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ABSTRACT 
Modern embedded computer systems contain an increasing number of software and hardware 

components. The most common way to communicate between these components is to 

interrupt the processor (CPU) and let the operating system manage the communication. In 

almost any operating system, the arrival of an interrupt event causes the execution of a service 

routine (which could be a device driver handling some external I/O). The advantage of this 

method is that it encapsulates all hardware details of the I/O device. In many cases these 

interrupt driven service routines interfere with the real-time behavior. In cases where the 

interrupt routine is not handled properly, priority inversion and unbounded delays of process 

execution can be introduced. The real time problem with software device drivers and the 

development of Field Programmable Gate Array (FPGA) technology motivate research on 

communication and synchronization between hardware and software components. This thesis 

presents an application interface called VCB (Virtual Communication Bus), which provides a 

standardized interface for communication and synchronization between hardware and 

software without the need to execute any driver software. The interface provides six different 

system calls; connect, disconnect, send, receive, send&wait, and broadcast. The VCB also has 

functions to avoid priority inversion problems. The interface is fully implemented in 

hardware, meaning that no software is used during communication and that several system-

calls can be made simultaneously. This makes the system easier to analyze and design. The 

thesis presents the VCB concept, its implementation architecture and definition of hardware 

threads. Furthermore, the VCB is demonstrated and evaluated in a case study with device 

drivers that manage a Universal Asynchronous Receiver Transmit (UART). The two main 

contributions of this research are (1) that it shows that it is possible to design a uniform 

interface for communication between hardware and software threads, and (2) that this 

interface can be used to design device drivers in hardware that introduce almost zero overhead 

for the software system to manage the external device. 
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1 INTRODUCTION 
In the modern society today, almost every mechanical system contains some kind of computer 

based system. The mechanical system could be for example a toaster, a toy for the kids to a 

more advanced system like a car, a train or an airplane. The computer based systems will be 

used to regulate and control external equipment connected to the system. The computer 

system has the task to react within precise time constraints to events in the environment. As a 

consequence, the correct behavior of these computer based systems depends not only on the 

calculated value but also on the time at which the results are produced. To improve the real 

time behavior for a system the use of more special designed hardware components is a desire. 

A standardize communication and synchronization mechanism is requirement to simplify the 

use of parallel logic in programmable devices, such as Field Programmable Gate Arrays 

FPGA together with the software system. The emphasis is on the thread-level abstraction. We 

will motivate that at this abstraction level the distinction between hardware and software 

threads is practically gone and all steps in the design space can then be shared for both 

software and hardware design [23]. To make the design process both shorter and more 

effective the designers use standard components in both software and hardware, for example 

Ethernet controllers, universal asynchronous receiver/transmitter, file systems, operating 

systems and databases. To facilitate the mapping of different components, either to hardware 

or software components, the communication and synchronization interface has to be more 

general. One of the major consequences is that the system cost can be significantly reduced 

and tighter timing/performance constraints can be met if more hardware components are used 

in exacting and time critical parts. The advantage is that it is more predictable, faster and 

easier to analyze. Every gate is a true executing unit, compared to software that often executes 

on a single unit, the CPU. The disadvantage can be additional cost of using more hardware 

gates instead of a software solution. On the other hand the number of gates in one chip has 

been doubled every 18 month following Moore’s law, and it still growing. This thesis is 

utilizing this development within the FPGA technique area, to show that a system can be built 

with a high abstract communication and synchronization mechanism. Furthermore it shows 

how to solve a real-time problem with the help of this mechanism, as well as demonstrating 

the hardware function in a case study. 
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1.1 Real Time Systems 

There are many different definitions of a real-time system; generally they all state that a real-

time system has to react on events in its environment within a specific amount of time. One 

good definition is the following: A real-time system is one in which the correctness of the 

system depends not only on the logical result of computation, but also on the time at which the 

results are generated [17] 

 

There are different classifications of Real Time Systems. Depending on the consequences, the 

time constraints of real-time systems can be divided into two categories. 

1. Hard real-time system A real time thread is hard if missing its deadline may cause 

catastrophic consequence on the environment under control.[17] 

2. Soft real-time system A real time thread is said to be soft if meeting its deadline is 

desirable for performance reason, but missing its deadline does not cause serious 

damage to the environment and does not jeopardize correct system behavior.[17] 

 

Some of the functionalities needed in a real time system are to, 

• handle a thread set, 

• close connection to process-I/O, 

• predictable and fast manage to handle events, 

• avoid priority inversion using special protocols, 

• thread communication mechanisms, 

• time management. 
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1.2 Why communication and synchronization between threads 

The communication and synchronization between threads is an important task and the need is 

well documented [17][4][11][14]. The internet alone shows a tremendous need of 

communication. Also smaller system like a robot control computer system needs a lot of 

communication and synchronization. This is because of the partitioning of the systems 

controlling task into different software threads. Those system threads need allot of 

communication and synchronization to solve the controlling task [3]. These threads are 

connected together with a common communication mechanism, containing an API and 

protocol. The API is the syntax of the call and the protocol is the mechanism to handle the 

message. For example a letter has an API, the address to the recipient and the protocol is the 

post-office, managing the letter. In a computer system with different threads, use a shared 

memory area is use to exchange information. To avoid inconsistency in the communication 

system a mechanism is designed to handle that. The basic mechanisms are typically binary 

semaphores. If no access protocols are used to enter a critical sections like the shared 

memory, a number of undesirable phenomena can occur, such as priority inversion, chained 

blocking, and dead lock, which could introduce unbounded delays on real-time 

activities[15][17]. One problem with this type of communication and synchronization is that 

the application designer has to manage the communication and the protocol by hand in the 

application code instead of using a communication mechanism with a common API and 

protocol. Further, in this document a special designed communication and synchronization 

mechanism will be used to avoid the problems mention above. This mechanism has been 

developed and used for a while in a pure software thread solution.[11][3] But an extension to 

the mechanism with possibilities for hardware threads to use the mechanism to synchronize 

and communicate will be described in this thesis, for more detailed information of this 

communication mechanism see paper A and paper B. 
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1.3 Difference between hardware and software 

Traditionally, software has been seen as “running programs” and hardware as “static”. 

Engineers and scientists have considered hardware and software as distinct entities with little 

in common in their design process [13]. In today’s research this concept is not always true. 

This is mostly due to different design styles that have been brought up in recent years that 

include very tight coupling between hardware and software and for that reason it is better to 

use other terms than only hardware and software to describe parts in a system. 

If a designer, for example, takes a software program, translates it to a hardware description 

and then synthesizes it to target architecture like an FPGA or an ASIC, then a question arises: 

is the result software or hardware? The result can, for example, be seen as one large 

instruction doing all the computation or it can be seen as a custom dedicated hardware 

solution.  

 

 

Figure 1 Translating a high level language to a hardware implementation 

 

Yet another example of implementation style, that isn’t either hardware or software, is when 

instructions are placed in memories all around the chip, tightly coupled to pure hardware 

parts. This example shows that there are in some cases hard to tell when an implementation is 

a hardware or software approach. 

 

A technique that is increasingly used in embedded system design is the use of programmable 

logic devices, like FPGAs. These devices bring a new terminology to system design due to 

that these devices can be configured as almost any computing element (microprocessor, DSP, 

custom hardware) and also are reconfigured in an easy way. This device is traditionally 

classified as a hardware component, but can today be shaped as a software solution with 

tightly coupled hardware parts. 

 

A trend in today’s system development is to as much as possible only talk in terms of 

behaviors when handling different functions instead of software and hardware parts. This is 
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the main idea in co-design: to select what goes into hardware respectively software as late as 

possible in the design process. 

 

The progress in System-on-Chip implementations also tends to include a tighter and tighter 

mix of hardware and software parts, sometimes so tight that the hardware and software terms 

no longer are motivated. A problem when mixing hardware and software is the testing and 

validation process. It can be hard to apply the common test methodologies to a system where 

the coupling is tight. Co-simulation is the term used when hardware and software are tested in 

the same environment. Co-simulation tools exist today, but are a big challenge for researchers 

to improve while new technologies and architecture styles brings new concepts to computing. 

1.4 Programmable logic FPGA, CPLD 

The new technology introduced with the Field Programmable Gate Arrays (FPGA's) 

represents a leap forward in digital design as large as when the micro-controllers were made 

public in the 70's. The inherent enormous parallelism in these devices introduces new design 

challenges and trade-offs. One promising approach is to use standard and custom hardware 

components to build complete system architecture at on single chip. All hardware components 

are executed in truly massive parallel to each other and do not need to interfere with each 

other, as opposed to software implementations. A FPGA fundamental characteristic is that it 

consists of fine-grained programmable logic blocks interconnected via wires and 

programmable switches. Logic functionality for each block is specified via a small 

programmable memory, called lookup table (LUT). How these logic blocks are spread over 

the silicon differs in devices and families from different vendors. In some they are grouped 

with a matrix structure and in other they are grouped in slices over the chip. FPGA´s were 

earlier only used as interconnecting glue logic and to implement simpler Boolean functions. 

In recent years, new device families have quickly grown to capacities of tens of thousands of 

LUT´s containing millions of gates of logic [18] enabling them to be used as platforms for 

complex computing machines including processor structures and advanced calculations. 

Therefore, FPGA´s has become a technology to be considered at system level. Complex 

Programmable Logic Device (CPLD) is another device similar to an FPGA. CPLD´s are not 

that often used in research literature, therefore, in this publication the focus will be almost 

exclusively on FPGA´s, representing programmable logic devices. 
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1.5 Thesis Outline 

This thesis consists of four main chapters describing the different parts in the scope of this 

thesis. It starts with a motivation. Further we present an overview of related work which gives 

insight into the problem area. Furthermore in section four, the result and contributions will be 

presented. Finally we sum up with the conclusion and experience from this area. 
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2 MOTIVATION 
Real time systems are computing systems that must react within precise time constrains to 

events in the environment. The correct behavior of these systems depends not only on the 

logical result of the computation but also on the time at which the results are produced. A 

reaction that occurs to late or to early could be useless or even dangerous. To calculate and 

predict the response time to the environment for a given set of tasks could be hard if the time 

behavior of a system isn’t predictable. 

Today, the new FPGA technology will lead to digital computer systems that will fit into one 

chip [24], deterministic response time with predictable time behavior and faster parallel 

developments with standard hardware components [10]. The impact on the application will be 

shorter development time (component based), decreased production costs (one chip solution) 

and higher specially (utilization of hardware parallelism). 

Special designed hardware components at the thread level of abstraction makes the design 

space much greater for the system designers to solve design or performance problems. This is 

the main motivation for this work, to explore a new way to implement hardware threads with 

a communication and synchronization concept we call VCB (Virtual Communication Bus). 

Hardware threads or components that give the system-designer the following benefits:  

• Hardware threads always run in true parallel. 

In the real word environment everything is parallel and different events are handled in true 

parallel. Moving software functionality into an equivalent implemented hardware function 

increases the simultaneousness in a system. A hardware function is always running and 

almost never uses any shared system resources and thereby the hardware will not be 

interrupted or stalled waiting for some shared resource. This makes it easier to calculate 

and analyze the execution time for the function. 

• Hardware gives better performance. 

Hardware implemented functions give almost always better performance compared with 

equivalent implemented function in software [10], [11]. 
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• A hardware implemented function reduces the number of interrupts to the processor 

kernel. 

A hardware design connected to the real word environment reduces in most cases the 

amount of interrupts to the software processor kernel. The hardware function can execute 

in parallel with the software processor and will not compete with other shared system 

recourses. 

 

• Hardware functions reduce the response time. 

A hardware function reduces the response time especially if the locality of the function is 

placed in the same chip. A good example of that is the math processor in a modern 

processor CPU. It gives hundred or even thousand times better performance to implement 

math functions in hardware compared to implementing the same functionality in software. 

 

All these points give a good motivation to believe that hardware functionality improves the 

time predictability for a real time system. 
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3 RELATED WORK OF COMMUNICATION INTERFACE FOR 
HW/SW THREADS 

This chapter will give a brief overview of the different types of communication interfaces (see 

Figure 2). For more information in this area, the readers are referring to [16]. The 

communications between threads are divided in three parts: 

A. (SW/SW) Software to Software thread communication, described in section 3.1.  

B. (SW/HW) Software to Hardware and vice versa communication described in section 3.2 

C. (HW/HW) Pure Hardware to Hardware communication described in section 3.3 

 

 

Figure 2 Classification of communication interfaces 

 

The communication protocol and API are often implemented in software, but it can also be in 

hardware/software or only in hardware (VCB-API). This classification will focus at different 

communication mechanisms. The first section 3.1 will describe the communication between 

pure software threads. The second section 3.2 present two subclasses of the communication 

mechanism; the first one implemented in pure software, most common in commercial 

operating systems; the second subclasses are systems with special designed hardware. These 

type of system isn’t common in the industry, but there are several academic works in this area 

[4][3][2][9][2]. The last section 3.3 will describe communication between pure hardware 
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blocks. The focus on this brief description will be on communication between software and 

hardware threads. 

