
Pattern-Based Verification of ROS 2 Nodes
using UPPAAL

Lukas Dust, Rong Gu, Cristina Seceleanu, Mikael Ekström, Saad Mubeen

Mälardalen University, Väster̊as, Sweden
(first.last)@mdu.se

Abstract. This paper proposes a pattern-based modeling and Uppaal-
based verification of latencies and buffer overflow in distributed robotic
systems that use ROS 2. We apply pattern-based modeling to simplify
the construction of formal models for ROS 2 systems. Specifically, we
propose Timed Automata templates for modeling callbacks in Uppaal,
including all versions of the single-threaded executor in ROS 2. Further-
more, we demonstrate the differences in callback scheduling and poten-
tial errors in various versions of ROS 2 through experiments and model
checking. Our formal models of ROS 2 systems are validated in exper-
iments, as the behavior of ROS 2 presented in the experiments is also
exposed by the execution traces of our formal models. Moreover, model
checking can reveal potential errors that are missed in the experiments.
The paper demonstrates the application of pattern-based modeling and
verification in distributed robotic systems, showcasing its potential in
ensuring system correctness and uncovering potential errors.

Keywords: Robot Operating System 2 · Pattern-Based Modeling · Model
Checking.

1 Introduction

Robotic systems are often distributed systems consisting of sensors, actuators,
and controllers. Communication among these components involves buffers and
job scheduling, which demand an elaborate design and extensive testing to en-
sure the correctness of the system. To provide the foundation and standardize
the design of distributed robotic systems, the Robot Operating System (ROS)
[13] has been developed as an open-source middleware, which allows fast pro-
totyping for robotics. Since 2015, ROS has been upgraded, and ROS 2 [12] has
been released consequently. ROS 2 utilizes Data Distribution Service (DDS) and
supports real-time execution and communication. Both generations of ROS have
drawn increased interest in academia and industry in recent years [1]. However,
the consortium of developers decides to end the support of ROS in 2025 [10].
Hence, robotic systems using ROS need to be updated to ROS 2, with potential
behavioral consequences that have not been investigated enough in the commu-
nity. In order to improve the real-time capability of ROS 2, research on response-
time analysis of processing chains [7, 5] and end-to-end timing analysis [16] has
been conducted. These proposed analytical methods facilitate the verification of
ROS 2 systems, but require manual and intensive computation that varies from
system to system. When implementing a ROS 2 system, many options for sys-
tem configuration are presented to the developer, such as the buffer sizes of DDS

2 L. Dust et al.

communication. Without tool-supported automation, these analytical methods
are hard to employ.

Another difficulty of analyzing ROS 2 systems is due to the multiple versions
of ROS 2 [11] and the lack of documentation. For instance, ROS 2 comes with
an inbuilt module, called executor, which conducts the internal scheduling of
functions (a.k.a. callbacks) that are triggered on the arrival of data or timers.
Every main component of a ROS 2 system (i.e., node) consists of at least one
such executor, and every communication channel has a configurable size of input
and output buffers. In ROS 2 versions up to Dashing, timers are scheduled
independently from other kinds of callbacks (e.g., publishers and subscribers),
whereas in ROS 2 Eloquent and Humble, timers are scheduled together with
other callbacks [5]. These give rise to two different ROS 2 executor semantics.

The different scheduling mechanisms in ROS 2 have been discovered, but
not sufficiently regarded in the literature, which hinders ROS 2 developers from
predicting the execution order of callbacks. As a result, they may exhibit ab-
normal phenomena, such as instance misses of timers and unexpected latency of
callbacks. Instance misses occur when a buffer overflow leads to instances being
skipped, while the latency of a callback describes the maximum time between
the release of a callback instance and the time of completing its execution. Fur-
thermore, although robotic systems, as a type of cyber-physical systems [4], are
mostly safety-critical, trial-and-error approaches are dominant in verifying and
testing them [14]. Such methods are not systematic, are hard to automate and
error-prone.

Formal methods, such as model checking, are well-known for providing math-
ematical and rigorous analysis of complex systems. Model checking enables an
automatic exploration of the system’s state space, based on which an exhaustive
verification is conducted to check if the system satisfies its specification. How-
ever, one of the drawbacks of using model checking is the complicated process of
formal modeling, especially when the system is distributed and complex. To over-
come such a difficulty, we propose a pattern-based modeling approach for ROS
2 systems. Additionally, ROS 2 systems are often real-time, which means that
they are subjected to timing requirements such as scheduling a periodic callback
every 2 ms within a certain level of jitter. Consequently, we employ timed au-
tomata (TA) [2] as the modeling language and Uppaal [9] as the model checker
in this paper, due to their ability of expressing and verifying such requirements,
respectively.

We report our experimental results on ROS 2 systems, which reveal problems
of scheduling in different versions of ROS 2. In addition, we present our pattern-
based modeling of ROS 2 systems, and demonstrate the capability of model
checking in the automatic verification of ROS 2 systems. Our TA models are
experimentally validated, as the behavior of the ROS 2 systems shown in our
experiments are also presented in the verification of the TA models. Moreover,
we show that our Uppaal-based verification can even reveal potential errors
that are not detected via experiments.

In summary, we answer the following research questions. RQ1: Given the
two behavioral semantics of single-threaded executors in ROS 2, how to ensure
the correctness of a design of ROS 2-based systems with respect to the behavior
of timer callbacks, callback latency, and the sizes of input buffers of callbacks?
RQ2: What are the patterns for modeling ROS 2 systems, which can be reused
in verification? RQ3: Can model checking find the errors of ROS 2 systems,

Pattern-Based Verification of ROS 2 Nodes using UPPAAL 3

which are shown in experiments, but also reveal potential errors that are not
discovered via experimental evaluation? Our contributions are as follows:

– We demonstrate the difference in callback scheduling and the potential errors
in different versions of ROS 2, through experiments and formal verification,
which has not been addressed in the literature.

– We design patterns for modeling ROS 2 systems, which simplify the complex
construction of formal models that require configuration of parameters.

