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Abstract—Cybersecurity is of increasing importance in indus-
trial automation systems. The use of fine-grained and intelligent
access control is paramount in emerging manufacturing systems
as implicit trust is no longer a viable assumption for interactions
within industrial systems. An authorization service is a central
component of an access control enforcement architecture, to
which resource servers may outsource parts of the policy decision
functionality.

This paper investigates how to create and integrate an au-
thorization service in an industrial manufacturing system, which
uses workflow descriptions combined with operational system
states for policy decisions. The implementation is demonstrated
in the use case of recipe orchestration in a modular automation
system, and a few key quality metrics of the authorization service
are evaluated.

I. INTRODUCTION

Industrial Control Systems (ICSs) are essential for manag-
ing and supervising operations in industries such as manu-
facturing, energy production, water management, critical in-
frastructure, and transportation. These systems are enhancing
industrial processes, improving efficiency, and minimizing
human errors [1]. ICSs are transforming due to the evolution of
Industry 4.0 [2], resulting in systems of increased connectivity
and flexibility. Such change requires adjustments in the current
cybersecurity measures, in charge of protecting computer
systems, networks, and data from unauthorized access. Access
control, as an essential security mechanism, is greatly im-
pacted by this ongoing transformation. The traditional security
models based on implicit trust are less useful in these emerging
industrial systems, prompting a shift toward a zero-trust [3]
approach. In a zero-trust architecture [4], any component in-
teraction should be intelligently verified and evaluated, making
detailed and dynamic access control a prerequisite.

Traditional static access control methods cannot adapt to
changing operational conditions or the security status of the
system [5]. In contrast, dynamic access control offers an
enhanced approach for applying and managing access control,
by establishing policies that are modified in real-time, based
on the security environment [6] and operational conditions.
Nevertheless, dynamic access control is still not widely uti-
lized in ICSs.

Various methods of dynamic access control offer adaptable
active permissions in response to system changes. Examples
of such methods include following active workflows [7], [8]

or using dynamic environmental conditions by implementing
different methods of attribute-based access control [9], [10].

While manufacturing systems are becoming more dynamic
and interconnected, the zero-trust model indicates that its
access control mechanisms must exhibit similar dynamicity. To
implement an access control enforcement architecture capable
of providing sufficiently dynamic authorization, it is suggested
that policy decisions are outsourced to an Authorization Ser-
vice (AS) [11]. An AS can make central policy decisions based
on running workflows or other environmental conditions. To
the best of our knowledge, there is currently no mechanism
that is able to synchronize an AS with the running workflows
of a manufacturing system and transform that knowledge into
access control policy decisions.

This paper presents an implementation of an AS which
can make policy decisions in line with dynamically changing
operational requirements, on behalf of resource servers in an
industrial manufacturing system. The research builds on the
idea of using knowledge of the workflow as a base for policy
rule inference, as described by, e.g., Leander et al. [12]. The
architecture and basic protocol used are adapted from [11].
The main contributions presented in this paper are:

• An implementation of an AS that can be integrated into
a modular automation system.

• An implementation of a method that uses information
about workflows as the base for access control policy
decisions.

• An implementation of three different algorithms for en-
coding policy decisions into authorization tokens.

• An experimental evaluation of the implemented algo-
rithms, concerning time and memory consumption and
token size.

The remainder of this paper is organized as follows. Sec-
tion II describes the related works. In Section III implementa-
tion details are provided, and Section IV contains an example
of the use of the implemented solution. Section V presents
the results, and in Section VI we discuss the impact and
shortcomings. Section VII concludes the paper and outlines
future plans.

II. RELATED WORK

In a study conducted by Leander et al. [11], four access
control enforcement architectures for dynamic manufacturing
systems are suggested and evaluated. To alleviate complex
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Fig. 1: Illustration of authorization protocol, from [11].

computational and communication burdens from the resource
server, the usage of policy delegation mechanisms by use of
ASs is advocated. Furthermore, some ideas on how to encode
dynamic policy decisions in JSON Web Tokens (JWT) [13]
are discussed. Our paper can be seen as a continuation of this
work, as we use the same authorization protocol, illustrated in
Fig. 1, but with a focus on the inner workings of the AS.

