

Mälardalen University Licentiate Thesis

No.33

An Application Programming Interface

for Hardware and Software Threads

Peter Nygren
2004-09

Department of Computer Science and Engineering

Mälardalen University

ii

Copyright © Peter Nygren, 2004

ISBN number: 91-88834-64-6

ISSN number: 1651-9256

Printed by Arkitektkopia, Västerås, Sweden

Distribution: Mälardalen University Press

iii

ABSTRACT
Modern embedded computer systems contain an increasing number of software and hardware

components. The most common way to communicate between these components is to

interrupt the processor (CPU) and let the operating system manage the communication. In

almost any operating system, the arrival of an interrupt event causes the execution of a service

routine (which could be a device driver handling some external I/O). The advantage of this

method is that it encapsulates all hardware details of the I/O device. In many cases these

interrupt driven service routines interfere with the real-time behavior. In cases where the

interrupt routine is not handled properly, priority inversion and unbounded delays of process

execution can be introduced. The real time problem with software device drivers and the

development of Field Programmable Gate Array (FPGA) technology motivate research on

communication and synchronization between hardware and software components. This thesis

presents an application interface called VCB (Virtual Communication Bus), which provides a

standardized interface for communication and synchronization between hardware and

software without the need to execute any driver software. The interface provides six different

system calls; connect, disconnect, send, receive, send&wait, and broadcast. The VCB also has

functions to avoid priority inversion problems. The interface is fully implemented in

hardware, meaning that no software is used during communication and that several system-

calls can be made simultaneously. This makes the system easier to analyze and design. The

thesis presents the VCB concept, its implementation architecture and definition of hardware

threads. Furthermore, the VCB is demonstrated and evaluated in a case study with device

drivers that manage a Universal Asynchronous Receiver Transmit (UART). The two main

contributions of this research are (1) that it shows that it is possible to design a uniform

interface for communication between hardware and software threads, and (2) that this

interface can be used to design device drivers in hardware that introduce almost zero overhead

for the software system to manage the external device.

iv

Abstract ... iii

1 Introduction ... 1

1.1 Real Time Systems... 2

1.2 Why communication and synchronization between threads 3

1.3 Difference between hardware and software ... 4

1.4 Programmable logic FPGA, CPLD.. 5

1.5 Thesis Outline .. 6

2 Motivation ... 7

3 Related work of communication interface for HW/SW threads.. 9

3.1 Software thread communication SW/SW (A).. 10

3.2 Software thread and device driver communication SW/HW (B)............................. 12

3.2.1 Common SW/HW communication .. 13

3.2.2 Our SW/HW communication approach ... 15

3.3 Communication between hardware blocks HW/HW (C)... 15

4 Reconfigurable system .. 16

4.1 Processor architecture .. 17

4.1.1 Hard processor core.. 17

4.1.2 Soft processor core ... 17

4.2 Shared system bus .. 18

4.3 External I/O .. 19

5 Contribution and results... 20

5.1 API for hardware threads ... 20

5.1.1 Syntax notation for a hardware API... 20

5.1.2 API implementation ... 21

5.1.3 Simultaneous system calls to VCB_CORE.. 22

5.2 Hardware thread architecture ... 23

5.3 A case study; Implementation of a hardware device driver 25

List of papers... 26

6 Conclusion ... 28

7 Paper A .. 30

v

Introduction... 31

Motivation and overview .. 31

Phase one VCB implementation ... 33

Phase two hardware task... 34

Advantages with Hardware Tasks .. 35

Discussion ... 36

8 Paper B .. 38

Introduction... 39

Virtual Communication Bus (VCB) ... 40

Functional description of VCB ... 41

API .. 42

System architecture... 50

Application code example... 51

Result .. 54

Conclusion .. 55

9 Paper C .. 58

Introduction and background .. 59

System overview... 60

VCB concept... 60

Real time Scheduler in Hardware ... 61

VCB architecture .. 61

Application Programming Interface for software and hardware threads.............................. 63

Syntax description of two service calls, vcb_connect and vcb_receive in C code............ 64

Syntax description of vcb connect and vcb_receive in VHDL code. 65

Software and Hardware device driver cases ... 68

Case A Software device driver (software UART threads) .. 69

Case B; Hardware device driver (hardware UART threads) ... 71

Test platform description .. 74

Results... 75

Conclusions and discussion .. 77

10 Appendix .. 78

vi

10.1 Software Application Programmable Interface VCB-API....................................... 79

10.2 Hardware Application Programmable Interface VCB-API 83

10.3 Supported service calls in VCB_BASIC.. 89

11 Glossary.. 103

12 References .. 104

12.1 Unpublished references and www material ... 105

13 Index... 107

1

1 INTRODUCTION
In the modern society today, almost every mechanical system contains some kind of computer

based system. The mechanical system could be for example a toaster, a toy for the kids to a

more advanced system like a car, a train or an airplane. The computer based systems will be

used to regulate and control external equipment connected to the system. The computer

system has the task to react within precise time constraints to events in the environment. As a

consequence, the correct behavior of these computer based systems depends not only on the

calculated value but also on the time at which the results are produced. To improve the real

time behavior for a system the use of more special designed hardware components is a desire.

A standardize communication and synchronization mechanism is requirement to simplify the

use of parallel logic in programmable devices, such as Field Programmable Gate Arrays

FPGA together with the software system. The emphasis is on the thread-level abstraction. We

will motivate that at this abstraction level the distinction between hardware and software

threads is practically gone and all steps in the design space can then be shared for both

software and hardware design [23]. To make the design process both shorter and more

effective the designers use standard components in both software and hardware, for example

Ethernet controllers, universal asynchronous receiver/transmitter, file systems, operating

systems and databases. To facilitate the mapping of different components, either to hardware

or software components, the communication and synchronization interface has to be more

general. One of the major consequences is that the system cost can be significantly reduced

and tighter timing/performance constraints can be met if more hardware components are used

in exacting and time critical parts. The advantage is that it is more predictable, faster and

easier to analyze. Every gate is a true executing unit, compared to software that often executes

on a single unit, the CPU. The disadvantage can be additional cost of using more hardware

gates instead of a software solution. On the other hand the number of gates in one chip has

been doubled every 18 month following Moore’s law, and it still growing. This thesis is

utilizing this development within the FPGA technique area, to show that a system can be built

with a high abstract communication and synchronization mechanism. Furthermore it shows

how to solve a real-time problem with the help of this mechanism, as well as demonstrating

the hardware function in a case study.

2

1.1 Real Time Systems

There are many different definitions of a real-time system; generally they all state that a real-

time system has to react on events in its environment within a specific amount of time. One

good definition is the following: A real-time system is one in which the correctness of the

system depends not only on the logical result of computation, but also on the time at which the

results are generated [17]

There are different classifications of Real Time Systems. Depending on the consequences, the

time constraints of real-time systems can be divided into two categories.

1. Hard real-time system A real time thread is hard if missing its deadline may cause

catastrophic consequence on the environment under control.[17]

2. Soft real-time system A real time thread is said to be soft if meeting its deadline is

desirable for performance reason, but missing its deadline does not cause serious

damage to the environment and does not jeopardize correct system behavior.[17]

Some of the functionalities needed in a real time system are to,

• handle a thread set,

• close connection to process-I/O,

• predictable and fast manage to handle events,

• avoid priority inversion using special protocols,

• thread communication mechanisms,

• time management.

3

1.2 Why communication and synchronization between threads

The communication and synchronization between threads is an important task and the need is

well documented [17][4][11][14]. The internet alone shows a tremendous need of

communication. Also smaller system like a robot control computer system needs a lot of

communication and synchronization. This is because of the partitioning of the systems

controlling task into different software threads. Those system threads need allot of

communication and synchronization to solve the controlling task [3]. These threads are

connected together with a common communication mechanism, containing an API and

protocol. The API is the syntax of the call and the protocol is the mechanism to handle the

message. For example a letter has an API, the address to the recipient and the protocol is the

post-office, managing the letter. In a computer system with different threads, use a shared

memory area is use to exchange information. To avoid inconsistency in the communication

system a mechanism is designed to handle that. The basic mechanisms are typically binary

semaphores. If no access protocols are used to enter a critical sections like the shared

memory, a number of undesirable phenomena can occur, such as priority inversion, chained

blocking, and dead lock, which could introduce unbounded delays on real-time

activities[15][17]. One problem with this type of communication and synchronization is that

the application designer has to manage the communication and the protocol by hand in the

application code instead of using a communication mechanism with a common API and

protocol. Further, in this document a special designed communication and synchronization

mechanism will be used to avoid the problems mention above. This mechanism has been

developed and used for a while in a pure software thread solution.[11][3] But an extension to

the mechanism with possibilities for hardware threads to use the mechanism to synchronize

and communicate will be described in this thesis, for more detailed information of this

communication mechanism see paper A and paper B.

4

1.3 Difference between hardware and software

Traditionally, software has been seen as “running programs” and hardware as “static”.

Engineers and scientists have considered hardware and software as distinct entities with little

in common in their design process [13]. In today’s research this concept is not always true.

This is mostly due to different design styles that have been brought up in recent years that

include very tight coupling between hardware and software and for that reason it is better to

use other terms than only hardware and software to describe parts in a system.

If a designer, for example, takes a software program, translates it to a hardware description

and then synthesizes it to target architecture like an FPGA or an ASIC, then a question arises:

is the result software or hardware? The result can, for example, be seen as one large

instruction doing all the computation or it can be seen as a custom dedicated hardware

solution.

Figure 1 Translating a high level language to a hardware implementation

Yet another example of implementation style, that isn’t either hardware or software, is when

instructions are placed in memories all around the chip, tightly coupled to pure hardware

parts. This example shows that there are in some cases hard to tell when an implementation is

a hardware or software approach.

A technique that is increasingly used in embedded system design is the use of programmable

logic devices, like FPGAs. These devices bring a new terminology to system design due to

that these devices can be configured as almost any computing element (microprocessor, DSP,

custom hardware) and also are reconfigured in an easy way. This device is traditionally

classified as a hardware component, but can today be shaped as a software solution with

tightly coupled hardware parts.

A trend in today’s system development is to as much as possible only talk in terms of

behaviors when handling different functions instead of software and hardware parts. This is

5

the main idea in co-design: to select what goes into hardware respectively software as late as

possible in the design process.

The progress in System-on-Chip implementations also tends to include a tighter and tighter

mix of hardware and software parts, sometimes so tight that the hardware and software terms

no longer are motivated. A problem when mixing hardware and software is the testing and

validation process. It can be hard to apply the common test methodologies to a system where

the coupling is tight. Co-simulation is the term used when hardware and software are tested in

the same environment. Co-simulation tools exist today, but are a big challenge for researchers

to improve while new technologies and architecture styles brings new concepts to computing.

1.4 Programmable logic FPGA, CPLD

The new technology introduced with the Field Programmable Gate Arrays (FPGA's)

represents a leap forward in digital design as large as when the micro-controllers were made

public in the 70's. The inherent enormous parallelism in these devices introduces new design

challenges and trade-offs. One promising approach is to use standard and custom hardware

components to build complete system architecture at on single chip. All hardware components

are executed in truly massive parallel to each other and do not need to interfere with each

other, as opposed to software implementations. A FPGA fundamental characteristic is that it

consists of fine-grained programmable logic blocks interconnected via wires and

programmable switches. Logic functionality for each block is specified via a small

programmable memory, called lookup table (LUT). How these logic blocks are spread over

the silicon differs in devices and families from different vendors. In some they are grouped

with a matrix structure and in other they are grouped in slices over the chip. FPGA´s were

earlier only used as interconnecting glue logic and to implement simpler Boolean functions.

In recent years, new device families have quickly grown to capacities of tens of thousands of

LUT´s containing millions of gates of logic [18] enabling them to be used as platforms for

complex computing machines including processor structures and advanced calculations.

Therefore, FPGA´s has become a technology to be considered at system level. Complex

Programmable Logic Device (CPLD) is another device similar to an FPGA. CPLD´s are not

that often used in research literature, therefore, in this publication the focus will be almost

exclusively on FPGA´s, representing programmable logic devices.

6

1.5 Thesis Outline

This thesis consists of four main chapters describing the different parts in the scope of this

thesis. It starts with a motivation. Further we present an overview of related work which gives

insight into the problem area. Furthermore in section four, the result and contributions will be

presented. Finally we sum up with the conclusion and experience from this area.

7

2 MOTIVATION
Real time systems are computing systems that must react within precise time constrains to

events in the environment. The correct behavior of these systems depends not only on the

logical result of the computation but also on the time at which the results are produced. A

reaction that occurs to late or to early could be useless or even dangerous. To calculate and

predict the response time to the environment for a given set of tasks could be hard if the time

behavior of a system isn’t predictable.

Today, the new FPGA technology will lead to digital computer systems that will fit into one

chip [24], deterministic response time with predictable time behavior and faster parallel

developments with standard hardware components [10]. The impact on the application will be

shorter development time (component based), decreased production costs (one chip solution)

and higher specially (utilization of hardware parallelism).

Special designed hardware components at the thread level of abstraction makes the design

space much greater for the system designers to solve design or performance problems. This is

the main motivation for this work, to explore a new way to implement hardware threads with

a communication and synchronization concept we call VCB (Virtual Communication Bus).

Hardware threads or components that give the system-designer the following benefits:

• Hardware threads always run in true parallel.

In the real word environment everything is parallel and different events are handled in true

parallel. Moving software functionality into an equivalent implemented hardware function

increases the simultaneousness in a system. A hardware function is always running and

almost never uses any shared system resources and thereby the hardware will not be

interrupted or stalled waiting for some shared resource. This makes it easier to calculate

and analyze the execution time for the function.