 

3.1 Software thread communication SW/SW (A) 

The thread communication is a wide and can be implemented in many different types of 

mechanisms. An example of different types of implementation of the thread communication 

could be: 

• Shared memory 

The advantage of using shared memory is the performance; the user has the possibility to 

directly access the global shared memory. The disadvantage to use shared memory among 

many user threads is the inconsistence in the communication system. To make a mutual 

exclusion between those threads, the user has to take a semaphore in correct sequence and 

thereby making a mutual exclusion of shared resources [15]. 

• Mailboxes 

Mailboxes is a message passing mechanism in many real-time systems [29][28][30]. This 

mechanism is used to synchronize and communicate between different application 

threads. A mailbox is a message buffer located in the shared memory, protected by a 

protocol normally implemented in the operating system. Mailboxes buffer the messages in 

FIFO order and thereby permit the thread to read the message later on. The semantic of a 

mailbox may vary between different operating system but in general, blocking and none 

blocking read and write is the most common functionality. 

• Message Queue 

Like the mailbox, the message queue mechanism is also used to synchronize and 

communicate between the application threads. The main difference between this and the 

previous on is the sorting algorithms. A message queue could sort the different messages 

either in FIFO, LIFO (Last In First Out) or priority order [3]. 
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• Pipes 

Like the message queue the pipes can manage many messages but can only be used in one 

direction. When a thread wants to send and receive messages it has to open two pipes, one 

in either direction. 

Interprocess communication is a critical issue in real time systems. The use of shared 

resources for implementing the message passing scheme may cause priority inversion and 

unbounded blocking on threads program execution. This would prevent any guarantee on the 

thread set and would lead to a highly unpredictable real time behavior. The most typical 

communication semantics used in different operating systems is the synchronous and 

asynchronous model. 

 

Examples of commercial systems are 

• The RTOS Real Time Operating System OSE is used in many telecommunication systems 

[28]. It uses a pure software implementation of the message passing mechanism. 

• The largest RTOS in the world Vxwork’s [29] uses message queues to implement the 

communication mechanism. It does not use any hardware support. 

• Sierra16 [30] is a small RTOS used in small embedded systems. It uses semaphores or 

signals to implement the communication. Special designed hardware used to predict and 

speed up the communication. 

 

The other class has support from special designed hardware to give the better performance 

and increase the predictability. This type of system isn’t common in industry. 

 

Examples of systems of hardware support are 

• The Spring RTOS [4] is a distributed multiprocessor system. It uses a mix of software and 

hardware support to implement the network and the thread communication. 

• SARA RTOS [3] is a multiprocessor system with thread communication with parts of the 

communication mechanism in hardware. 
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3.2 Software thread and device driver communication SW/HW (B) 

This section will describe the synchronization and communication between the software 

application and a hardware device through a device driver. This section will be divided in two 

parts, one with the most common methods to solve the SW/HW communication (section 

3.2.1). The other part will be our academic contribution (section 3.2.2). 

 

 

Figure 3 Functionality and synchronization classification of device drivers 

 

A. The application has to poll the device. More detail in section 3.2.1.1 

B. A specific driver encapsulates the hardware dependent code and the driver will be 

scheduled among other threads in the system. More details in section 3.2.1.2 

C. The specific driver encapsulates all hardware dependent code and the synchronization will 

be through external interrupts. More detail in section 3.2.1.3 

D. The driver for the functionality will be implemented in hardware and the synchronization 

will be through the VCB communication. More detail in section 3.2.2 

 

When building applications that interact with different type of I/O devices and software which 

makes use of device drivers, one typically ends up with code that can only be used on the 

original platform. I. e., the code is hardware dependent since the device drivers used are much 

likely to be handcrafted for a specific hardware device [9]. Thus, the code cannot be used on 

other hardware platforms. To circumvent this problem, the dependency should be eliminated 

at a certain layer to allow portability. One way of accomplishing this is by using a consistent 

device driver interface that applications and system software should use to gain access to 
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device drivers. By inferring a layer between the device drivers and the rest of the software, 

one ensures that the software can be applied on different hardware platforms, assuming that 

the same operating system is used on the new platform, and that corresponding device drivers 

are present. The link between a hardware device and the application is a device driver. Instead 

of forcing the applications to manually interface with the hardware device. The device driver 

is introduced to interacting with, and controlling the hardware directly. The driver for the 

device performs all the hardware specific processing. The application software operates on 

logical I/O objects provided by the driver. The logical I/O objects are presented to the 

applications as a set of functions calls for using the I/O device. 

3.2.1 Common SW/HW communication 

This section will give a small survey of the three most common solutions to interact with a 

hardware device. 

3.2.1.1 Polling 

Of those three polling, scheduling, interrupt is the polling the most radical solution. This is 

because of all interrupts from external devices are disabled and the peripheral devices must be 

handled by the application threads which have direct access to the registers of the interface to 

the device. Since no interrupt is generated, data transfer takes place through polling. The main 

disadvantage of this solution is low processor efficiency on I/O operations due to the busy 

wait of the thread while accessing the device registers. 

3.2.1.2 Scheduling 

As in the polling solution all external interrupts are disabled, but unlike polling the device is 

not handled by the application threads but is managed in turn by dedicated kernel routines, 

periodically activated by the operating system timer. This approach almost eliminate the 

unbounded delays due I/O access and confine all I/O operation to one or more kernel threads, 

whose computational load can be calculate and taken in account through a specification 

utilization factor. The advantages with this solution compared with the previous one is that all 

hardware details of the peripheral devices can be encapsulated and do not need to be known to 

the application. Ref [4][6] 
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3.2.1.3 Interrupt 

The third approach enable all interrupt from the external devices, while reducing the drivers to 

a minimum size [17]. According to this method, the only purpose of each driver is to activate 

a proper thread that will take care of the device management. While activating the execution 

of a thread under direct control of the operating system, it’s scheduled just like any other 

application thread. A priority can be assigned to the device thread completely independent 

from the application priority according to the application requirement. One major advantage 

of this approach is to eliminate the busy wait during the I/O operations. Unbounded delays 

introduced by the drivers during thread execution are also dramatically reduced. Ref [1] 

Examples of academic and commercial and systems, 

• Lynx [30] Used device driver is accessed through a set of entry point functions, which 

constitute the device driver’s applications interface. A kernel thread and the basic device 

driver also composed of an interrupt service routine (ISR). Uses the Interrupt approach 

• OSE [28]Uses device driver in access through a set of entry point functions and direct 

polled, or by a timer slots and interrupt driven. Uses the Interrupt approach 

• Synthesis of DMA controllers from architecture independent descriptions of HW/SW 

communication protocols [9]. Use the Interrupt approach and special hardware to read and 

write to the hardware device. 

• HARTIK a hard real-time kernel for programming robot tasks with explicit time 

constraints and guaranteed execution [1]. Uses the Interrupt approach 
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3.2.2 Our SW/HW communication approach 

The last approach with respect to all others is to remove the external interrupts, routed directly 

into the processor kernel. Those interrupts will instead be managed by a hardware thread. This 

hardware thread will manage the functionality and act as a device driver. All data transfers 

take place through reads and writes through a (DMA) Direct Memory Access channel to the 

shared global memory. The hardware thread will synchronize with the application thread 

through send/receive messages through VCB-API. The main advantage of this solution is the 

true execution parallelism with the software processor kernel and the removing of the 

notification from the interrupts. No data read and write transfers take place through the 

processor kernel. 

3.3 Communication between hardware blocks HW/HW (C) 

Recent advances in hardware design now allow the integration of numerous functions onto the 

same single FPGA chip or silicon piece. Those functions could be from generic serial ports to 

complex memory controllers and processor cores. As a result, a hardware designer must now 

address issues as design for reuse and reuse of designs. To solve those problem, hardware 

designers has developed different types of virtual component interface [12]. This virtual 

interface is used together with different types of functionality and interconnections. The 

semantic of the interface is request respond and the protocol is adjusted to the 

interconnection. The interconnection is in most cases point to point in the HW/HW 

communication. But this technique could also be used to a shared system bus like IBM 

CoreConnect [32] ARM AMBA 2.0 High-performance Bus [25]. 
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4 RECONFIGURABLE SYSTEM 
This section will describe the chip device used during this project. The description will only 

talk about Xilinx devices [24] and architecture and will not give a general description of the 

different reconfigurable systems. The Altera solution with Cyclone, StratixII Nios or Arm9 

will not be described [25]. The Virtex-II Pro is a platform FPGAs for designs that are based 

on IP cores and customized modules. The leading-edge at the device is 0.13 µm CMOS nine-

layer copper process and have 18 Kb storage elements of True Dual-Port RAM. Embedded 

multiplier blocks are 18-bit x 18-bit dedicated multipliers. Digital Clock Manager (DCM) 

blocks provide self calibrating, fully digital solutions for clock distribution delay 

compensation, clock multiplication and division, and coarse- and fine-grained clock phase 

shifting. A new generation of programmable routing resources called Active Interconnect 

Technology interconnects all these elements. The general routing matrix (GRM) is an array of 

routing switches. Each programmable element is tied to a switch matrix, allowing multiple 

connections to the general routing matrix. 

 

Figure 4 Xilinx virtexII_pro structure 

Architecture: 
The Virtex-II Pro devices are user-programmable gate arrays with various configurable 

elements and embedded blocks. The devices contain the following functionality. 

• Embedded high-speed serial transceivers (RocketIO X).  

• Embedded IBM PowerPC 405 RISC processor blocks  
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• SelectIO-Ultra blocks provide the interface between package pins and the internal 

configurable logic. 

• Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and 

synchronous logic, including basic storage elements. BUFTs (3-state buffers) 

associated with each CLB element drive dedicated segmentable horizontal routing 

resources.  

• Block SelectRAM+ memory modules provide large 18 Kb storage elements of True 

Dual-Port RAM.  

• Embedded multiplier blocks are 18-bit x 18-bit dedicated multipliers.  

• Digital Clock Manager (DCM) blocks provide self calibrating, fully digital solutions 

for clock distribution  

4.1 Processor architecture 

The FPGA device today contains difference types of processor block. The biggest different of 

those two types is the implementation of the core. One type is a hard copy of the core the 

other type is a soft reconfigurable type, specially designed for a device family with regard to 

timing and area. 

4.1.1 Hard processor core 

The PPC405x3 is a 32-bit implementation of the PowerPC™ embedded-environment 

architecture that is derived from the PowerPC architecture. Specifically, the PPC405x3 is an 

embedded PowerPC 405D5 processor core (PPC405D5). The PowerPC architecture provides 

a software model that ensures compatibility between implementations of the PowerPC family 

of microprocessors. The PowerPC architecture defines parameters that guarantee compatible 

processor implementations at the application-program level, allowing broad flexibility in the 

development of derivative PowerPC implementations that meet specific market requirements 

[24]. 

4.1.2 Soft processor core 

 

Optimized for Xilinx devices are the MicroBlaze soft processor core. This core is a 32-bit 

RISC processor and has 32 general purpose registers, separate instruction and data buses, and 

built-in interfaces to the on-chip memory and to IBM’s industry-standard On-chip Peripheral 
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Bus (OPB). In addition, implementations in Virtex-II and later devices support hardware 

multiply [26]. 

4.2 Shared system bus 

The shared system bus could be any type of in house custom designed bus with special 

features. But in this architecture the bus is an IP component from IBM’s core connect [32] 

The CoreConnect bus architecture is a standard SOC design, and serves as the foundation of 

IBM Blue Logic or other non-IBM devices. Elements of this architecture include the 

processor local bus (PLB), the on-chip peripheral bus (OPB), a bus bridge, and a device 

control register (DCR) bus. High-performance peripherals connect to the high-bandwidth, 

low-latency PLB. Slower peripheral cores connect to the OPB, which reduces traffic on the 

PLB, resulting in greater overall system performance. 

 

 

Figure 5 CoreConnect Block Diagram 

 
Processor Local Bus 

• Fully synchronous, supports up to 8 masters 

• 32-, 64-, and 128-bit architecture versions; extendable to 256-bit 

• Separate read/write data buses, enables overlapped transfers and higher data rates 

• High Bandwidth Capabilities 

o Burst transfers, variable and fixed length supported 

o Pipelining 

o Split transactions 

o DMA transfers 

o No on-chip tri-states required 

o Cache Line transfers 

o Overlapped arbitration, programmable priority fairness 
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On-Chip Peripheral Bus (OPB) 

• Fully synchronous  

• 32-bit address bus, 32-bit data bus 

• Supports single-cycle data transfers between master and slaves 

• Supports multiple masters, determined by arbitration implementation 

• Bridge function can be master on PLB or OPB 

• No tri-state drivers required PLB Arbiter 

• Arbitration for up to 8 PLB master devices on PLB bus 

• Includes watchdog timer and separate address, read, and write data paths 

• Supports address pipelining 

PLB to OPB Bridges 

• PLB slave and OPB master device 

• Supports dynamic bus sizing for OPB connection 

• Supports burst reads and writes 

• Compliant with various bursts sizes 

• Supports 4-, 8-, and 16-word line transfers 

• Supports DMA transfers to/from OPB master peripherals 

OPB Arbiter 

• Arbitration for up to 4 OPB master peripherals on OPB bus 

DCR Bus 

• Provides fully synchronous movement of GPR data between CPU and slave logic 

4.3 External I/O 

The external I/O device in this test system includes an Asynchronous Receiver/Transmitter 

(UART) Intellectual Property (IP). This UART following the National Semiconductor 

PC16550D but have a few differences between the National Semiconductor implementation 

and the OPB UART. For more information [33] and data sheet for OPB UART Lite [24] 
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5 CONTRIBUTION AND RESULTS 
This chapter will briefly present the contribution and results. More detailed descriptions in 

paper A, B, C. 