Other works are looking at access control enforcement
architectures for industrial systems. For example, Martinelli et
al. [14] and Watson et al. [15] both look at access control
models and architectures in relation to the Open Process Com-
munication Unified Architecture (OPC UA) [16], similar to
this work. However, none of them looked at policy delegation
mechanisms, which is the focus of this paper.

III. DESIGN

This section presents the implementation details of the pro-
tocol for dynamic enforcement of access control, including the
token population algorithm used to define explicit permissions
and restrictions.

A. Authorization protocol

The protocol introduced in Section II is implemented to
achieve the dynamic enforcement of access control. The im-
plementation of the protocol is done in such a way that an AS
monitors the active steps and workflows or recipes, and issues
policy decisions based on that knowledge.

The assumption used in this work is that it is possible to
separate the policy decision from the policy enforcement, so
that an AS makes the policy decision on the request of a client,
encodes that decision into an access token, and sends it back
to the client so that the client can use the token for session
activation towards a resource server. The resource server uses
the token to make policy enforcement on resource requests
from the client.

In Fig. 1, steps 1, 5, 6, 7 and 8, are part of the OPC UA
indirect authorization protocol1, while steps 2, 3, and 4 are
related to the inner functionality of the AS, and are explained
in the following subsections.

1reference.opcfoundation.org/GDS/v105/docs/9.6.5

B. Creating a per-session access control list based on global
policies

In this work, the most restrictive access control strategy
defined by [12] is implemented, i.e., “Entities assigned to a
certain workflow are allowed to perform operations, following
the sequence of the workflow.” The permissions on the rela-
tionship between a client and a resource server are therefore
limited by the active workflows in the system. Sequential
Function Charts (SFC) [17] are used as the representation of
workflows. An SFC contains a series of steps and transitions.
Each step in the SFC contains zero or more operations, and
each transition is guarded by a condition. Each operation and
condition evaluation can be seen as a resource request toward
a specific resource server, and can therefore be transformed
into one or more permissions. An illustration of an SFC is
represented in Fig. 2.

When the AS receives a token request from a client, the
policy decision is based on knowledge of the active workflows
and active workflow steps. Permissions are granted from
active steps related to the resource server if the workflow
for the step(s) is assigned to the client. The policy decision,
represented by arrow 2 in Fig. 1, is in the form of a temporary
Access Control List (ACL) and contains the set of granted
permissions that the client will hold relative to the resources
of the resource server for the duration of the session.

C. Token population

When the policy decision is taken, represented by the ACL
in the previous section, the decision must be encoded into
an authorization token, represented by arrow 4. in Fig. 1. This
can be done directly using the explicit permissions in the ACL
directly, or it may be needed to encode the policy decision in
another form, depending on resource server capabilities.

It is a common characteristic that a resource server fol-
lowing the OPC UA standard has an internal representation
of roles and permission2, represented as local Role Based
Access Control (RBAC) policies. This provides an opportunity
to formulate the policy decision as a combination of roles,
explicit permissions, and restrictions, which may be more

2UA Part 18, Role-Based Security (reference.opcfoundation.org/Core/
Part18/v105/docs/)
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compact than the full ACL. To combine RBAC roles and
explicit permissions and restrictions based on the active ACL,
the algorithm suggested in [11] is implemented and adapted,
represented by arrow 3. in Fig. 1.

The purpose of the token population algorithm is to get the
minimum size token provided by the AS, which represents
all of the permissions on the relationship between the client
and the server. The concept relies on simplifying the token
by identifying overlapping roles with extensive permissions,
allowing the role to replace the long list of permissions.