• Hardware gives better performance.

Hardware implemented functions give almost always better performance compared with

equivalent implemented function in software [10], [11].

8

• A hardware implemented function reduces the number of interrupts to the processor

kernel.

A hardware design connected to the real word environment reduces in most cases the

amount of interrupts to the software processor kernel. The hardware function can execute

in parallel with the software processor and will not compete with other shared system

recourses.

• Hardware functions reduce the response time.

A hardware function reduces the response time especially if the locality of the function is

placed in the same chip. A good example of that is the math processor in a modern

processor CPU. It gives hundred or even thousand times better performance to implement

math functions in hardware compared to implementing the same functionality in software.

All these points give a good motivation to believe that hardware functionality improves the

time predictability for a real time system.

9

3 RELATED WORK OF COMMUNICATION INTERFACE FOR
HW/SW THREADS

This chapter will give a brief overview of the different types of communication interfaces (see

Figure 2). For more information in this area, the readers are referring to [16]. The

communications between threads are divided in three parts:

A. (SW/SW) Software to Software thread communication, described in section 3.1.

B. (SW/HW) Software to Hardware and vice versa communication described in section 3.2

C. (HW/HW) Pure Hardware to Hardware communication described in section 3.3

Figure 2 Classification of communication interfaces

The communication protocol and API are often implemented in software, but it can also be in

hardware/software or only in hardware (VCB-API). This classification will focus at different

communication mechanisms. The first section 3.1 will describe the communication between

pure software threads. The second section 3.2 present two subclasses of the communication

mechanism; the first one implemented in pure software, most common in commercial

operating systems; the second subclasses are systems with special designed hardware. These

type of system isn’t common in the industry, but there are several academic works in this area

[4][3][2][9][2]. The last section 3.3 will describe communication between pure hardware

10

blocks. The focus on this brief description will be on communication between software and

hardware threads.

3.1 Software thread communication SW/SW (A)

The thread communication is a wide and can be implemented in many different types of

mechanisms. An example of different types of implementation of the thread communication

could be:

• Shared memory

The advantage of using shared memory is the performance; the user has the possibility to

directly access the global shared memory. The disadvantage to use shared memory among

many user threads is the inconsistence in the communication system. To make a mutual

exclusion between those threads, the user has to take a semaphore in correct sequence and

thereby making a mutual exclusion of shared resources [15].

• Mailboxes

Mailboxes is a message passing mechanism in many real-time systems [29][28][30]. This

mechanism is used to synchronize and communicate between different application

threads. A mailbox is a message buffer located in the shared memory, protected by a

protocol normally implemented in the operating system. Mailboxes buffer the messages in

FIFO order and thereby permit the thread to read the message later on. The semantic of a

mailbox may vary between different operating system but in general, blocking and none

blocking read and write is the most common functionality.

• Message Queue

Like the mailbox, the message queue mechanism is also used to synchronize and

communicate between the application threads. The main difference between this and the

previous on is the sorting algorithms. A message queue could sort the different messages

either in FIFO, LIFO (Last In First Out) or priority order [3].

11

• Pipes

Like the message queue the pipes can manage many messages but can only be used in one

direction. When a thread wants to send and receive messages it has to open two pipes, one

in either direction.

Interprocess communication is a critical issue in real time systems. The use of shared

resources for implementing the message passing scheme may cause priority inversion and

unbounded blocking on threads program execution. This would prevent any guarantee on the

thread set and would lead to a highly unpredictable real time behavior. The most typical

communication semantics used in different operating systems is the synchronous and

asynchronous model.

Examples of commercial systems are

• The RTOS Real Time Operating System OSE is used in many telecommunication systems

[28]. It uses a pure software implementation of the message passing mechanism.

• The largest RTOS in the world Vxwork’s [29] uses message queues to implement the

communication mechanism. It does not use any hardware support.

• Sierra16 [30] is a small RTOS used in small embedded systems. It uses semaphores or

signals to implement the communication. Special designed hardware used to predict and

speed up the communication.

The other class has support from special designed hardware to give the better performance

and increase the predictability. This type of system isn’t common in industry.

Examples of systems of hardware support are

• The Spring RTOS [4] is a distributed multiprocessor system. It uses a mix of software and

hardware support to implement the network and the thread communication.

• SARA RTOS [3] is a multiprocessor system with thread communication with parts of the

communication mechanism in hardware.

12

3.2 Software thread and device driver communication SW/HW (B)

This section will describe the synchronization and communication between the software

application and a hardware device through a device driver. This section will be divided in two

parts, one with the most common methods to solve the SW/HW communication (section

3.2.1). The other part will be our academic contribution (section 3.2.2).

Figure 3 Functionality and synchronization classification of device drivers

A. The application has to poll the device. More detail in section 3.2.1.1

B. A specific driver encapsulates the hardware dependent code and the driver will be

scheduled among other threads in the system. More details in section 3.2.1.2

C. The specific driver encapsulates all hardware dependent code and the synchronization will

be through external interrupts. More detail in section 3.2.1.3

D. The driver for the functionality will be implemented in hardware and the synchronization

will be through the VCB communication. More detail in section 3.2.2

When building applications that interact with different type of I/O devices and software which

makes use of device drivers, one typically ends up with code that can only be used on the

original platform. I. e., the code is hardware dependent since the device drivers used are much

likely to be handcrafted for a specific hardware device [9]. Thus, the code cannot be used on

other hardware platforms. To circumvent this problem, the dependency should be eliminated

at a certain layer to allow portability. One way of accomplishing this is by using a consistent

device driver interface that applications and system software should use to gain access to

13

device drivers. By inferring a layer between the device drivers and the rest of the software,

one ensures that the software can be applied on different hardware platforms, assuming that

the same operating system is used on the new platform, and that corresponding device drivers

are present. The link between a hardware device and the application is a device driver. Instead

of forcing the applications to manually interface with the hardware device. The device driver

is introduced to interacting with, and controlling the hardware directly. The driver for the

device performs all the hardware specific processing. The application software operates on

logical I/O objects provided by the driver. The logical I/O objects are presented to the

applications as a set of functions calls for using the I/O device.

3.2.1 Common SW/HW communication

This section will give a small survey of the three most common solutions to interact with a

hardware device.

3.2.1.1 Polling

Of those three polling, scheduling, interrupt is the polling the most radical solution. This is

because of all interrupts from external devices are disabled and the peripheral devices must be

handled by the application threads which have direct access to the registers of the interface to

the device. Since no interrupt is generated, data transfer takes place through polling. The main

disadvantage of this solution is low processor efficiency on I/O operations due to the busy

wait of the thread while accessing the device registers.

3.2.1.2 Scheduling

As in the polling solution all external interrupts are disabled, but unlike polling the device is

not handled by the application threads but is managed in turn by dedicated kernel routines,

periodically activated by the operating system timer. This approach almost eliminate the

unbounded delays due I/O access and confine all I/O operation to one or more kernel threads,

whose computational load can be calculate and taken in account through a specification

utilization factor. The advantages with this solution compared with the previous one is that all

hardware details of the peripheral devices can be encapsulated and do not need to be known to

the application. Ref [4][6]

14

3.2.1.3 Interrupt

The third approach enable all interrupt from the external devices, while reducing the drivers to

a minimum size [17]. According to this method, the only purpose of each driver is to activate

a proper thread that will take care of the device management. While activating the execution

of a thread under direct control of the operating system, it’s scheduled just like any other

application thread. A priority can be assigned to the device thread completely independent

from the application priority according to the application requirement. One major advantage

of this approach is to eliminate the busy wait during the I/O operations. Unbounded delays

introduced by the drivers during thread execution are also dramatically reduced. Ref [1]

Examples of academic and commercial and systems,

• Lynx [30] Used device driver is accessed through a set of entry point functions, which

constitute the device driver’s applications interface. A kernel thread and the basic device

driver also composed of an interrupt service routine (ISR). Uses the Interrupt approach

• OSE [28]Uses device driver in access through a set of entry point functions and direct

polled, or by a timer slots and interrupt driven. Uses the Interrupt approach

• Synthesis of DMA controllers from architecture independent descriptions of HW/SW

communication protocols [9]. Use the Interrupt approach and special hardware to read and

write to the hardware device.

• HARTIK a hard real-time kernel for programming robot tasks with explicit time

constraints and guaranteed execution [1]. Uses the Interrupt approach

15

3.2.2 Our SW/HW communication approach

The last approach with respect to all others is to remove the external interrupts, routed directly

into the processor kernel. Those interrupts will instead be managed by a hardware thread. This

hardware thread will manage the functionality and act as a device driver. All data transfers

take place through reads and writes through a (DMA) Direct Memory Access channel to the

shared global memory. The hardware thread will synchronize with the application thread

through send/receive messages through VCB-API. The main advantage of this solution is the

true execution parallelism with the software processor kernel and the removing of the

notification from the interrupts. No data read and write transfers take place through the

processor kernel.

3.3 Communication between hardware blocks HW/HW (C)

Recent advances in hardware design now allow the integration of numerous functions onto the

same single FPGA chip or silicon piece. Those functions could be from generic serial ports to

complex memory controllers and processor cores. As a result, a hardware designer must now

address issues as design for reuse and reuse of designs. To solve those problem, hardware

designers has developed different types of virtual component interface [12]. This virtual

interface is used together with different types of functionality and interconnections. The

semantic of the interface is request respond and the protocol is adjusted to the

interconnection. The interconnection is in most cases point to point in the HW/HW

communication. But this technique could also be used to a shared system bus like IBM

CoreConnect [32] ARM AMBA 2.0 High-performance Bus [25].

16

4 RECONFIGURABLE SYSTEM
This section will describe the chip device used during this project. The description will only

talk about Xilinx devices [24] and architecture and will not give a general description of the

different reconfigurable systems. The Altera solution with Cyclone, StratixII Nios or Arm9

will not be described [25]. The Virtex-II Pro is a platform FPGAs for designs that are based

on IP cores and customized modules. The leading-edge at the device is 0.13 µm CMOS nine-

layer copper process and have 18 Kb storage elements of True Dual-Port RAM. Embedded

multiplier blocks are 18-bit x 18-bit dedicated multipliers. Digital Clock Manager (DCM)

blocks provide self calibrating, fully digital solutions for clock distribution delay

compensation, clock multiplication and division, and coarse- and fine-grained clock phase

shifting. A new generation of programmable routing resources called Active Interconnect

Technology interconnects all these elements. The general routing matrix (GRM) is an array of

routing switches. Each programmable element is tied to a switch matrix, allowing multiple

connections to the general routing matrix.

Figure 4 Xilinx virtexII_pro structure

Architecture:
The Virtex-II Pro devices are user-programmable gate arrays with various configurable

elements and embedded blocks. The devices contain the following functionality.

• Embedded high-speed serial transceivers (RocketIO X).

• Embedded IBM PowerPC 405 RISC processor blocks

17

• SelectIO-Ultra blocks provide the interface between package pins and the internal

configurable logic.

• Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and

synchronous logic, including basic storage elements. BUFTs (3-state buffers)

associated with each CLB element drive dedicated segmentable horizontal routing

resources.

• Block SelectRAM+ memory modules provide large 18 Kb storage elements of True

Dual-Port RAM.

• Embedded multiplier blocks are 18-bit x 18-bit dedicated multipliers.

• Digital Clock Manager (DCM) blocks provide self calibrating, fully digital solutions

for clock distribution

4.1 Processor architecture

The FPGA device today contains difference types of processor block. The biggest different of

those two types is the implementation of the core. One type is a hard copy of the core the

other type is a soft reconfigurable type, specially designed for a device family with regard to

timing and area.

4.1.1 Hard processor core

The PPC405x3 is a 32-bit implementation of the PowerPC™ embedded-environment

architecture that is derived from the PowerPC architecture. Specifically, the PPC405x3 is an

embedded PowerPC 405D5 processor core (PPC405D5). The PowerPC architecture provides

a software model that ensures compatibility between implementations of the PowerPC family

of microprocessors. The PowerPC architecture defines parameters that guarantee compatible

processor implementations at the application-program level, allowing broad flexibility in the

development of derivative PowerPC implementations that meet specific market requirements

[24].

4.1.2 Soft processor core

Optimized for Xilinx devices are the MicroBlaze soft processor core. This core is a 32-bit

RISC processor and has 32 general purpose registers, separate instruction and data buses, and

built-in interfaces to the on-chip memory and to IBM’s industry-standard On-chip Peripheral

18

Bus (OPB). In addition, implementations in Virtex-II and later devices support hardware

multiply [26].

4.2 Shared system bus

The shared system bus could be any type of in house custom designed bus with special

features. But in this architecture the bus is an IP component from IBM’s core connect [32]

The CoreConnect bus architecture is a standard SOC design, and serves as the foundation of

IBM Blue Logic or other non-IBM devices. Elements of this architecture include the

processor local bus (PLB), the on-chip peripheral bus (OPB), a bus bridge, and a device

control register (DCR) bus. High-performance peripherals connect to the high-bandwidth,

low-latency PLB. Slower peripheral cores connect to the OPB, which reduces traffic on the

PLB, resulting in greater overall system performance.