– Our formal models of ROS 2 systems are validated by experiments. The be-
havior of ROS 2 presented in the experiments is also exhibited when model-
checking our formal models. Moreover, we show that model checking is able
to reveal potential errors that are missed in the experiments.

2 Background
To make the remainder of the paper comprehensible, this section introduces
the concepts in ROS 2 first, including the internal scheduling mechanism. Next,
Timed Automata and Uppaal are briefly overviewed.

2.1 ROS 2

ROS 2 is an open-source middleware that enables fast prototyping and develop-
ing distributed robotic systems. ROS 2 is continuously updated, and distribu-
tions are released as stable versions that do not change.

ROS 2 system model. ROS 2 systems are composed of the so-called nodes repre-
senting the core elements in the system that are communicating with each other.
An example of such a system is given in Fig. 1, where two nodes, represented by
green ellipses, communicate with each other over defined communication chan-
nels of ROS 2. There are two types of communication, publisher-subscriber and
service-client communication, represented by the red and blue boxes in Figure 1,
respectively.

Node 0 Node 1

Control

H

M

L

SH

SM

SL

Timer 0

Timer 1

Timer 2

Timer 3

Control
Timer 0

Control
Timer 1 Service / Client

Communication

System
TimerService

TopicNode

Legend

Publisher / Subscriber
Communication

Fig. 1. Schematic example of a ROS 2 system con-
taining two nodes communicating with each other.

The publisher-subscriber com-
munication is unidirectional:
a sending node sends data,
by utilizing the so-called pub-
lisher, to all nodes that sub-
scribe to the specific commu-
nication channel called topic.
The event of incoming data
in the receiving node triggers
a subscription-specific func-
tion called subscription call-
back. The second kind of com-
munication, is the service-client
communication. This kind of

communication is bidirectional. A directed request is sent from the request-
ing node (Node0) to the receiving node (Node1). Triggered by that request, a
service callback starts executing in Node1. The response of the service callback
triggers a client callback on arrival in the requesting Node0. Every registered
access to a communication channel where data is received (Subscriber, Service,
Client) has an individual FIFO input buffer, whose size is configurable. Besides

4 L. Dust et al.

communication, there is another method of triggering callbacks in ROS 2, via
the system timers, denoted in yellow in Fig. 1. Timers can be configured as peri-
odic or sporadic, whereas in the latter case, timer callbacks are triggered several
times sporadically (i.e. when given a set of wall times).

ROS 2 scheduling and execution. The execution of ROS 2 relies on a host operat-
ing system that assigns resources to each node that executes the ROS 2 internal
scheduler module, called the executor. The executor’s task is to schedule the
execution order of the presented four types of callbacks (subscriber, service,
client, timer). The default executor operates on a single thread in the host oper-
ating system. The scheduling performed by the executor is non-preemptive and
polling-point based, meaning that a callback cannot interrupt an other callback’s
execution, and only the callbacks that have been released before the time when
the executor polls are considered for scheduling. Furthermore, an instance of
polling is performed when only one instance of every released callback from the
previous polling instance has finished its execution. While ROS 2 has evolved, the
executor has changed so that there exist two versions of the executor (ExV1 [7]
and ExV2 [5]). The main difference between the two versions is that timers are
polled continuously after each execution of a callback in ExV1, while in ExV2,
timers are polled after all the callbacks from the previous polling instance have
finished their execution. Specifically, in ExV2, timers are polled together with
any other types of callbacks.

2.2 Timed Automata and UPPAAL

In this subsection, we introduce the formal definitions of Timed Automata (TA)
and the semantics as well as a TA-based model checkerUppaal. In the interest of
space, we refer to the literature [2, 9] for detailed and precise introduction of these
concepts. Understanding the theory of Timed Automata and the mechanism of
model checking in Uppaal is not required for this work.

Definition 1. A Timed Automaton (TA) [2] is a tuple:

A =< L, l0, C,Σ,E, Inv >, (1)

where L is a finite set of locations, l0 is the initial location, C is a finite set
of non-negative real-valued variables called clocks, Σ is a finite set of actions,
E ⊆ L × B(C) × Σ × 2C × L is a finite set of edges, where B(C) is the set of
guards over C, that is, conjunctive formulas of constraints of the form c1 ▷◁ n
or c1 − c2 ▷◁ n, where c1, c2 ∈ C, n ∈ N, ▷◁∈ {<,≤,=,≥, >}, 2C is a set of
clocks in C that are reset on the edge, and Inv : L → B(C) is a partial function
assigning invariants to locations. □

Definition 2. Let < L, l0, C,Σ,E, Inv > be a TA. Its semantics is defined as
a labelled transition system < S, s0,→>, where S ∈ L × RC is a set of states,
s0 = (l0, u0) is the initial state, and →⊆ S × (R≥0 ∪Σ)× S such that:

1. delay transition: (l, u)
d−→ (l, u ⊕ d), where d ∈ R≥0, and u ⊕ d is a new

evaluation of clocks such that ∀d′ ≤ d, u⊕ d′ |= Inv(l), and

2. action transition: (l, u)
a−→ (l′, u′), if there exists e = (l, g, a, r, l′) ∈ E such

that u ∈ g, u′ = [r 7→ 0]u is a new evaluation of clocks that resets c ∈ r and
keeps c ∈ C \ r unchanged, and u′ |= Inv(l′). □

Pattern-Based Verification of ROS 2 Nodes using UPPAAL 5

Uppaal [9] is a tool that supports modeling, simulation, and model checking
of an extension of TA (UTA). In Uppaal, UTA are modeled as templates (see
Fig. 2) that can be instantiated. UTA extends TA with data variables, synchro-
nization channels, urgent and committed locations, etc. In Uppaal, UTA can be
composed in parallel as a network of UTA (NUTA) synchronized via channels.
Fig. 2 depicts an example of a NUTA in Uppaal, where blue circles are locations

(a) UTA template TA1 (b) UTA template TA2

Fig. 2. An example of UTA templates in Uppaal

that are connected by directional edges. Double-circled locations are the initial
locations (e.g. L0). Encircled “u” denotes urgent locations (e.g. L3), and encir-
cled “c” denotes committed locations (e.g. L4). UTA require that time does not
elapse in those two kinds of locations and committed locations are even stricter,
that is, the next edge to be traversed must start from one of them. On the edges,
there are assignments resetting clocks (e.g., c1:=0) and updating data variables
(e.g., v1:=para1), guards (e.g., c1>=10), and synchronization channels (e.g., a!
and a?). At location L1, an invariant c1<=15 regulates that clock c1 must never
exceed 15 time units. In Uppaal, templates of UTA can have parameters (e.g.,
para1 in TA1) that are assigned values when the UTA are instantiated.

