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Abstract—Robot operating system 2 (ROS 2) is increasingly
popular both in research and commercial robotic systems. ROS 2
is designed to allow real-time execution and data communication,
enabling rapid prototyping and deployment of robotic systems.
In order to predict and calculate execution times in ROS 2, one
needs to analyze its internal scheduler, called executor. The ex-
ecutor has been updated in various distributions of ROS 2, which
is shown to impact significantly the periodic execution invoked
by the underlying operating system’s timers, potentially causing
unexpected latencies. To expose the mentioned impact due to
executor differences, in this paper, we present an experimental
evaluation of the execution behavior of ROS 2’s schedulable
entities, namely callbacks, among the existing versions of the
executor. We visualize the differences of callback execution order
via simulation, and we create design-level scenarios that impact
the execution of periodically scheduled callbacks, negatively.
Moreover, we show how such negative impact can be mitigated by
using multi-threaded executors. Finally, we illustrate the observed
behavior on a real-world centralized multi-agent robot system.
Our work aims to raise awareness within the ROS 2 developer
community, regarding possible problems of timer blocking, and
propose a mitigation solution of the latter.

I. INTRODUCTION

Robot Operating System 2 (ROS 2) is a middleware that
supports the development and deployment of software for
robotic systems, ranging from fully decentralized to central-
ized robotic systems [4, 17, 11]. With the rising need for
real-time capabilities in robotic systems, ROS 2 has been
developed to replace ROS 1, and meet real-time demands
by using Data Distribution Service (DDS) communication
[7]. The execution of ROS 2 relies on an underlying oper-
ating system (OS). Furthermore, ROS 2 includes an internal
scheduler, called executor, which schedules ROS 2’s smallest
schedulable entities, namely callbacks. While a system can
consist of several instances of executors, knowledge of its
execution is essential to meet real-time requirements in ROS 2.
Consequently, fellow researchers have conducted work on
analyzing ROS 2 execution, including response-time analysis
[8, 6]. To improve overall system performance, the executor
has changed across different ROS 2 distributions. The change
allows schedulable entities released by timers, that is, timer
callbacks, to be included in the so-called ready set. This
is important, as the ready set is only updated at specific
time points after the executor of ROS 2 becomes idle. The
executor schedules all callbacks (of any type) that are included

in the ready set only. Prior to this change, timer-triggered
callbacks are excluded from the set, and considered instead
for scheduling after each execution of any callback, once the
respective timer event arises. This change in execution causes
issues, especially in periodic systems, as callbacks released
by system timers can get blocked by callbacks available in
the previously polled ready set. Some effects of the change
have also been studied via timing analysis methods, in related
work [6, 13, 21]. Assuming systems that rely on periodic
execution, the executor change and its consequences need to
be identified. This can be done by investigating the differences
in the executor versions and the respective scheduling of
callbacks, via an experimental evaluation, such that design
choices can be made by developers, without assuming worst-
case execution time only, as in related work.

Problem Statement and Paper Contributions
A functional model of the first version of the ROS 2

executor is developed by Casini et al. [8], and the change
is noted in the literature [6]. Nevertheless, no existing work
compares the order of execution of callbacks in different
executors in detail. In this paper, we present the differences
in the internal scheduling of callbacks over the native ROS 2
versions, by an experimental evaluation. The experiments
give insights into the semantics of ROS 2 executors, helping
practitioners to decide for an appropriate implementation of
real-time robotic systems, being aware of the implications
of the different executor semantics. In the experimental
evaluation, we consider the following research questions.
RQ1: How does the scheduling of callbacks in a node differ
in the single-threaded executor among the existing ROS 2
distributions? RQ2: What type of system configurations lead
to timer blocking in the existing single-threaded executor
versions, and how does the blocking affect periodic execution?
RQ3: How do approaches using multi-threaded executors
affect the timer blocking while preserving mutually exclusive
execution?

The main contributions of this paper are as follows:
1. We identify and also visually show the differences in

the execution of callbacks on the native single-threaded
executor over different distributions in ROS 2, by con-
ducting various experiments. Furthermore, we show the



critical blocking of timer callbacks, which is possible in
the updated version of the executor included in ROS 2
distributions starting from Eloquent on.

2. We provide a solution to the issue exposed above,
by employing mutual-exclusive multi-threaded executors
in experiments and showing again the differences in
scheduling, as well as callbacks grouping in ROS 2
Humble.

3. We illustrate the impact of the system design on the
periodic execution of callbacks in the single-threaded
executor, on an abstracted real-world centralized multi-
agent robot system.