Figure 5 CoreConnect Block Diagram

Processor Local Bus

• Fully synchronous, supports up to 8 masters

• 32-, 64-, and 128-bit architecture versions; extendable to 256-bit

• Separate read/write data buses, enables overlapped transfers and higher data rates

• High Bandwidth Capabilities

o Burst transfers, variable and fixed length supported

o Pipelining

o Split transactions

o DMA transfers

o No on-chip tri-states required

o Cache Line transfers

o Overlapped arbitration, programmable priority fairness

19

On-Chip Peripheral Bus (OPB)

• Fully synchronous

• 32-bit address bus, 32-bit data bus

• Supports single-cycle data transfers between master and slaves

• Supports multiple masters, determined by arbitration implementation

• Bridge function can be master on PLB or OPB

• No tri-state drivers required PLB Arbiter

• Arbitration for up to 8 PLB master devices on PLB bus

• Includes watchdog timer and separate address, read, and write data paths

• Supports address pipelining

PLB to OPB Bridges

• PLB slave and OPB master device

• Supports dynamic bus sizing for OPB connection

• Supports burst reads and writes

• Compliant with various bursts sizes

• Supports 4-, 8-, and 16-word line transfers

• Supports DMA transfers to/from OPB master peripherals

OPB Arbiter

• Arbitration for up to 4 OPB master peripherals on OPB bus

DCR Bus

• Provides fully synchronous movement of GPR data between CPU and slave logic

4.3 External I/O

The external I/O device in this test system includes an Asynchronous Receiver/Transmitter

(UART) Intellectual Property (IP). This UART following the National Semiconductor

PC16550D but have a few differences between the National Semiconductor implementation

and the OPB UART. For more information [33] and data sheet for OPB UART Lite [24]

20

5 CONTRIBUTION AND RESULTS
This chapter will briefly present the contribution and results. More detailed descriptions in

paper A, B, C.

The chapter is divided in three parts:

1. API for hardware threads; the contribution is defining the hardware thread and a case

study is made to demonstrate how the API can simplify, achieve faster response time

and make the design more predictable for device drivers.

2. Hardware thread architecture for device drivers; this is a case study on how the API

can simplify and make the design more predictable for device drivers.

3. List of papers

5.1 API for hardware threads

This thesis presents an advanced communication and synchronization API at a higher level

than usually used in software application design. The API is used in industry [3] as a software

bus to communicate between software threads and is named Virtual Communication Bus

(VCB). This thesis shows that the VCB can also be used to communicate between hardware

threads or hardware and software threads.

The interface provides seven different types of system calls to synchronize and communicate

between HW/HW HW/SW and SW/SW. The system calls is: vcb_init, vcb_connect,

svcb_disconnect, vcb_send, vcb_receive, vcb_broadcast and vcb_send_wait (for more

information see paper B).

5.1.1 Syntax notation for a hardware API

The hardware description language in this case is VHDL -93. The application use VHDL -93

and a package, defined as a VCB-API package. This package includes all seven different vcb

calls for the hardware application designer.

The semantics is the same for both hard; and software calls, but the syntax is quite different.

For a call e.g. vcb_send in the software case it is just an ordinary function call like

“ok=vcb_send(msg,size, address, priority);” This call will send a message msg to an address

21

at a specified priority. The same system call is used in the hardware case but the syntax

description is different. Below the same system call vcb_send is described. The hardware

thread sends a message to an address at a specified priority level.

case state is

 when SEND =>

 send_args<=send&

 msg_size&

 slot_address&

 msg_prio&

 thread_id;

 vcb_call <= '1';

 state <= WAIT_SEND;

…

The hardware application has to manage the state transactions sends or receives in the

application code. For more details see paper B and appendix

5.1.2 API implementation

The API is divided in three different parts (see Figure 6) which today constitutes the VCB

concept. Previous version of the VCB concept only allowed the software designers to use the

VCB concept to synchronize and communicate between software threads (SW_VCB_API).

Figure 6 Structure of the VCB

This version of the VCB concept is augmented with an API for the hardware designers

(HW_VCB_API) to synchronize and communicate between hardware and software threads. A

modification of the protocol for the VCB_CORE concept, the extension of the protocol allows

simultaneous access to the VCB_CORE. For more details of the implementation see paper B.

22

5.1.3 Simultaneous system calls to VCB_CORE

To allow simultaneous system calls from both software and hardware application the VCB-

core had to be modified. The modification in the communication core compared to the

original was to add a multiplexer for the data path form to the application and the controller

block (see Figure 7). The rest of the design is the same as the original.

Figure 7 Internal architecture of the VCB-Core

23

5.2 Hardware thread architecture

This section will define and demonstrate the use of hardware threads in an implementation of

a UART device driver. A hardware thread is defined in this thesis to consist of thread code

(hardware description language) and a bus interface to shared memory and connection to

VCB bus.

Figure 8 Definition of a hardware thread

The thread code defines the behavior of the thread and is in our work given in VHDL.

1) The master bus Interface, connection to system bus used to read and write to the message

buffers in shared memory.

2) Connection to VCB-Core, this is the connection to the hardware scheduler that provides

the means to start, stop, and change priority of the software threads. This connection also

contains the VCB_API used to communicate through VCB for both hardware and

software threads.

3) The hardware thread also manages the functionality included in a driver for a device,

application process. This is normally written in software but in this case the driver will be

implemented in VHDL.

24

The device driver implementation for the UART in this case has a net list for the UART

functionality. All the signals from the UART are routed directly to the hardware thread (see

Figure 9). Normally the signals are routed to the system bus through a wrapper adjusted to fit

the system bus.

Figure 9 Hardware thread architecture

Another component in the device driver is a DMA Direct Memory Access used to transfer

data to/from the global shared memory. The application code for the device driver implements

the functionality to send a message to the software every fourth received byte or when a

carriage return is received to the UART. The application code also decides when the software

application will use the UART. For more details see paper C

25

5.3 A case study; Implementation of a hardware device driver

Two test cases with different types of implementations, one traditional software solution and

the other one is a hardware solution with the VCB-API.

The most common way to integrate an UART component in a system is to use software to

transfer data to/from the UART and use interruption the processor kernel for attention when

it’s necessary (see Figure 10).

Figure 10 Normally software implementation of a UART device

An interrupt directly routed to the software processor kernel often have the highest priority in

the system. This always extends the execution time for the software application and this could

cause a missing deadline for a thread in a real time system and thereby make a useless

reaction or in the worst case even a dangerous situation.

26

The VCB-API solution of this problem is to use a hardware thread to manage the UART. This

thread is always in “running mode” and never utilizes any execution time from the software

threads.

Figure 11 Architecture for the UART device driver

The processor kernel will never be interrupted to manage the UART device (see Figure 11).

For more information see paper C.

List of papers

Following papers articles are included in this thesis:

Paper A) Virtual Communication Bus with Hardware

and Software Tasks in Real-Time System

In Proceedings for the work in progress and industrial experience sessions, pages 3 12th

Euromicro conferance on Real-time systems, June 2000.

Author(s): Peter Nygren, Lennart Lindh

My contribution: I wrote the paper under supervision of assistant professor Lennart Lindh

27

Paper B) Uniform Interprocess Communication interface for Hardware and

Software Threads

In International Workshop on Advanced Real-Time Operating System Services (ARTOSS)

Porto, Portugal , July 2003. IEEE

Author(s): Peter Nygren, Lennart Lindh

My contribution: I wrote the paper under supervision of assistant professor Lennart Lindh

Paper C) Implementation of Uniform Communication Protocol and Interface for

Hardware and Software Threads and a Device Driver Example

Submitted for publication

Author(s): Peter Nygren, Lennart Lindh

My contribution: I and assistant Professor Lennart Lindh wrote the paper together.

Co-authored publications:

A Comparison of Multiprocessor Real-Time Operating Systems Implemented in

Hardware and Software

In International Workshop on Advanced Real-Time Operating System Services

(ARTOSS) Porto, Portugal , July 2003.

Author(s): Tobias Samuelsson, Mikael Åkerholm, Peter Nygren, Johan Stärner, Lennart

Lindh

My contribution: I was supervisor and review of the paper

28

6 CONCLUSION
The system architecture with the VCB mechanism has several advantages.

• Increases the real-time predictability.

• Can reduce the software complexity.

• Allows software functions to be moved into an equivalent hardware implementation

without the need to rewrite other application software.

• Performance and real time problems can be solved.

It has been shown that a hardware communication and synchronization mechanism together

with a hardware API solves several problems.

• External interrupts can be scheduled and managed simultaneously, without

interference with the software application.

• Decreased CPU load, since applications can synchronize and communicate directly

without CPU involvement.

• Reduced response time for devices, since drivers can be implemented in hardware.

29

Paper A

Virtual Communication Bus with Hardware

and Software Tasks in Real-Time System

Presented at Euromicro conferance on Real-time systems

Stockholm, June 2000.

30

7 PAPER A

Virtual Communication Bus with Hardware and Software Tasks in

Real-Time System

Abstract

The FPGA (Field Programmable Gate Array) of recent years has opened newer design

possibilities of moving software into hardware. This paper is studied at two cases of

transferring functionality from software into hardware. The paper describes the VCB (Virtual

Communication Bus) concept and hardware tasks. The approach with VCB is focused today

on existing systems with a main processor and slave processors or DSP (Digital Signal

Processors). The first approach is to reduce the system load from the VCB bus and the second

phase will be to eliminate the slave processors and move them to hardware tasks implemented

in FPGA. Hardware tasks will reduce the response time and make the system more time-

deterministic.

Keywords: FPGA, VCB, Task, hardware tasks, Real-Time System

31

Introduction

Already today an FPGA have 10 million gates, it will not be long before FPGA’s have

hundreds of millions logic gates on-chip [24]. A FPGA can be programmed by a subset of C

[34] or a hardware language such as VHDL [35]. A rule of thumb is that about 100 pages of C

code fit into 30 000 gates. The cost of a 30K device is to day under 10 US $ [24]. Compilers

today translate ordinary software from code into serial machine code. The hardware compilers

translate the source code into concurrent gates, flip flops and memories by means of a

synthesizer. The synthesizer during the last 10 years has developed from a simple state

machine to behavioral translation. Today the designer can design in hardware design tools or

ordinary software tools. With the help of new tools as CoWare N2C™ Design System [27]

are dealing with this problem. The first phase will be to eliminate the operating system (OS)

load generated from the VCB bus. The system load generated from the bus is an ordinary

software task and this functionality could be moved from software into hardware. This will

reduce the system load and make more execution time available for application tasks. The

approach with VCB is focused today on an existing system (see [27]) with a main processor

and slave processors or DSP. The goal of this approach is to eliminate the slave processors

and move the software functionality in to hardware tasks implemented in FPGA. This means

that a hardware task can consist thousand pages of C code.

Motivation and overview

The objective is to remove the functionality from the VCB bus, implement this functionality

in software and move it into a hardware task. The purpose of this is to utilize the true

parallelism in the hardware and their bye making available more execution time for the

application tasks in the system. The second phase of the project will be to reduce the number

of CPU’s in a multiprocessor system with mixed architecture of generally micro-controllers

and signal processors. The purpose of this is to decrease the response time from the external

units and reduce the overhead for the ordinary system to handle communication with external

devices. Industry today can reduce the cost and the design time for system architecture, if the

system designers uses hardware task instead of CPU’s. The cost of a system could thereby be

reduced. An example of a commercial system is shown in Figure 12. In this type of system it

is possible to eliminate the slave CPU’s and move the functionality into hardware tasks.

32

RAM/ROMRAM/ROM

DSP CPUDSP CPUI/O CPUI/O CPU

EXT
I/O

EXT
I/O

RAM
Application SW tasks

RAM
Application SW tasks

BUSBUS

MASTER CPUMASTER CPU

Figure 12 Logical architecture of a common system.

If we move the functionality from the CPU’s and replace them with an FPGA and implement

the functionality in hardware tasks could we reduce the necessity of mixed architectures in

many types of systems (see Figure 13). An advantage of using hardware instead of CPU’s is

that the external I/O can be connected directly into the FPGA. This reduces the

communication on the shared bus. The communication possibilities on the VCB bus permit

communication between hardware and software tasks in the system.

VCB,IRQ,SCH,...VCB,IRQ,SCH,...

RAM/ROMRAM/ROMRAM/ROMRAM/ROM

FPGA

Application HW tasksApplication HW tasks
RAM

Application SW tasks
RAM

Application SW tasks

BUSBUS

MASTER CPUMASTER CPU

EXT
I/O

EXT
I/O

Figure 13 Logical architecture of the proposed system

To moving common software functionality into hardware could results in greater

predictability and increase system speed. This new design method gives less complexity and

reduces the cost of the whole system.

33

Phase one VCB implementation

The Virtual Communication Bus is used for inter process communication and for

synchronization tasks in the system. Communication between different tasks usually consist

some kind of message passing mechanism such as mailboxes, pipes, message queue. The

VCB bus is such a message passing mechanism and the bus allowed task to task

communication locally on one CPU and between several different CPUs in a system. The

tasks could be either an ordinary software task or it a hardware task, the interface for the tasks

will be the same.

“Task 1“

Software layer for VCB bus

“Task N““Task 2“

Hardware layer for VCB bus

Slot 1 Slot NSlot 2

Figure 14 Logical architecture of a system with the VCB bus

The VCB bus is divided into two layers, the upper layer being the software implementation of

the bus. In this layer the system provides support for different types of functionality from the

bus. The other part of the bus consist the base primitives. Those primitives are implemented

and integrated in the FPGA. When tasks want to communicate on the VCB the task hade to

allocate one VCB-slot and their bye been the task will be connected to the virtual bus. The

VCB connects the system and makes possible communication in two different ways,

synchronous or asynchronous. When a task is connected to a slot it can communicate with all

the other tasks in the system. The Send and receive communication primitives is the type of

functionality mostly frequently used in the VCB bus. Other functions the bus could support

are, for example broadcast, send and wait, multicast, subscribe. To reduce the system load

from the OS (Operating System), the first step will be to reduce the execution time of the

subscribe function. The subscribe function is a Server<->Client concept in which the

“Server” is the functionality which handles all mail requests from other “Clients” in the

system. The server runs each time T to decrement each individual timer T. When the time has

34

expired for one or more “Clients” the “Server” sends a mail to every “Client” in the request

list (see Figure 15).