The Uppaal queries that we verify in this paper are of the form: (i) invari-
ance: A[] p means that for all paths, for all states in each path, p is satisfied,
and (ii) supremum evaluation: sup{con}:list evaluates the supremum of
the expressions in the list only when the condition (i.e., con) is true.

3 Modeling and Verification of ROS 2 Nodes in UPPAAL

In order to answer RQ1 and RQ2, this section explains our modeling approach.
Uppaal is the tool for modeling and verification in this paper. In order to derive
the needed features of ROS 2 and explain the level of abstraction to understand
the conducted modeling, this section starts by defining the constructs and rep-
resentation of all elements that are needed for the verification of timer blocking,
callback latencies, and callback input buffer sizes in ROS 2 systems. Furthermore,
the verification should be conducted in a way that allows a simple configuring of
models. Therefore, a template-based approach of modeling is followed, and the
implementation of the templates is explained.

ROS 2 Feature Selection and System Abstraction. As denoted in section
2.1, a ROS 2 system is composed of multiple nodes communicating with each
other over different communication channels, which generates various configura-
tions of parameters, such as buffer sizes, distribution of communication channels
and Quality-of-Service (QoS) settings for the communication. Nevertheless, ver-
ification in this paper involves only a part of a ROS 2 system, which means

6 L. Dust et al.

that irrelevant components and parameters can be removed or represented as
abstract elements of our formal model.

We verify three features of ROS 2 systems, that is, the latency and input
buffer sizes of callbacks, respectively, and the behavior of timer callbacks. Next,
we introduce the modeling of these three features.

– Callback latency. The latency of a callback describes the maximum time
between the release of a callback instance and the time of completing its
execution. In order to verify the latency of a callback, all components and
parameters that influence its execution need to be modeled. In ROS 2, those
components and parameters include the scheduling algorithm of the execu-
tor, as well as the release and execution mechanisms of all callbacks in the
same executor. Overall, in order to generalize the modeling to fit all types of
callbacks, it is important to find modeling patterns that can be easily con-
figured without changing the model. The patterns include the modeling of
the callback execution, the scheduling of callbacks, which is an abstraction
of the executor, and the events triggering the releases of callbacks, which
are the arrival of messages and system timer events. An example of a ROS
2 node containing two timers, one subscriber, one service, and one client is
shown in Fig. 3. The figure reduces components that are irrelevant to our
verification of ROS 2, e.g., all sending communication channels. Attached to
the corners of rectangles that represent the ROS 2 components, circles show
the corresponding UTA templates. In particular, callbacks and executors
are modeled as UTA templates, i.e., encircled E and W. Specifically, every

Executor E

Host PC

System Wall Timer

Periodic System Timer

MP

MW

DDS

Topic H

Service S

Service S2

MW or
MP

MW or
MP

MW or
MP

Data

Data

Data

Node N

Timer Callback SC2

Timer Callback SC

P

W

In Buffer [*]

Service Callback SC

In Buffer [1] Trigger

In Buffer [*] Trigger

In Buffer [*] Subscriber Callback HTrigger

Client Callback CCTrigger

W or P

W or P

TriggerIn Buffer [1]

W or P

D

D

D

D

D

Data Transmission

Data Transmission
Data Transmission

Data Transmission
Data Transmission

Mapped to release time arrays

D Data variable

Executor Template

Mapped to a period (Integer)

Representation of features in UTA

MP

MW

P

W

E

Periodic Callback Template

Wall-time Callback Template

Fig. 3. Selected ROS 2 component features and their abstraction in the UTA model

callback is released on a specific event that is unique for that callback. The
event can be either an arrival of data in the input buffer of the callback or
an event triggered by an active system timer, called timer event. The arrival
of data is dependent on the execution of the sending nodes, which are not
included in our verification. Instead, we model the arrival times as integers
or multiple parameters of UTA templates, depending on the frequency. Con-
cretely, for representing the periodically arriving data, it is sufficient to pass
the length of the period as a parameter of the UTA template of callbacks.
Sporadically arriving data can be modeled as an array of integers represent-
ing the specified arrival times relative to the global time. Therefore, only

Pattern-Based Verification of ROS 2 Nodes using UPPAAL 7

two different templates of callbacks are needed. Other specifications that are
callback specific and that influence the scheduling and execution are passed
as parameters to the UTA template of that particular callback. Such pa-
rameters include the type, the ID, and the execution time of a callback.
Only the execution time but not the function of a callback is relevant, as the
ROS 2 features that we select for verification do not concern the functions
of callbacks. Furthermore, the input buffer of a callback also affects its exe-
cution and is contained in the UTA template. To verify callback latency, we
also need to model the executors of ROS 2. Since there are two versions of
the single-threaded executor, we need to design the model to allow simple
switching between these two versions. This is achieved by creating a UTA
template for each version accordingly. Furthermore, the UTA templates of
the callbacks are designed to work with both templates.

– Callback input buffer size. The second verification goal of the paper is to ver-
ify if the designated input buffer size is sufficient for the data communication
and scheduling of callbacks. In the UTA templates of the callbacks, the size
of a buffer is passed as an input parameter. Note that timers have a fixed
buffer size, which is one, while other callbacks’ buffer sizes are configurable.
In UTA, we model the actual utilization of a buffer as a counter instead of
modeling the buffer itself. From the perspective of verification, actual data
in the buffer is irrelevant, but the utilization of the buffer matters. When a
callback is released, it is inserted into a buffer, waiting for being scheduled.
In our UTA, the corresponding variable of buffer utilization increases, repre-
senting the callback being inserted into the buffer. At the beginning of each
instance of execution of the callback, the variable is decreased, representing
removing the callback instance from the buffer. Therefore, the counter always
represents the actual number of elements in the buffer at any point during
execution. This allows to perform queries to check if a specific utilization is
reached during execution.