II. BACKGROUND

This section introduces ROS 2 and its components, followed
by an overview of the available ROS 2 distributions. The
Robot Operating System (ROS 2) is an open-source meta-
operating system for developing robotic applications. Since
ROS 2 is not a standalone operating system (OS), it must
be installed on top of an existing OS. ROS 2 has been
introduced to meet the industrial requirements of guaranteeing
fault tolerance, process synchronization, and meeting real-time
constraints. Compared to its predecessor ROS 1, ROS 2 adopts
the communication middleware called Data Distribution Ser-
vice (DDS) developed by the Object Management Group
(OMG) [2]. Middleware is software that enables connection
and communication between two or more applications or
application parts, by linking the communication between the
applications that are not built to communicate with each other.

A. Robot Operating System 2 Distributions
ROS 2 is constantly improving in versioned sets of ROS 2

packages or so-called distributions. Table I lists the distribu-
tions used in this paper, the respective default DDS vendor, as
well as the version of the executor, respectively.

TABLE I
ROS 2 DISTRIBUTIONS OF INTEREST.

Distro Release EOL Default DDS vendor Executor
Humble Hawksbill 2022 2027 eProsima Fast RTPS E2
Galactic Geochelone 2021 2022 Eclipse Cyclone DDS E2
Foxy Fitzroy 2020 2023 eProsima Fast RTPS E2
Eloquent Elusor 2019 2020 eProsima Fast RTPS E2
Dashing Diademata 2019 2021 eProsima Fast RTPS E1
Crystal Clemmys 2018 2019 eProsima Fast RTPS E1

B. ROS 2 Systems and Communication
ROS 2 systems are composed of executable nodes, where

each node consists of one or several callbacks that repre-
sent ROS 2’s smallest schedulable entity, see Section II-C.
Communication between nodes in the included DDS can
be performed using publish-subscribe or service-client com-
munication patterns, see Figure 1. In the publish-subscribe
pattern, publishers generate data, while subscribers consume
the data [5]. The publisher and subscriber discover each other
at run-time using the Real-time Publish-Subscribe Protocol
(RTPS) [1]. A topic describes the data that publishers and
subscribers share; the publishers and subscribers only send and
receive data on topics of interest. In ROS 2, several publishers
may publish on the same topic, and many subscribers can
subscribe to the same topic. Subscribers receive data from all

Node 2

Service Server

Subscriber

Node 1

Publisher

Service Client

Data Distribution Service

Service request

Service response

Topic

Fig. 1. ROS 2 communication scheme of nodes, topic, publisher, subscriber,
service, and client.

publishers related to a specific topic, see Figure 1. Compared
to asynchronous publisher-subscriber communication, ROS 2
provides synchronous service-client communication. This type
of communication uses request-and-response communication
among nodes. A service server, commonly used to compute
a request, responds only when a service client node sends an
initial request.

C. Executors and Callbacks
The smallest schedulable entity in ROS 2 is a callback,

which is scheduled by the executor. The executor utilizes one
or more threads of the underlying operating system to invoke
callbacks that belong to one of the four callback types: timers,
subscribers, services, and clients. Timer callbacks are triggered
by events invoked by the operating system’s timer, whereas
subscribers are invoked by new messages on subscribed topics.
A client callback is invoked when a client makes a service
request, while the service callback is invoked when a service
response to the clients’ request is received.

The first analytical model of the executor, which is valid
up to the ROS 2 distribution Eloquent, was proposed by
Blass and Casini et al. [8]. In their work, the authors explain
the execution behavior of ROS 2 Crystal 2018. The second
executor version was introduced in ROS 2 Eloquent 2019,
and the changes were first identified by Blaß et al. [6]. It is
important to note the differences between the two versions
of executors, illustrated in Figure 2. In both versions, all
callbacks in ROS 2 are non-preemptive, which means that
once the execution of a callback starts, it will be completed
before the next callback is executed. However, the second
executor version brought improvements and changes that
warrant further discussion and analysis in this paper. The
execution priorities of callbacks are determined based on
their type. Callbacks belonging to the group of timers have
the highest priority, followed by subscription callbacks
and service callbacks. The client callbacks have the lowest
priority. Inside each group, the priorities of callbacks are
determined by the order of registration in the executor,
meaning that, e.g., the first-registered timers are executed
before the later-registered timer when both are available
simultaneously [8].
Decisions of scheduling in the executor are based on
the so-called ready set. The ready set contains one instance
of all topics, services, and client callbacks where data is
available in the DDS, i.e., the so-called ready callbacks.
When the executor is idle, e.g., when all callbacks in the
ready set are executed, a ready set is built in both versions of
the executor. The point where the ready set is built is called
a polling point. The difference between execution models
resides in how timers are handled. In the first version of the
executor, timers are excluded from the ready set and scanned
for every iteration when any callback instance finishes its
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cb ← the highest-priority callback in s
executes the next instance of cb