Software layer for VCB bus

“Server“
Send mail to
clients every

time “t”

“Client “
Desire mail
from server

every time “t”

Mail ever
time “t”

Hardware layer for VCB bus
mail N

Figure 15 “Server” “Client” concept for subscribe function

The mail system uses some shared memory area either globally or locally. In some cases the

local location is a better solution because it minimizes the accesses on the global common

system bus and improves the performance of the mail system.

Phase two hardware task

The purpose of removing CPU’s from a system is to increase the performance and

predictability of some functionality. This type of implementation gives many advantages. One

of the biggest differences is the performance as a hardware task runs in true parallel mode

giving higher speeds as compared with a corresponding software implementation. Another

advantage is the predictability of the hardware, the max/min execution time for the function

being definable on the clock cycle level. The complexity and size of the code are reduced

when hardware tasks are used. The design space increased if the designer used hardware tasks

instead of ordinary software implementation. Hardware tasks can reduce the numbers of

CPU’s because of the possibility of using the VCB bus for communication and when

functionality moved from the CPU into hardware tasks. The hardware task could be one

instance or it could be divided into many small units in the same task. When using CPU’s in

the system (see Figure 12) it is difficult to handle the high frequency of the external I/O. The

overhead for the interrupts reduces the CPU performance. The hardware task could handle the

external I/O interrupts directly from the external I/O units without any overhead from the OS.

The hardware task could also handle concurrent processing of the information in true

35

parallelism. Results from the hardware tasks are sent directly to the software task at the

master CPU via VCB bus. Device drivers for handling external I/O are not necessary

VCB bus

“Software
Task“

“Hardware
Task“

Extern
I/OT1 T2

Figure 16 Logical picture of a hardware task

Larger FPGA’s gives the possibility to use more of the memory on chip instead of common

system RAM. This gives an improved performance of the task in the FPGA.

Advantages with Hardware Tasks

The implementation of the same function code in hardware is considerable different from its

implementation in software It is easier to predict real-time behavior in hardware. Min and

max times can be verified with tools. In software it is difficult or almost impossible. The

background is that software uses the shared resources such as CPU, ALU but in the case of

hardware the tasks in most case don’t use any shared resources. The hardware can use the

same resource for different "tasks", but this can be scheduled offline. In hardware it is also

easier to deal with asynchronous events (such as interrupts). In a software solution an

interrupt interrupts the entire system, in a hardware task it interrupts only the interrupt

function in the system. Performance of a hardware task is much higher than of a software

task, if the function can be held inside the same chip. The parallelism in hardware is very

high, in a 30000 gates FPGA it is 30000 concurrent elements. Hardware tasks need no

overhead, such as operating system, device drivers for interrupt. The response time from a

hardware task is much shorter than from a common software task. FPGA hardware gives

flexible hardware architecture. For example the number of ALU units, interrupt pins, I/O is

configurable. In a processor there are nearly always overhead and restriction resources. For

36

example if you need an floating point unit, it will be provided, or if you need more interrupt

lines there must be added. When you must access a unit outside the CPU the response time

will increase.

Discussion

• New hardware design methods [27] and higher capacity FPGA’s create new

possibilities of removing CPU’s from ordinary system design and replacing the

CPU’s.

• The integration of heavy regulates algorithms into hardware tasks and the possibility

of transparent communication between soft and hardware tasks gives new dimensions

in this new type of architecture.

• New FPGA types with more internal memory need less external memory and will

increase the speed of the function. In many cases the time behavior of hardware tasks

will be much more predictable.

• As the price of FPGA’s reduced by 50% each 18 month, the cost of architecture the

same functionality in a system is almost the same.

37

Paper B

Presented at International Workshop on Advanced

 Real-Time Operating System Services (ARTOSS)

Portugal, July 2003

38

8 PAPER B

Uniform Interprocess Communication interface for Hardware and

Software Threads

Abstract:

A standardized communication and synchronization interface at the thread level abstraction is

required to speed up and simplify the system design. This paper describes a novel

implementation of a uniform communication interface for hardware and software threads. We

call the communication interface for Virtual Communication Bus (VCB). This

communication interface contains an Application Programming Interface (API) with seven

different primitives {init, connect, disconnect, send, receive, broadcast, send_wait} those

primitives are used in both the hardware and software cases. The communication interface is

currently used in a system implemented in a single Xilinx device xc2v1000 [24]. This system

contains one processor kernel from Xilinx [24] and a real time kernel [2]. These components

and the VCB are connected through a shared system bus core connect [32].

Keywords: VCB, hardware and software threads.

39

Introduction

A system design could be described and implemented in a structural and hierarchic manner

with threads communicating concurrently. Software systems have for a long time been

developed in this way. It is now possible to design an entire system containing one or several

processor kernels, custom-designed hardware, intellectual property components and an

amount of programmable logic on a single chip. A system design could be a pure software

solution, which might not be acceptable because its performance is inadequate or a pure

hardware solution which is too expensive. In this case system designers need some form of

communication interface at the thread level to make changes between software and hardware

implemented threads and to avoid the need to rewrite new HW/SW interface each time the

new partitioning is performed. In the software case the threading of an application is no

problem because each modern real-time operating system (RTOS) supports a communication

interface. The communication interface often performs some kind of message-passing by

means of mail boxes, slots, pipes, etc. Unfortunately this feature is not supported in a natural

manner in the most popular hardware description languages (HDL’s) such as VHDL and

Verilog. The HW/SW interface which transfers data between hardware and software

components basically reads and writes hardware registers and memory locations. This

interface could either be implemented in a normal program flow or in a small software layer

connected to an interrupt routine (called a device-driver) [7]. Another solution could be the

use of different types of hardware support [9][8]. Our objective is to develop a

communication interface at the thread level and to introduce the possibility of transforming

the system tasks to either a hardware or software thread containing the interface. The interface

is to provide a uniform independent message-passing mechanism using a specified application

programmable interface (API). This paper describes the API functionality and the particular

implementation of this interface, the virtual communication bus VCB.

40

Virtual Communication Bus (VCB)

The VCB interface contains two main components a slot and a message queue (see Figure

17). The slot is used by the application threads to connect and communicate with other

threads connected to the bus. The slot is a system resource allocated by a particular thread and

cannot be used by other application threads. The slot contains information owner id(entity), if

the slot is open or closed, and the default priority of the application thread. In this particular

implementation there are four slots but this number is arbitrary.

Figure 17 VCB structure

The other main component is the message queue which contains the particular message index

and the message index number used to protect and point out the particular message buffer in

the shared global memory. The message index is sorted by the sorting algorithm specified,

these being based at PRIORITY or FIFO orders. The sorting algorithm must be specified

when an application thread allocates a slot. The number of message indexes in this

implementation is sixteen but the number could be increased or decreased.

41

Functional description of VCB

The VCB interface can be considered as blocks (see Figure 18), the first block (VCB-API)

including the Application Programmable Interface. This block consists of three different

layers of abstraction {API, API_Slot, API_Basic} these implementing well-defined

functionality at each level of abstraction.

Figure 18 VCB structure

The VCB-API is mapped into two different implementations languages, either C-code used

by the software threads, or VHDL used by the hardware threads.

Block number two, VCB-Core manages the lowest level of the interface functionality, this

functionality including the authentication of the owner of the particular slot, whether it is

opened or closed and the sorting of the index numbers of the messages. This functionality is

mapped to a pure hardware implementation in VHDL.

42

API

The functionality of the VCB-API will be described below, beginning with the API layer. The

API layer is the point of entry to the VCB interface and the most abstract. This layer

implements the system calls {init, connect, disconnect, send, receive, broadcast, send_wait}.

• vcb_init:

The vcb_init system call resets the entire VCB-interface and removes all owner information

and messages in the interface. This system call should only be used at system start-up.

• vcb_connect:

This system call connects a thread to VCB, enabling the owner of the slot to read or write

messages to the queue. The caller must specify the name, slot number, message sorting

algorithm and default priority of the thread which the caller intends to use.

• vcb_disconnect:

This breaks the connection to the VCB. The call must be managed by the owner of the slot.

All messages will be removed and the slot will be released, thereby becoming available for

use by other threads.

• vcb_send:

This system call is used to send a message to another thread. The user must specify a pointer

to the message, the quantity of data to be transferred, the receiver of the message, the priority

of the message and the sender identity. The sender function checks if the parameters are

correct and the return value is either VCB_OK or VCB_ERROR.

43

• vcb_receive:

This system call is used to request permission to read a message from the VCB, The caller

must specify the parameters associated with the message, a pointer associated with the mail

received, a pointer to the bytes transferred, the sender of the message, and an indication if the

caller intends to wait for mail if the message queue is empty. The last parameter specifies a

call-back routine. The function returns either VCB_OK or VCB_ERROR.

• vcb_broadcast:

This system call sends message to all threads connected to the VCB. It uses multiple calls to

system call vcb_send.

• vcb_sendwait:

The vcb_sendwait system call sends a message to a specified thread and waits until a response

is received from the thread called or when a preset time expires. The return value is either

VCB_OK or VCB_ERROR.

API_Slot

The API_Slot layer manages different parameters and also implements mixed calls of send

and receives to build other higher level functions such as send_receive, broadcast. This layer

incorporates a function for locating names associated with a slot number or slot numbers

associated with a name. It also manages the copying of the message associated with the index

number generated from the VCB-core layer.

44

API_Basic

The API_Basic level accessed from the API_Slot layer, is the lowest layer of the VCB-API

interface. This layer implementing the lowest primitives and accesses the vcb-core. The

different functions in this layer assign the input parameters to a specified bit structure

associated with a particular system call. The different system calls manage information

concerning the slots and the message queues. The caller can create, close, open or obtain

information about a particular slot and can also post a message to, or remove a message from

the message queue connected to the slot concerned.

• Init:

This call initializes the entire VCB system to a well-known state and prepares it for use. It

should only be used at start-up.

• Allocate:

This call allocates a slot for the thread called and specifies that the messages in the message

queue should be sorted by a FIFO or priority order. It saves the identity of the owner of the

slot if the caller is specified to inherit the priority from the arrival message and saves the

information that the caller is software or a hardware thread. All this information is specified

by the caller.

• Open:

This call opens a message queue. It enables other threads to post new messages to the queue.

The thread performing this request must be the owner of the slot.

• Close:

This system call closes a message queue. It prevents the posting of new messages to the

queue. It should be used before the deletion of a queue as this call returns all the unread

messages in the queue. The thread must be the owner of the slot.

45

• Delete:

This call erases all the information (in the on-chip memory) about the slot and the message

queue. It allows other threads to allocate this particular slot and message queue. The caller

thread must be the owner of the slot.

• Put:

This call allocates a message buffer in the message queue to slot specified and returns an

index number to the caller. If the message queue is full, an error message will be returned to

the caller.

• Put_ready:

This call is used when the CPU or DMA has copied the message to the message buffer. The

VCB-core must be informed when this is done. The message is sorted in the sorting algorithm

specified and the owner of the slot can then read the message.

• Get:

This call returns an index number to the buffer in which the first message in the queue is

placed for the given slot. If the owner hade specified “wait for mail when the message queue

is empty”, the thread is set to the wait state until a message arrives at the queue. Otherwise, a

message NO-MAIL will be returned.

• Get_ready:

This call informs the VCB-core that the index number from the “get” call has been read. If

the owner of the slot has specified “priorities inherit”, this call changes the priority back to the

default priority.

• Info:

This system call gives information concerning the slot and queue. The caller must specify the

type of information and the return value contains this. This information is used at higher

levels in VCB when different program execution decisions are to be made.

46

Differences between Hardware/Software threads in VCB-API

There are certain minor restrictions in the hardware implementation of VCB-API. The priority

inherit functionality is not available for use by hardware threads and it is not possible change

the priority dynamically or block/restart a hardware thread. The VCB-API interface

implemented in VHDL contains, however, the same set of system calls as for software threads

to permit communication with the VCB.

VCB-core

The VCB-core consists of four different parts as shown in Figure 19. This block is used to

implement the VCB-core functions and to manager the globally shared system memory. This

contains all relevant messages and these can only be accessed through the VCB.

Figure 19 VCB-core architecture

The multiplexer block is used to manage different types of accesses, either HW (Hardware) or

SW (Software) calls. The different system calls are routed through the multiplexer to the slot

block. The controller block determines which of simultaneous accesses to the core is to be

given precedence and the other two blocks manage the lowest level of system calls in the

VCB-API (see Figure 18).Multiplexer

The multiplexer incorporates an important part of the VCB-core functionality. To avoid

restricting the use of VCB-API to software threads only, the VCB-core multiplexer is

augmented with a request-driven component which controls the communication with the

VCB-core. The multiplexer enables hardware threads to communicate with software threads

via the VCB-core. The multiplexer acts as a sort arbitrator granting access to one of the units

47

if more than one are simultaneously requesting access to the core. The objective is to obtain a

common interface for communication, irrespective of whether the caller is implemented as

software threads or as hardware threads.

The state transitions take all relevant signals into account in order to preserve the protocol of

the VCB communication. The owner (the unit granted access to the VCB-core) must remain

owner of the entire transaction. All state transitions and their conditions are illustrated in (see

Figure 20), and are explained below.

