
From TARA to Test: Automated Automotive Cybersecurity Test
Generation Out of Threat Modeling

Stefan Marksteiner
stefan.marksteiner@avl.com

AVL List Gmbh
Graz, Austria

Mälardalen University
Västerås, Sweden

Christoph Schmittner
christoph.schmittner@ait.ac.at
AIT - Austrian Institute of

Technology GmbH
Vienna, Austria

Korbinian Christl
korbinian.christl@ait.ac.at
AIT - Austrian Institute of

Technology GmbH
Vienna, Austria

Dejan Ničković
dejan.nickovic@ait.ac.at
AIT - Austrian Institute of

Technology GmbH
Vienna, Austria

Mikael Sjödin
mikael.sjodin@mdu.se
Mälardalen University
Västerås, Sweden

Marjan Sirjani
marjan.sirjani@mdu.se
Mälardalen University
Västerås, Sweden

ABSTRACT
The United Nations Economic Commission for Europe (UNECE)
demands the management of cyber security risks in vehicle design
and that the effectiveness of these measures is verified by testing.
Generally, with rising complexity and openness of systems via
software-defined vehicles, verification through testing becomes a
very important for security assurance. This mandates the intro-
duction of industrial-grade cybersecurity testing in automotive
development processes. Currently, the automotive cybersecurity
testing procedures are not specified or automated enough to be
able to deliver tests in the amount and thoroughness needed to
keep up with that regulation, let alone doing so in a cost-efficient
manner. This paper presents a methodology to automatically gen-
erate technology-agnostic test scenarios from the results of threat
analysis and risk assessment (TARA) process. Our approach is to
transfer the resulting threat models into attack trees and label their
edges using actions from a domain-specific language (DSL) for at-
tack descriptions. This results in a labelled transitions system (LTS),
in which every labelled path intrinsically forms a test scenario. In
addition, we include the concept of Cybersecurity Assurance Levels
(CALs) and Targeted Attack Feasibility (TAF) into testing by assign-
ing them as costs to the attack path. This abstract test scenario can
be compiled into a concrete test case by augmenting it with im-
plementation details. Therefore, the efficacy of the measures taken
because of the TARA can be verified and documented. As TARA is a
de-facto mandatory step in the UNECE regulation and the relevant
ISO standard, automatic test generation (also mandatory) out of it
could mean a significant improvement in efficiency, as two steps
could be done at once.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSCS ’23, December 05, 2023, Darmstadt, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0454-3/23/12. . . $15.00
https://doi.org/10.1145/3631204.3631864

CCS CONCEPTS
• Security and privacy → Systems security; Penetration test-
ing; • Software and its engineering→ Software verification
and validation.

KEYWORDS
Automotive, Cybersecurity, Testing, Life Cycle, CAL, TAF
ACM Reference Format:
StefanMarksteiner, Christoph Schmittner, Korbinian Christl, DejanNičković,
Mikael Sjödin, and Marjan Sirjani. 2023. From TARA to Test: Automated
Automotive Cybersecurity Test Generation Out of Threat Modeling. In
Computer Science in Cars Symposium (CSCS ’23), December 05, 2023, Darm-
stadt, Germany.ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3631204.3631864

1 INTRODUCTION
The market introduction of vehicle-to-x (V2X) functions and ad-
vanced driving assistance systems (ADAS) to automotive systems
make them increasingly complex. At the same time, cybersecurity
incidents (increasingly induced by criminals) display an exponential
growth [36]. This is being recognized by standards and regulation
bodies. For example, the United Nations Economic Commission for
Europe (UNECE) issued a regulation (R155) that demands cyberse-
curity concerns to be addressed over the complete life cycle and
verify the measures through testing [35]. Therefore, a holistic ap-
proach for cybersecurity engineering and testing over the complete
life cycle is needed. This paper presents the confluence of a life cycle
governance and a structured semi-automated testing approach to
provide fast, comprehensive and cost-efficient cybersecurity testing
over the complete automotive life cycle in conjunction with the
concepts of Cybersecurity Assurance Levels (CALs) and Targeted
Attack Feasibility (TAF). Section 2 describes the latter concepts and
their integration in a security testing process. Section 3 elaborates
automating the process of generating suitable threat models and
attack trees. Section 4 describes the transfer mechanism from at-
tack trees to agnostic test cases and their application to an actual
implementation. Section 5 describes the application of the process
in a small case study. Section 6 gives an overview of different work
in this direction and Section 7, eventually, concludes the paper.