readySet ← readySet \ cb

s != ∅

s = ∅

s != ∅s ← Csub ∩ readySet

s = ∅

s != ∅s ← Csrv ∩ readySet

s = ∅

s != ∅s ← Cclt ∩ readySet

Executor Model E1

readySet ← {c ∈ C | c ready}readySet ← {c ∈ (C \ Ctmr) | c ready}

s ← {t ∈ Ctmr | t ready} s ← Ctmr ∩ readySet 

s = ∅

Fig. 2. Version 1 (E1) for the ROS 2 distributions earlier than Dashing Casini
et al. [8] and 2 (E2) for later distributions of ROS 2 (Eloquent - Humble) of
the executor model. C represents a set of callbacks with an instance c, where
tmr denotes a timer, sub the subscriber, srv the server, and clt the client
callbacks. By s we denote the subset of a ready set, and by cb the highest
priority callback in s.

execution. In the updated version of the executor, starting
with ROS 2 Eloquent, the timers are included in the ready
set [6].

The prioritization and execution of the callbacks in multi-
threaded executors (introduced in ROS 2 Foxy) follow the
same procedure as shown in Figure 2, except that the execution
of callbacks is distributed to several system threads [13]. That
leaves two options for operating callbacks, that is (a) mutual
exclusion, meaning that all callbacks in the ready set have to be
processed after the previous callback finishes its execution, or
(b) reentrant, meaning that all callbacks in the ready set can be
executed in parallel. In an executor using option (a), multiple
threads cannot operate callbacks from the same callback group
in parallel, but operate the idle operation of updating the ready
set, which increases the number of polling points.

III. RELATED WORK

This section gives an overview of related works on timing
analysis of ROS 2, alternative executor design, real-time capa-
bilities of ROS 2, and systems and communication design. The
first work mentioning and stating the ROS 2 execution model
was conducted by Casini et al. [8] in 2019. By analyzing
the execution of the ROS 2 distribution Christal Clemmys,
the executor model was identified and described. A response-
time analysis, calculating the worst-case response time was
proposed under reservation-based scheduling. Another work
regarding response-time analysis, considering the priorities
of the ROS 2 callbacks, based on the first executor version
was conducted by Tang et al. [20]. In the paper by Blaß
et al. [6] the actual timer as a part of the ready set was
considered. An expanded analysis under real-time scheduling
for multi-threaded executors has been conducted by Jiang
et al. [13]. This work proposes response-time analysis for

processing chains using multi-threaded executors. The latest
paper in the field by Teper et al. [21] proposes an end-to-
end timing analysis on a single-threaded executor, focusing on
cause-effect chains. The named works are significant for the
research we present in this paper. However, actual execution
differences were not compared, which are addressed in our
work. Furthermore, our work expands the knowledge about
timer blocking in periodic systems and how the system design
influences execution.

In addition to research on explaining and analyzing the
execution of ROS 2 in the native distributions, work was
conducted on implementing new executor algorithms. Choi
et al. [10] propose a new priority-driven executor and provide
analysis in terms of end-to-end latency, which is improved
compared to the native ROS 2 executor. Arafat et al. [3] pro-
pose a new executor scheduling algorithm based on deadline-
based scheduling and carry out a response time analysis.
Yang and Azumi [22] replace the executor with the real-
time executor from a scaled-down version of ROS 2 built
for microcontrollers. While the previously stated works focus
on creating new executors, our work is related to explaining
the native ROS 2 scheduling and executor instead. Analyzing
the real-time characteristics and performance of ROS 2, Choi
et al. [10] focuses more on the system and communication
levels including the underlying OS, that is neglected in our
work. Measuring performance in terms of transport latencies in
the transportation layer of ROS 2 is conducted by Maruyama
et al. [16], C. S. V. Gutiéerrez [7], and Kronauer et al.
[14]. Regarding communication architectures and performance
using DDS, several works consider these within the context
of ROS 2, for instance, Puck et al. [18] [19] for real-time
communication in distributed systems. Additional analysis
of system performance, assuming different quality-of-service
settings in the DDS, is proposed by Chen [9].