Figure 20. State transitions s for the different transactions

[IDLE -> IDLE:]

No unit requests communication.

[IDLE -> SW:]

A SW-thread request for VCB-core communication.

[IDLE -> HW:]

A HW-thread wishes to utilize VCB-core functionality.

[SW -> SW:]

SW-thread transaction in progress

[SW -> HW:]

The previous SW-thread transaction has been finished and a HW-thread is waiting to gain

access.

[SW -> IDLE:]

The previous SW transaction has been finished and there is no pending HW or new SW

request.

[HW -> HW:]

HW-thread transaction in progress.

48

[HW -> SW:]

The pending SW-thread request is accepted for processing when the current HW-thread

transaction is completed.

[HW -> IDLE:]

There are no requests from the units and no current HW-thread transaction.

Slot

The VCB-core functionality is divided into separate blocks (see Figure 19), slot and message

queue to reduce the complexity of the VCB-core functionality. All system calls enter the slot

block, and the calls {allocate, open, close, delete}, determine the slot information (see Figure

21) they do not use the functionality in the message queue.

Figure 21 Slot information in on-chip memory

The other system calls use the functionality defined in the message queue block. Data is first

entered into the slot block which determines if the slot is open or closed. If the slot is open,

the slot block routes the system call information into the message block and then sends a call,

(put, put_ready, get, get_ready, or info) to the message queue. The return value from this call

is passed by the slot block to the VCB-API together with a supplement to the system call

concerned.

49

Message queue

The different index numbers of the messages located in the global shared memory are

managed by this block. The system calls {put, get} return an index number from the message

queue associated with the relevant slot. This index number identifies the particular messages

in the buffer. The different system calls {put, put_ready, get, get_ready} transform the

particular message buffer into different states (see Figure 22) and the messages posted are

sorted in a selected algorithm, FIFO or PRIORITY, defined by the system call allocate.

Figure 22 Message queue information and status in on-chip memory

The system calls must be received in the correct sequence, e.g. to send a message the

sequence must be put follow by put_ready. These two system calls transform the particular

message to the get state. When the message is in the get state, it is ready for delivery to the

owner of the queue. To read a message, the owner must make a receive call which generates a

sequence of calls, the first of which is the get call. The return message from this call will be

given the first index number in the queue with the get state status. This call also transforms

the index number to the get-ready state. The next system call will be get_ready to complete

the read operation.

50

System architecture

The system architecture of the complete implementation includes a software processor kernel

CPU from Xilinx [26]. This kernel executes the software threads in the system. The real time

unit is an accelerator which manages the software thread scheduling, interrupt and semaphore

handling in addition to time management control in an external hardware component. The OS

accelerator supports two different scheduling algorithms, fixed priority scheduling and Round

Robin.

Figure 23 Hardware and Software architecture

The memory of this system is in two parts, an on- chip block RAM reserved for program code

and local data structures and an off-chip memory [36] which contains all message information

in the VCB interface.

All devices in the system are connected through the IBM CoreConnect [32] bus. The on-chip

peripheral bus (OPB) is designed for easy connection of on-chip peripheral components. The

OPB is a fully synchronous bus which functions independently at a separate level of the bus

hierarchy. The processor core can access the slave peripherals on this bus through the

processor local bus (PLB) to the OPB bridge unit which is a separate core.

51

Application code example

The VCB concept is implemented in both software and hardware. Some parts are

implemented in hardware to achieve higher performance and/or to attain a higher level of

abstraction.

Sending and receiving messages:

The sender and receiver threads (HW/SW) must allocate a slot before communication. The

procedures described below for making a send/ receive call must be followed.

The sending procedure

1. The sender requests permission to send a message to a slot and receives a message
index number allocated to the message by the VCB core

2. The sender copies the message to the message buffer. The VCB core must be informed
when the copying is completed.

3. The VCB core sorts the message queue and the receiver may then read the message.

The receiving procedure

1. The receiver requests permission to read a message from its slot and receives a
message buffer reference to the first message in the queue from the VCB-core.

2. The receiver must copy the message from the message buffer, if the message is to be
saved. The VCB core must be informed when the copying is completed.

The VCB core transforms the state of the message queue to “available” and the message

buffer is then available for new messages.

52

Receive service call in Software thread (C-code)
-- T1 Connect to the slot -------------------------------

retval=vcb_connect("t1",SLOT_1, INHERIT,FIFO_SORT);

-- Other code

…

-- Thread T1 Send msg ---

if(vcb_send("Hello word",strlen("Hello word”),SLOT_2,T1)!=VCB_OK)

 error handler

}

-- T2 Connect to the slot -------------------------------

retval=vcb_connect("t2",SLOT_2, INHERIT,

FIFO_SORT);

-- Other code

…

-- Thread T2 Receive msg ---

if(vcb_receive(msg,&size,SLOT_2,&sender,w4m,print_string)!=VCB_OK)

 error handler

}

Receive service call in Hardware thread (VHDL-code)

-- T1 connect to the slot 1--------------------------------

-- do a CONNECT

when CONNECT =>

 vcb_call <= '1';

 vcb_args(nroffunc+defaultarg-1 downto defaultarg) <= VCB_FCONNECT;

 vcb_args(nrofslot downto 0) <= myslot & msg_sort_prio;

 state <= WAIT_CONNECT;

-- Other code

53

-- Send msg to thread

when SEND =>

 vcb_call <= '1';

 vcb_args(nroffunc+defaultarg-1 downto defaultarg) <= VCB_FSEND;

 vcb_args(nrofslot+1 downto 0) <= destslot & "10"; -- slotid, msgprio

 vcb_sendmsg <= X"ABBA_ACDC";

 state <= WAIT_SEND;

-- Other code

-- T2 connect to the slot 2--------------------------------

 when CONNECT =>

 vcb_call <= '1';

 vcb_args(nroffunc+defaultarg-1 downto defaultarg) <= VCB_FCONNECT;

 vcb_args(nrofslot downto 0) <= myslot & msg_sort_prio;

 state <= WAIT_CONNECT;

-- Other code

-- T2 Receive msg --

 when REC =>

 -- signals to RECEIVE

 vcb_call <= '1';

 vcb_args(nroffunc+defaultarg-1 downto defaultarg) <= VCB_FRECEIVE;

 vcb_args(0) <= VCB_WAITFOREVER;

 state <= WAIT_REC;

54

Result

The hardware implementation of the VCB-API is not fully optimal and could be further

optimized in certain respects.

Figure 24 VCB-API physical size in slices

If the design of the VCB-API and the VCB-core is made more parallel, its size will be

increased. The design, including only the VCB-API, already has the footprint (see Figure 24)

of a 1M-gates device [24].

Figure 25 Timing diagram for VCB-API and VCB in clock cycles.

The timing would be more deterministic if the design were more parallel. A redesign of the

VCB-core could reduce the variation in the number of clock cycles to give a more

deterministic behavior (see Figure 25). This, however, would also result in an increased size.

If a particular application should demand a more deterministic behavior, a redesign is

possible.

55

Conclusion

• In this paper we present a novel uniform interface between hardware and software
threads. It shows how to construct a combination of software and hardware threads at
the same level of abstraction.

• The interface conceals the lower level of hardware/software communication and a
system designer could reuse the different application threads without rewriting the
hardware/software communication interface for each new partitioning.

• The interface also permits the designer to reuse the complete software or hardware
thread or the complete design. The interface currently offers the same semantic
behavior in both cases but with different notations of the API. This is because of
limitations in the VHDL-93 languages which do not allow signals on one level of
abstraction to affect signals on another level of abstraction.

56

57

Paper C

A hardware device driver implementation using an Application Programming

Interface for Hardware and Software Threads

Submitted at DATE ,

 Munich 2005

58

9 PAPER C

A hardware device driver implementation using an Application

Programming Interface for Hardware and Software Threads

Abstract

The main motivation for this work is to utilize the enormously powerful characteristic of

hardware parallelism to move functions from software to hardware in embedded systems.

This study conceptualizes a hardware-software communication and synchronization

mechanism at the thread level abstraction. We call the communication and synchronization

mechanism Virtual Communication Bus (VCB). The hardware based VCB controller has

been used by software threads for some years, but with this extension also allows hardware

threads to use VCB. This mechanism together with hardware functionality is used to enabling

hardware independent access to external I/O devices. Results during this work are an

implementation of one Application Programmable Interface (API) for hardware threads. We

also achieve zero overhead and 36 times faster response time through the additional

mechanisms for hardware thread API. The articles validate the concept at a new developed

printed circuit board (PCB) prototype with a design in one chip (XILINX FPGA). This chip

contains one single processor PowerPC405 processor and about 800 000 programmable gates.

59

Introduction and background
Software has for many years used standardized communication protocols between software

threads.[1][4][22] The last year’s new FPGA (Field programmable Gate arrays) devices from

XILINX [24]and Altera [25]have opened up for easy implementations of a mixture between

hardware and software components. Components in software are often called threads, tasks or

process. Hardware components can be called block, task, process or thread, in this article we

call software and hardware components threads. The hardware thread could be a combination

of parallel, sequential and conditional execution of operations and the software threads are by

definitions sequential. A standardized API on HW/SW thread level and the programmable

FPGA technology open up for easier technology choice between hardware and software

threads. Standardization gives less misunderstanding, easier reuse of components and also

facilitates design for reuse of complex hardware threads. Attempts to solve some of the real

time problems related to the communication between hardware and software thread are given

in [1][4][17], where an interface between HW/SW is designed and implemented. This article

deal with the real time problems, related to the communication between the software

application and an ordinary external I/O device universal asynchronous receiver / transmitter

(UART).

60

System overview
A common architecture for a computer system contains a processor unit CPU, an operating

system, peripheral devices and an application. In Figure 26 A, the common system and device

drivers are in software. Another approach for system architecture is shown in Figure 26 B,

were the architecture includes the same amount of functionality, but the shared processor only

runs the application code. Operating system functionality and the device driver management

is removed from the software architecture and implemented in concurrent hardware units.

This is for utilizing the parallelism to CPU and the massive concurrency in hardware.

Figure 26 A and B; Common approach and the papers approach for system architecture

To understand the architecture we first describe different hardware components in this work.

VCB concept
The VCB is an inter process communication (IPC) system implemented in hardware [11].

Like any other IPC system the VCB is used by threads to communicate information. This is

done by writing to and reading from slots that are “connected” to the “virtual bus”. The VCB

can provide communication between threads on a single processor system as well as on a

multi processor system. In this work we use single processor systems. The VCB (see Figure

27) contains a logical structure with three main components; an application programmable

interface (we call VCB-API), a slot and a message queue. To each slot a hardware or

software thread can be connected and communicate with other slots without knowing if they

are in hardware or software. In Figure 27 there are three slots, two software threads and one

hardware thread. A message transfer contains a specified amount of data and has a fixed

maximum length specified in the configuration of the interface. All messages are stored in the

global system memory and could only be accessed by using the VCB.

VCB-API is an interface for the service calls to the VCB bus and is standardized for both

soft/hard API, se next section.

61

The slot provides the abstraction of a communication channel as a data structure and must be

allocated and initialized. The slot is a system resource allocated by one thread and cannot be

used by other application threads. The data structure for a slot contains information about the

owner id(entity), if the slot is open or closed, and the default priority of the application thread.

Figure 27 VCB thread communication

The message queue contains the message to the thread. A specified algorithm sorts the

messages in either PRIORITY or FIFO order, the sorting algorithm must be specified when a

thread allocates a slot. A thread can inherit highest priority from the messages in the queue to

avoid priority inversion. A sender task can use time-out constraints on full queues and a

receiver task can do the same on empty queues, e.g. a receiver task can be set to wait a

specified time for a message and a sender can wait a specified time if the buffer is full. All

this is handled by hardware.

Real time Scheduler in Hardware
In the system a thread scheduler is also implemented in hardware and we call it in this paper

for a (RT-SCH). The VCB use the scheduler to change priority and block or allow the

software threads. Also the RT-SCH works in true parallel to the CPU and the other hardware

units. It is called RTU (Real-Time Unit) or Sierra in our previous research, for more

information see [2][11].

VCB architecture
The logical view of VCB (figure 3) is divided in two different layers. The first layer is divided

in two technological dependent interfaces; one for hardware VCB_HW_API and one for

software VCB_SW_API, They represent the interface to the software/hardware

communication mechanism. The second one is VCB_core used both by hard and software

62

threads and contains the message passing protocol. The VCB_API is technology dependent,

for software threads it is designed in C and for hardware threads in VHDL.

Figure 28 VCB structure

The VCB_core have three connections; HW treads API (point to point), system bus and the

real-time scheduler (RT_SCH). It contains three components; multiplexer, slot controller and

message queue controller.

Figure 29 VCB_core architecture

Connections to the VCB_core are the

• System bus connection:
Only for software threads communication. The VCB is a slave on the system bus and
the CPU reads and writes to the memory mapped registers file.

• Hardware threads connections:
Only for the hardware threads. Point to point to the hardware threads without using the
system bus.

• Real-time scheduler connection:
Used to start, stop and change priority of the software threads. The communication is
done point to point without using the system bus. Hardware threads do not need any
scheduler or priority change, because they are always running.

The VCB_core manages all information about the VCB status. The core is designed with

three different components.

63

VCB_core components the

• Multiplexer
Acts as a form of arbitrator to prevent more then one VCB_API call to be served by
the slot controller. The calling threads can not be interrupted during the entire
VCB_core transaction. To the Multiplexer is all HW_VCB_API and system bus
connected.