– Timer behavior. ROS 2 timer callbacks have the highest priority of all call-
back groups. Nevertheless, the buffer size is statically set to one and cannot
be changed by users. This means that, if a timer is released two times before
it is executed once, an overflow occurs, where one instance of execution is
skipped. In ExV1 (Executor Version 1), timers are considered for schedul-
ing after each callback execution. Therefore, the maximum blocking time of
callbacks is the sum of execution time of its previous callback and higher
priority timers. In ExV2, timers are only considered for scheduling when all
callbacks polled before it have finished their execution, leading the worst-
case blocking time to be the sum of the execution time of all callbacks in
the system and plus the execution time of timers that have higher priority.
Therefore, ExV2 is more vulnerable to blocking, leading to buffer overflow
and skipped timer instances. Nevertheless, instance misses caused by buffer
overflow can still occur in ExV1. The overflow detection for buffers, which
we model in the UTA callback templates, can be used to detect such instance
misses.

To summarize, to model and perform verification on latency and buffer sizes
for callbacks, only two types of callback templates and an executor model tem-
plate are needed. The following sections show the modeling approach of the
callback and the executor templates.

8 L. Dust et al.

Modeling of callbacks. As stated in the previous section, our model consists
of two UTA templates representing callbacks. The first UTA template mod-
els the periodic callbacks. The second UTA template models sporadic callbacks
released at specified time points defined in an array. In the following, the gen-
eral model for both types is derived, and later, the differences in the templates
are presented. A simplified version of the UTA templates for the periodic and
sporadic callback is presented in Fig. 4, where guards, updates, and invariants
are partially shown1. Generally, each callback type has four components, the
Waiting, Released, InReadySet and execution components, represented by the
blue boxes in Fig. 4. The initial location is location Waiting. The callback is
not ready to be scheduled at that location, as it is waiting for an event to arise,
which triggers the callback. At location Released, the triggering event has oc-
curred, and the callback is ready to be polled by the executor, meaning that it
is to be scheduled. This polling is modeled as an edge from location Released
to location InReadySet, labeled by a broadcast channel poll that synchronizes
the callback UTA with the executor UTA. Traversing this edge models ROS
2’s behavior of including a callback into the so-called ready set in the executor.
The executor only considers callbacks included in such a ready set for schedul-
ing. A callback being scheduled is modeled by the edge from InReadySet to
StartExecution, where the execution component of the UTA template starts.

Fig. 4. UTA template overview repre-
senting callbacks.

A callback being executed is modeled as
the execution component of the UTA tem-
plate. The component contains three lo-
cations for the sake of facilitating the
verification. Location StartExecution is
where the execution starts. At loca-
tion Executing and its outgoing edge to
ExecutionFinished, we have an invari-
ant and a guard, respectively, meaning
that the callback model is forced to stay
at location Executing for ExecutionTime
long. This models the execution time of
the callback. Finally, the execution fin-
ishes when the UTA can go back to lo-
cation Waiting or location Released, de-
pending on the availability of releases.

The type of callback is essential for the
scheduling of callbacks. Therefore, the callback type is passed as an input pa-
rameter to the template. Furthermore, the priority of a callback is important
to determine the execution order among all other callbacks of the same type.
The priority is determined by the callback registration time, where the earliest
registered callback has the highest priority. In our model, priorities are passed to
the callback template as input parameters, where 0 is the highest priority, rep-
resenting the callback that is initialized first. Priorities must be unique within
each group with the same type of callbacks.

To check the utilization of the input buffer of callbacks, the UTA contains
an integer named releases representing the number of elements contained in the
buffer that stores callback instances. With a model parameter representing the
maximum buffer size, those two elements are sufficient to model the input buffer

1 The complete model is published: https://sites.google.com/view/pbvros2nodes

Pattern-Based Verification of ROS 2 Nodes using UPPAAL 9

of a callback. When a callback instance is released, the callback input buffer is
checked before the instance is stored in a buffer and waiting for being scheduled.
When the number of instances waiting in the buffer exceeds the maximum buffer
size, an overflow happens. Our verification of the buffer size checks whether the
value of releases ever exceeds the maximum buffer size. Therefore, a designated
boolean variable NoOverflow, true by default, is set to false when an overflow oc-
curs. Therefore, it can be used as a property in the verification, indicating buffer
overflow, and generating counterexamples of cases where an overflow occurs.

In the callback UTA (Fig. 4), every location has a self-loop edge because a
new instance of a callback can be released at any point during the life cycle of
an existing callback. We label the self-loop edges with red Release statements.
The Release edges are guarded by the next releasing time, meaning that call-
backs can only be released when the releasing time comes. While transferring via
the Release edge, the variable releases is increased, representing the filling of
the buffer, and the subsequent release time is calculated. Furthermore, a timer,
specific to the instance and contained in the array ReleaseTimers is reset.

Fig. 5. UTA template extract
showing the polling of callbacks
in the executor

ROS 2 Executor. The executor model is
needed to schedule the callbacks following the
ROS 2 executor algorithm. As explained in Sec-
tion 2.1, two versions (ExV1 and ExV2) of the
single-threaded executor exist, which are spe-
cific to ROS 2 distributions. The executor ver-
sions differ in their approach to polling call-
backs. Both executors are provided as a tem-
plate in this section so that the executor can
be chosen in later systems configurations by in-
stantiating the template of the desired version.