https://orcid.org/0000-0001-8556-1541
https://orcid.org/0000-0003-4430-6813
https://orcid.org/0000-0001-8873-9122
https://orcid.org/0000-0001-5468-0396
https://orcid.org/0000-0001-7586-0409
https://orcid.org/0000-0001-5478-0987
https://doi.org/10.1145/3631204.3631864
https://doi.org/10.1145/3631204.3631864
https://doi.org/10.1145/3631204.3631864

CSCS ’23, December 05, 2023, Darmstadt, Germany Marksteiner, Schmittner, Christl, Ničković, Sjödin, Sirjani

Figure 1: Relationship for risk mitigation.

1.1 Motivation
As current standards (most prominently ISO/SAE 21434 and UN-
ECE R155) lack the details of how to test, there are two initiatives
ongoing in ISO’s standardization: ISO/SAE PAS 8475 (WIP)1 [14]
that copes with Cybersecurity Assurance Levels (CALs) and Tar-
geted Attack Feasibility (TAF) and ISO/SAE PAS 8477 (WIP) [15]
that deals with verification and validation (V&V) methods. In order
to include these concepts-in-development into security processes,
giving clarity to Original Equipment Manufacturers (OEMs) and
suppliers, this paper aims for giving suggestions how to align secu-
rity testing on CALs and TAFs originating from the earliest stages of
the (security) engineering process. Furthermore, the aim is to turn
the overhead necessary for formalizing the combined engineering
and testing process into an advantage by automatizing them. More
specifically, these formalized processes can be used to automate test
case generation from threat models. As a result, test case blueprints
can be generated during the modeling process, that can be later
on (semi-)automatically compiled into executable test cases. This
allows for structured and efficient testing of the fulfillment of the
requirements stemming from the threat analysis.

1.2 Contribution
This paper contributes mainly four things to the body of knowledge:

(1) A structural concept how to incorporate CALs and TAFs into
the cybersecurity engineering process.

(2) A process to align testing on CALs and TAFs.
(3) A method to generate attack trees from TARA.
(4) A concept to transform attack trees into technology-agnostic

test scenarios automatically as a blueprint to verify and vali-
date security claims and requirements.

Item 1 explains the upcoming developments of ISO/SAE 8475 and
describes the usage of CALs and TAFs (Section 2.1). Item 2 discusses

1Work-in-Progress

the merit of the CAL/TAF usage in security testing (Section 2.1).
Item 3 shows an approach how the formalization necessary to
include the first two items can be used to increase the efficiency
of testing by generating attack trees from a Threat Analysis and
Risk Assessment (TARA) (Section 3.1). Item 4 provides a method to
transform attack trees into abstract test scenarios by labelling the
edges with actions from the alphabet of a domain-specific language
(DSL) for attack descriptions (see Section 4.2).

2 AUTOMOTIVE SECURITY
COMMUNICATION

Effective communication plays a pivotal role in the automotive in-
dustry, particularly within the complex network of Original Equip-
ment Manufacturers (OEMs) and Tier 1 and 2 suppliers. Especially
in the cybersecurity domain, with interlocking layers of defense
[22] the criticality of clearly communicating expected requirements,
is required for achieving optimal outcomes. By fostering a shared
understanding of risk mitigation strategies, OEMs and suppliers can
collaboratively address cybersecurity challenges, enhance product
security, and streamline operations. ISO/SAE 21434 defines here a
framework in which during the Threat Assessment and Risk Analy-
sis cybersecurity goals are defined. A cybersecurity goal is aimed at
reducing the risk of threat scenarios and realized by cybersecurity
requirements (see Figure 1). This process can be applied during
all phases of the development, at item (see Section 2.3), system, or
component level. Cybersecurity goals can be defined by the OEM
and by the supplier. Cybersecurity requirements are assigned to
components and implemented.