• Slot controller
All system calls enter the slot controller from Multiplexer, and the calls {allocate,
open, close, delete} can be handled by the slot. Other system calls must be manages
by the message queue controller [5]. The slot controller also manages to inform the
hardware based real-time kernel to start/stop and change priority of the software
threads.

• Message queue controller
Handle the message queues located in the system memory and sorted in a selected
algorithm, FIFO or PRIORITY. This is done with index number identifying the
particular messages. The index is used by VCB_API to inform the thread of the
address to the message [5].

Application Programming Interface for software and hardware threads
This chapter gives a brief description of the application programming interface. The

application programmer use the interface containing those different system calls, vcb_init,

vcb_connect, vcb_disconnect, vcb_send, vcb_receive, vcb_broadcast and vcb_send_wait . The

VCB_API has technology mapped API in C for software threads and VHDL for hardware

threads. Table 1 gives a summary of all the system calls. Further in this chapter a small

example is presented of one soft- and hardware thread communicating through VCB. This

small example will show how to use vcb_connect and vcb_send,vcb_receive in an application.

Table 1, service calls for VCB

SVC Description

Vcb_init Resets the entire VCB-interface and removes all owner information and

messages in the interface.

Vcb_connect Connects a thread to VCB, enabling the owner of the slot to read or write

messages to the queue. The caller must specify the name, slot number,

message sorting algorithm and default priority of the thread, which the

caller intends to use.

Vcb_disconnect Disconnect the thread from the vcb_slot. All messages will be removed and

the slot will be released.

64

Vcb_send A thread sends a message to another slot. The user must specify a pointer to

the message, the quantity of data to be transferred, the receiver of the

message, the priority of the message and the sender identity.

Vcb_receive A thread requests the permission to read a message from the message

queue.

Vcb_broadcast This system call sends message to all threads connected to a slot. Multiple

use of vcb_send will be used to implement this call.

Vcb_sendwait The vcb_sendwait system call sends a message to a specified thread and

waits until a response is received from the thread called or when a preset

time expires.

The sender and receiver thread must allocate a slot before communication (vcb_connect).

Then the procedures below must be followed.

Syntax description of two service calls, vcb_connect and vcb_receive in C
code.

Description of vcb_connect:

extern int vcb_connect(const char *name, int conn_slot_id, int prio_inher, int prio_sort);

Arguments:

name /* ASCII name at the owner of the slot*/

conn_slot_id /* Identity of the connected slot*/

prio_inher /*Allow priority inherit or not from the arrival mail*/

prio_sort /*Type of sorting mechanism either FIFO or priority*/

65

Description of vcb_receive:

extern int vcb_receive(void *msg, int *size, int owner, int *sender, int w4m, void

(*handler)(void *msg, int size,int sender));

Arguments:

void msg /* Location of transfer data */

int size /* Size of transferred data */

int owner /* The slot owner identity*/

int sender /* Identify the sender of the mail*/

int w4m /*Defines if the caller should be wait for mail or not*/

void (*handler)(void msg, int size,int sender) /*Handel the received message*/

Returns: VCB_OK or an error on illegal input

Synopsis

/* Connect thread T1 to slot number one */

retval=vcb_connect("t1",SLOT_1, INHERIT,FIFO_SORT);

if(vcb_receive(msg_data, msg_size,sende_id, w4m,

handler(msg_data,msg_size,sender_id))!=VCB_OK){

 error handelr

else

 other code …

The return value from this system call will be VCB_OK if the call was successfully.

Syntax description of vcb connect and vcb_receive in VHDL code.
Figure 30 describes the logical structure of a hardware threads we later give an example of

connect and receive from the VCB. A hardware thread is described in VHDL code.

Application VHDL code describes the semantic functionality of a hardware thread; the

description could be either parallel to use the hardware parallelism and/or sequential

execution. One VCB_HW_API is instantiated in each hardware thread and it has connection

66

to both the VCB_core and the system bus sees Figure 30. The system bus is used to move

messages to main memory.

Figure 30 General hardware thread

The hardware thread could implement any type of functionality without interfere with the

software application. The only system communications a hardware thread will require are the

VCB together with the system bus, used to communicate with other software threads in the

system. For more information see [5]. Below a description of the system call vcb_connect and

vcb_send included in the VCB-API package will be described in the VHDL case.

Description of vcb_connect:

Except for the name parameter the system call will be the same as for the software case. The

name parameter has been excluded in the hardware case.

Arguments:

conn_slot_id /* Identity of the connected slot*/

prio_inher /*Allow priority inherit or not from the arrival mail*/

prio_sort /*Type of sorting mechanism either FIFO or priority*/

67

Description of vcb_send:

The vcb_send call makes by specify call types; in this case the number is 6. Then the other

parameters are the same as the software case. Except from the pointer in the software case, the

solution in the hardware case will be to use a separate bit-vector to transfer the data.

31 – 28 27–16 15-12 11-8 7-4 3-0

6 Not used Size Address Priority Slot ID

Arguments:

Size --Amount of data to be transferred

Address --Identity of the sender

Priority --Mail priority

Slot ID --Address to the recipient of the message (Slot user)

Note:

send_data -- Send data is transferred by a separate bit-vector

Return codes: svc_ret[0] return code 0=OK, 1=not free

Synopsis

-- T2 connect to the slot 2

case c_state is

 when CONNECT =>

 connect_args<=connect&X"2"&msg_inherit&sort_alg –Slot id number 2, no inherit, FIFO

order

 c_call_api <= '1';

 c_state <= WAIT_CONNECT;

 when WAIT_CONNECT =>

 if rdv_api = '1' then

 connect_ok<='1';

 c_vcb_call <= '0';

 c_state <= IDLE_CONNECT;

 else

 c_state <= c_state;

 end if;

68

--When hardware thread T2 sends a message to T1 at slot number one,

case s_state is

 when SEND =>

 send_data<=X”ABCD”;

 send_args<=send&size&address&priority&slot_id;

 s_call_api <= '1';

 s_state <= WAIT_SEND;

 when WAIT_SEND =>

 if rdv_api = '1' then

 send_ok<='1';

 s_call_api <= '0';

 s_send <= IDLE_SEND;

 else

 send_s <= send_s;

 end if;

Software and Hardware device driver cases
A device driver acts as a translator between a hardware device and software threads. One

benefit to use device drivers is to break the dependency between the application and the

lowest level hardware dependent software code. Every physical device, whether it is a printer,

disk drive, or keyboard, must have a driver program. A device driver example for an UART is

used to demonstrate and proof the concept and monitor the overhead The UART device is the

connection between a serial port (RS232) and the system bus. A UART converts

asynchronous serial data bits communication into a parallel byte stream and vice versa.

Output and input to the UART device is two serial busses (one receive and one transmit)

connection. The UART has a memory mapped register interface, where the register is used to

control, read/write information and read status. We call this part the physical UART device.

A software device driver can be designed, described and handled in some ways and a standard

software device driver always has a specified API. The standard driver API often provides

five different types of calls; init, opened, close, read and write. In the test cases A and B the

device driver will be handled as an ordinary thread, an UART thread. This thread will manage

the hardware dependent code. A thread context switch (CTX) is the computing process of

storing and restoring the state of a CPU (the context) at a memory location.

69

Case A Software device driver (software UART threads)
The first system architecture shown in Figure 31 contains one processor kernel, RT-SCH,

UART, and VCB without support for hardware threads. The VCB core has only connection

with the system bus and HW-SCH. The System busses are from IBM (Core connect) [32]the

bus architecture include the processor local bus (PLB), an on-chip peripheral bus (OPB), a

bus bridge and a device control register (DCR) bus. The real-time thread scheduling is

managed by a hardware implemented scheduler. The real-time scheduler has support for 16

software threads at 8 priority levels and has support for time and semaphore handling [2]. The

memory hierarchy in this system is divided in three levels. The first level is the on-chip cache

in the processor kernel, not used during our test cases described below and in section 0. The

second level is the on-chip block RAM and the third level is the off-chip memory, those two

different memory levels contain system data and program code. The I/O block is a UART

(Universal Asynchronous Receiver/Transmitter). This UART have a simple register interface

with no buffering support. The interface is memory mapped and reaches from a base address

X and five consecutive addresses ahead.

Figure 31 System architecture without hardware threads.

The UART-thread is scheduled as an ordinary application thread. The software interrupt

service routine ISR is executed when the physical UART device fires an interrupt. The ISR

70

manages the communication with the HW-VCB to generate a system event. A system event in

this case is a rescheduling of the software threads.

The UART-thread use init, opened and read. And also use the vcb_connect, vcb_send and

vcb_receive to communicate with the application. The terminal thread could read/write data

from/to the physical UART device through the UART-thread.

The Figure 32 shows the sequence of processes which handle the physical UART device in

the “software case”.

Figure 32 Response time in case A

1. One 8 bits ASCI data is arriving to the physical UART device and convert to one
parallel byte.

2. Interrupt to the CPU
3. ISR starts and acknowledge the interrupt and send an event to start UART-Thread

(device driver) through the HW-VCB unit
4. Tread Context switch to UART-Thread (CTX)
5. UART-Thread read the ASCI from physical UART device and if it is “carriage return”

or the right amount of bytes has been read it starts terminal-thread else it collect the
bytes in a memory array and block it’s self.

6. Thread CTX, and next thread starts from ready queue.

71

Case B; Hardware device driver (hardware UART threads)

The second system architecture has the same configuration as in case A, but it also has an

extension with support for HW threads. The I/O device in this case is removed from the

shared system bus and is included in the hardware thread. The hardware thread manages the

functionality connected to the UART device.

Figure 33 System Architecture overview with support for hardware threads

A hardware UART thread has the same semantic function as the software UART thread. Both

threads will use the same interface to communicate with other software application threads.

The difference between the software and hardware UART thread is that the hardware thread is

always running in the system and will not utilize the CPU to manage the physical UART

device. A hardware UART device driver thread interfaces the physical UART device directly

through a point-to-point connection. The point-to-point connection includes 8 bits wide data

bus, interrupt and acknowledge signals from/to the UART device. The HW_VCB_API

connects the hardware thread to the software application through the VCB. The

72

HW_VCB_API has a master connection to the system bus used to transfer message data to

the main memory with Direct Memory Access (DMA), see Figure 34.

Figure 34 Physical UART and Hardware thread architecture

The physical UART component has a direct connection to the external environment through

the two serial busses RX and TX. A hardware thread handle the arrived interrupt instead of

directly interrupt the processor kernel, as in case A. The incoming interrupt request signal

trigs a sequence of different statements, that we call ISR (to get equivalent semantic as in case

A). The UART HW thread reads out characters form the data buffer. The sequence to read out

one character from the physical UART takes three system clock cycles. The read characters

are stored in a buffer. When the buffer is full or on carrier return arrival the hardware thread

will send a VCB message to the subscriber of data from the UART device. The sequence of

activity in case B will be described below Figure 35.

73

Figure 35 Response time in case B

The sequence of events in case B,

1. One 8 bits ASCI data is arriving to the physical UART device and convert to one
parallel byte,

2. Interrupt to the ISR (hardware),
3. ISR starts and acknowledge the interrupt and start UART thread,
4. UART-Thread read the ASCI from physical UART device and if it is “carriage

return” it start terminal-thread else it dose nothing more.
5. When the hardware-thread sends a message to the Terminal thread a CTX occur in

the system.

74

Test platform description
A new PCB was developed with one FPGA, peripheral components, external RAM etc, see

Figure 36. The FPGA architecture includes a hard CPU from (IBM PowerPC 405), and about

800 000 programmable gates and 18k RAM in a single FPGA chip from XILINX.

Figure 36 Test board

The programmable gates are programmed with hardware architecture except the CPU. The

CPU is an ASIC within the FPGA chip. The system platform development tools used to

generate the system platform are the Embedded Development Kit EDK and ISE from

XILINX [24]. Those tolls generate a downloadable hex file for selected device; in this case a

Virtex II PRO (XC2VP4). The hex file contains a complete system and the on chip memory

configuration. The tools used to developed and generate the software are GNU tools [24]

adjusted to fit into the XILINX design flow.

75

Results
Two main results are shown in this article, which are the HW/SW VCB-API and two different

device driver cases A/B. Every hardware component in the hardware architecture is running at

50 MHz.

VCB-API results

The first result was the response time for different service calls for hardware/software VCB-

API. The measurement was done with a timer on the System bus (in the FPGA), counting

with system clock frequency and the probe effect was subtracted from the result.

Table 2 HW/SW VCB Service Calls response times (System clock 50MHz).

API/Calls SW HW Quota

Connect 96.72us 1,65us 58,6

Disconnect 220.02us 2,5us 88,0

Send 135.12us 1,51us 89,5

Receive 490.66us 2,48us 197,8

Send&Wait 640.36us 3,99us 160,5

Broadcast 630.82us 6,20us 101,7

The result shows a decrease in response time between 60 and 200 times, where the most

complex service calls gives the largest differences.

76

UART Driver case A and B

The second result shows the implementation of hardware device drivers and the response

time, measured when the interrupt occur until the interrupt routine ISR and the UART-Thread

manage the event. Table 4 shows the time when the interrupt occur to the character from

UART is send to the consumer thread. In the software case A, 100us is needed to service one

interrupt and the communication with the physical UART. Those 100us seconds is an

overhead time for the software application. The same sequence in case B took 2,76us. In this

case everything is done in hardware and running simultaneous with the software application.

Thereby the overhead for the application will be zero. The latency from the UART thread in

those two cases will be (OHT+VCB_send+CTX+VCB_receive) see Table 3.