In both versions of the executor, the model
consists of two main components. The idle com-
ponent presented in Fig. 5 is valid for both
versions of the executor. The execution compo-
nent differs between ExV1 (Fig. 6(a)) and ExV2
(Fig. 6(b)). In the Idle component in Fig. 5, at
initial location Idle, we have an invariant con-

straining the system time and the UTA input parameter StopTime. This invari-
ant forces a deadlock after reaching the stop time and is used to reduce the
model’s state space. When reaching location Idle in Fig. 5, both executors use
broadcast channels to poll the released callbacks. One broadcast channel is used
for each callback type, where the final locations are committed for the polling not
be interrupted. Global variables are included in the model to track the number
of released callbacks for each type. The variables are increased by each released
callback that is using the polling channel (rs tim, rs sub, rs srv, rs cli). If all
sets are zero after the polling, the UTA goes to location Wait. At location Wait
and its outgoing edge to Idle, we use an invariant and a guard, respectively,
meaning that the callback model is forced to stay at location Wait for one time
unit. That allows the model to progress in time while the executor is idle.

After the polling of all callbacks (location PolledClients), if any of the sets
is not zero, the UTA continues with the execution component. The execution
component is shown in Fig. 6(a) for ExV1 and in Fig. 6(b) for ExV2. In the
execution component of both versions of the executor, the execution of callbacks

10 L. Dust et al.

(a) UTA template extract showing the exe-
cution component of ExV1

(b) UTA template extract showing the
execution component of ExV2

Fig. 6. Execution component of the executor UTA templates

is performed, ordered by the group and the priorities of callbacks. Timers are
executing first, followed by subscribers, services, and clients. This is modeled
by the executor component starting at location FetchTimer. At this location, if
any timer is contained in rs tim the synchronized channel ExecStart is used to
model the beginning of the execution of a callback. The implemented channel
logic only allows one callback (of the corresponding type) at a time to use the
channel. The order is determined by the priority of the callback. Triggered by
the callback UTA, in ExV1 (Fig. 6(a)), once the execution time has passed,
the channel ExecDone is decreasing rs tim. The target location is leading to
another channel poll[TIMER] that performs the polling of timers only, leading
back to location FetchTimer. In ExV2 (Fig. 6(b)), once the execution time has
passed, the channel ExecDone leads back to FetchTimer immediately, such that
no polling of timers is carried out. When rs tim is empty, the next group is
executed following the same process. In ExV1, if the variable rs tim is increased
under the polling of timers, the UTA goes back to FetchTimer in order to execute
the obtained timer first.

System Declaration. When modeling a ROS 2 node, the created UTA tem-
plates are instantiated in the system declaration. Every system model consists
of one executor and one or many callbacks. In our system model, assigning the
executor the lowest priority of all system components is essential to generate the
right results and allow progression in time while the executor remains idle.

Verification. To simplify the verification of occurring buffer overflow, the model
of each callback contains the variable NoOverflow, which is true as long as no
overflow occurs. Hence the absence of a buffer overflow is confirmed when the
following invariance holds, where cb stands for any callback in our UTA model,
and A[] means for all states in every possible path:

A[] cb.NoOverflow (2)

A buffer overflow is always equivalent to a missed callback instance. Fur-
thermore, it can be verified if a specified amount of releases in the buffer of any
callback is reached at any time during execution. This is achieved by checking the
variable releases, as shown in the following example query (Query (3)). Nev-
ertheless, given the model implementation approach, the value of the variable

Pattern-Based Verification of ROS 2 Nodes using UPPAAL 11

releases will never exceed the defined buffer size. Hence, only values smaller
than the configured parameter bufferSize can be verified using that approach,
showing if a smaller buffer size would be sufficient.

A[] cb.releases <= 5 (3)

When the query passes, the buffer of the verified size (e.g., 5 in Query (3))
is sufficient, and the buffer size can be adapted.

The latency of a callback is defined as the maximum time from the re-
lease of any instance of a callback until the end of execution of that specific
instance. The latency of any callback instance can be determined by reading
the value of the instance-specific timer contained in ReleaseTimers at location
ExecutionFinished. Using the following supremum evaluation in Uppaal, the
longest latency of a callback is determined.

sup{cb.ExecutionFinished}:cb.releaseTimers[cb.instance] (4)

4 Evaluation of Pattern-based Verification
To evaluate the proposed model templates, we compare the simulation and verifi-
cation of the model to system traces gained by system execution. The evaluation
is performed on two scenarios of ROS 2 message passing between two nodes,
utilizing the ROS 2 system shown in Fig. 1. The first scenario (SC1) focuses
on sporadic callbacks only, while the second scenario (SC2) combines sporadic
and periodic callbacks. In SC2, using ExV2, a buffer overflow occurs, leading
to instance misses. The experimental system and the scenario composition are
explained briefly, followed by the comparison of model-based verification with
the execution trace of one system execution.

Experimental System. The experimental ROS 2 system (Fig. 1) consists of
two nodes that communicate. Node0 is the control node used to control the ex-
periment by sending sequences of messages and service requests to Node1 at the
defined times, and Node1 is the system under verification. Communication chan-
nels are named after the priority of the callback in Node1, which they belong to.
The topics are called H, M, L (High, Medium, Low) and services SH, SM, and
SL (Service High, Service Medium, Service Low), respectively. Furthermore, one
control topic exists to control the experiment by setting the timers in Node1.
Each callback in Node1 is programmed to execute 500 ms, for simplifying eval-
uation. Moreover, each callback records its execution information in the ROS 2
log when execution is started and finished. By using this information, we can
compare the execution trace of our model to the actual execution of callbacks in
a real ROS 2 system. The system is set up on a single computer using docker to
create a controlled environment and enable simple switching among the different
ROS 2 distributions. The selected distributions for the experiments are ROS 2
Dashing (the last distribution that contains ExV1), Eloquent (the first distribu-
tion that contains ExV2), and Humble (the latest long time stable distribution
that contains ExV2). In this evaluation, each scenario comprises different mes-
sage sequences. The specific sequences and the resulting execution traces from
one actual execution are shown in the following.

Scenario 1 (SC1): Sporadic-Callbacks. The first scenario is taken from the
experimental evaluation of the scheduling algorithm of ExV1 conducted in Casini
et al. [7]. The scenario utilizes four timers, three subscribers, and three services.