Fig. 3 contains a flow chart illustrating the complete flow of
the token population algorithm. Firstly, the algorithm initial-
izes empty sets for the roles and restrictions. It creates a set
of permissions P and populates it with permissions from the
ACL. The algorithm searches the RBAC policies related to the
resource server for the roles that have a set of permissions with
the highest overlap with the P set. The computation of overlap
involves counting the number of permissions that exist in both
sets. If there is an overlap, the algorithm checks whether the
addition of the role would make the total size of the token
smaller. If so, the role is added to the roles set, and the
overlapping permissions are subtracted from the permissions
set P . Subsequently, any permissions granted by roles that
are not in the ACL, are added to the explicit restrictions list.
The process continues until no overlapping roles are found
or there are no permissions left in the permissions set. In the
case that there are no roles that have overlapping permissions
with the ACL permissions, or if the size of the token has
not decreased, all of the permissions from ACL are encoded
into the token as explicit permissions. After populating the
roles, permissions, and restrictions sets, they are encoded as
claims in the final token, which is then signed, ensuring its
authenticity and integrity.

Three approaches of the token population are implemented:
1) Baseline approach - An initial variation of encoding

policy decisions into an authorization token, is to di-
rectly use the ACL permissions, without attempting any
optimization, i.e., leaving the ”restrictions” and ”roles”
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Fig. 3: Token population algorithm diagram.

claims empty. Because this approach does not employ
the token population algorithm or any optimization, it is
ideal as the baseline for comparing different encoding
algorithms.

2) Token Population Algorithm 1 (TPA1) - This approach
comes from employing the token population algorithm
described in Fig. 3. The primary idea behind this al-
gorithm is to simplify tokens by substituting lengthy
permissions lists with overlapping roles. In order to
accomplish this, the role with the maximum overlap
must be identified. TPA1 achieves this by iterating
through all the roles for each iteration in the main loop.

3) Token Population Algorithm 2 (TPA2) - This approach
is similar to TPA1, but with the main difference being
how the maximum overlap is calculated. TPA2 employs
a priority queue to calculate the overlap, where the
roles and their corresponding overlap counts are stored.
Furthermore, the priority queue is sorted in descending
order based on the overlap count, ensuring that the role
with the maximum overlap remains positioned in the
front of the queue.

IV. DEMONSTRATION

In this section, the implemented AS is demonstrated and
experimentally evaluated. The main objective of the experi-
ment is to measure the execution time, memory consumption,



and the size of the token for the three approaches of the token
population.

A. Modular automation use case scenario

The implementation is integrated into a modular automa-
tion [18] system represented using a simulation of a modular
ice cream factory. The system is illustrated in Fig. 4 and
further described in [19], [20]. The system consists of six
module controllers, which serve as resource servers in our
scenario, and one orchestration unit, which issues high-level
commands to the module controllers according to an SFC-
formulated recipe. The orchestrator serves as a client in our
scenario.
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Fig. 4: Overview of the modular ice-cream factory use case.

B. Experimental setup

The ice-cream factory scenario is used as a proof of concept
of the implementation, however, the recipes and roles used in
the system are quite simple, and therefore response-time and
memory consumption related to the AS is very small.

In order to perform meaningful scaling experiments, vari-
able lists of synthetically generated servers along with their
corresponding permissions are added to the ACL and RBAC
lists. Execution time and memory consumption experiments
involve the continuous addition of servers in increments of
50, ranging from 50 to 300. In the token size experiment, per-
missions are continuously added in increments of 50, ranging
from 50 to 300. These permissions are manually generated
and added to both ACL and RBAC lists. It should be noted
that certain permissions overlap between the ACL and RBAC
lists, while others differ. The selection and assignment of these
permissions, whether identical or different, are determined
randomly. Furthermore, 10 roles were incorporated into the
RBAC lists for all experiments.

To ensure a reliable statistical average, each experiment was
conducted 5 times for each different server/permissions load.

Experiments were conducted on Windows 10 operating
system and implemented using the C# programming lan-
guage. The System.Diagnostics.Stopwatch class from the
.NET Framework is used in order to measure the execution
time and memory consumption of the token generation pro-
cess.