Table 3 Response time from the physical UART see Figure 32 and Figure 35

CASE A B

Response time 749,98us 519,33us

Table 4 Overhead time for CASE A and B see Figure 32 and Figure 35

CASE A B Relation

ISR 18,54us 1.23us 15,1 times

CTX 24,20us *** Infinity

UART-Thread 57,30us 1.53us 34,5

Overhead time (OHT) 100us 2,76us 36,0

The design size for the extra logic for VCB-API is described in next table.

Table 5 Footprint for a HW_VCB_API in a hardware thread

77

Conclusions and discussion
• We have proved that a standardized VCB interface for SW/HW threads is a feasible

way to increase the effectively of design device drivers with less overhead time, no
interrupt from the physical devices and zero overhead for the CPU. This study was
made by adapting communication to the hardware scheduler, with interface to
hardware threads.

• If the serial port is set to 19200 baud. That means there are 19200/8 interrupts per
second. At 100us each, this represent about 20% CPU overhead for a single channel
using the standard CPU in our study. For 5 serial channels with 19200 baud, the result
will be in worst case 100% load only for the interrupts. Today’s new design technique
gives the possibility to avoid the use of general architectural solutions.

• The FPGA technology has open a possibility to solve architecture in more an
application demanding way. The design space has increased, because of the
programmable gate arrays; they open up for an incredible lot of new hardware
architectural freedom. Future work in this area could be to optimize the interface to get
a cost-effectiveness of the VCB-API. But also look at how could a system with many
hardware threads be implemented in an effective way.

78

10 APPENDIX
VCB is divided in two layers the highest layer is the application interface VCB_API, used by

the application designers to communicate and synchronies the application. This layer could be

implemented either for software designers or the hardware designers. The lower part

VCB_CORE includes the protocol functionality of the VCB and this part is always

implemented in hardware. Used by both the software and hardware VCB_API.

Figure 37 VCB structure

The VCB supports communication through message queues. A queue can be owned by a

thread, which means that only one thread can read or write messages from a “Slot”. Read or

write function call supports “synchronous” or “asynchronous” calls. A “Slot” can be

configured to support priority inherit from the messages priority. Message priority will be

inherited to the software thread. Messages in a queue can be sorted by FIFO or PRIORITY

order.

79

10.1 Software Application Programmable Interface VCB-API

Used by the software designers to communicate and synchronize the software application.

Disconnect
void disconnect(int slot_id);

Description:

Disconnects a software thread if it has been connected with the method connect earlier.

Returns: VCB_OK or VCB_ERROR if the method failed.

Argument:

int slot_id: Numerical number of the slot

Connect
int connect(const char *name, int slot_id,bool prio_inher, bool prio_sort,bool

task_prio_sort);

Description:

This system call connects a thread to the bus. The name may not exceed

VCB_MAXNAMELEN. The slot_id should be positive and not exceed

VCB_MAXSLOTNUMBER. Name: A name instead of a number Slot_id: Returns: VCB_OK

if connected else an VCB error.

Argument:

const char *name: Name of the slot

int slot_id : Numerical number of the slot

bool prio_inher: Used to inherit priority or not from the mail

bool prio_sort: Type of sorting algorithm FIFO or PRIORITY order

80

Receive
int receive(void *msg,int *size,int *sender,int timeout,void (*handler)(void *msg, int size,

int sender));

Description:

Receive a message Wait for a message to arrive and then copy it to <msg> of size <size> and

call the <handler>. The <timeout> defines how long should be waited until a message arrives.

Argument:

void *msg : Message location

int *size: Amount of transferred data

int *sender : Sender identity

int timeout: Amount of time, waiting at a mail

void (*handler)(void *msg, int size, int sender): Call back routine, used to read a mail at the

inherit priority.

Send
int send(void *msg,int size,int address,int priority);

Description:

Send the message <msg> of size <size> to <address> with priority

<priority>. The <size> may not exceed VCB_MAXMSGSIZE. This method is blocking until

the message successfully is sent. Returns: VCB_OK or an error on illegal input.

Argument:

void *msg: Location of data

int size: Amount of data

int address: Address to the reader of the message

int priority: Mail priority

81

Send & Wait
int sendwait(void *msg, int size, int address, int priority, void *rcvmsg, int *rcvsize, int

timeout);

Description:

Send a message and wait for answer

Argument:

void *msg: Location of data

int size: Amount of data to be transfered

int address: Address to the reader of the message

int priority: Mail priority

void *rcvmsg: Received mail location

int *rcvsize: Amount of transferred data

int timeout Amount of time, waiting at a mail

Broadcast
int broadcast(void *msg, int size, int priority);

Description:

Broadcast the message <msg> of size <size> with priority <priority>.

Argument:

void *msg: Location of data

int size Amount of data to be transferred

int priority: Mail priority

82

Init
int init(void);

Description:

This method is only needed to be called once in the entire system.

It should be called before any other VCB method is called. Returns: VCB_ERROR if

something went wrong else VCB_OK.

Argument:

None

83

10.2 Hardware Application Programmable Interface VCB-API

Used by the hardware application designers to communicate and synchronize the hardware

application threads.

Disconnect
call_args <= disconnect&slot_id;

Description:

Disconnect a thread N from the VCB-bus at slot number X. If the calling thread is the owner

of the slot number X the return value will be OK otherwise the value is VCB_ERROR.

Argument:

31 – 28 27–16 3-0

1 Not used Slot ID

Slot ID:

Specifies the slot ID (0-3).

Return codes

svc_ret[0] return code 0=OK, 1=not owner of the slot

84

Connect
call_args <= connect&msg_sort_alg&prio_inherit&slot_id;

Description:

Connect a thread N to the VCB-bus at slot number X. If the slot number is available the return

value from the function call will be OK otherwise the return value will be VCB_ERROR

Argument:

31 – 28 27–16 5 4 3-0

2 Not used Msg sort algorithm Priority inherit Slot ID

Slot ID:

Specifies the slot ID (0-3).

Priority inherit

The thread inherit or not from the arrival mail, not available for hardware threads.

Message sort algorithm:

Specified the type of sorting algorithm 0=FIFO 1=Priority.

Return codes

svc_ret[0] return code 0=OK, 1=not free

85

Receive
call_args <= receive&w4m& slot_id;

Description:

Receive a message from slot number X to read a message the user of the slot hade to bee the

owner of the slot and the user hade to specify the blocked or non-blocked function call. The

blocked functionality will only bee available for the software threads. If the destination slot is

available and is opened the return value from this function call will be the particular message

and the OK value, otherwise the return value will be VCB_ERROR.

Argument:

31 – 28 27–8 7-4 3-0

4 Not used Wait for mail or not Slot ID

Slot ID:

Specifies the slot ID (0-3).

Priority inherit

Define if the thread will be blocked or not if the reader hasn’t any mail.

Address

Return codes

svc_ret[0] return code 0=OK, 1=no mail

86

Send
call_args <= send&msg_size&msg_adr&prio_inherit&slot_id;

Description:

Send a message to a thread through the specified slot_id. If the destination slot is available

and if the slot is opened the return value from this function call will be OK otherwise the

return value will be VCB_ERROR

Argument:

31 – 28 27–16 15-12 11-8 7-4 3-0

6 Not used Size Address Priority inherit Slot ID

Slot ID:

Specifies the slot ID (0-3).

Priority inherit

The thread inherit or not from the arrival mail, not available for hardware threads.

Address

Specified the destination slot.

Size

Amount of data to be transferred

Return codes

svc_ret[0] return code 0=OK, 1=not free

87

Send & Wait
call_args <= send_wait&msg_size&msg_adr&prio_inherit&slot_id;

Description:

Send a message to a thread through the specified receiver specified at a slot_id. If the

destination slot is available and if the slot is opened the return value from this function call

will be OK otherwise the return value will be VCB_ERROR. Wait for replay from the

receiver.

Argument:

31 – 28 27–16 15-12 11-8 7-4 3-0

7 Not used Size Address Priority inherit Slot ID

Slot ID:

Specifies the slot ID (0-3).

Priority inherit

The thread inherit or not from the arrival mail, not available for hardware threads.

Address

Specified the destination slot.

Size

Amount of data to be transferred

Return codes

svc_ret[0] return code 0=OK, 1=not free

88

Broadcast
call_args <= broadcast&msg_size&msg_prio;

Description:

Send a message to every connected thread at the VCB. If the destination slot is available and

if the slot is opened the return value from this function call will be OK otherwise the return

value will be VCB_ERROR

int broadcast(void *msg, int size, int priority);

Argument:

31 – 28 27–8 7-4 3-0

8 Not used Size priority

Slot ID:

Specifies the slot ID (0-3).

Priority inherit

The thread inherit or not from the arrival mail, not available for hardware threads.

Address

Specified the destination slot.

Size

Amount of data to be transferred

Return codes

svc_ret[0] return code 0=OK, 1=not free

89

10.3 Supported service calls in VCB_BASIC

Every system call contains information to the VCB module about the type of system call.

Every call could be described in a package with a fixed bit width.

Register specification

31 – 28 27-0

Module Block specific description

This message block includes three types of register, each register is memory mapped and

could accessed from the base address and two consecutive addresses ahead.

Version register

31- 0

Inform the caller about number of slot and message buffers

Service call register

31 – 28 27-0

Module Block specific description

90

Service call response register

12 11-8 7-4 3-0

Status bit Thread id Buffer nr Error code

Status bit:

Indicate the status at the block, either busy or ready

Thread id:

Next running thread ID

Buffer nr:

Buffer place to copy message to

Error code:

Indicate OK or some error (depends of which type of service call)

91

Create
call_args <= create&hw_sw&sort_alg&prio_inherit&thread_prio&thread_id&slot_id;

Description:

Create a VCB queue slot. Initialize the queue slot to allowed priority inherit a message

priority arrived at the message slot. The messages sort algorithm could bee initiated in FIFO

or by priority order. The priority order bit in the configuration register below controls the

priority sort order of messages. The configuration of the queue slot must include information

about software or hardware thread.

Argument:

31 – 28 27–16 14 13 12 11-8 7-4 3-0

0 Not

used

HW/SW

thread

sort

algorithm

Priority

inherit

Thread

priority

Thread ID Slot ID

Slot ID:

Specifies the ID of the slot (0-3).

Thread ID:

Specifies the ID of the thread (0-15), which owns the queue

Thread priority:

The default priority of the thread, used only when priority inheritance is allowed and the

queue has one owner. This priority assigns to the thread after the get_ready call.

Priority inherit

The software thread inherit the priority from the mail

Message sort algorithm:

0=FIFO 1=Priority.

Hardware or software thread:

Used to indicate if the owner of the slot is hardware or software thread. (Not implemented in

the latest version of VCB)

Return codes

svc_ret[0] return code 0=OK, 1=not free

Close slot
call_args <= close_slot&thread_id&slot_id;

92

Description:

Close a message queue. Prevents new messages to be sent to the queue. Should be used before

deletion of a queue. The thread must bee the owner of the slot.

Argument:

31 – 28 27 – 8 7-4 3-0

1 Not used Thread ID Slot ID

Slot ID:

Specifies the ID of the slot (0-3).

Thread ID:

Specifies the ID of the thread (0-15), which owns the queue

Return codes

svc_ret[3:0] return code 00=OK, 01=Not owner of slot, 10=queue not created or queue is

deleted.

svc_ret[7:4] number of messages in queue (0-15).

93

Open slot
call_args <= open_slot&thread_id&slot_id;

Description:

Open a message queue. Enable new messages to be sent to the queue. The thread performing

this request must be the owner of the slot.

Argument:

31 – 28 27 – 8 7-4 3-0

2 Not used Thread ID Slot ID

Slot ID:

specifies the ID of the slot (0-3).

Thread ID:

Specifies the ID of the thread (0-15), which owns the queue

Return codes

svc_ret[3:0] return code 00=OK, 01=Not owner of slot, 10=queue not created or queue is

deleted.

svc_ret[7:4] number of messages in queue (0-15).

94

Delete slot
call_args <= delet_slot& thread_id&slot_id;

Description:

Delete a slot. All information of the slot disappears. The thread must bee the owner of the

slot.

Argument:

31 – 28 27 – 8 7-4 3-0

3 Not used Thread ID Slot ID

Slot ID:

Specifies the ID of the slot (0-3).

Thread ID:

Specifies the ID of the thread (0-15), which owns the queue

Return codes:

svc_ret[3:0] return code 00=OK, 01=Thread not owner of the slot, 10= slot is deleted or not

created.

95

Get
call_args <= get&condition_flag&thread_id&slot_id;

Description:

Get a message from a queue the return value dependence on the argument to the get service

call. Conditions are error code or suspended to message arrival.

Argument:

31 – 28 27 – 12 8 7-4 3-0

4 Not used Condition flag Thread ID Slot ID

Slot ID:

Specifies the ID of the slot (0-3).

Thread ID:

Specifies the ID of the thread (0-15), which owns the queue

Condition:

Bit value 1= the thread will not be waiting if no mail is available.

Bit value 0= the thread will be waiting until a mail is available.

Return codes

svc_ret[3:0] return code 00=OK, 1=no mail ,2=Slot not opened, 3= slot is deleted or not

created, 4=Thread not owner of the slot.

svc_ret[7:4] buff place pointer to message buffer (0-15) was messages has bean placed.

96

Get_ready
call_args <= get_ready&buffer_nr&thread_id&slot_id;

Description:

Inform the VCB that a message is read from the buffer placed “get” returned. This call must

be performed after the “get” service call. The thread performing this request gets the priority

changed back to its normal priority (when priority inheritance is used). The priority inherit

functionality don’t used for the hardware threads.