12 L. Dust et al.

SC1 - ExV1 (ROS2 Dashing)

 S0 S1T0, T1 T2, T3

0 1 2 3 4 5 6 7 8

Time (seconds)

T0

T1

T2

T3

H

M

L

SH

SM

SL
C

a
ll

b
a

c
k

SC1 - ExV2 (ROS2 Eloquent, Humble)

 S0 T0, T1 T2, T3S1

0 1 2 3 4 5 6 7 8

Time (seconds)

T0

T1

T2

T3

H

M

L

SH

SM

SL

C
a

ll
b

a
c

k

Fig. 7. Execution diagram of Node1 execut-
ing SC1 on different ROS 2 distributions. Se-
quence releases are marked in blue and releases
of timers in red.

All callbacks in Node1 can be
modeled as sporadic callback
UTA, each executing a defined
number of times. This scenario
transmits two message sequences
(S0, S1). The first sequence S0
is released at time 0, trigger-
ing the following callbacks: <L;
M; H; SH; SL; L; M; H; SH;
SL>. The second sequence S1
triggers < SM ;SM ; H > and
is sent at 1.5 seconds. Timers
T0 and T1 are configured to re-
lease after 0.2 seconds, while T1
and T2 release after 2.3 seconds.
Fig. 7 shows the resulting exe-
cution traces when executing the
scenario with ExV1 and ExV2.
There are significant differences in

execution. After timers are released (e.g., T0 and T1), ExV1 (upper trace) sched-
ules them immediately after the execution of the current callback, whereas ExV2
(bottom trace) schedules timers after all the callbacks remaining in the ready
set are finished.

SC2 - ExV1 (ROS2 Dashing)

 S0 S1 S2 S3T0(0) T0(1) T0(2) T0(3) T0(4) T0(5)

0 1 2 3 4 5 6 7 8 9

Time (seconds)

T0

H

M

L

SH

SM

SL

C
a
ll
b

a
c
k

SC2 - ExV2 (ROS2 Eloquent, Humble)

 S0 S1 S2 S3T0(0) T0(1) T0(2) T0(3) T0(4) T0(5)

0 1 2 3 4 5 6 7 8 9

Time (seconds)

T0

H

M

L

SH

SM

SL

C
a
ll
b

a
c
k

Fig. 8. Execution diagram of Node1 execut-
ing SC2 on different ROS 2 distributions. Se-
quence releases are marked in blue and releases
of timers in red.

Scenario 2 (SC2): Periodic
Timer and Buffer Overflow.
SC2 utilizes only one timer
(T0) in Node1, releasing periodi-
cally every 1.3 seconds. Four se-
quences (S0, S1, S2, S3) are con-
tained in SC2. S0 is released
at time 0, triggering the fol-
lowing callbacks in Node1: <
H;M ;L;SH;SM ;SL >. S1 at
3.2 seconds triggers < H;M ;L >.
S2 is released at 4.5 seconds, trig-
gering < SH;SM > followed by
S3 triggering < H > at 6.3 sec-
onds. Fig. 8 shows the resulting
execution traces of one real execu-
tion. Differences in execution can
be seen. For SC2-ExV2, it is visi-
ble that even though the timer T0

is released six times during the experiment, only four instances are executed.
This is caused by the timer getting blocked over consecutive releases and the
input buffer overflowing. In SC2-ExV1, instead, T0 is executed for every release
instance and is scheduled during the next scheduling action after its release.

UPPAAL Model Configuration. The proposed UTA templates are instan-
tiated to model the created scenarios. For example, to model the execution of
Node1, the model must contain one executor and all included callbacks. An
excerpt of instantiated templates can be found in Tab. 1. The initialization of

Pattern-Based Verification of ROS 2 Nodes using UPPAAL 13

callbacks H and T0 are shown. Release time arrays and other variables such as re-
leasesH and StopTime are declared at the beginning of the system configuration.
The given example shows the initialization of ExV1. One time step in the created

Table 1. Excerpt from the Uppaal system config-
uration for SC2 instantiated system
H = WallTimeCallback(0, 5, 3, releasesH, SUBSCRIBER,10);
T0 = PeriodicCallback(0, 5, 13, TIMER, 0, 1);
ExecV1 = ExecutorV1(StopTime);
system ExecV1 < H, M, L, SH, SM, SL, T0;

model is chosen to be equiv-
alent to 100 ms, as it is the
greatest common divisor of all
release and execution times.
Sporadic callbacks are instan-
tiated with the following pa-

rameters: the ID, the execution time (5, representing 500 ms), the number of
releases in the scenario, the release times, the type of callback, and the buffer
size. The passed parameters to the periodic timer T0 are the ID, the execution
time (5 for 500 ms), the period (13 for 1.3 seconds), the type, the initial release
(0 for not released at initialization), and a constant one as the buffer size.

System Simulation in Uppaal. The symbolic simulator in Uppaal generates
random traces of the model. An excerpt from such a trace can be found in
Fig. 9, where timer T0 is executed. The simulated traces are compared to the
traces of the actual execution, out of which one crucial finding emerges. In the
execution of ExV1 in SC2, there can be a deviation between the simulation
and the trace of the actual execution. In some cases, the order of execution of
one instance of callback SH and T0 changes compared to the actual execution.

Fig. 9. A part of the Uppaal sim-
ulation trace of ExecV1 and T0

This is because some transitions, such as re-
leases, which occur independently from the
scheduling of callbacks in ROS 2, may be run-
ning in parallel with the execution of other
callbacks and influence the execution order
nondeterministically. Therefore, the schedul-
ing outcome differs depending on the action
that the model takes first. As the experiments
using the actual execution are not exhaustive,
only one of all possible paths is obtained is
this case. The difference between the simu-
lation and the actual execution result shows
the model’s usefulness in determining worst-
case scenarios. During verification, all possible

paths are considered in the model. Nevertheless, it is possible to fix the execution
order at the model level, by prioritizing the UTA of T0 over the other callback
UTAs in Uppaal. This impacts the execution order in the model so that T0
always executes before SH. Hence, prioritizing T0 can make the UTA model only
reflect the observed real execution.