 

The chapter is divided in three parts: 

1. API for hardware threads; the contribution is defining the hardware thread and a case 

study is made to demonstrate how the API can simplify, achieve faster response time 

and make the design more predictable for device drivers. 

2. Hardware thread architecture for device drivers; this is a case study on how the API 

can simplify and make the design more predictable for device drivers.  

3. List of papers 

 

5.1 API for hardware threads 

This thesis presents an advanced communication and synchronization API at a higher level 

than usually used in software application design. The API is used in industry [3] as a software 

bus to communicate between software threads and is named Virtual Communication Bus 

(VCB). This thesis shows that the VCB can also be used to communicate between hardware 

threads or hardware and software threads. 

The interface provides seven different types of system calls to synchronize and communicate 

between HW/HW HW/SW and SW/SW. The system calls is: vcb_init, vcb_connect, 

svcb_disconnect, vcb_send, vcb_receive, vcb_broadcast and vcb_send_wait (for more 

information see paper B). 

5.1.1 Syntax notation for a hardware API 

The hardware description language in this case is VHDL -93. The application use VHDL -93 

and a package, defined as a VCB-API package. This package includes all seven different vcb 

calls for the hardware application designer. 

 

The semantics is the same for both hard; and software calls, but the syntax is quite different. 

For a call e.g. vcb_send in the software case it is just an ordinary function call like 

“ok=vcb_send(msg,size, address, priority );” This call will send a message msg to an address 
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at a specified priority. The same system call is used in the hardware case but the syntax 

description is different. Below the same system call vcb_send is described. The hardware 

thread sends a message to an address at a specified priority level. 
 

case state is 

  when SEND => 

    send_args<=send& 

    msg_size& 

    slot_address& 

    msg_prio& 

    thread_id; 

  vcb_call <= '1'; 

  state <= WAIT_SEND; 

… 

 

The hardware application has to manage the state transactions sends or receives in the 

application code. For more details see paper B and appendix 

5.1.2 API implementation 

The API is divided in three different parts (see Figure 6) which today constitutes the VCB 

concept. Previous version of the VCB concept only allowed the software designers to use the 

VCB concept to synchronize and communicate between software threads (SW_VCB_API). 

 

 

Figure 6 Structure of the VCB 

 

This version of the VCB concept is augmented with an API for the hardware designers 

(HW_VCB_API) to synchronize and communicate between hardware and software threads. A 

modification of the protocol for the VCB_CORE concept, the extension of the protocol allows 

simultaneous access to the VCB_CORE. For more details of the implementation see paper B. 
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5.1.3 Simultaneous system calls to VCB_CORE 

To allow simultaneous system calls from both software and hardware application the VCB-

core had to be modified. The modification in the communication core compared to the 

original was to add a multiplexer for the data path form to the application and the controller 

block (see Figure 7). The rest of the design is the same as the original. 

 

 

Figure 7 Internal architecture of the VCB-Core 
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5.2 Hardware thread architecture  

This section will define and demonstrate the use of hardware threads in an implementation of 

a UART device driver. A hardware thread is defined in this thesis to consist of thread code 

(hardware description language) and a bus interface to shared memory and connection to 

VCB bus.  

 

 

Figure 8 Definition of a hardware thread 

 

The thread code defines the behavior of the thread and is in our work given in VHDL. 

1) The master bus Interface, connection to system bus used to read and write to the message 

buffers in shared memory. 

2) Connection to VCB-Core, this is the connection to the hardware scheduler that provides 

the means to start, stop, and change priority of the software threads. This connection also 

contains the VCB_API used to communicate through VCB for both hardware and 

software threads. 

3) The hardware thread also manages the functionality included in a driver for a device, 

application process. This is normally written in software but in this case the driver will be 

implemented in VHDL. 
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The device driver implementation for the UART in this case has a net list for the UART 

functionality. All the signals from the UART are routed directly to the hardware thread (see 

Figure 9). Normally the signals are routed to the system bus through a wrapper adjusted to fit 

the system bus. 

 

 

Figure 9 Hardware thread architecture 

 

Another component in the device driver is a DMA Direct Memory Access used to transfer 

data to/from the global shared memory. The application code for the device driver implements 

the functionality to send a message to the software every fourth received byte or when a 

carriage return is received to the UART. The application code also decides when the software 

application will use the UART. For more details see paper C 
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5.3 A case study; Implementation of a hardware device driver 

Two test cases with different types of implementations, one traditional software solution and 

the other one is a hardware solution with the VCB-API. 

The most common way to integrate an UART component in a system is to use software to 

transfer data to/from the UART and use interruption the processor kernel for attention when 

it’s necessary (see Figure 10). 

 

 

Figure 10 Normally software implementation of a UART device 

 

An interrupt directly routed to the software processor kernel often have the highest priority in 

the system. This always extends the execution time for the software application and this could 

cause a missing deadline for a thread in a real time system and thereby make a useless 

reaction or in the worst case even a dangerous situation. 
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The VCB-API solution of this problem is to use a hardware thread to manage the UART. This 

thread is always in “running mode” and never utilizes any execution time from the software 

threads. 

 

 

Figure 11 Architecture for the UART device driver 

 

The processor kernel will never be interrupted to manage the UART device (see Figure 11). 

For more information see paper C. 

List of papers 

Following papers articles are included in this thesis: 

Paper A) Virtual Communication Bus with Hardware  

and Software Tasks in Real-Time System 

In Proceedings for the work in progress and industrial experience sessions, pages 3 12th 

Euromicro conferance on Real-time systems, June 2000. 

Author(s): Peter Nygren, Lennart Lindh 

My contribution: I wrote the paper under supervision of assistant professor Lennart Lindh 



 

 

 

 

 

27

Paper B) Uniform Interprocess Communication interface for Hardware and 

Software Threads 

In International Workshop on Advanced Real-Time Operating System Services (ARTOSS) 

Porto, Portugal , July 2003. IEEE 

Author(s): Peter Nygren, Lennart Lindh 

My contribution: I wrote the paper under supervision of assistant professor Lennart Lindh 

 

Paper C) Implementation of Uniform Communication Protocol and Interface for 

Hardware and Software Threads and a Device Driver Example 

Submitted for publication 

Author(s): Peter Nygren, Lennart Lindh 

My contribution: I and assistant Professor Lennart Lindh wrote the paper together. 

 

Co-authored publications: 

A Comparison of Multiprocessor Real-Time Operating Systems Implemented in 

Hardware and Software 

In International Workshop on Advanced Real-Time Operating System Services 

(ARTOSS) Porto, Portugal , July 2003.  

Author(s): Tobias Samuelsson, Mikael Åkerholm, Peter Nygren, Johan Stärner, Lennart 

Lindh 

My contribution: I was supervisor and review of the paper 



 

 

 

 

 

28

6 CONCLUSION 
The system architecture with the VCB mechanism has several advantages. 

• Increases the real-time predictability. 

• Can reduce the software complexity. 

• Allows software functions to be moved into an equivalent hardware implementation 

without the need to rewrite other application software. 

• Performance and real time problems can be solved. 

It has been shown that a hardware communication and synchronization mechanism together 

with a hardware API solves several problems. 

• External interrupts can be scheduled and managed simultaneously, without 

interference with the software application. 

• Decreased CPU load, since applications can synchronize and communicate directly 

without CPU involvement. 

• Reduced response time for devices, since drivers can be implemented in hardware. 
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Paper A 
 

Virtual Communication Bus with Hardware  

and Software Tasks in Real-Time System 

 

Presented at Euromicro conferance on Real-time systems  

 

Stockholm, June 2000. 
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7 PAPER A 
 

Virtual Communication Bus with Hardware and Software Tasks in 

Real-Time System 

 

Abstract 

 

The FPGA (Field Programmable Gate Array) of recent years has opened newer design 

possibilities of moving software into hardware. This paper is studied at two cases of 

transferring functionality from software into hardware. The paper describes the VCB (Virtual 

Communication Bus) concept and hardware tasks. The approach with VCB is focused today 

on existing systems with a main processor and slave processors or DSP (Digital Signal 

Processors). The first approach is to reduce the system load from the VCB bus and the second 

phase will be to eliminate the slave processors and move them to hardware tasks implemented 

in FPGA. Hardware tasks will reduce the response time and make the system more time-

deterministic.  

 

Keywords: FPGA, VCB, Task, hardware tasks, Real-Time System 
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Introduction 

Already today an FPGA have 10 million gates, it will not be long before FPGA’s have 

hundreds of millions logic gates on-chip [24]. A FPGA can be programmed by a subset of C 

[34] or a hardware language such as VHDL [35]. A rule of thumb is that about 100 pages of C 

code fit into 30 000 gates. The cost of a 30K device is to day under 10 US $ [24]. Compilers 

today translate ordinary software from code into serial machine code. The hardware compilers 

translate the source code into concurrent gates, flip flops and memories by means of a 

synthesizer. The synthesizer during the last 10 years has developed from a simple state 

machine to behavioral translation. Today the designer can design in hardware design tools or 

ordinary software tools. With the help of new tools as CoWare N2C™ Design System [27] 

are dealing with this problem. The first phase will be to eliminate the operating system (OS) 

load generated from the VCB bus. The system load generated from the bus is an ordinary 

software task and this functionality could be moved from software into hardware. This will 

reduce the system load and make more execution time available for application tasks. The 

approach with VCB is focused today on an existing system (see [27]) with a main processor 

and slave processors or DSP. The goal of this approach is to eliminate the slave processors 

and move the software functionality in to hardware tasks implemented in FPGA. This means 

that a hardware task can consist thousand pages of C code. 

 

Motivation and overview 

The objective is to remove the functionality from the VCB bus, implement this functionality 

in software and move it into a hardware task. The purpose of this is to utilize the true 

parallelism in the hardware and their bye making available more execution time for the 

application tasks in the system. The second phase of the project will be to reduce the number 

of CPU’s in a multiprocessor system with mixed architecture of generally micro-controllers 

and signal processors. The purpose of this is to decrease the response time from the external 

units and reduce the overhead for the ordinary system to handle communication with external 

devices. Industry today can reduce the cost and the design time for system architecture, if the 

system designers uses hardware task instead of CPU’s. The cost of a system could thereby be 

reduced. An example of a commercial system is shown in Figure 12. In this type of system it 

is possible to eliminate the slave CPU’s and move the functionality into hardware tasks. 
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Figure 12 Logical architecture of a common system. 

 

If we move the functionality from the CPU’s and replace them with an FPGA and implement 

the functionality in hardware tasks could we reduce the necessity of mixed architectures in 

many types of systems (see Figure 13). An advantage of using hardware instead of CPU’s is 

that the external I/O can be connected directly into the FPGA. This reduces the 

communication on the shared bus. The communication possibilities on the VCB bus permit 

communication between hardware and software tasks in the system. 

 

VCB,IRQ,SCH,...VCB,IRQ,SCH,...

RAM/ROMRAM/ROMRAM/ROMRAM/ROM

FPGA

Application HW tasksApplication HW tasks
RAM

Application SW tasks
RAM

Application SW tasks
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Figure 13 Logical architecture of the proposed system 

 

To moving common software functionality into hardware could results in greater 

predictability and increase system speed. This new design method gives less complexity and 

reduces the cost of the whole system. 
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Phase one VCB implementation 

The Virtual Communication Bus is used for inter process communication and for 

synchronization tasks in the system. Communication between different tasks usually consist 

some kind of message passing mechanism such as mailboxes, pipes, message queue. The 

VCB bus is such a message passing mechanism and the bus allowed task to task 

communication locally on one CPU and between several different CPUs in a system. The 

tasks could be either an ordinary software task or it a hardware task, the interface for the tasks 

will be the same. 