The experimental evaluation takes place on a computer
system that features an Intel Core i5-10310U CPU, 16 GB
RAM, and a 256 GB SSD storage device.

V. RESULTS

A. Execution time

The purpose of the measurements is to determine the time it
takes for the AS to generate the access token, i.e., to measure
the time taken from when the AS first receives a request for
a token, until it returns a fully populated token to the client.

The results are presented in Fig. 5, where the x-axis
represents the number of servers, and the y-axis represents
the average execution time in milliseconds (ms).

The baseline execution times are notably small, as expected
due to the low complexity resulting from the absence of the
token population algorithm.

The average execution time for TPA1 is higher than the
one for the baseline. A detailed inspection of the results
indicates a notable incremental pattern in the execution time
as the number of servers increases. Compared to TPA1, TPA2
demonstrates a better performance on server loads of 250 and
300. However, considering smaller server loads it demonstrates
slightly increased execution time.

Table I represents the standard deviation (σ) for execution
time results in ms. The baseline configuration exhibits con-
sistent standard deviation values, while the TPA1 and TPA2
configurations show varying standard deviation values for
different server quantities.

TABLE I: Standard deviation (σ) for execution time, all
numbers in ms.

Number of servers 6 50 100 150 200 250 300
Baseline 2.22 0.80 0.77 2.38 2.23 0.80 2.75

TPA1 2.07 4.49 3.81 2.44 6.35 43.78 27.68
TPA2 0.80 5.83 6.12 12.62 23.22 8.40 45.99
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Fig. 5: Results on execution time experiment.

B. Memory consumption

This experiment is conducted in order to determine the
amount of memory the AS consumes when handling the access
token. Therefore, the memory usage is measured from the
moment the AS initially receives a token request, up until
the point when it completely populates that token. The results
of memory consumption are represented in Fig. 6, where



the x-axis represents a load of added servers and the y-
axis represents the memory consumption in Megabytes (MB).
The results for the baseline show that it has low memory
requirements and can operate efficiently, even when a load
of 300 servers is considered.

The average memory consumption for TPA1 is higher
than the one from the baseline. Results show that memory
consumption starts to raise noticeably when the number of
servers is greater than 150. Moreover, when considering the
load of 150 servers or less, the memory consumption is similar
to the baseline.

Memory consumption for TPA2 starts to drastically increase
when considering more than 150 servers. On the other hand,
when considering less than 150 servers, the memory con-
sumption is similar to the TPA1 and the baseline approach.
Additionally, for the load of 250 and 300 servers, TPA2
demonstrated slightly decreased memory consumption than
TPA1.

Table II displays the standard deviation (σ) values for mem-
ory consumption in megabytes (MB). The standard deviation
in the baseline scenario remains relatively low and stable
across the range of server numbers. As the number of servers
increases, the standard deviation for memory consumption in
the TPA1 scenario also generally increases. The TPA2 scenario
exhibits a more varied trend in standard deviation values. For
smaller server numbers (150 and less), the standard deviation
remains relatively low. However, as the number of servers goes
over 150, the standard deviation increases.

TABLE II: Standard deviation (σ) for memory consumption,
all numbers in MB.

No. of servers 6 50 100 150 200 250 300
Baseline 0.011 0.019 0.034 0.012 0.054 0.015 0.025

TPA1 0.034 0.091 0.101 0.401 7.23 4.12 4.89
TPA2 0.074 0.203 0.381 0.208 9.665 13.204 10.775
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Fig. 6: Results on memory consumption experiment.

C. Token size

This experiment focuses on the size of the token provided by
the AS. The token’s size is measured as the sum of the number
of permissions, restrictions, and roles that are encoded into it.
In simpler terms, it represents the number of items in access
token claims. The objective of the token population algorithm
is to create the smallest possible token. This is crucial in

the overall performance of the system since the tokens with
more content require more memory and more execution time.
Additionally, the obtained results are theoretical, and encoding
this many permissions into a token would exceed the actual
maximum size of the token.