Verification of Buffer Sizes. In order to verify buffer sizes for detecting buffer
overflow, the model contains a Boolean variable for each callback, which turns
true when a buffer overflow occurs. Now, we define CTL queries in Uppaal for

Fig. 10. Example of queries verify-
ing buffer overflow and utilization

verification. Examples of the queries and re-
sults in Uppaal can be found in Fig. 10. It
can be seen that a buffer overflow is detected
in timer T0 (i.e., the first query is unsatisfied).
In general, all verification results correspond
to the actual execution. To refine and verify
specific buffer sizes that are smaller than the

14 L. Dust et al.

configured buffer size in the model, we design queries containing specific numbers
of buffer sizes. For example, the last two queries in Fig. 10 check whether the
buffer of callback H always contains less than two, and less than one element,
respectively.

Verification of Latencies. In order to find out the latency of a callback, the
created array with the release times of each instance of a callback is utilized,
and a query that searches for the highest possible value of the time elapsed from
release time to the end of the execution for each callback is generated. It is
essential to notice that the model disregards instances missed due to a buffer
overflow, only showing the latency for executed callbacks. Therefore, it is always
essential to check for buffer overflow as well. Furthermore, for periodic callbacks,
buffer overflow is also determinable by the latency being higher than one period
plus the execution time. During this evaluation, we calculate the latency of each
callback using the model and compare the results to the extracted latencies from
the actual execution (Fig. 7 and Fig. 8). The results from the model and the
actual execution can be found in Tab. 2. The table shows that for all callbacks,
the latency is the same as in the actual execution, except in ExV1 for T0 (marked
in red). This is related to the possibility of one timer instance executing after
the SH callback, and Uppaal calculating the latencies of all possible executions.

Table 2. Comparison of determined latencies

SCENARIO 1 SCENARIO 2
ExV1 ExV2 ExV1 ExV2

Callback Uppaal Real Uppaal Real Uppaal Real Uppaal Real
SL 7.5 7.5 7.5 7.5 4.0 4.0 3.0 3.0
SM 7.0 7.0 7.0 7.0 3.5 3.5 2.5 2.5
SH 6.5 6.5 6.5 6.5 3.0 3.0 2.0 2.0
L 6.0 6.0 6.0 6.0 3.3 3.3 1.8 1.8
M 5.5 5.5 5.5 5.5 2.3 2.3 1.3 1.3
H 6.5 6.5 6.5 6.5 2.7 2.7 1.2 1.2
T0 0.8 0.8 2.8 2.8 1.0 0.9 2.2 2.2
T1 1.3 1.3 3.3 3.3 - - - -
T2 0.7 0.7 1.7 1.7 - - - -
T3 1.2 1.2 2.2 2.2 - - - -

Answer to the Research Questions. Based on the experimental evaluation
of our method, we answer the research questions as follows:

RQ1: Given the two behavioral semantics of single-threaded executors in
ROS 2, how to ensure the correctness of a design of ROS 2-based systems with
respect to the behaviour of timer callbacks, callback latency, and the sizes of
input buffers of callbacks?

Answer: In this work, we apply formal modeling and model checking to
verify callback latency and input buffer sizes. Utilizing pattern-based verifica-
tion, we simplify the modeling process by creating templates for callbacks and
executors that can be used to model any ROS 2 node.

RQ2: What are the patterns for modeling ROS 2 systems, which can be
reused in verification?

Answer: A selection of essential features matching the verification goal is
chosen during the creation of the formal models. The communication and exe-
cution of other nodes in the processing chain can be abstracted away and repre-
sented through release times of callbacks. Generally, any callback can be modeled

Pattern-Based Verification of ROS 2 Nodes using UPPAAL 15

as a periodic or a sporadic callback with defined releases. Other parameters, such
as the type of callback, execution time, and priority, are parameters passed to
the template. Callback input buffers can be represented as counters, where buffer
size can be configured for callbacks triggered by communication, and set to one
for timer callbacks. The data sent in the communication is irrelevant to the
verification outcome. Two executor templates can be used to model ExV1 and
ExV2, as both can execute the callback templates. The validity of the patterns
is shown by comparing the simulation traces of the model and actual system
execution.

RQ3: Can model checking find the errors of ROS 2 systems, which are shown
in experiments, but also reveal potential errors that are not discovered via ex-
perimental evaluation?

Answer: Via a comparison between model-based calculated latencies and
experimental results on a real system, we conclude that the model-based ver-
ification delivers the same results as the experiments. Furthermore, Uppaal
explores all possible execution scenarios. Therefore, model checking can find po-
tential errors in ROS 2 systems that are not discovered in experiments.

5 Related Work

The response time analysis for callbacks in a node using the single-threaded
executor and reservation-based scheduling has been proposed by Blass et al. [5],
who assume the executor model that includes timers as part of the ready set;
next, Tang et al. [15] look into the same problem yet using the executor model
with timers being excluded from the ready set. Both works are significant for the
research that we present in this paper, and the experiments conducted repeatedly
show the differences in the revised executor model.

Formal verification of the communication and computation aspects of ROS
2 has gained significant attention in recent years. Halder et al. [8] propose an
approach to model and verify the ROS 2 communication between nodes, using
Uppaal. Similar to our approach, the authors consider low-level parameters,
such as queue sizes and timeouts, in their TA models, to verify queue overflow,
yet they do not consider callback latency verification and do not take into account
the two models of ROS 2 single-threaded executors. Moreover, the work does not
validate the formal models as we do in our work by using the results of simulation
experiments.