Argument:

31 – 28 27 – 12 11-8 7-4 3-0

5 Not used Buffer place Thread ID Slot ID

Slot ID:

Specifies the ID of the queue (0-3).

Thread ID:

Specifies the ID of the thread (0-15), which owns the queue

Buffer place:

Specifies the buffer were the message is read from (0-15). This value must be the index

number returned from the “get” service call

Return codes

svc_ret[3:0] return code 00=OK, 1=Thread not owner of the slot, 1=message not in get_ready

state, 11= slot is deleted or not created.

97

Put
call_args <= put&message_prio&thread_id&slot_id;

Description:

Post a message at end of a queue, when FIFO else placed after messages at same priority. The

first thread waiting for a message, inherit priority from the message when priority inheritance

is used and ready (see below) is set to 0.

Argument:

31 – 28 27 – 12 11-8 7-4 3-0

6 Not used Message priority Thread ID Slot ID

Slot ID:

Specifies the ID of the slot (0-3).

Thread ID:

Specifies the ID of the thread (0-15), which owns the queue

Message priority:

Specifies the message priority (0-3), 0=priority 0, 1= priority 2, 2= priority 4, 3= priority 6.

Return codes

svc_ret[3:0] return code 00=OK, 1=queue full,2=slot is closed,3=queue deleted or not created.

svc_ret[7:4] Index number for the location of the message in the buffer(0-15).

98

Put_ready
call_args <= put_ready&buffer_nr&thread_id&slot_id;

Description:

Inform the VCB that a message is placed on the buffer placed “put” returned. This call must

be performed after a “put”. When priority inherit is used the thread priority inherit the

message priority (Only available for the software threads).

Argument:

31 – 28 27–12 11-8 7-4 3-0

7 Not used Buffer place Thread ID Slot ID

Slot ID:

Specifies the ID of the queue (0-3).

Thread ID:

Specifies the ID of the thread (0-15), which owns the queue

Buffer place:

Specifies the buffer were the message is placed (0-15). This value must be the buffer place

that was returned by “put”.

Return codes

svc_ret[3:0] return code 0=OK,1=Not opened,2= queue not created or queue is deleted,

3=VCB_CORE error, 4=Not owner of the slot

99

Flush
call_args <= flush&slot_id;

Description:

Flush all messages on a slot. The thread performing this request must be owner of the queue.

Argument:

31 – 28 27 – 2 3-0

8 Not used Slot ID

Slot ID:

Specifies the ID of the queue (0-3).

Return codes

svc_ret[2:1] return_code00=OK, 01=Not owner of slot,10=queue not created or queue is

deleted.

100

Slot_info
call_args <= slot_info&info&slot_id;

Description:

Returns queue information.

Argument:

31 – 28 27 – 8 7-4 3-0

9 Not used Info1/2/3 Slot ID

Slot ID:

Specifies the ID of the queue (0-3).

Info0/1/2:

Specifies if infoN=0 (see below for return codes).

Return codes

Info 0:

svc_ret[0] return code 0 = OK, 1 = queue is deleted.

svc_ret[1] 0=open, 1=closed

svc_ret[2] message sorting algorithm 0=FIFO,1=Priority.

svc_ret[7:4] number of messages in queue (0-15).

Info 1:

svc_ret[0] return code 0 = OK, 1 = queue is deleted.

svc_ret[1] 0=no owner, 1=one owner

svc_ret[7:4] thread ID (0-15).

Info 2:

svc_ret[0] return code 0 = OK, 1 = queue is deleted.

svc_ret[1] thread sorting algorithm 0=FIFO, 1=Priority

svc_ret[2] priority inheritance on message arrival 0=off ,1=on.

svc_ret[7:4] Thread default priority. (0-7).

Init
call_args <= init;

101

Description:

Initiate whole VCB to zero this system call should bee called once at the system init sequence.

Argument:

31 – 28 27-0

10 Not used

None

Return code:

None

102

Internal memory description
This description include an over view of the internal memory in the VCBIF and VCB main

core blocks.

Slot memory (19 down to 0)

Bit [0] = Inherit message priority

Bit [1] = Type of sort algorithm FIFO or PRIO

Bit [2] = Owner is HW or SW thread 0=SW thread

Bit [3] = Thread blocked and waiting for mail

Bit [4] = Software thread has change priority

Bit [5] = Slot n is created

Bit [6] = Slot number n is opened

Thread default priority {generic taskprio}

Thread identity only used to identified software threads {generic thread_id}

Pointer memory (19 down to 0)

This memory contains four pointers, one for each message priority level. If the slot n is

opened for FIFO sort algorithm the pointer 0 is used to hold the ready message buffer. {

pointer 3, pointer 2, pointer 1, pointer 0 } The length of the pointer memory depends on the

generic variable pointersize

Message memory

Bit [1 - 0] = Used to point out correct CPU number

Bit [3 - 2] = Message state {free, put, put_ready }

Pointer to next message in the message queue {generic pointersize }

103

11 GLOSSARY

• FPGA

A Field Programmable Gate Array (FPGA) fundamental characteristic is that it consists of

fine-grained programmable logic blocks interconnected via wires and programmable

switches. Logic functionality for each block is specified via a small programmable

memory, called lookup table (LUT).

• API

Application Programmers Interface, The sum of all function calls available to an

application programmer

• ISR

Interrupt service routine, the routine that's called when an interrupt occur

• Task/Thread

A task/thread is a sequential program performing certain functions, real time application is

usually made up of one or more sets of communicating tasks/threads.

• Real-time system (RTS)

A real-time system is one in which the correctness of the system depends not only on the

logical result of computation, but also on the time at which the results are generated.

• RTOS

Real time operating system, an operating system designed to be used in real time systems

• RT-SCH

Real Time Scheduler, a real time resource scheduler implemented in pure hardware

• VCB

Virtual Communication Bus, communication and synchronization mechanism used by

both hardware and software threads.

104

12 REFERENCES
[1] HARTIK: a hard real-time kernel for programming robot tasks with explicit time constraints

and guaranteed execution Buttazzo, G.C.; Di Natale, M.

Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on , 2-6

May 1993

[2] Real-time scheduling co-processor in hardware for single and multiprocessor systems

Starner, J.; Adomat, J.; Furunas, J.; Lindh, L.; EUROMICRO 96. 'Beyond 2000: Hardware and

Software Design Strategies'., Proceedings of the 22nd EUROMICRO Conference , 2-5 Sep

1996

[3] L. Lindh, T. Klevin, J. Furunäs, "Scalable Architecture for Real-Time Applications - SARA",

Swedish National Real-Time Conference SNART'99, August 1999, Linköping, Sweden

[4] Stankovic, J.A.; Ramamritham, K.: “The Spring kernel: a new paradigm for real-time

 systems”, Software, IEEE , Volume: 8 , Issue: 3 , May 1991

[5] Uniform Interprocess Communication interface for Hardware and Software Threads

In International Workshop on Advanced Real-Time Operating System Services (ARTOSS)

Porto, Portugal , July 2003. IEEE

Author(s): Peter Nygren, Lennart Lindh

[6] Distributed fault-tolerant real-time systems: the Mars approach

Kopetz, H.; Damm, A.; Koza, C.; Mulazzani, M.; Schwabl, W.; Senft, C.; Zainlinger, R.;

Micro, IEEE , Volume: 9 , Issue: 1 , Feb. 1989

[7] A Predictable Device Driver Model for a Variable-Rate Software-Controlled Switch Matrix

David B. Stewart and Melissa Moy Dept. of Electrical Engineering and Institute for Advanced

Computer Studies University of Maryland

[8] Hardware/Software Co-Design of I/O Interfacing Hardware and Real-Time Device Drivers for

Embedded Systems David B. Stewart and Bruce L. Jacob Dept. of Electrical and Computer

Engineering, and Institute for Advanced Computer Studies University of Maryland

[9] Synthesis of DMA controllers from architecture independent descriptions of HW/SW

communication protocols O'Nils, M.; Jantsch, A. VLSI Design, 1999. Proceedings.

[10] Successful Prototyping of a Real-Time Hardware Based Terrain Navigation Correlator

Algorithm

Euromicro symposium on Digital System Design, Belek, Turkey. 2004

[11] Interprocess Communication Utilizing Special Purposed hardware

Technology Licentiate thesis by Johan Furunäs Åkesson ISBN 91-88834-24-7

[12] VSI Alliance Virtual Component Interface Standard

105

[13] N. Wirth, “Hardware Compilation: Translating Programs into Circuits”, Published by IEEE

Computer Society in Computer (Vol. 31, No. 6), June 1998

[14] Distributed fault-tolerant real-time systems: the Mars approach

Kopetz, H.; Damm, A.; Koza, C.; Mulazzani, M.; Schwabl, W.; Senft, C.; Micro, IEEE ,

Volume: 9 , Issue: 1 , Feb. 1989

[15] Priority inheritance protocols: an approach to real-time synchronization Sha, L.; Rajkumar,

R.; Lehoczky, J.P.; Computers, IEEE Transactions on , Volume: 39 , Issue: 9, Sept. 1990

Pages:1175 - 1185

[16] Survey of device driver management in Real-Time Operating Systems Sebastian Penner,

Peter Nygren

[17] Hard Real-Time Computing systems, Predictable Scheduling Algorithms and Applications by

Giorgio C. Buttazzo. KLUWER ACADEMIC PUBLISHERS

[18] R. Tessier, W. Burleson, ”Reconfigurable Computing for Digital Signal Processing: A Survey”,

Journal of VLSI Signal Processing 28, Kluwer Academic Publishers, 2001

[19] Hardware/Software Co-Design of I/O Interfacing Hardware and Real-Time Device Drivers for

Embedded Systems David B. Stewart and Bruce L. Jacob Dept. of Electrical and Computer

Engineering, and Institute for Advanced Computer Studies University of Maryland

[20] Synthesis of DMA controllers from architecture independent descriptions of HW/SW

communication protocols O'Nils, M.; Jantsch, A. VLSI Design, 1999. Proceedings.

[21] A Predictable Device Driver Model for a Variable-Rate Software-Controlled Switch Matrix

David B. Stewart and Melissa Moy Dept. of Electrical Engineering and Institute for Advanced

Computer Studies University of Maryland

[22] Intertask communications in an integrated multirobot system

Kang Shin; Epstein, M.;

Robotics and Automation, IEEE Journal of [legacy, pre - 1988] , Volume: 3 , Issue: 2 , Apr

1987

[23] Modeling, Verification and Exploration of Task-Level Concurrency in Real-Time Embedded

Systems

Authors: Filip Thoen and Francky Catthoor, Publiched by Kluwer Academic Publichers

12.1 Unpublished references and www material
[24] http://www.xilinx.com

[25] http://www.altera.com

[26] http://www.xilinx.com/products/design_resources/proc_central/

[27] http://www.CoWare.com

[28] http://www.ose.com/products/

106

[29] http://www.windriver.com/

[30] http://www.lynuxworks.com/

[31] http://www.realfast.se/

[32] http://www-3.ibm.com/chips

[33] http://www.national.com/pf/PC/PC16550D.html

[34] CoWare N2C Design System www.CoWare.com

[35] VHSIC Hardware Description Language VHSIC stands for Very High Speed Integrated Circuit

[36] Samsung 128MB K4S280832D-TC75 16MX8

107

13 INDEX

A

ALU, 35

API, 2, 4, 9, 15, 20, 21, 22, 23, 25, 26, 28, 38, 39, 41, 42,

43, 44, 46, 48, 54, 55, 78, 79, 83

API_Basic, 41

API_Slot, 41, 44

ASIC, 5

C

CLB, 16

core connect, 18, 38

CPLD, 6, 7

CPU, 1, 19, 31, 32, 33, 34, 35, 36, 45, 50, 102

D

DCR, 18, 19

DMA, 14, 15, 18, 19, 24, 45, 103, 104

DSP, 5, 30, 31

E

External I/O, 19

F

FIFO, 10, 40, 44, 49, 52, 78, 79, 84, 91, 97, 100, 102

FPGA, 1, 2, 5, 6, 7, 15, 17, 30, 31, 32, 33, 35, 36

H

Hard real-time system, 3

Hardware threads, 7

Hardware to Hardware communication, 9

HARTIK, 14, 103

HW VCB_API, 22

I

Interrupt, 2, 14

ISR, 2, 14

L

LUT, 2, 6

Lynx, 14

M

Mailboxes, 10

Message queue, 49

Message Queue, 10

MicroBlaze, 17

microprocessor, 5

O

OPB, 17, 18, 19, 50

OS, 31, 33, 35, 50

OSE, 11, 14

P

Pipes, 10

Polling, 13

PPC405x3, 17

PRIORITY, 40, 49, 78, 79

R

RAM, 15, 17, 35, 50

Real Time Systems, 3

Real-time system, 2

RTOS, 2, 11, 39

RT-SCH, 2

S

Scheduling, 13, 104

Shared memory, 10

Soft real-time system, 3

Software to Hardware and vice versa communication, 9

Software to Software thread communication, 9

SW VCB_API, 21

SW/SW, 9, 10, 20

108

T

thread, 23

Thread, 2, 52, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 102

U

UART, 19, 23, 24, 25, 26

V

VCB, 2, 7, 9, 12, 15, 20, 21, 22, 23, 25, 26, 28, 30, 31,

32, 33, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

50, 51, 52, 53, 54, 78, 79, 80, 82, 83, 84, 85, 86, 87,

88, 89, 91, 96, 98, 101, 102

VCB_BASIC, 89

VCB_CORE, 22, 78, 98

VCB-API, 46, 54

VHDL, 20, 23, 31, 39, 41, 46, 52, 55

VHSIC, 105