Further analysis on DDS vendors and the performance
in centralized multi-agent robot systems was carried out by
Dust et al. [11]. Z. Li, A. Hasegawa, T. Azumi [23] have
proposed a framework for measuring system performance
and callback execution time. The work from Erős et al.
[12] investigates and states different possible communication
architecture approaches for multi-agent robot systems using
ROS 2. However, neither performance analysis nor implica-
tions to systems’ design are drawn. A time disparity analysis
for message synchronization has been proposed by Li et al.
[15], which helps evaluate data consistency in systems using
sensor fusion. Above stated performance measures, tools, and
advanced analysis methods are essential to provide a more
holistic analysis of existing systems in the future.

IV. EXPERIMENTAL EVALUATION OF EXECUTION
BEHAVIOR

In this section, we present four experiments and their results
to evaluate and visualize the execution differences in the
existing executors. An overview of the experiments can be
found in Table II. In Exp1, a simple scenario is created
on a single-threaded executor, using multiple subscribers and
two single-shot timers, each triggered once. Throughout the
experiment, the same scenario is repeated across the ROS 2
distributions Dashing, Eloquent, and Humble, respectively. In
Exp2, experiments are carried out for the three distributions
under consideration on a single-threaded executor creating a



new scenario by using periodic timers. This scenario demon-
strates the blocking in the execution of periodic systems. In
Exp3 and Exp4, we conduct experiments in the same scenario
as Exp2 utilizing periodic timers, but using multi-threaded
executors. The difference between Exp3 and Exp4 is the
usage of callback grouping in Exp4, where only callbacks
assigned to the same group share the same instance of the
executor. As the multi-threaded executors and callback groups
have been introduced in more recent versions of ROS 2, our
evaluation specifically targets ROS 2 Humble. By focusing on
this latest distribution, we can better assess the performance
and characteristics of these features in the most up-to-date
ROS 2 distribution.

TABLE II
OVERVIEW OF THE PERFORMED EXPERIMENTS

Experiment Executor settings ROS 2 Distributions Timer mode
Exp1 single-threaded Eloquent, Dashing, Humble single shot
Exp2 single-threaded Eloquent, Dashing, Humble periodic

Exp3
multi-threaded
mutually-exclusive Humble periodic

Exp4
multi-threaded
mutually-exclusive
callback-grouping

Humble periodic

A. Experimental Setup

All the experiments in this paper are conducted on a single
computer using docker, to create a controlled environment
and enable simple switching between the different ROS 2
distributions. The ROS 2 distributions under consideration and
their respective native DDS are as follows:

1) ROS 2 Humble, latest distribution of ROS 2, E2
2) ROS 2 Eloquent, first distribution to introduce E2
3) ROS 2 Dashing, last distribution that contains E1

We create a simple ROS 2 system consisting of two nodes,
four topics, and three services, which are used throughout all
four experiments. An overview of the evaluation system can
be found in Figure 3. The left-side node in Fig. 3 is defined

Control Experiment

Control

H

M

L

SH

SM

SL

Fig. 3. Simple ROS 2 system to verify the executor models. Green ellipses
represent nodes, red boxes represent topics and blue boxes depict service
communication. The Control node provides the publishers and service clients,
while the experiment node provides the subscribers and the services service.

as the control node and is used to control the experiment, by
sending the start message and requesting service sequences at
defined times. The right-side node in Fig. 3 is the experiment
node, where the execution order of the callbacks is tracked.
Topics and services in the system are called after their priority,
which is determined by the order of registration. The topics are
called H, M, and L (High, Medium, Low), and services SH,
SM, and SL (Service High, Service Medium, Service Low).
Furthermore, one control topic is created to start and control

the experiment. A message sent over the control topic triggers
the registration of the needed timers in the experiment node.

Each subscriber and each client in the experiment node
are connected to a unique callback that publishes its ex-
ecution information in the ROS 2 log. For simplicity and
better execution analysis, the callback execution time in the
experiment node (except for the control topic callback) is
artificially programmed to be 500 ms. However, the lengths
of periods do not influence our conclusion of experimental
evaluation. Each experiment consists of a different timer,
message and service sequences to be released/requested at
specified time points from the control node and executed in
the experiment node. The same source code runs in all three
different ROS 2 distributions under consideration, without any
changes. All experiments are performed on the same computer,
using Ubuntu 20.04.4 LTS with an Intel Xeon E5-1660 CPU,
NVIDIA Quadro K2000 GPU and 32GiB RAM.

B. Timers on Single-threaded Executor
The significant difference between the two versions of

the single-threaded executor ( E1 and E2 in Fig. 4 and
Fig. 5) is the handling of the timers. The differences in the
execution behavior in the ROS 2 distributions are visualized
by conducting the experiments described in the following.