2.1 Cybersecurity Assurance Level (CAL)
An important aspect is here on the interplay between customer re-
quirements and regulatory needs. As mentioned in the introduction,
UNECE requires in the new UN R155 [35] that cybersecurity in a
vehicle has to be tested and demonstrated during the type approval.

Automated Automotive Cybersecurity Test Generation Out of Threat Modeling CSCS ’23, December 05, 2023, Darmstadt, Germany

With the complexity of modern vehicles, this testing effort needs
to be distributed through the supply chain. ISO/SAE 21434 already
establishes as an informative part the concept of the Cybersecurity
Assurance Level (CAL). Inspired from assurance level schemes like
the Common Critiera Evaluation Assurance Levels (EALs) [12], the
goal of CAL is to describe the expected level of assurance and rigor
for a defined cybersecurity goal. ISO/SAE 21434 defines an informa-
tive framework regarding the mapping of CAL to the impact and
the attack vector. In addition, for concept and product development
potential aspects that can be adjusted by CAL like testing effort or
independence are given. CAL is assigned per cybersecurity goal and
derived requirements inherit the CAL. If a requirement addresses
multiple cybersecurity goals, the highest CAL is inherited.

2.2 Target Attack Feasibility (TAF)
In practical applications of CAL and ISO/SAE 21434, there has
been a noticeable lack of clarity regarding the expected strength
of security controls. This ambiguity becomes particularly evident
when suppliers attempt to translate high-level security goals and
requirements into technical specifications and implementations.
While CAL provides insights into the engineering rigor, it falls short
in communicating their actual strength. To address this gap, the
concept of Target Attack Feasibility (TAF) has been introduced. TAF
is designed to be associated with specific security controls, offering
a measure of their expected strength. For instance, a security goal
such as "protect the integrity of the message" could be interpreted
through various security controls based on their TAF levels:

• TAF1: cryptographic hash
• TAF2: symmetric encryption
• TAF3: asymmetric encryption

However, the temporal relevance of TAF is still a topic of debate.
As more TAF levels are designated to specific security control tech-
nologies, there’s an increasing risk that these assignments might
become obsolete over time. One potential solution is to map TAF
levels to Attack Feasibility, where, for example, TAF1 would necessi-
tate a specific level of expertise, equipment, and time to breach. This
approach, in contrast to a fixed technological assignment, offers a
more flexible interpretation, though it also introduces a degree of
subjectivity.

2.3 Integrating CAL and TAF in security testing
Due to the impact of CAL and TAF on the overall process and
especially on the cybersecurity testing, a well-structured process
is necessary. We adapt here a testing process, presented in [23]
and adapted to include CAL and TAF. The process is aligned with
ISO/SAE 21434 [13]. The activities are basically sequential, although
some activities provide input for more than one subsequent activity.
Figure 2 provides an overview.
I Item Definition
II Risk and Threat Assessment
III Security Concept Definition (including the test targets)
IV Test Planning and Scenario Development
(a) Penetration Test Scenario Development
(b) Functional and Interface Test Development
(c) Fuzz Testing Scenario Development
(d) Vulnerability Scanning Scenario Development

Figure 2: Layout of the security testing process from [23].

V Test Script Development
VI Test Script Validation
VII Test Case Generation

(a) Test Environment Preparation
VIII Test Case Execution
IX Test Reporting

In the item definition (i), the scope of the development is de-
fined. This can range from a complete car model to specific systems
or combination of systems. Risk and threat assessment (ii) (e.g.,
TARA [30, 37]) identifies potential vulnerabilities to be addressed
and prioritizes them, focusing on certain threats that are deemed
graver, while neglecting others. Here CAL and TAF are assigned
for each Cybersecurity goal. The security concept definition (iii)
mainly aims at anticipating measures to counter the threats from
the previous activity. Measures that should be present and effective
to counter specific threats that should be validated in the course
of this process. TAF plays a major role in the selection of suitable
security measures, that achieve a sufficient level of risk reduction.
The test planning and scenario development (iv) derives an abstract
test plan, consisting of scenarios, based on the security targets from
the previous activity. The test plan should contain an overall test
strategy. Tests are based on threats and focus on risky areas, de-
noted by an increased CAL. Test data inputs are selected based on
threats from the risk analysis [25] and match test patterns which
represent abstract (symbolic) actions in a distinct sequence. The
scenarios are categorized into four classes [13]: penetration testing,
functional and interface test, fuzz testing and vulnerability scan-
ning. Although derived from the analysis of a test item, the scenario
description is used to be generic: no specific information of an item
on a lower technical level should be incorporated for portability

