM

sum over time. In the figure, we juxtapose the evolution of

the CUSUM sum in the optimal solution, denoted as S∗, and

its counterpart in the actual ADS, denoted as S. The data is

obtained through Eq. (18) which consists in applying a∗ to the

recursive equations, as given in Eq. (1)–(4). In this scenario,

S and S∗ coincide and do not breach the CUSUM threshold,

τ . As a result of this attack, there is a final deviation in the

first Plant’s state component x1
N of 14.4.

Fig. 4 represents an optimal multi-alarm attack. In accor-

dance with Eq. (21), we set |Ω|=1 = 10, so that invoking

Theorem V.6, |C|=1 ≤ |C|=1
TARGET = 11 alarms is guaranteed.

Moreover, |C|=1 ≤ 10, as in the simulations, we enforce

the condition S1 = S∗
1 = 0 (refer to the discussion on The-

orem V.6 for further details). Elements of Ω are distributed

as in Eq. (22) consisting of spacing between elements of

31 samples. The evolution of S and S∗ can be observed

in the figure, which aligns with the results discussed in

Section V. The attack induces |C|=1 = 10 alarms. The term

max(0, z+S − b− τ) conveys the extent to which S exceeds
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Fig. 5: Results from a series of optimal multi-alarm attacks as the saturation

value umax = −umin increases, and Ω has a spacing between elements of

31 samples.

τ at the instant an alarm is produced. Note that such quantity

is not visible in the evolution of S because, according to

Eq. (4), it is discarded upon resetting S. The final deviation

of the attack is measured at 15.45. Compared to the zero-

alarm attack, not only the multi-alarm attack is hidden, but it

improves the impact of ∼ 8%.

B. Influence of actuators saturation value

This section examines a multi-alarm scenario wherein the

actuator’s saturation is reduced relative to the case outlined

in Section VI-A. Specifically, the value of umax = −umin is

diminished from 4 to a range within (0.5, 4).
Fig. 5 shows that attaining ten alarms is only possible when

the actuator saturation exceeds 1.2N . For smaller saturation

values, the observed ARL is too large to determine a hidden

attack. However, as introduced in Lemma V.8 and further

detailed in the remainder of this section, it is always possible

to produce more alarms (hence decrease the ARL) while at the

same time not decreasing the impact. Fig. 5 also shows that

for the current tuning (fixed to ARL0 = 30), greater values of

umax render the ADS more effective in terms of transparency.

In particular, for small values of umax, the transparency nearly

reaches its maximum, informing that the ADS is ineffective,

regardless of the impact. The figure illustrates that within the

range umax = (0.5, 1.2), saturation level is a limiting factor

for both the number of alarms and the impact |x1
N |. Beyond

umax = 1.2, the maximum theoretical number of alarms of

10 is achieved, after which the impact remains constant (the

only limiting factor becomes the prescribed constant tuning

of the ADS). Beyond umax = 1.2, the transparency, defined

in Eq. (11), continues to diminish because the ADS does not

constrain XU.

The subsequent analysis is focused on the scenario where

umax = −umin = 0.65. As demonstrated by Fig. 5 when Ω
has a spacing between elements of 31 samples, we have

|C|=1 = 6 /∈ [10, 12], implying that the attack does not qualify

as a hidden. Fig. 6 details the alarm times and the considered

set Ω. According to Algorithm 1, in this case, Ω must be

adjusted to generate sufficient alarms. Although Lemma V.8

guarantees a method for eventually identifying a hidden attack,

we experiment with a different criterion that nonetheless yields
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Fig. 7: Alarm sequence obtained with umax = 0.65 and Ω having a spacing

between elements of 18 samples, determining 11 alarms (hence hidden).

a valid solution. Specifically, we iteratively solve multiple

optimization problems, progressively increasing |Ω| following

the criterion of Eq. (22). Table I shows the number of alarms

obtained as the spacing between elements in Ω decreases. Any

spacing in the range (18, . . . , 14) determines a hidden attack.

For example, with a spacing of 18 samples, we successfully

generate 11 alarms, as further illustrated in Fig. 7.

VII. CONCLUSION

This paper introduces a new formulation for multi-alarm

attacks on cyber-physical control systems secured by CUSUM-

based anomaly detection schemes. This is proposed within the

scope of a Worst Case Impact assessment. We have introduced

the concept of transparency for an Anomaly Detection System

(ADS), a measure of how much the presence of an ADS can

limit the impact (Plant’s state deviation) of stealth attacks.

Through simulations on a mass-spring system, we show that

to achieve acceptable transparency, the Average Run Length

(ARL, which is the ratio between the number of samples

in an observation window and the number of alarms) must

be short. Consequently, with short ARLs, CUSUM alarms

are triggered frequently, demanding a higher-level detection

system to monitor the CUSUM ARL. Both theoretical analysis

and simulation experiments indicate that multi-alarm attacks

Ω spacing 31 30 29 28 27 26 25 24 23

|C|=1 6 5 7 6 7 9 7 7 8

Ω spacing 22 21 20 19 18 17 16 15 14
|C|=1 8 9 8 9 11 11 12 11 12

Ω spacing 13 12 11 10 9 8 7 6 5

|C|=1 12 15 16 17 18 19 24 22 26

TABLE I: Number of alarms, |C|=1, obtained with different spacing

between elements in Ω, in the case where umax = −umin = 0.65N .

could result in a more significant state deviation than zero-

alarm attacks. Additionally, knowing the CUSUM sum at

the start of an attack does not significantly contribute to

preserving stealthiness. This leads us to conclude that in

the presence of short ARL, Worst Case Impact assessments

should focus on multi-alarm attacks instead of zero-alarm

attacks. We have formulated multi-alarm attacks by adjusting

the convex constraints that model the discrete dynamics of the

CUSUM, offering formal guarantees on the maximum number

of alarms. We have proposed an algorithm that is guaranteed to

identify multi-alarm attacks that remain hidden with respect to

a higher-level detection system monitoring the CUSUM ARL

in a time window. However, it is essential to acknowledge that

our solution does not assure global optimality. The constraints

in updating the CUSUM could be adjusted at different timings

from those considered in this study, possibly leading to more

dangerous attacks. Hence, the issue of Worst Case Impact

assessment for short ARL is still an open question and requires

further exploration.
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