1) Experimental Scenarios: We set up two scenarios for
the experiments. The first scenario (SC1) used in Exp1 utilizes
single-shot timers that only execute once, intending to intro-
duce differences in execution in a simple manner. Furthermore,
the first experiment only contains two timers and utilizes a
message sequence using only the three topics, H, M, and L,
released at the scenario’s beginning.

In the second scenario (SC2) used in Exp2,3 and 4, a
periodic timer with a given period is initialized, the scenario
containing four message sequences released at different times.
The scenario utilizes the topics H, M, and L and the services
SH, SM, and SL. The scenarios (SC1 and SC2) and the
corresponding experiments are specified in Table III, where
timers are denoted by T0 and T1, and sequences by S0, S1,
S2, and S3. In Exp1 and Exp2 respectively, both scenarios are
executed using the ROS 2 distributions Dashing, Eloquent and
Humble, using the single-threaded executor (E1 and E2).

TABLE III
EXPERIMENT SETUP SHOWING THE MESSAGE SEQUENCES (S) AND

TIMERS (T) AND THEIR RESPECTIVE RELEASE TIME AND PERIOD. RT:
RELEASE TIME. SEQ: MESSAGE SEQUENCE.

Event
S0 S1 S2 S3 T0 T1

Exp1 SC1 RT 0 - - - 0.2 2.3
Seq H;M;L;H;M;L - - - - -

Exp2, 3, 4 SC2 RT 0 3.2 4.5 6.3 1.3 -
Seq H;M;L;SH;SL H;M;L SH;SM H - -

2) Results and Discussion: The execution behavior shown
in Figure 4 is observed when executing Exp1. The figure
includes the execution of the corresponding callbacks to each
topic and timer, respectively. Furthermore, it visually presents
the release time of the timers and the polling point for the
update of the ready set, respectively. The polling points and
the corresponding ready set of Exp1 can be found in Table IV.
Note that the execution behavior differs for ROS 2 Dashing
using E1 , as compared to Eloquent and Humble, using E2 .
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Fig. 4. Exp1: execution diagram of the given callbacks for subscribers (H,
M, L) and timers (T0, T1). Red line: activation time of the timer callbacks.
Green line: the polling points (PP) in the system.

TABLE IV
POLLING POINTS AND READY SET IN EXPERIMENT 1

Polling Instance PP0 PP1 PP2

E1 Time 0 2 -
Ready Set H;M;L H;M;L -

E2 Time 0 1.5 3.5
Ready Set H;M;L T0;H;M;L T0

In both E1 and E2, the first ready set is created at the start
of the experiment. The highest-priority task in the ready set,
i.e., the H topic callback, is executed first ( 0 ). During the
execution of this callback, the first timer is released (first red
lines). Now the first difference between E1 and E2 can be
observed. After finishing the execution of the first callback,
E1 immediately schedules the timer callback to execution,
whereas, in E2, the next element of the ready set (M-callback)
is executed ( 1 ). E2 executes all remaining callbacks in the
ready set ( 1 , 2 ) before polling the system to create a new
ready set ( 3 - 7 after the green line), which contains the
released timer during the execution of the first callback ( 3 ),
whereas in E1, the executor finishes the execution of the timer
callback ( 1 ) before it schedules the rest of the callbacks in
the ready set ( 2 , 3 ) and then polls the system to create the
second ready set (green line). During the execution of the first
callback of the second ready set ( 4 ), Timer 2 is expiring
(second red lines). The difference in scheduling shown in the
first ready set can be seen here too, that is, E1 schedules
T1 for execution immediately after finishing the execution
of the running callback ( 5 right after 4 ), and then E1
continues executing the callbacks of the ready set. In E2, T1
is executed after emptying the ready set ( 7 right after 6 ).
These phenomena confirm the timer to be part of the ready
set in E2.

Answer to RQ1: When a timer is released during an
execution of a callback and its ready set has remaining
callbacks, ROS 2 Dashing, which uses the E1 version
of executors, immediately schedules the timer callback
after the current callback, whereas ROS 2 Eloquent
and Humble, which use the E2 version of executors,
continue executing the remaining callbacks in the set
before scheduling the timer callback.

Exp2 is conducted in scenario SC2 and the resulting execu-
tion diagram for Exp2 can be found in Figure 5. The resulting
ready set for all polling points can be found in Table V.
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Fig. 5. Exp2: execution diagram of the given callbacks for subscribers (H,
M, L) and services (SH, SM, SL), and timer T0. Red line: expiration time of
the timers. Green line: polling points (PP) in the system. Blue line: release
of message sequences.