CSCS ’23, December 05, 2023, Darmstadt, Germany Marksteiner, Schmittner, Christl, Ničković, Sjödin, Sirjani

reasons. Sensibly, descriptions could be composed in a domain spe-
cific language (DSL) for attack descriptions [7, 26, 39, 40]. Selection
of scenarios and also independence of persons who test the SUT
are based on CAL. The test script development (v) turns the test
patterns from the scenarios into executable scripts. It should de-
velop a script to match a test pattern by either using an existing
exploit from an available database or develop an own attack on
the system. This means that the pattern must be equipped with
specific information and brought in a form that it is executable on
a testing system, e.g., on a Linux shell. The test case generation (vi)
assembles the test scripts to a consistent test case (a full attack on
an SUT) by processing a DSL-based description (the generic test
scenario) and using additional information from an SUT database,
as well as using combinatorial methods to economically increase
the test coverage [20]. Lastly, the tests have to be executed (vii)
and their result reported (viii). These activities also include proper
feedback from the test. If the process is to be automated, proper
information for an autonomous test oracle has to be provided in
the form of pre and post conditions that have to be fulfilled in order
to assess a positive or negative (or even inconclusive) test result.
Here the achievement of the intended TAF has to be included.

3 THREAT MODELING
In this Section, we present an approach that generates test sce-
narios in a technology-agnostic manner out of a threat model. In
the context of this paper, we conceptualize threat modeling as an
iterative process used to identify and analyze potential threats in in-
formation technology (IT) systems. This iterative process basically
requires two major components as inputs [33]. The first component
is a threat model that summarizes the accumulated knowledge of
known and documented threats, vulnerabilities, and weaknesses
for the domain under study, such as automotive and IoT . It serves
as a comprehensive repository of potential threats that could com-
promise the system. The second component is a systematic and
abstract representation of the system under consideration. This rep-
resentation contains all the key information required for a thorough
threat analysis. Our approach uses an adapted version of the inter-
nal SysML block diagram that facilitates the representation of the
relationships and properties of the system components, providing
the basis for a comprehensive analysis.

The modeling process itself is the comparative analysis between
the threat model and the system model. This critical comparison
helps derive a list of existing threats, which is the completion of one
cycle of the process. This list is expanded by recognizing the intrin-
sic interdependencies of the identified threats, which overcomes
the limitation of looking at threats in isolation [21]. By leveraging
the data revealed by the identified threats, we can explore the in-
tricacies of their interdependencies. It is worth noting that threats
rarely occur in a vacuum; they primarily build on previous steps
and can trigger subsequent events.

To map these interdependencies, we use the concept of pre- and
post-conditions. With this strategy, we can not only detect these de-
pendencies, but also visually represent this additional information
using attack graphs and attack trees to improve the understand-
ing and analysis of potential threat interactions. In Section 3, we
elaborate on the intricacies of this enhanced process, detailing the

concept of threat interdependencies and the resulting strengthened
approach to threat modeling.

Figure 3 shows an example of a threat model based on [32].
In this example, the electrical/electronic (E/E) architecture of an
autonomous low-speed shuttle is presented. This architecture was
modelled in ThreatGet, a tool for threat modelling and analysis, to
facilitate automated security analysis and demonstrate the process
from TARA to CAL and TAF.

We denote here one of many potential assets, with is the integrity
of the Master Controller. If an attacker would be able to modify the
firmware, he could send any command and cause potential safety
and operational issues (due to the low speed of the vehicle)

• Asset: Firmware of the Master Controller (Integrity)
• Damage Scenario: Unintended steering causing collision
with an obstacle ASIL C

An analysis shows a potential attack starting from an unen-
crypted wireless connection between external services and the AI
& Drive Algorithm (see Figure 4). This allows an attacker to reach
the dashboard and manipulate data on this element (=> violating
the integrity of the displayed information).