 

“Task 1“

Software layer for VCB bus

“Task N““Task 2“

Hardware layer for VCB bus

Slot 1 Slot NSlot 2

 

Figure 14 Logical architecture of a system with the VCB bus 

 

The VCB bus is divided into two layers, the upper layer being the software implementation of 

the bus. In this layer the system provides support for different types of functionality from the 

bus. The other part of the bus consist the base primitives. Those primitives are implemented 

and integrated in the FPGA. When tasks want to communicate on the VCB the task hade to 

allocate one VCB-slot and their bye been the task will be connected to the virtual bus. The 

VCB connects the system and makes possible communication in two different ways, 

synchronous or asynchronous. When a task is connected to a slot it can communicate with all 

the other tasks in the system. The Send and receive communication primitives is the type of 

functionality mostly frequently used in the VCB bus. Other functions the bus could support 

are, for example broadcast, send and wait, multicast, subscribe. To reduce the system load 

from the OS (Operating System), the first step will be to reduce the execution time of the 

subscribe function. The subscribe function is a Server<->Client concept in which the 

“Server” is the functionality which handles all mail requests from other “Clients” in the 

system. The server runs each time T to decrement each individual timer T. When the time has 
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expired for one or more “Clients” the “Server” sends a mail to every “Client” in the request 

list (see Figure 15). 

 

Software layer for VCB bus

“Server“
Send mail to 
clients every 

time “t”

“Client “
Desire mail 
from server

every time “t”

Mail ever 
time “t”

Hardware layer for VCB bus
mail N

 

Figure 15 “Server” “Client” concept for subscribe function 

 

The mail system uses some shared memory area either globally or locally. In some cases the 

local location is a better solution because it minimizes the accesses on the global common 

system bus and improves the performance of the mail system. 

 

Phase two hardware task 

The purpose of removing CPU’s from a system is to increase the performance and 

predictability of some functionality. This type of implementation gives many advantages. One 

of the biggest differences is the performance as a hardware task runs in true parallel mode 

giving higher speeds as compared with a corresponding software implementation. Another 

advantage is the predictability of the hardware, the max/min execution time for the function 

being definable on the clock cycle level. The complexity and size of the code are reduced 

when hardware tasks are used. The design space increased if the designer used hardware tasks 

instead of ordinary software implementation. Hardware tasks can reduce the numbers of 

CPU’s because of the possibility of using the VCB bus for communication and when 

functionality moved from the CPU into hardware tasks. The hardware task could be one 

instance or it could be divided into many small units in the same task. When using CPU’s in 

the system (see Figure 12) it is difficult to handle the high frequency of the external I/O. The 

overhead for the interrupts reduces the CPU performance. The hardware task could handle the 

external I/O interrupts directly from the external I/O units without any overhead from the OS. 

The hardware task could also handle concurrent processing of the information in true 
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parallelism. Results from the hardware tasks are sent directly to the software task at the 

master CPU via VCB bus. Device drivers for handling external I/O are not necessary 

 

VCB bus

“Software
Task“

“Hardware
Task“

Extern
I/OT1 T2

 

Figure 16 Logical picture of a hardware task 

 

Larger FPGA’s gives the possibility to use more of the memory on chip instead of common 

system RAM. This gives an improved performance of the task in the FPGA. 

 

Advantages with Hardware Tasks 

The implementation of the same function code in hardware is considerable different from its 

implementation in software It is easier to predict real-time behavior in hardware. Min and 

max times can be verified with tools. In software it is difficult or almost impossible. The 

background is that software uses the shared resources such as CPU, ALU but in the case of 

hardware the tasks in most case don’t use any shared resources. The hardware can use the 

same resource for different "tasks", but this can be scheduled offline. In hardware it is also 

easier to deal with asynchronous events (such as interrupts). In a software solution an 

interrupt interrupts the entire system, in a hardware task it interrupts only the interrupt 

function in the system. Performance of a hardware task is much higher than of a software 

task, if the function can be held inside the same chip. The parallelism in hardware is very 

high, in a 30000 gates FPGA it is 30000 concurrent elements. Hardware tasks need no 

overhead, such as operating system, device drivers for interrupt. The response time from a 

hardware task is much shorter than from a common software task. FPGA hardware gives 

flexible hardware architecture. For example the number of ALU units, interrupt pins, I/O is 

configurable. In a processor there are nearly always overhead and restriction resources. For 



 

 

 

 

 

36

example if you need an floating point unit, it will be provided, or if you need more interrupt 

lines there must be added. When you must access a unit outside the CPU the response time 

will increase. 

Discussion 

• New hardware design methods [27] and higher capacity FPGA’s create new 

possibilities of removing CPU’s from ordinary system design and replacing the 

CPU’s. 

• The integration of heavy regulates algorithms into hardware tasks and the possibility 

of transparent communication between soft and hardware tasks gives new dimensions 

in this new type of architecture.  

• New FPGA types with more internal memory need less external memory and will 

increase the speed of the function. In many cases the time behavior of hardware tasks 

will be much more predictable. 

• As the price of FPGA’s reduced by 50% each 18 month, the cost of architecture the 

same functionality in a system is almost the same. 
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8 PAPER B 

Uniform Interprocess Communication interface for Hardware and 

Software Threads 

 

 

Abstract: 

A standardized communication and synchronization interface at the thread level abstraction is 

required to speed up and simplify the system design. This paper describes a novel 

implementation of a uniform communication interface for hardware and software threads. We 

call the communication interface for Virtual Communication Bus (VCB). This 

communication interface contains an Application Programming Interface (API) with seven 

different primitives {init, connect, disconnect, send, receive, broadcast, send_wait} those 

primitives are used in both the hardware and software cases. The communication interface is 

currently used in a system implemented in a single Xilinx device xc2v1000 [24]. This system 

contains one processor kernel from Xilinx [24] and a real time kernel [2]. These components 

and the VCB are connected through a shared system bus core connect [32]. 

 

Keywords: VCB, hardware and software threads.  
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Introduction 

A system design could be described and implemented in a structural and hierarchic manner 

with threads communicating concurrently. Software systems have for a long time been 

developed in this way. It is now possible to design an entire system containing one or several 

processor kernels, custom-designed hardware, intellectual property components and an 

amount of programmable logic on a single chip. A system design could be a pure software 

solution, which might not be acceptable because its performance is inadequate or a pure 

hardware solution which is too expensive. In this case system designers need some form of 

communication interface at the thread level to make changes between software and hardware 

implemented threads and to avoid the need to rewrite new HW/SW interface each time the 

new partitioning is performed. In the software case the threading of an application is no 

problem because each modern real-time operating system (RTOS) supports a communication 

interface. The communication interface often performs some kind of message-passing by 

means of mail boxes, slots, pipes, etc. Unfortunately this feature is not supported in a natural 

manner in the most popular hardware description languages (HDL’s) such as VHDL and 

Verilog. The HW/SW interface which transfers data between hardware and software 

components basically reads and writes hardware registers and memory locations. This 

interface could either be implemented in a normal program flow or in a small software layer 

connected to an interrupt routine (called a device-driver) [7]. Another solution could be the 

use of different types of hardware support [9][8]. Our objective is to develop a 

communication interface at the thread level and to introduce the possibility of transforming 

the system tasks to either a hardware or software thread containing the interface. The interface 

is to provide a uniform independent message-passing mechanism using a specified application 

programmable interface (API). This paper describes the API functionality and the particular 

implementation of this interface, the virtual communication bus VCB. 
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Virtual Communication Bus (VCB) 

The VCB interface contains two main components a slot and a message queue (see Figure 

17). The slot is used by the application threads to connect and communicate with other 

threads connected to the bus. The slot is a system resource allocated by a particular thread and 

cannot be used by other application threads. The slot contains information owner id(entity), if 

the slot is open or closed, and the default priority of the application thread. In this particular 

implementation there are four slots but this number is arbitrary.  

 

 
 

Figure 17 VCB structure 

 

The other main component is the message queue which contains the particular message index 

and the message index number used to protect and point out the particular message buffer in 

the shared global memory. The message index is sorted by the sorting algorithm specified, 

these being based at PRIORITY or FIFO orders. The sorting algorithm must be specified 

when an application thread allocates a slot.  The number of message indexes in this 

implementation is sixteen but the number could be increased or decreased. 
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Functional description of VCB 

The VCB interface can be considered as blocks (see Figure 18), the first block (VCB-API) 

including the Application Programmable Interface. This block consists of three different 

layers of abstraction {API, API_Slot, API_Basic} these implementing well-defined 

functionality at each level of abstraction. 

 

 

 

Figure 18 VCB structure 

The VCB-API is mapped into two different implementations languages, either C-code used 

by the software threads, or VHDL used by the hardware threads. 

Block number two, VCB-Core manages the lowest level of the interface functionality, this 

functionality including the authentication of the owner of the particular slot, whether it is 

opened or closed and the sorting of the index numbers of the messages. This functionality is 

mapped to a pure hardware implementation in VHDL. 
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API 

The functionality of the VCB-API will be described below, beginning with the API layer. The 

API layer is the point of entry to the VCB interface and the most abstract. This layer 

implements the system calls {init, connect, disconnect, send, receive, broadcast, send_wait}. 

 

• vcb_init: 

The vcb_init system call resets the entire VCB-interface and removes all owner information 

and messages in the interface. This system call should only be used at system start-up. 

 

• vcb_connect: 

This system call connects a thread to VCB, enabling the owner of the slot to read or write 

messages to the queue. The caller must specify the name, slot number, message sorting 

algorithm and default priority of the thread which the caller intends to use. 

 

• vcb_disconnect: 

This breaks the connection to the VCB. The call must be managed by the owner of the slot. 

All messages will be removed and the slot will be released, thereby becoming available for 

use by other threads. 

 

• vcb_send: 

This system call is used to send a message to another thread. The user must specify a pointer 

to the message, the quantity of data to be transferred, the receiver of the message, the priority 

of the message and the sender identity. The sender function checks if the parameters are 

correct and the return value is either VCB_OK or VCB_ERROR.  
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• vcb_receive: 

This system call is used to request permission to read a message from the VCB, The caller 

must specify the parameters associated with the message, a pointer associated with the mail 

received, a pointer to the bytes transferred, the sender of the message, and an indication if the 

caller intends to wait for mail if the message queue is empty. The last parameter specifies a 

call-back routine. The function returns either VCB_OK or VCB_ERROR. 

 

• vcb_broadcast: 

This system call sends message to all threads connected to the VCB. It uses multiple calls to 

system call vcb_send. 

 

• vcb_sendwait: 

The vcb_sendwait system call sends a message to a specified thread and waits until a response 

is received from the thread called or when a preset time expires. The return value is either 

VCB_OK or VCB_ERROR. 

 

API_Slot 

The API_Slot layer manages different parameters and also implements mixed calls of send 

and receives to build other higher level functions such as send_receive, broadcast. This layer 

incorporates a function for locating names associated with a slot number or slot numbers 

associated with a name. It also manages the copying of the message associated with the index 

number generated from the VCB-core layer. 
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API_Basic 

The API_Basic level accessed from the API_Slot layer, is the lowest layer of the VCB-API 

interface. This layer implementing the lowest primitives and accesses the vcb-core. The 

different functions in this layer assign the input parameters to a specified bit structure 

associated with a particular system call. The different system calls manage information 

concerning the slots and the message queues. The caller can create, close, open or obtain 

information about a particular slot and can also post a message to, or remove a message from 

the message queue connected to the slot concerned.  

 

• Init: 

This call initializes the entire VCB system to a well-known state and prepares it for use. It 

should only be used at start-up. 

 

• Allocate: 

This call allocates a slot for the thread called and specifies that the messages in the message 

queue should be sorted by a FIFO or priority order. It saves the identity of the owner of the 

slot if the caller is specified to inherit the priority from the arrival message and saves the 

information that the caller is software or a hardware thread. All this information is specified 

by the caller. 
 

• Open: 

This call opens a message queue. It enables other threads to post new messages to the queue. 

The thread performing this request must be the owner of the slot.  

 

• Close: 

This system call closes a message queue. It prevents the posting of new messages to the 

queue. It should be used before the deletion of a queue as this call returns all the unread 

messages in the queue. The thread must be the owner of the slot. 
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• Delete: 

This call erases all the information (in the on-chip memory) about the slot and the message 

queue. It allows other threads to allocate this particular slot and message queue. The caller 

thread must be the owner of the slot. 

 

• Put: 

This call allocates a message buffer in the message queue to slot specified and returns an 

index number to the caller. If the message queue is full, an error message will be returned to 

the caller.  

 

• Put_ready: 

This call is used when the CPU or DMA has copied the message to the message buffer. The 

VCB-core must be informed when this is done. The message is sorted in the sorting algorithm 

specified and the owner of the slot can then read the message. 

 

• Get: 

This call returns an index number to the buffer in which the first message in the queue is 

placed for the given slot. If the owner hade specified “wait for mail when the message queue 

is empty”, the thread is set to the wait state until a message arrives at the queue. Otherwise, a 

message NO-MAIL will be returned. 

 

• Get_ready: 

This call informs the VCB-core that the index number from the “get” call has been read. If 

the owner of the slot has specified “priorities inherit”, this call changes the priority back to the 

default priority. 