TABLE V
POLLING POINTS AND READY SET IN EXP2

Polling Point PP0 PP1 PP2 PP3 PP4 PP5 PP6

E1 Time 0 3.5 6 7.5 - - -
Ready Set H;M;L;SH;SL H;M;L SH;SM H - - -

E2 Time 0 2.5 3 5 6.5 7.5 8
Ready Set H;M;L;SH;SL T0 T0;H;M;L T0;SH;SM T0;H T0 T0

In scenario SC2, the periodic timer T0 is released every 1.3
seconds. As depicted in Fig. 5, E1 in ROS 2 Dashing executes
all Timer instances directly after the previously executing
callback is finished (e.g., D right after C ). Therefore, the
maximum blocking of a timer in E1 must be the time of the
longest callback. For E2 in ROS 2 Eloquent and Humble, the
scheduling is different. The timers are firstly scheduled for
execution after the next ready set is created after release time
(e.g., F after E ). This can cause a long blocking time of a
periodic timer. In Fig. 5 E2 , one can see that the first instance
of timer T0 is released at 1.3 seconds (T0(0), first red line),
but the execution is blocked until 2.5 seconds ( F ), which is
shortly before the second instance of timer (T0(1), second red
line). Such a long blocking is due to the fact that callbacks C
- E , which are in the ready set when the first instance of T0 is
released, must be finished before T0 can be scheduled. T0(1)
is released at 2.6 seconds after a new creation of the ready set
(PP1, first green line), which means T0(1) is released during
the execution of T0(0). In this case, a consecutive execution
of two timer instances takes place, which could be highly
undesired. Therefore, system designers need to be aware of
such a phenomenon and avoid potential faults. However, as
far as we know, this paper is the first one that reveals the
differences in scheduling between E1 and E2 in experiments.
Moreover, we can see that in the following scheduling of E2,
new instances of the timer are blocked again, for 1.2 and
1.5 seconds, followed by two consecutive executions of the
timer callback, again ( Q and R ). Therefore, with a poor



system design, blocking of periodic timers appears, which
causes them to run sporadically, even though they are set to
run periodically. In the worst case, the blocking of timers in
E2 can be the sum of the execution time of all callbacks in
the system, which is likely to cause significant degradation in
system performance.

Answer to RQ2: Timer blocking can be significantly
different in ROS 2 Dashing, Eloquent, and Humble,
as it depends on the number of callbacks in the ready
set. Therefore, more callbacks of any type can lead
to a higher blocking time. In ROS 2 Dashing, timer
blocking is slight and dependent on the execution
time of the previous executing callback and higher
priority timers, whereas ROS 2 Eloquent and Humble
potentially have long timer blocking leading even to
consecutive occurring timer callbacks, which makes
periodic timer callbacks occur irregularly.

As timers do not contain buffers in ROS 2, if blocking
is longer than two periods of a timer, one instance of the
timer would be skipped. This issue cannot be solved on a
single-threaded executor. Hence, it needs to be regarded when
designing systems using ROS 2, especially if updating the
system with a different ROS 2 distribution is planned. In
the following, we show that a multi-threaded executor setting
could be regarded as a mitigation solution for the previously
exposed unpredictable behavior.

C. Periodic Timers on Multi-threaded Executors
In this section, we evaluate the multi-threaded executor

via Exp3 and Exp4 to present a meaningful comparison to
the single-threaded executor. The two designed experiments
only focus on the mutually-exclusive executor and callback
grouping, as the execution behavior is closest to the model of
the single-threaded executor. Since multi-threaded executors
and callback groups have been added to ROS 2 during recent
releases, the experiments are only carried out on the ROS 2
distribution Humble.

1) Experiment Setup: Both Exp3 and Exp4 use scenario
SC2, which can be found in Table III. While Exp3 only
uses the multi-threaded executor, Exp4 uses callback grouping.
By callback grouping, callbacks can be assigned to different
groups, and each group has its own instance of the executor.
In Exp4, the timer is assigned one callback group, while all
the other callbacks are grouped in another callback group.

2) Results and Discussion: Figure 6 shows the resulting
execution trace from Exp3 and Exp4, respectively. The order
of execution of the callbacks in the experiment node is
visualized. Furthermore, the timer and the sequence release
times are marked as well.