The average sizes of ten tokens were observed, and their
average sizes for each permissions load are represented in
Fig. 7. The x-axis represents the number of permissions in
the initial ACL, while the y-axis represents the size of the
token (number of items in access token claims).

It is evident that for the load of 50 permissions, the token
size remains the same for all of the variations. The results indi-
cate a similarity between TPA1 and TPA2, without any evident
differences. The data suggests that the noticeable difference
between the baseline and TPA1/TPA2 can be seen when
the load of 150 permissions is observed. Moreover, as the
permissions load increases, the effectiveness of TPA1/TPA2 is
becoming more noticeable.

The incremental pattern in efficiency that both TPA1 and
TPA2 demonstrated is to be expected since the larger the
number of permissions is, the larger the chance for the
overlapping permissions that will be changed for the roles.
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Fig. 7: Result on token size experiment.

VI. DISCUSSION

The results of the experimental evaluation indicate that the
utilization of token population algorithms directly impacts
execution time, memory consumption, and token size. The
baseline approach, which directly encodes ACL permissions
into the token, provides the shortest execution time and lowest
memory consumption, but results in larger token sizes, at
least for complex scenarios. Contrary, the token population
algorithms reduce the token size, at the cost of increased
execution time and memory consumption. Moreover, the eval-
uation highlighted the trade-offs involved in choosing between
token population algorithms and the baseline approach. When
deciding whether to utilize the algorithm, it is important to
take into account the trade-off between smaller token sizes and
acceptable levels of execution time and memory consumption.

It is crucial to weigh the trade-offs when considering the im-
pact of large tokens for a memory/CPU-constrained resource
server. Issuing larger tokens could simplify the process of pop-
ulating the token by encoding more information directly into
the token. This could potentially lead to reduced CPU usage



and faster policy inference times, as complex algorithms would
not be needed to reduce the token size. Conversely, in contrast,
a smaller token reduces the memory and could be more
suitable for memory-constrained environments. However, it
might require more complex and CPU-intensive algorithms
to populate and interpret the token, which could increase the
policy inference time. For industrial applications, a reasonable
policy inference time would need to be within a few 10s of
milliseconds.

An approach for selecting the right encoding algorithm
could be to use the size of the initial ACL to decide if attempts
for optimizations are needed. For a small ACL, say below 20
permissions, there would be no gain in optimizing token size.

The evaluation performed within this work is limited to
focuses solely on the AS, i.e., it does not cover the entire archi-
tecture. Furthermore, the data used to scale up the evaluation is
synthetic, and may not faithfully represent realistic scenarios.
The algorithm’s efficiency in minimizing total token size is
directly linked to the degree of similarity between permissions
of the ACL and the role-permissions for the resource server.
This similarity is randomly assigned within the synthetic data
employed in the experiments conducted within this study.

VII. CONCLUSIONS

This work presents the implementation and evaluation of an
AS that uses knowledge of executing workflows in order to
make policy decisions. We have shown that the AS performs
its assigned task in the context of a simulated ice cream
factory, and we have experimentally evaluated a set of quality
metrics related to three token encoding approaches, indicating
the scalability properties of the implementation.

In conclusion, populating the token without the usage of a
token population algorithm reduces the memory consumption
and execution time, but it results in a larger token, which could
lead to increased memory consumption and execution time
once the token is issued.

The selection of approach should be based on a trade-off
between the need for a smaller token size and the acceptable
levels of execution time and memory consumption in the
AS, possibly using an adaptable algorithm that can select an
algorithm based on the initial ACL size or content.

Multiple directions for further research and development
can be envisioned, e.g., validation of the access control en-
forcement architecture in real-world ICS environments or the
exploration of different token population algorithms. In this
work, we use knowledge of running workflows for the policy
decisions, but other approaches are also possible, such as using
logical conditions on attributes for creating the initial ACL.
Formally investigating threats, vulnerabilities and possible
attacks on the suggested approach is another important future
direction of the work.
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