 

• Info: 

This system call gives information concerning the slot and queue. The caller must specify the 

type of information and the return value contains this. This information is used at higher 

levels in VCB when different program execution decisions are to be made. 
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Differences between Hardware/Software threads in VCB-API 

There are certain minor restrictions in the hardware implementation of VCB-API. The priority 

inherit functionality is not available for use by hardware threads and it is not possible change 

the priority dynamically or block/restart a hardware thread. The VCB-API interface 

implemented in VHDL contains, however, the same set of system calls as for software threads 

to permit communication with the VCB. 

 

VCB-core 

The VCB-core consists of four different parts as shown in Figure 19. This block is used to 

implement the VCB-core functions and to manager the globally shared system memory. This 

contains all relevant messages and these can only be accessed through the VCB. 

 

 
 

Figure 19 VCB-core architecture 

 

The multiplexer block is used to manage different types of accesses, either HW (Hardware) or 

SW (Software) calls. The different system calls are routed through the multiplexer to the slot 

block. The controller block determines which of simultaneous accesses to the core is to be 

given precedence and the other two blocks manage the lowest level of system calls in the 

VCB-API (see Figure 18).Multiplexer 

The multiplexer incorporates an important part of the VCB-core functionality. To avoid 

restricting the use of VCB-API to software threads only, the VCB-core multiplexer is 

augmented with a request-driven component which controls the communication with the 

VCB-core. The multiplexer enables hardware threads to communicate with software threads 

via the VCB-core. The multiplexer acts as a sort arbitrator granting access to one of the units 
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if more than one are simultaneously requesting access to the core. The objective is to obtain a 

common interface for communication, irrespective of whether the caller is implemented as 

software threads or as hardware threads. 

The state transitions take all relevant signals into account in order to preserve the protocol of 

the VCB communication. The owner (the unit granted access to the VCB-core) must remain 

owner of the entire transaction. All state transitions and their conditions are illustrated in (see 

Figure 20), and are explained below. 

 

 
 

Figure 20. State transitions s for the different transactions 

 

[IDLE -> IDLE:] 

No unit requests communication. 

[IDLE -> SW:] 

A SW-thread request for VCB-core communication. 

[IDLE -> HW:] 

A HW-thread wishes to utilize VCB-core functionality. 

[SW -> SW:] 

SW-thread transaction in progress 

[SW -> HW:] 

The previous SW-thread transaction has been finished and a HW-thread is waiting to gain 

access. 

[SW -> IDLE:] 

The previous SW transaction has been finished and there is no pending HW or new SW 

request. 

[HW -> HW:] 

HW-thread transaction in progress. 
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[HW -> SW:] 

The pending SW-thread request is accepted for processing when the current HW-thread 

transaction is completed.  

[HW -> IDLE:] 

There are no requests from the units and no current HW-thread transaction.  

 

Slot 

The VCB-core functionality is divided into separate blocks ( see Figure 19), slot and message 

queue to reduce the complexity of the VCB-core functionality. All system calls enter the slot 

block, and the calls {allocate, open, close, delete}, determine the slot information (see Figure 

21) they do not use the functionality in the message queue.  

 

 
 

Figure 21 Slot information in on-chip memory 

 

The other system calls use the functionality defined in the message queue block. Data is first 

entered into the slot block which determines if the slot is open or closed. If the slot is open, 

the slot block routes the system call information into the message block and then sends a call, 

(put, put_ready, get, get_ready, or info) to the message queue. The return value from this call 

is passed by the slot block to the VCB-API together with a supplement to the system call 

concerned. 
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Message queue 

The different index numbers of the messages located in the global shared memory are 

managed by this block. The system calls {put, get} return an index number from the message 

queue associated with the relevant slot.   This index number identifies the particular messages 

in the buffer. The different system calls {put, put_ready, get, get_ready} transform the 

particular message buffer into different states (see Figure 22) and the messages posted are 

sorted in a selected algorithm, FIFO or PRIORITY, defined by the system call allocate. 

 

 
Figure 22 Message queue information and status in on-chip memory 

 

The system calls must be received in the correct sequence, e.g. to send a message the 

sequence must be put follow by put_ready.  These two system calls transform the particular 

message to the get state. When the message is in the get state, it is ready for delivery to the 

owner of the queue. To read a message, the owner must make a receive call which generates a 

sequence of calls, the first of which is the get call. The return message from this call will be 

given the first index number in the queue with the get state status. This call also transforms 

the index number to the get-ready state. The next system call will be get_ready to complete 

the read operation.  
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System architecture 

The system architecture of the complete implementation includes a software processor kernel 

CPU from Xilinx [26]. This kernel executes the software threads in the system. The real time 

unit is an accelerator which manages the software thread scheduling, interrupt and semaphore 

handling in addition to time management control in an external hardware component. The OS 

accelerator supports two different scheduling algorithms, fixed priority scheduling and Round 

Robin.  

 

 
 

Figure 23 Hardware and Software architecture 

 

The memory of this system is in two parts, an on- chip block RAM reserved for program code 

and local data structures and an off-chip memory [36] which contains all message information 

in the VCB interface. 

All devices in the system are connected through the IBM CoreConnect [32] bus. The on-chip 

peripheral bus (OPB) is designed for easy connection of on-chip peripheral components. The 

OPB is a fully synchronous bus which functions independently at a separate level of the bus 

hierarchy. The processor core can access the slave peripherals on this bus through the 

processor local bus (PLB) to the OPB bridge unit which is a separate core. 
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Application code example 

The VCB concept is implemented in both software and hardware. Some parts are 

implemented in hardware to achieve higher performance and/or to attain a higher level of 

abstraction. 

 

Sending and receiving messages: 

 

The sender and receiver threads (HW/SW) must allocate a slot before communication. The 

procedures described below for making a send/ receive call must be followed.  

 

The sending procedure 

1. The sender requests permission to send a message to a slot and receives a message 
index number allocated to the message by the VCB core 

2. The sender copies the message to the message buffer. The VCB core must be informed 
when the copying is completed.  

3. The VCB core sorts the message queue and the receiver may then read the message. 
 

The receiving procedure 

1. The receiver requests permission to read a message from its slot and receives a 
message buffer reference to the first message in the queue from the VCB-core. 

2. The receiver must copy the message from the message buffer, if the message is to be 
saved. The VCB core must be informed when the copying is completed.  

 

The VCB core transforms the state of the message queue to “available” and the message 

buffer is then available for new messages. 
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Receive service call in Software thread (C-code) 
-- T1 Connect to the slot -------------------------------  

retval=vcb_connect("t1",SLOT_1, INHERIT,FIFO_SORT); 

-- Other code 

… 

 

-- Thread T1 Send  msg ------------------------------------------- 

if( vcb_send("Hello word",strlen("Hello word” ),SLOT_2,T1)!=VCB_OK) 

    error handler 

} 

 

-- T2 Connect to the slot -------------------------------  

retval=vcb_connect("t2",SLOT_2, INHERIT, 

FIFO_SORT); 

-- Other code 

… 

-- Thread T2 Receive msg ------------------------------------------- 

if(vcb_receive(msg,&size,SLOT_2,&sender,w4m,print_string)!=VCB_OK) 

    error handler 

} 

 

Receive service call in Hardware thread (VHDL-code) 

 

-- T1 connect to the slot 1-------------------------------- 

-- do a CONNECT 

when CONNECT => 

   vcb_call <= '1'; 

   vcb_args(nroffunc+defaultarg-1 downto defaultarg) <= VCB_FCONNECT; 

   vcb_args(nrofslot downto 0) <= myslot & msg_sort_prio; 

   state <= WAIT_CONNECT; 

 

-- Other code 
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-- Send msg to thread  

when SEND => 

   vcb_call <= '1'; 

   vcb_args(nroffunc+defaultarg-1 downto defaultarg) <= VCB_FSEND; 

   vcb_args(nrofslot+1 downto 0) <= destslot & "10";  -- slotid, msgprio 

   vcb_sendmsg <= X"ABBA_ACDC"; 

  state <= WAIT_SEND; 

 

-- Other code 

 

-- T2 connect to the slot 2-------------------------------- 

 when CONNECT => 

    vcb_call <= '1'; 

   vcb_args(nroffunc+defaultarg-1 downto defaultarg) <= VCB_FCONNECT; 

    vcb_args(nrofslot downto 0) <= myslot & msg_sort_prio; 

    state <= WAIT_CONNECT; 

 

-- Other code 

 

-- T2 Receive msg ---------------------------------------- 

 when REC => 

 -- signals to RECEIVE 

    vcb_call <= '1'; 

    vcb_args(nroffunc+defaultarg-1 downto defaultarg) <= VCB_FRECEIVE; 

   vcb_args(0) <= VCB_WAITFOREVER; 

   state <= WAIT_REC; 
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Result 

The hardware implementation of the VCB-API is not fully optimal and could be further 

optimized in certain respects.  

 

 

Figure 24 VCB-API physical size in slices 

 

If the design of the VCB-API and the VCB-core is made more parallel, its size will be 

increased. The design, including only the VCB-API, already has the footprint (see Figure 24) 

of a 1M-gates device [24]. 

 

 

Figure 25 Timing diagram for VCB-API and VCB in clock cycles. 

The timing would be more deterministic if the design were more parallel. A redesign of the 

VCB-core could reduce the variation in the number of clock cycles to give a more 

deterministic behavior (see Figure 25). This, however, would also result in an increased size. 

If a particular application should demand a more deterministic behavior, a redesign is 

possible. 
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Conclusion  

• In this paper we present a novel uniform interface between hardware and software 
threads. It shows how to construct a combination of software and hardware threads at 
the same level of abstraction. 

• The interface conceals the lower level of hardware/software communication and a 
system designer could reuse the different application threads without rewriting the 
hardware/software communication interface for each new partitioning. 

• The interface also permits the designer to reuse the complete software or hardware 
thread or the complete design. The interface currently offers the same semantic 
behavior in both cases but with different notations of the API. This is because of 
limitations in the VHDL-93 languages which do not allow signals on one level of 
abstraction to affect signals on another level of abstraction. 
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9 PAPER C 

A hardware device driver implementation using an Application 

Programming Interface for Hardware and Software Threads 

 

Abstract 

The main motivation for this work is to utilize the enormously powerful characteristic of 

hardware parallelism to move functions from software to hardware in embedded systems. 

This study conceptualizes a hardware-software communication and synchronization 

mechanism at the thread level abstraction. We call the communication and synchronization 

mechanism Virtual Communication Bus (VCB). The hardware based VCB controller has 

been used by software threads for some years, but with this extension also allows hardware 

threads to use VCB. This mechanism together with hardware functionality is used to enabling 

hardware independent access to external I/O devices. Results during this work are an 

implementation of one Application Programmable Interface (API) for hardware threads. We 

also achieve zero overhead and 36 times faster response time through the additional 

mechanisms for hardware thread API. The articles validate the concept at a new developed 

printed circuit board (PCB) prototype with a design in one chip (XILINX FPGA). This chip 

contains one single processor PowerPC405 processor and about 800 000 programmable gates. 
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Introduction and background 
Software has for many years used standardized communication protocols between software 

threads.[1][4][22] The last year’s new FPGA (Field programmable Gate arrays) devices from 

XILINX [24]and Altera [25]have opened up for easy implementations of a mixture between 

hardware and software components. Components in software are often called threads, tasks or 

process. Hardware components can be called block, task, process or thread, in this article we 

call software and hardware components threads. The hardware thread could be a combination 

of parallel, sequential and conditional execution of operations and the software threads are by 

definitions sequential. A standardized API on HW/SW thread level and the programmable 

FPGA technology open up for easier technology choice between hardware and software 

threads. Standardization gives less misunderstanding, easier reuse of components and also 

facilitates design for reuse of complex hardware threads. Attempts to solve some of the real 

time problems related to the communication between hardware and software thread are given 

in [1][4][17], where an interface between HW/SW is designed and implemented. This article 

deal with the real time problems, related to the communication between the software 

application and an ordinary external I/O device universal asynchronous receiver / transmitter 

(UART). 
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System overview 
A common architecture for a computer system contains a processor unit CPU, an operating 

system, peripheral devices and an application. In Figure 26 A, the common system and device 

drivers are in software. Another approach for system architecture is shown in Figure 26 B, 

were the architecture includes the same amount of functionality, but the shared processor only 

runs the application code. Operating system functionality and the device driver management 

is removed from the software architecture and implemented in concurrent hardware units. 

This is for utilizing the parallelism to CPU and the massive concurrency in hardware. 

 

 

Figure 26 A and B; Common approach and the papers approach for system architecture  

To understand the architecture we first describe different hardware components in this work. 

 

VCB concept 
The VCB is an inter process communication (IPC) system implemented in hardware [11]. 