Carvalho et al. [6] present a model-checking technique to verify message-
passing system-wide safety properties, based on a formalization of ROS launch
configurations and loosely specified behaviour of individual nodes, by employing
an Alloy extension called Electrum and its Analyzer. The Electrum models are
automatically created from configurations extracted in continuous integration
and specifications provided by the domain experts. The approach focuses on a
high-level architectural-level verification of message passing, whereas our work
focuses on a lower-level model checking of the scheduling of single-threaded ex-
ecutors assuming two kinds of timer semantics as found in different distributions
of ROS 2. Webster et al. [17] propose a formal verification approach of industrial
robotic programs using the SPIN model checker, focusing on behavioral refine-
ment and verification of selected robot requirements. The solution is applied to
an existing personal robotic system, it is not ROS-specific, and focuses only on
the verification of high-level decision-making rules.

16 L. Dust et al.

Anand and Knepper [3] present ROSCoq, a Coq framework for developing
certified systems in ROS, which involves the use of CoRN’s theory of constructive
real analysis to reason about computations with real numbers. This work adopts
a “correct-by-construction” approach, a different yet complementary approach
to ours. However, we verify various timers scheduling mechanisms found in ROS
2 distributions, which is not within the scope of the mentioned work.

6 Conclusions and Future work

In this paper, we introduce and demonstrate the application of pattern-based ver-
ification in the context of distributed robotic systems. We create UTA templates
for modeling ROS 2 callback execution, allowing pattern-based verification of
latencies, buffer overflow, and buffer utilization. Our UTA templates cover two
kinds of callbacks and all existing versions of the single-threaded executor in
ROS 2. All callbacks in ROS 2 systems using the single-threaded executors can
be modeled by those templates. Finally, we show how verification of latencies
and input buffer overflow can be performed in two scenarios and compare the
verification results with the experimental results of actual system execution. The
comparison shows that model checking is able to find potential system errors that
might be overlooked by experiments. The verification produces counterexamples,
which are infeasible configurations of the system. The models only include the
scheduling of ROS 2, assuming 100 percent availability of a system thread in
the underlying operating system for the executor module. Detected infeasible
configurations remain when fewer resources are available in the underlying OS.
Nevertheless, feasible designs in the model may not be feasible in a real system
when limited system resources are available to the ROS 2 thread.

The model allows future refinements and improvements, including more sys-
tem parameters, such as offsets for periodic callbacks, communication latencies,
and jitter. In ROS 2, even multi-threaded executors exist for the callbacks, which
are not considered in this paper and might become the object of future modeling.
In general, the modeling proposed in this paper can be considered a first step
towards pattern-based verification in the context of distributed robotic systems
using ROS 2.

Acknowledgments

We acknowledge the support of the Swedish Knowledge Foundation via the
profile DPAC - Dependable Platform for Autonomous Systems and Control,
grant nr: 20150022, the synergy ACICS – Assured Cloud Platforms for Indus-
trial Cyber-Physical Systems, grant nr. 20190038, and HERO - Heterogeneous
systems – software-hardware integration, grant nr: 20180039.

Bibliography

[1] Albonico, M., Dordevic, M., Hamer, E., Malavolta, I.: Software engineering
research on the robot operating system: A systematic mapping study. J.
Syst. Softw. 197(C) (mar 2023). https://doi.org/10.1016/j.jss.2022.111574,
https://doi.org/10.1016/j.jss.2022.111574

[2] Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer
Science 126 (1994)

[3] Anand, A., Knepper, R.: Roscoq: Robots powered by constructive reals.
In: Urban, C., Zhang, X. (eds.) Interactive Theorem Proving. pp. 34–50.
Springer International Publishing, Cham (2015)

[4] Baheti, R., Gill, H.: Cyber-physical systems. The impact of control technol-
ogy 12(1), 161–166 (2011)

[5] Blaß, T., Casini, D., Bozhko, S., Brandenburg, B.B.: A ros 2 response-
time analysis exploiting starvation freedom and execution-time variance.
In: IEEE Real-Time Systems Symposium. pp. 41–53. IEEE (2021)

[6] Carvalho, R., Cunha, A., Macedo, N., Santos, A.: Verification of system-
wide safety properties of ros applications. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2020)

[7] Casini, D., Blaß, T., Lütkebohle, I., Brandenburg, B.: Response-time anal-
ysis of ros 2 processing chains under reservation-based scheduling. In: 31st
Euromicro Conference on Real-Time Systems. pp. 1–23 (2019)

[8] Halder, R., Proença, J., Macedo, N., Santos, A.: Formal verification of ros-
based robotic applications using timed-automata. In: 2017 IEEE/ACM 5th
International FME Workshop on Formal Methods in Software Engineering
(FormaliSE). pp. 44–50 (2017)

[9] Hendriks, M., Yi, W., Petterson, P., Hakansson, J., Larsen, K., David, A.,
Behrmann, G.: Uppaal 4.0. In: Third International Conference on the Quan-
titative Evaluation of Systems - (QEST’06) (2006)

[10] OpenRobotics: Ros : Distributions (2023),
http://wiki.ros.org/Distributions

[11] OpenRobotics: Ros 2: Distributions (2023),
https://docs.ros.org/en/humble/Releases

[12] OpenRobotics: Ros 2: Documentation (2023),
https://docs.ros.org/en/humble

[13] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler,
R., Ng, A.Y., et al.: Ros: an open-source robot operating system. In: ICRA
workshop on open source software. vol. 3, p. 5. Kobe, Japan (2009)

[14] Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the
next computing revolution. In: Proceedings of the 47th design automation
conference. pp. 731–736 (2010)

[15] Tang, Y., Feng, Z., Guan, N., Jiang, X., Lv, M., Deng, Q., Yi, W.: Response
time analysis and priority assignment of processing chains on ros2 executors.
In: IEEE Real-Time Systems Symposium. pp. 231–243 (2020)

[16] Teper, H., Günzel, M., Ueter, N., von der Brüggen, G., Chen, J.J.: End-to-
end timing analysis in ros2. In: 2022 IEEE Real-Time Systems Symposium
(RTSS). pp. 53–65 (2022)

18 L. Dust et al.

[17] Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L.,
Dautenhahn, K., Saez-Pons, J.: Toward reliable autonomous robotic as-
sistants through formal verification: A case study. IEEE Transactions on
Human-Machine Systems 46(2), 186–196 (2016)