Using the mutually-exclusive multi-threaded executor in
Exp3, the timer is executing periodically, with a jitter caused
by the callback that is under execution at the release time
(e.g., the gap between d and T0(0), the first red line). The
scheduling policy in Exp3 follows that of the single-threaded
executor E2, which includes timers in the ready set, but the
actual scheduling result is almost similar to E1. However, E1
in Exp2 ( E1 in Figure 5) schedules the H callback ( Q ) at
time point 7.5, after the SM callback ( P ), whereas in Figure 6
Exp3, the H callback ( o ) is scheduled at time point 7.0, before
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Fig. 6. Execution diagram of the given callbacks for subscribers (H, M,
L) and timers (T1, T0) in Exp3 and Exp4. Red line: expiration time of the
timers. Blue line: release of message sequences.

the SM callback ( p ). This execution difference shows that the
multi-threaded executor in Exp3 polls more frequently than
the single-threaded executor in Exp2, and the ready set is
updated during the execution of callbacks. As the executor
is set to be mutually exclusive, once a ready set is assigned
to a thread, other threads cannot preempt the set and execute
other callbacks, but they can update a ready set by adding later
released callbacks.

In the execution trace of Exp4, Figure 6, we mark the
callbacks of the timer in red, as they are assigned a different
callback group than other callbacks. The mutual-exclusive
property is only valid within a callback group and each
callback group has its own ready set, which means the multi-
threaded executor can execute the timer in parallel to other
callbacks belonging to the other callback group. Additionally,
as there are no other callbacks in the timer’s callback group,
the timer is executed as soon as it is released. As expected, in
both experiments using the mutually exclusive multi-threaded
executor, the blocking issue seen from the single-threaded
executor is resolved.

Answer to RQ3: By using multi-threaded executors in
ROS 2 Humble, timer blocking is largely alleviated or
even eliminated, compared to the single-threaded ex-
ecutor. Even without callback grouping, timer blocking
is reduced to higher priority timers and the length of
the previously executed callback. When using callback
grouping, timer callbacks can be scheduled in parallel
to the execution of other callbacks, as timers can be
scheduled as soon as they are released. Nevertheless,
mutually exclusive execution is no longer possible
using the callback grouping option.

V. USE-CASE: CENTRALIZED MULTI-AGENT ROBOT
SYSTEM

This section focuses on a real-world use case by building an
experimental system around the centralized multi-agent robot
system. In such systems, multiple robots communicate towards
a central node, that is, the robot tracker, via the so-called



topics that are elements of ROS 2 communication by which
data is moved between nodes. We investigate the impact of
system design choices on the communication between multiple
agents towards a centralized computing node that tracks robot
information. We focus only on the design possibilities of
the robot’s communication towards the edge computer using
ROS 2 and show the effects this communication has on the
computation inside the tracker node.

A. Experiment Setup

The experiment system is based on a real-world legacy
system. A centralized multi-robot system is built around
central servers that manage the intensive processing for robots
with limited computing capacity. The robots connect to the
server and continuously update essential information about
themselves, respectively, allowing global fleet management
to control each robot. In the selected use case, the robots
send their status information, including odometry and load
data, to the centralized node periodically with a configurable
period. The task of the central node is to collect all incoming
data creating a list, that is sent out periodically, for further
processing. For simplicity, this paper neglects all other parts
of the system. While building such a centralized communica-
tion in ROS 2, three different communication approaches are
possible, as shown in Figure 7.

State Robot Tracker
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Robot 2

Robot n

Robot 3
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Robot 1

Robot 2
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Single topic approach Topic grouping approach

Individual topic approach

Fig. 7. Overview of the different communication configurations. Green
ellipses represent nodes, and red boxes represent topics.

In the first approach (at the bottom), each robot registers
its topic and, hence, receives a subscription callback in the
centralized node. The second approach (on the upper left side)
uses only one topic for all of the robots’ state information,
leading to only one subscription callback in the edge node.
The third approach (on the upper right side) combines the
first two approaches, where robots are grouped, with each
group receiving a particular topic. Each approach uses a
different amount of callbacks in the centralized node, which
influences the periodicity of the centralized sending of the list
of status information. Assuming the use-case and the ROS 2
system described at the beginning of this section, we perform
measurements to show the impact of the system design on the

execution. The experiment focuses on the tracker’s periodic
sending of the status list. To show how the communication
approach influences the period of execution, the system is
simulated with 10, 30, 50, and 70 robots, respectively. The
period is manually configured to be 1 ms, being under the
system’s limit when the system contains 50 or 70 robots. In
the first step, the system is simulated with one topic for all
robots. In the second step, the robots are grouped into 10,
5, and 2 robots per topic. The last part of data collection is
then carried out, with each robot having a particular topic.
Each measurement consists of 500 iterations of sending the
state list. Timestamps are taken and analyzed to calculate the
average period. As the legacy system is implemented using
ROS 2 Galactic and real system messages are considered,
the experiments are performed on ROS 2 Galactic utilizing
Cyclone DDS. There might be differences in the obtained
periods depending on the network traffic and chosen DDS
vendor. Nevertheless, the experiment is designed to keep the
impact of communication minimal relative to the impact of
the scheduling. The used hardware is the same as the one
used during experiments one to four. For simplicity, all nodes
are simulated on the same computer, which reduces other
influences by a real network.