Like any other IPC system the VCB is used by threads to communicate information. This is 

done by writing to and reading from slots that are “connected” to the “virtual bus”. The VCB 

can provide communication between threads on a single processor system as well as on a 

multi processor system. In this work we use single processor systems. The VCB (see Figure 

27) contains a logical structure with three main components; an application programmable 

interface (we call VCB-API), a slot and a message queue.  To each slot a hardware or 

software thread can be connected and communicate with other slots without knowing if they 

are in hardware or software. In Figure 27 there are three slots, two software threads and one 

hardware thread. A message transfer contains a specified amount of data and has a fixed 

maximum length specified in the configuration of the interface. All messages are stored in the 

global system memory and could only be accessed by using the VCB. 

VCB-API is an interface for the service calls to the VCB bus and is standardized for both 

soft/hard API, se next section. 
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The slot provides the abstraction of a communication channel as a data structure and must be 

allocated and initialized. The slot is a system resource allocated by one thread and cannot be 

used by other application threads. The data structure for a slot contains information about the 

owner id(entity), if the slot is open or closed, and the default priority of the application thread.  

 

 

Figure 27 VCB thread communication 

The message queue contains the message to the thread. A specified algorithm sorts the 

messages in either PRIORITY or FIFO order, the sorting algorithm must be specified when a 

thread allocates a slot. A thread can inherit highest priority from the messages in the queue to 

avoid priority inversion. A sender task can use time-out constraints on full queues and a 

receiver task can do the same on empty queues, e.g. a receiver task can be set to wait a 

specified time for a message and a sender can wait a specified time if the buffer is full. All 

this is handled by hardware. 

Real time Scheduler in Hardware 
In the system a thread scheduler is also implemented in hardware and we call it in this paper 

for a (RT-SCH). The VCB use the scheduler to change priority and block or allow the 

software threads. Also the RT-SCH works in true parallel to the CPU and the other hardware 

units. It is called RTU (Real-Time Unit) or Sierra in our previous research, for more 

information see [2][11]. 

 

VCB architecture 
The logical view of VCB (figure 3) is divided in two different layers. The first layer is divided 

in two technological dependent interfaces; one for hardware VCB_HW_API and one for 

software VCB_SW_API, They represent the interface to the software/hardware 

communication mechanism. The second one is VCB_core used both by hard and software 
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threads and contains the message passing protocol. The VCB_API is technology dependent, 

for software threads it is designed in C and for hardware threads in VHDL. 

 

 

Figure 28 VCB structure 

The VCB_core have three connections; HW treads API (point to point), system bus and the 

real-time scheduler (RT_SCH). It contains three components; multiplexer, slot controller and 

message queue controller. 

 

Figure 29 VCB_core architecture 

Connections to the VCB_core are the 

• System bus connection: 
Only for software threads communication. The VCB is a slave on the system bus and 
the CPU reads and writes to the memory mapped registers file. 

• Hardware threads connections: 
Only for the hardware threads. Point to point to the hardware threads without using the 
system bus. 

• Real-time scheduler connection: 
Used to start, stop and change priority of the software threads. The communication is 
done point to point without using the system bus. Hardware threads do not need any 
scheduler or priority change, because they are always running. 

 

The VCB_core manages all information about the VCB status. The core is designed with 

three different components. 
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VCB_core components the  

• Multiplexer  
Acts as a form of arbitrator to prevent more then one VCB_API call to be served by 
the slot controller. The calling threads can not be interrupted during the entire 
VCB_core transaction. To the Multiplexer is all HW_VCB_API and system bus 
connected. 

• Slot controller  
All system calls enter the slot controller from Multiplexer, and the calls {allocate, 
open, close, delete} can be handled by the slot. Other system calls must be manages 
by the message queue controller [5]. The slot controller also manages to inform the 
hardware based real-time kernel to start/stop and change priority of the software 
threads. 

• Message queue controller 
Handle the message queues located in the system memory and sorted in a selected 
algorithm, FIFO or PRIORITY. This is done with index number identifying the 
particular messages. The index is used by VCB_API to inform the thread of the 
address to the message [5]. 

 

Application Programming Interface for software and hardware threads 
This chapter gives a brief description of the application programming interface. The 

application programmer use the interface containing those different system calls, vcb_init, 

vcb_connect, vcb_disconnect, vcb_send, vcb_receive, vcb_broadcast and vcb_send_wait . The 

VCB_API has technology mapped API in C for software threads and VHDL for hardware 

threads. Table 1 gives a summary of all the system calls. Further in this chapter a small 

example is presented of one soft- and hardware thread communicating through VCB. This 

small example will show how to use vcb_connect and vcb_send,vcb_receive in an application. 

 

Table 1, service calls for VCB 

SVC Description 

Vcb_init Resets the entire VCB-interface and removes all owner information and 

messages in the interface. 

Vcb_connect Connects a thread to VCB, enabling the owner of the slot to read or write 

messages to the queue. The caller must specify the name, slot number, 

message sorting algorithm and default priority of the thread, which the 

caller intends to use. 

Vcb_disconnect Disconnect the thread from the vcb_slot. All messages will be removed and 

the slot will be released. 
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Vcb_send A thread sends a message to another slot. The user must specify a pointer to 

the message, the quantity of data to be transferred, the receiver of the 

message, the priority of the message and the sender identity. 

Vcb_receive A thread requests the permission to read a message from the message 

queue.  

 

Vcb_broadcast This system call sends message to all threads connected to a slot. Multiple 

use of vcb_send will be used to implement this call. 

Vcb_sendwait The vcb_sendwait system call sends a message to a specified thread and 

waits until a response is received from the thread called or when a preset 

time expires.  

 

The sender and receiver thread must allocate a slot before communication (vcb_connect). 

Then the procedures below must be followed. 

 

Syntax description of two service calls, vcb_connect and vcb_receive in C 
code. 
 

Description of vcb_connect: 

extern int vcb_connect( const char *name, int conn_slot_id, int prio_inher, int prio_sort ); 

 

Arguments: 

name  /* ASCII name at the owner of the slot*/ 

conn_slot_id /* Identity of the connected slot*/ 

prio_inher /*Allow priority inherit or not from the arrival mail*/  

prio_sort  /*Type of sorting mechanism either FIFO or priority*/ 

 



 

 

 

 

 

65

Description of vcb_receive: 

extern int vcb_receive( void *msg, int *size, int owner, int *sender, int w4m, void 

(*handler)(void *msg, int size,int sender) ); 

 

Arguments: 

void msg  /* Location of transfer data */ 

int size   /* Size of transferred data */ 

int owner /* The slot owner identity*/  

int sender /* Identify the sender of the mail*/  

int w4m   /*Defines if the caller should be wait for mail or not*/ 

void (*handler)(void msg, int size,int sender) /*Handel the received message*/ 

 

Returns: VCB_OK or an error on illegal input 

 

Synopsis 

/* Connect thread T1 to slot number one */ 

retval=vcb_connect("t1",SLOT_1, INHERIT,FIFO_SORT); 

 

if(vcb_receive( msg_data, msg_size,sende_id, w4m, 

handler(msg_data,msg_size,sender_id))!=VCB_OK){ 

  error handelr 

else 

  other code … 

 

The return value from this system call will be VCB_OK if the call was successfully. 

Syntax description of vcb connect and vcb_receive in VHDL code. 
Figure 30 describes the logical structure of a hardware threads we later give an example of 

connect and receive from the VCB. A hardware thread is described in VHDL code. 

Application VHDL code describes the semantic functionality of a hardware thread; the 

description could be either parallel to use the hardware parallelism and/or sequential 

execution. One VCB_HW_API is instantiated in each hardware thread and it has connection 
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to both the VCB_core and the system bus sees Figure 30. The system bus is used to move 

messages to main memory.  

 

 

Figure 30 General hardware thread 

The hardware thread could implement any type of functionality without interfere with the 

software application. The only system communications a hardware thread will require are the 

VCB together with the system bus, used to communicate with other software threads in the 

system. For more information see [5]. Below a description of the system call vcb_connect and 

vcb_send included in the VCB-API package will be described in the VHDL case. 

 

Description of vcb_connect: 

Except for the name parameter the system call will be the same as for the software case. The 

name parameter has been excluded in the hardware case. 

 

Arguments: 

conn_slot_id /* Identity of the connected slot*/ 

prio_inher /*Allow priority inherit or not from the arrival mail*/  

prio_sort  /*Type of sorting mechanism either FIFO or priority*/ 
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Description of vcb_send: 

The vcb_send call makes by specify call types; in this case the number is 6. Then the other 

parameters are the same as the software case. Except from the pointer in the software case, the 

solution in the hardware case will be to use a separate bit-vector to transfer the data. 

 

31 – 28 27–16 15-12 11-8 7-4 3-0 

6 Not used Size Address Priority Slot ID 

  

Arguments: 

Size   --Amount of data to be transferred 

Address   --Identity of the sender 

Priority   --Mail priority  

Slot ID  --Address to the recipient of the message (Slot user) 

Note: 

send_data -- Send data is transferred by a separate bit-vector 

Return codes:  svc_ret[0] return code 0=OK, 1=not free 

Synopsis 

-- T2 connect to the slot 2 

case c_state is 

  when CONNECT => 

    connect_args<=connect&X"2"&msg_inherit&sort_alg –Slot id number 2, no inherit, FIFO 

order 

    c_call_api <= '1'; 

    c_state <= WAIT_CONNECT; 

  when WAIT_CONNECT => 

      if rdv_api = '1' then 

          connect_ok<='1'; 

          c_vcb_call <= '0'; 

          c_state <= IDLE_CONNECT; 

      else 

          c_state <= c_state; 

      end if; 
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--When hardware thread T2 sends a message to T1 at slot number one, 

case s_state is 

  when SEND => 

      send_data<=X”ABCD”; 

      send_args<=send&size&address&priority&slot_id; 

      s_call_api <= '1'; 

      s_state <= WAIT_SEND; 

  when WAIT_SEND => 

      if rdv_api = '1' then 

          send_ok<='1'; 

          s_call_api <= '0'; 

          s_send <= IDLE_SEND; 

      else 

          send_s <= send_s; 

      end if; 

Software and Hardware device driver cases  
A device driver acts as a translator between a hardware device and software threads. One 

benefit to use device drivers is to break the dependency between the application and the 

lowest level hardware dependent software code. Every physical device, whether it is a printer, 

disk drive, or keyboard, must have a driver program. A device driver example for an UART is 

used to demonstrate and proof the concept and monitor the overhead The UART device is the 

connection between a serial port (RS232) and the system bus. A UART converts 

asynchronous serial data bits communication into a parallel byte stream and vice versa. 

Output and input to the UART device is two serial busses (one receive and one transmit) 

connection. The UART has a memory mapped register interface, where the register is used to 

control, read/write information and read status. We call this part the physical UART device. 

A software device driver can be designed, described and handled in some ways and a standard 

software device driver always has a specified API. The standard driver API often provides 

five different types of calls; init, opened, close, read and write. In the test cases A and B the 

device driver will be handled as an ordinary thread, an UART thread. This thread will manage 

the hardware dependent code. A thread context switch (CTX) is the computing process of 

storing and restoring the state of a CPU (the context) at a memory location. 
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Case A Software device driver (software UART threads) 
The first system architecture shown in Figure 31 contains one processor kernel, RT-SCH, 

UART, and VCB without support for hardware threads. The VCB core has only connection 

with the system bus and HW-SCH. The System busses are from IBM (Core connect) [32]the 

bus architecture include the processor local bus (PLB), an on-chip peripheral bus (OPB), a 

bus bridge and a device control register (DCR) bus. The real-time thread scheduling is 

managed by a hardware implemented scheduler. The real-time scheduler has support for 16 

software threads at 8 priority levels and has support for time and semaphore handling [2]. The 

memory hierarchy in this system is divided in three levels. The first level is the on-chip cache 

in the processor kernel, not used during our test cases described below and in section 0. The 

second level is the on-chip block RAM and the third level is the off-chip memory, those two 

different memory levels contain system data and program code. The I/O block is a UART 

(Universal Asynchronous Receiver/Transmitter). This UART have a simple register interface 

with no buffering support. The interface is memory mapped and reaches from a base address 

X and five consecutive addresses ahead. 

 

 

Figure 31 System architecture without hardware threads. 

 

The UART-thread is scheduled as an ordinary application thread. The software interrupt 

service routine ISR is executed when the physical UART device fires an interrupt. The ISR 
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manages the communication with the HW-VCB to generate a system event. A system event in 

this case is a rescheduling of the software threads. 

The UART-thread use init, opened and read. And also use the vcb_connect, vcb_send and 

vcb_receive to communicate with the application. The terminal thread could read/write data 

from/to the physical UART device through the UART-thread. 

The Figure 32 shows the sequence of processes which handle the physical UART device in 

the “software case”. 
 

 

Figure 32 Response time in case A 

 

1. One 8 bits ASCI data is arriving to the physical UART device and convert to one 
parallel byte. 

2. Interrupt to the CPU 
3. ISR starts and acknowledge the interrupt and send an event to start UART-Thread 

(device driver) through the HW-VCB unit 
4. Tread Context switch to UART-Thread (CTX) 
5. UART-Thread read the ASCI from physical UART device and if it is “carriage return” 

or the right amount of bytes has been read it starts terminal-thread else it collect the 
bytes in a memory array and block it’s self. 

6. Thread CTX, and next thread starts from ready queue. 
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Case B; Hardware device driver (hardware UART threads) 
 

The second system architecture has the same configuration as in case A, but it also has an 

extension with support for HW threads. The I/O device in this case is removed from the 

shared system bus and is included in the hardware thread. The hardware thread manages the 

functionality connected to the UART device. 

 

 

Figure 33 System Architecture overview with support for hardware threads 

 

A hardware UART thread has the same semantic function as the software UART thread. Both 

threads will use the same interface to communicate with other software application threads. 

The difference between the software and hardware UART thread is that the hardware thread is 

always running in the system and will not utilize the CPU to manage the physical UART 

device. A hardware UART device driver thread interfaces the physical UART device directly 

through a point-to-point connection. The point-to-point connection includes 8 bits wide data 

bus, interrupt and acknowledge signals from/to the UART device. The HW_VCB_API 

connects the hardware thread to the software application through the VCB. The 
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HW_VCB_API has a master connection to the system bus used to transfer message data to 

the main memory with Direct Memory Access (DMA), see Figure 34. 

 

 

Figure 34 Physical UART and Hardware thread architecture 

 

The physical UART component has a direct connection to the external environment through 

the two serial busses RX and TX. A hardware thread handle the arrived interrupt instead of 

directly interrupt the processor kernel, as in case A. The incoming interrupt request signal 

trigs a sequence of different statements, that we call ISR (to get equivalent semantic as in case 

A). The UART HW thread reads out characters form the data buffer. The sequence to read out 

one character from the physical UART takes three system clock cycles. The read characters 

are stored in a buffer. When the buffer is full or on carrier return arrival the hardware thread 

will send a VCB message to the subscriber of data from the UART device. The sequence of 

activity in case B will be described below Figure 35. 
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Figure 35 Response time in case B  

The sequence of events in case B,  

1. One 8 bits ASCI data is arriving to the physical UART device and convert to one 
parallel byte, 

2. Interrupt to the ISR (hardware), 
3. ISR starts and acknowledge the interrupt and start UART thread, 
4. UART-Thread read the ASCI from physical UART device and if it is “carriage 

return” it start terminal-thread else it dose nothing more. 
5. When the hardware-thread sends a message to the Terminal thread a CTX occur in 

the system. 
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Test platform description 
A new PCB was developed with one FPGA, peripheral components, external RAM etc, see 

Figure 36. The FPGA architecture includes a hard CPU from (IBM PowerPC 405), and about 

800 000 programmable gates and 18k RAM in a single FPGA chip from XILINX. 

 

 
 

Figure 36 Test board  

The programmable gates are programmed with hardware architecture except the CPU. The 

CPU is an ASIC within the FPGA chip. The system platform development tools used to 

generate the system platform are the Embedded Development Kit EDK and ISE from 

XILINX [24]. Those tolls generate a downloadable hex file for selected device; in this case a 

Virtex II PRO (XC2VP4). The hex file contains a complete system and the on chip memory 

configuration. The tools used to developed and generate the software are GNU tools [24] 

adjusted to fit into the XILINX design flow. 
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Results 
Two main results are shown in this article, which are the HW/SW VCB-API and two different 

device driver cases A/B. Every hardware component in the hardware architecture is running at 

50 MHz. 

 

VCB-API results 

The first result was the response time for different service calls for hardware/software VCB-

API. The measurement was done with a timer on the System bus (in the FPGA), counting 

with system clock frequency and the probe effect was subtracted from the result. 

 

Table 2 HW/SW VCB Service Calls response times (System clock 50MHz). 

API/Calls SW  HW  Quota 

Connect 96.72us 1,65us 58,6 

Disconnect 220.02us 2,5us 88,0 

Send 135.12us 1,51us 89,5 

Receive 490.66us 2,48us 197,8 

Send&Wait 640.36us 3,99us 160,5 

Broadcast 630.82us 6,20us 101,7 

 

The result shows a decrease in response time between 60 and 200 times, where the most 

complex service calls gives the largest differences. 
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UART Driver case A and B 

The second result shows the implementation of hardware device drivers and the response 

time, measured when the interrupt occur until the interrupt routine ISR and the UART-Thread 

manage the event. Table 4 shows the time when the interrupt occur to the character from 

UART is send to the consumer thread. In the software case A, 100us is needed to service one 

interrupt and the communication with the physical UART. Those 100us seconds is an 

overhead time for the software application. The same sequence in case B took 2,76us. In this 

case everything is done in hardware and running simultaneous with the software application. 

Thereby the overhead for the application will be zero. The latency from the UART thread in 

those two cases will be (OHT+VCB_send+CTX+VCB_receive) see Table 3.  

 

Table 3 Response time from the physical UART see Figure 32 and Figure 35 

CASE A B 

Response time 749,98us 519,33us 

 

Table 4 Overhead time for CASE A and B see Figure 32 and Figure 35 

CASE A B Relation 

ISR 18,54us 1.23us 15,1 times 

CTX 24,20us *** Infinity 

UART-Thread 57,30us 1.53us 34,5 

Overhead time (OHT) 100us 2,76us 36,0 

 

The design size for the extra logic for VCB-API is described in next table. 

Table 5 Footprint for a HW_VCB_API in a hardware thread 
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Conclusions and discussion  
• We have proved that a standardized VCB interface for SW/HW threads is a feasible 

way to increase the effectively of design device drivers with less overhead time, no 
interrupt from the physical devices and zero overhead for the CPU. This study was 
made by adapting communication to the hardware scheduler, with interface to 
hardware threads.  

• If the serial port is set to 19200 baud. That means there are 19200/8 interrupts per 
second. At 100us each, this represent about 20% CPU overhead for a single channel 
using the standard CPU in our study. For 5 serial channels with 19200 baud, the result 
will be in worst case 100% load only for the interrupts. Today’s new design technique 
gives the possibility to avoid the use of general architectural solutions.  

• The FPGA technology has open a possibility to solve architecture in more an 
application demanding way. The design space has increased, because of the 
programmable gate arrays; they open up for an incredible lot of new hardware 
architectural freedom. Future work in this area could be to optimize the interface to get 
a cost-effectiveness of the VCB-API. But also look at how could a system with many 
hardware threads be implemented in an effective way. 
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10  APPENDIX 
VCB is divided in two layers the highest layer is the application interface VCB_API, used by 

the application designers to communicate and synchronies the application. This layer could be 

implemented either for software designers or the hardware designers. The lower part 

VCB_CORE includes the protocol functionality of the VCB and this part is always 

implemented in hardware. Used by both the software and hardware VCB_API. 

 

 

Figure 37 VCB structure 

 

The VCB supports communication through message queues. A queue can be owned by a 

thread, which means that only one thread can read or write messages from a “Slot”. Read or 

write function call supports “synchronous” or “asynchronous” calls. A “Slot” can be 

configured to support priority inherit from the messages priority. Message priority will be 

inherited to the software thread. Messages in a queue can be sorted by FIFO or PRIORITY 

order. 
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10.1 Software Application Programmable Interface VCB-API 

Used by the software designers to communicate and synchronize the software application. 

 

Disconnect 
void disconnect( int slot_id ); 

 

Description: 

Disconnects a software thread if it has been connected with the method connect earlier. 

Returns: VCB_OK or VCB_ERROR if the method failed. 

 

Argument: 

int slot_id: Numerical number of the slot 

 

Connect 
int connect( const char *name, int slot_id,bool prio_inher, bool prio_sort,bool 

task_prio_sort); 

 

Description: 

This system call connects a thread to the bus. The name may not exceed 

VCB_MAXNAMELEN. The slot_id should be positive and not exceed 

VCB_MAXSLOTNUMBER. Name: A name instead of a number Slot_id: Returns: VCB_OK 

if connected else an VCB error. 

 

Argument: 

const char *name: Name of the slot 

int slot_id : Numerical number of the slot 

bool prio_inher: Used to inherit priority or not from the mail 

bool prio_sort: Type of sorting algorithm FIFO or PRIORITY order 
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Receive 
int receive( void *msg,int *size,int *sender,int timeout,void (*handler)(void *msg, int size, 

int sender) ); 

Description: 

Receive a message Wait for a message to arrive and then copy it to <msg> of size <size> and 

call the <handler>. The <timeout> defines how long should be waited until a message arrives. 

 

Argument: 

void *msg : Message location 

int *size: Amount of transferred data 

int *sender : Sender identity 

int timeout: Amount of time, waiting at a mail 

void (*handler)(void *msg, int size, int sender): Call back routine, used to read a mail at the 

inherit priority. 

 

Send 
int send( void *msg,int size,int address,int priority ); 

 

Description: 

Send the message <msg> of size <size> to <address> with priority  

<priority>. The <size> may not exceed VCB_MAXMSGSIZE. This method is blocking until 

the message successfully is sent. Returns: VCB_OK or an error on illegal input. 

 

Argument: 

void *msg: Location of data 

int size: Amount of data  

int address: Address to the reader of the message 

int priority: Mail priority 
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Send & Wait 
int sendwait( void *msg, int  size, int address, int  priority, void *rcvmsg, int *rcvsize, int 

timeout ); 

 

Description: 

Send a message and wait for answer 

 

Argument: 

void *msg: Location of data 

int size: Amount of data to be transfered 

int address: Address to the reader of the message 

int priority: Mail priority 

void *rcvmsg: Received mail location 

int *rcvsize: Amount of transferred data 

int timeout Amount of time, waiting at a mail 

 

Broadcast 
int broadcast( void *msg, int size, int priority ); 

 

Description: 

Broadcast the message <msg> of size <size> with priority <priority>. 

 

Argument: 

void *msg: Location of data 

int size Amount of data to be transferred 

int priority: Mail priority 
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Init 
int init( void ); 

 

Description: 

This method is only needed to be called once in the entire system. 

It should be called before any other VCB method is called. Returns: VCB_ERROR if 

something went wrong else VCB_OK. 

 

Argument: 

None 
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10.2 Hardware Application Programmable Interface VCB-API 

Used by the hardware application designers to communicate and synchronize the hardware 

application threads. 

 

Disconnect 
call_args <= disconnect&slot_id; 

 

Description: 

Disconnect a thread N from the VCB-bus at slot number X. If the calling thread is the owner 

of the slot number X the return value will be OK otherwise the value is VCB_ERROR. 

 

Argument: 

31 – 28 27–16 3-0 

1 Not used Slot ID 

Slot ID: 

Specifies the slot ID (0-3). 

Return codes 

svc_ret[0] return code 0=OK, 1=not owner of the slot 
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Connect 
call_args <= connect&msg_sort_alg&prio_inherit&slot_id; 

 

Description: 

Connect a thread N to the VCB-bus at slot number X. If the slot number is available the return 

value from the function call will be OK otherwise the return value will be VCB_ERROR 

 

Argument: 

31 – 28 27–16 5 4 3-0 

2 Not used Msg sort algorithm Priority inherit Slot ID 

Slot ID: 

Specifies the slot ID (0-3). 

Priority inherit 

The thread inherit or not from the arrival mail, not available for hardware threads. 

Message sort algorithm: 

Specified the type of sorting algorithm 0=FIFO 1=Priority. 

Return codes 

svc_ret[0] return code 0=OK, 1=not free 
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Receive 
call_args <= receive&w4m& slot_id; 

 

Description: 

Receive a message from slot number X to read a message the user of the slot hade to bee the 

owner of the slot and the user hade to specify the blocked or non-blocked function call. The 

blocked functionality will only bee available for the software threads. If the destination slot is 

available and is opened the return value from this function call will be the particular message 

and the OK value, otherwise the return value will be VCB_ERROR. 

 

Argument: 

31 – 28 27–8 7-4 3-0 

4 Not used Wait for mail or not Slot ID 

 

Slot ID: 

Specifies the slot ID (0-3). 

Priority inherit 

Define if the thread will be blocked or not if the reader hasn’t any mail. 

Address 

Return codes 

svc_ret[0] return code 0=OK, 1=no mail 
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Send 
call_args <= send&msg_size&msg_adr&prio_inherit&slot_id; 

 

Description: 

Send a message to a thread through the specified slot_id. If the destination slot is available 

and if the slot is opened the return value from this function call will be OK otherwise the 

return value will be VCB_ERROR 

 

Argument: 

31 – 28 27–16 15-12 11-8 7-4 3-0 

6 Not used Size Address Priority inherit Slot ID 

Slot ID: 

Specifies the slot ID (0-3). 

Priority inherit 

The thread inherit or not from the arrival mail, not available for hardware threads. 

Address 

Specified the destination slot. 