B. Results and Discussion
We present the results of the above measurements in Table VI.

TABLE VI
AVERAGE UPDATE PERIOD OF THE STATE LIST OVER 500 MEASUREMENTS.

Total amount of Robots
10 30 50 70

Robots per topic

1 1 1.14 2.16 4.18
2 1 1 1.78 3.08
5 1 1 1.42 2.92
10 1 1 1.32 2.78
Max 1 1.27 2.26

In the first simulation with ten robots, we can see that the
increase in topics does not influence the periodicity. Therefore,
the callback execution time and the number of topics are not
significant enough to block the timer and delay the execution.
For 30 robots, the period is set to 1 ms, except for the approach
where each robot has its topic (one robot per topic), so 30
topics and 30 reception callbacks exist in the tracker node,
which is blocking the execution of the timer. In other cases,
the impact is not significant enough to block the timer.

In the next simulation with 50 robots, one can see that
already during the execution with only one topic (max robots
per topic), the period is not set to 1, but it is 1.27 ms instead.
This can be explained by the fact that the timer and receiver
callback takes longer with more robots to create, sort, or send
out the array. In this case, 1.27 ms is the maximum frequency,
which the edge node can guarantee if the timer sends out
the data array periodically. When we increase the number of
topics, one can observe that the period is growing to 2.16 ms,
with one robot per topic (50 topics and subscription callbacks).
That clearly shows that the timer is blocked in its execution
by the callbacks, and the period rises. The same effect can be
seen in the simulation with 70 robots, where the maximum
frequency with one topic is 2.26 ms, and the period increases
to 4.18 ms for 70 topics. In brief, we show that in cases
when the update period is manually set to the system’s limit,



the execution gets increasingly delayed with the number of
callbacks. This phenomenon can be explained with the current
execution models, as blocking of the timer occurs.

VI. DISCUSSION AND CONCLUSION

The experimental work conducted in this paper compares
the execution of callbacks in the different executors in ROS 2.

During the experiments and in the stated use-case, possible
effects of the underlying operating system, network traffic
and quality-of-service settings are neglected. Further analysis
needs to be performed, including communication, to allow
evaluation on holistic system performance.

From proposed response time analysis in related work,
the timer blocking can be calculated, leading the result of
this paper not to be surprising. However, the results give a
good overview of the internal execution of ROS 2 with ideal
underlying scheduling. Generally, the obtained scheduling se-
mantics are hardware independent. Nevertheless, the execution
of ROS 2 relies on the underlying OS as well, which might
influence the obtained results in cases of limited resource
availability. For ROS 2 developers and even researchers, this
paper introduces the different existing executors and shows
the effects of system design on execution. We show in a
simple way how the different executors influence the execution
order of callbacks, which can guide developers to the right
system design choices without the need to perform worse-case
response-time analysis for their system.

We conclude our experimental investigation as follows. In
E1, included up to ROS 2 Dashing, through continuously
polling for timers, a timer can only get blocked until the
previous computing callback is finished. In comparison, in
E2, through the inclusion of the timers into the ready set,
a timer callback is blocked until the execution of all callbacks
of the previous ready set is finished. With a higher amount of
ready callbacks, the blocking time gets longer easily blocking
a timer into its subsequent execution. This is critical, as timers
have no buffer and instances can get lost. Using a mutually-
exclusive multi-threaded executor reduces the blocking of the
timer to the execution of the previous computing callback. Due
to the mutual exclusion, a second thread is not computing any
callbacks, but updating the ready set instead. The execution
jitter of the timer can be reduced to a minimum, by utilizing
callback grouping, only adding the timer callback to a specific
group. Nevertheless, the callback grouping shows a reentrant
execution from the perspective of the node.

The provided use-case in this paper demonstrates that
caused by the executor, a chosen communication architecture
influences the execution of a system. Especially in cases of
high utilization, the choice of callback organization becomes
significant. When designing systems that rely on periodic exe-
cution, one needs to keep the number of topics to a minimum
to reduce the amount of callbacks in the executor. Alternatively
the multi-threaded executor options need to be considered.
Especially when systems are built to scale in the number of
agents, design compromises need to be made with system
complexity, resource utilization, and system performance.

In a subsequent step to this paper, formal verification can be
employed, to help address and prevent the timer issue more
straightforwardly. Furthermore, towards real-time execution,
work can be conducted to improve the ROS 2 executor by im-
plementing other design opportunities, e.g., dynamic settings
for the ready set.
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