Size 

Amount of data to be transferred 

Return codes 

svc_ret[0] return code 0=OK, 1=not free 
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Send & Wait 
call_args <= send_wait&msg_size&msg_adr&prio_inherit&slot_id; 

 

Description: 

Send a message to a thread through the specified receiver specified at a slot_id. If the 

destination slot is available and if the slot is opened the return value from this function call 

will be OK otherwise the return value will be VCB_ERROR. Wait for replay from the 

receiver. 

 

Argument: 

31 – 28 27–16 15-12 11-8 7-4 3-0 

7 Not used Size Address Priority inherit Slot ID 

Slot ID: 

Specifies the slot ID (0-3). 

Priority inherit 

The thread inherit or not from the arrival mail, not available for hardware threads. 

Address 

Specified the destination slot. 

Size 

Amount of data to be transferred 

Return codes 

svc_ret[0] return code 0=OK, 1=not free 
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Broadcast 
call_args <= broadcast&msg_size&msg_prio; 

 

Description: 

Send a message to every connected thread at the VCB. If the destination slot is available and 

if the slot is opened the return value from this function call will be OK otherwise the return 

value will be VCB_ERROR 

int broadcast( void *msg, int size, int priority ); 

 

Argument: 

31 – 28 27–8 7-4 3-0 

8 Not used Size priority 

Slot ID: 

Specifies the slot ID (0-3). 

Priority inherit 

The thread inherit or not from the arrival mail, not available for hardware threads. 

Address 

Specified the destination slot. 

Size 

Amount of data to be transferred 

Return codes 

svc_ret[0] return code 0=OK, 1=not free 
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10.3 Supported service calls in VCB_BASIC 

Every system call contains information to the VCB module about the type of system call. 

Every call could be described in a package with a fixed bit width. 

 

Register specification 

31 – 28 27-0 

Module Block specific description 

This message block includes three types of register, each register is memory mapped and 

could accessed from the base address and two consecutive addresses ahead. 

 

Version register 

31- 0 

Inform the caller about number of slot and message buffers 

 

Service call register 

31 – 28 27-0 

Module Block specific description 
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Service call response register 

12 11-8 7-4 3-0 

Status bit Thread id Buffer nr Error code 

 

Status bit:  

Indicate the status at the block, either busy or ready 

Thread id: 

Next running thread ID 

Buffer nr: 

Buffer place to copy message to 

Error code: 

Indicate OK or some error (depends of which type of service call) 
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Create  
call_args <= create&hw_sw&sort_alg&prio_inherit&thread_prio&thread_id&slot_id; 

 

Description: 

Create a VCB queue slot. Initialize the queue slot to allowed priority inherit a message 

priority arrived at the message slot. The messages sort algorithm could bee initiated in FIFO 

or by priority order. The priority order bit in the configuration register below controls the 

priority sort order of messages. The configuration of the queue slot must include information 

about software or hardware thread. 

 

Argument: 

31 – 28 27–16 14 13 12 11-8 7-4 3-0 

0 Not 

used 

HW/SW 

thread 

sort 

algorithm

Priority 

inherit 

Thread 

priority 

Thread ID Slot ID 

 

Slot ID: 

Specifies the ID of the slot (0-3). 

Thread ID: 

Specifies the ID of the thread (0-15), which owns the queue  

Thread priority: 

The default priority of the thread, used only when priority inheritance is allowed and the 

queue has one owner. This priority assigns to the thread after the get_ready call. 

Priority inherit 

The software thread inherit the priority from the mail 

Message sort algorithm: 

0=FIFO 1=Priority. 

Hardware or software thread: 

Used to indicate if the owner of the slot is hardware or software thread. (Not implemented in 

the latest version of VCB) 

Return codes 

svc_ret[0] return code 0=OK, 1=not free 

Close slot 
call_args <= close_slot&thread_id&slot_id; 
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Description: 

Close a message queue. Prevents new messages to be sent to the queue. Should be used before 

deletion of a queue. The thread must bee the owner of the slot. 

 

Argument: 

31 – 28 27 – 8 7-4 3-0 

1 Not used Thread ID Slot ID 

 

Slot ID: 

Specifies the ID of the slot (0-3). 

Thread ID: 

Specifies the ID of the thread (0-15), which owns the queue  

Return codes 

svc_ret[3:0] return code 00=OK, 01=Not owner of slot, 10=queue not created or queue is 

deleted. 

svc_ret[7:4] number of messages in queue (0-15). 
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Open slot 
call_args <= open_slot&thread_id&slot_id; 

 

Description: 

Open a message queue. Enable new messages to be sent to the queue. The thread performing 

this request must be the owner of the slot. 

 

Argument: 

31 – 28 27 – 8 7-4 3-0 

2 Not used Thread ID Slot ID 

 

Slot ID: 

specifies the ID of the slot (0-3). 

Thread ID: 

Specifies the ID of the thread (0-15), which owns the queue  

Return codes 

svc_ret[3:0] return code 00=OK, 01=Not owner of slot, 10=queue not created or queue is 

deleted. 

svc_ret[7:4] number of messages in queue (0-15). 
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Delete slot 
call_args <= delet_slot& thread_id&slot_id; 

 

Description: 

Delete a slot. All information of the slot disappears. The thread must bee the owner of the 

slot. 

 

Argument: 

31 – 28 27 – 8 7-4 3-0 

3 Not used Thread ID Slot ID 

 

Slot ID: 

Specifies the ID of the slot (0-3). 

Thread ID: 

Specifies the ID of the thread (0-15), which owns the queue  

Return codes: 

svc_ret[3:0] return code 00=OK, 01=Thread not owner of the slot, 10= slot is deleted or not 

created. 
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Get 
call_args <= get&condition_flag&thread_id&slot_id; 

 

Description: 

Get a message from a queue the return value dependence on the argument to the get service 

call. Conditions are error code or suspended to message arrival. 

 

Argument: 

31 – 28 27 – 12 8 7-4 3-0 

4 Not used Condition flag Thread ID Slot ID 

 

Slot ID: 

Specifies the ID of the slot (0-3). 

Thread ID: 

Specifies the ID of the thread (0-15), which owns the queue  

Condition: 

Bit value 1= the thread will not be waiting if no mail is available. 

Bit value 0= the thread will be waiting until a mail is available. 

Return codes 

svc_ret[3:0] return code 00=OK, 1=no mail ,2=Slot not opened, 3= slot is deleted or not 

created, 4=Thread not owner of the slot. 

svc_ret[7:4] buff place pointer to message buffer (0-15) was messages has bean placed. 
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Get_ready 
call_args <= get_ready&buffer_nr&thread_id&slot_id; 

 

Description: 

Inform the VCB that a message is read from the buffer placed “get” returned. This call must 

be performed after the “get” service call. The thread performing this request gets the priority 

changed back to its normal priority (when priority inheritance is used). The priority inherit 

functionality don’t used for the hardware threads. 

 

Argument: 

31 – 28 27 – 12 11-8 7-4 3-0 

5 Not used Buffer place Thread ID Slot ID 

 

Slot ID: 

Specifies the ID of the queue (0-3). 

Thread ID: 

Specifies the ID of the thread (0-15), which owns the queue  

Buffer place: 

Specifies the buffer were the message is read from (0-15). This value must be the index 

number returned from the “get” service call 

Return codes 

svc_ret[3:0] return code 00=OK, 1=Thread not owner of the slot, 1=message not in get_ready 

state, 11= slot is deleted or not created. 
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Put  
call_args <= put&message_prio&thread_id&slot_id; 

Description: 

Post a message at end of a queue, when FIFO else placed after messages at same priority. The 

first thread waiting for a message, inherit priority from the message when priority inheritance 

is used and ready (see below) is set to 0. 

 

Argument: 

31 – 28 27 – 12 11-8 7-4 3-0 

6 Not used Message priority Thread ID Slot ID 

Slot ID: 

Specifies the ID of the slot (0-3). 

Thread ID: 

Specifies the ID of the thread (0-15), which owns the queue  

Message priority: 

Specifies the message priority (0-3), 0=priority 0, 1= priority 2, 2= priority 4, 3= priority 6. 

Return codes 

svc_ret[3:0] return code 00=OK, 1=queue full,2=slot is closed,3=queue deleted or not created. 

svc_ret[7:4] Index number for the location of the message in the buffer(0-15). 
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Put_ready 
call_args <= put_ready&buffer_nr&thread_id&slot_id; 

 

Description: 

Inform the VCB that a message is placed on the buffer placed “put” returned. This call must 

be performed after a “put”. When priority inherit is used the thread priority inherit the 

message priority (Only available for the software threads). 

 

Argument: 

31 – 28 27–12 11-8 7-4 3-0 

7 Not used Buffer place Thread ID Slot ID 

Slot ID: 

Specifies the ID of the queue (0-3). 

Thread ID: 

Specifies the ID of the thread (0-15), which owns the queue  

Buffer place: 

Specifies the buffer were the message is placed (0-15). This value must be the buffer place 

that was returned by “put”. 

Return codes 

svc_ret[3:0] return code 0=OK,1=Not opened,2= queue not created or queue is deleted, 

3=VCB_CORE error, 4=Not owner of the slot 
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Flush 
call_args <= flush&slot_id; 

 

Description: 

Flush all messages on a slot. The thread performing this request must be owner of the queue. 

 

Argument: 

31 – 28 27 – 2 3-0 

8 Not used Slot ID 

Slot ID: 

Specifies the ID of the queue (0-3). 

Return codes 

svc_ret[2:1] return_code00=OK, 01=Not owner of slot,10=queue not created or queue is 

deleted. 
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Slot_info 
call_args <= slot_info&info&slot_id; 

 

Description: 

Returns queue information. 

 

Argument: 

31 – 28 27 – 8 7-4 3-0 

9 Not used Info1/2/3 Slot ID 

Slot ID: 

Specifies the ID of the queue (0-3). 

Info0/1/2: 

Specifies if infoN=0 (see below for return codes). 

Return codes 

Info 0: 

svc_ret[0] return code 0 = OK, 1 = queue is deleted. 

svc_ret[1] 0=open, 1=closed 

svc_ret[2] message sorting algorithm 0=FIFO,1=Priority. 

svc_ret[7:4] number of messages in queue (0-15). 

 

Info 1: 

svc_ret[0] return code 0 = OK, 1 = queue is deleted. 

svc_ret[1] 0=no owner, 1=one owner 

svc_ret[7:4] thread ID (0-15). 

 

Info 2: 

svc_ret[0] return code 0 = OK, 1 = queue is deleted. 

svc_ret[1] thread sorting algorithm 0=FIFO, 1=Priority 

svc_ret[2] priority inheritance on message arrival 0=off ,1=on. 

svc_ret[7:4] Thread default priority. (0-7). 

 

Init 
call_args <= init; 
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Description: 

Initiate whole VCB to zero this system call should bee called once at the system init sequence. 

 

Argument: 

31 – 28 27-0 

10 Not used 

 

None 

 

Return code: 

None 
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Internal memory description 
This description include an over view of the internal memory in the VCBIF and VCB main 

core blocks.  

Slot memory (19 down to 0) 

Bit [ 0 ] = Inherit message priority 

Bit [ 1 ] = Type of sort algorithm FIFO or PRIO 

Bit [ 2 ] = Owner is HW or SW thread 0=SW thread 

Bit [ 3 ] = Thread blocked and waiting for mail 

Bit [ 4 ] = Software thread has change priority 

Bit [ 5 ] = Slot n is created 

Bit [ 6 ] = Slot number n is opened 

Thread default priority {generic taskprio} 

Thread identity only used to identified software threads {generic thread_id} 

Pointer memory (19 down to 0) 

This memory contains four pointers, one for each message priority level. If the slot n is 

opened for FIFO sort algorithm the pointer 0 is used to hold the ready message buffer. { 

pointer 3, pointer 2, pointer 1, pointer 0 } The length of the pointer memory depends on the 

generic variable pointersize 

Message memory 

Bit [ 1 - 0 ] = Used to point out correct CPU number 

Bit [ 3 - 2 ] = Message state {free, put, put_ready } 

Pointer to next message in the message queue {generic pointersize } 
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11 GLOSSARY 

• FPGA 

A Field Programmable Gate Array (FPGA) fundamental characteristic is that it consists of 

fine-grained programmable logic blocks interconnected via wires and programmable 

switches. Logic functionality for each block is specified via a small programmable 

memory, called lookup table (LUT). 

• API 

Application Programmers Interface, The sum of all function calls available to an 

application programmer 

• ISR 

Interrupt service routine, the routine that's called when an interrupt occur 

• Task/Thread 

A task/thread is a sequential program performing certain functions, real time application is 

usually made up of one or more sets of communicating tasks/threads. 

• Real-time system (RTS) 

A real-time system is one in which the correctness of the system depends not only on the 

logical result of computation, but also on the time at which the results are generated. 

• RTOS 

Real time operating system, an operating system designed to be used in real time systems 

• RT-SCH 

Real Time Scheduler, a real time resource scheduler implemented in pure hardware 

• VCB 

Virtual Communication Bus, communication and synchronization mechanism used by 

both hardware and software threads. 
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