In order to address this a security goal is defined, which states
that the master controller has to be protected and this security
goal gets a CAL assigned, based on the potential impact (CAL 3).
This security goal is then mapped to a security requirement, that
encryption with at least TAF 3 is added to external connections.
TAF 3 could be mapped to asymmetric encryption.

3.1 Threat-Interdependencies and Attack Trees
The Threat Analysis and Risk Assessment (TARA) process aims
to identify potential threats and assess the associated risks to en-
sure effective risk mitigation [32, 37]. It involves systematically
investigating threats, assessing their likelihood and impact, and de-
veloping strategies to address the identified risks [8]. The first step
of the TARA process is to analyse for potential threats. This step
is essential because only what has been identified can be assessed
later. It involves identifying vulnerabilities, weaknesses or potential
attack vectors [11, 32]. It is not advisable to look at threats solely
in isolation as part of the TARA process, as this approach ignores
the interactions between different threats. Threats often interact
with or reinforce each other, resulting in attack chains or paths.
Failure to consider these interactions can result in missing relevant
risks and inadequate prioritization of resources for effective risk
mitigation [10]. The concept of pre- and post-conditions for threats
can be used to represent the interdependencies of threats within
the TARA process. Preconditions represent the necessary circum-
stances or events that must be met for a threat to occur, while
postconditions represent the possible consequences or outcomes
that result from the occurrence of a particular threat. It should also
be emphasized that the postconditions of some threats may be the
preconditions of others. By identifying and analysing these precon-
ditions and postconditions, we can better understand how threats
are connected and how they propagate or influence each other [21].
In an attack tree [28, 31], the hierarchical structure illustrates the
connections between threats, their relationships, and the different
attack scenarios. The root of an attack tree is usually connected
to the attack target, which is the overall goal of an attacker. From

Automated Automotive Cybersecurity Test Generation Out of Threat Modeling CSCS ’23, December 05, 2023, Darmstadt, Germany

Figure 3: Example Threat Model.

this attack target, a security objective can be derived, which rep-
resents the desired outcome of the attack defence. By visualizing
threats in an attack tree, we can analyse the preconditions and
postconditions associated with each threat. Considering the inter-
dependencies of threats within the attack tree not only simplifies,
but also improves, the assessment of target attack feasibility [2].
By visualizing the connections and dependencies between different
threats, it becomes easier to analyse the feasibility of attacking a
particular target. Understanding how multiple threats contribute to
a given postcondition provides a more comprehensive view of the
potential attack surface and the likelihood of a successful attack
[11]. Considering the inter-dependencies within the attack tree
improves understanding of the overall risk landscape and facilitates
more informed decision-making regarding resource allocation, se-
curity control implementation, and mitigation prioritization. This
approach improves the accuracy and effectiveness of target attack
feasibility assessments and results in more robust and proactive

security measures. In addition, consideration of dependencies en-
ables organizations to effectively prioritize remediation efforts. By
identifying critical paths and dependencies within the attack tree,
resources can be strategically allocated to protect the most vul-
nerable areas. While the CAL can be easily derived based on the
impact, the TAF can focus on elements in the tree which have the
highest contribution to the Attack Feasibility. In summary, consid-
ering interdependencies in the TARA process and attack tree not
only simplifies but also improves threat assessment and increases
overall cybersecurity. By understanding the interrelationships and
dependencies, organizations can effectively identify, prioritize, and
mitigate risks, resulting in higher CAL and greater confidence in
the security of their systems.

CSCS ’23, December 05, 2023, Darmstadt, Germany Marksteiner, Schmittner, Christl, Ničković, Sjödin, Sirjani

Figure 4: Example attack tree.

4 AUTOMATED TESTING
This section is concerned with the automated generation of security
test cases stemming from a TARA using attack trees (see Section
3.1). The principal idea is to use the resulting attack tree and cre-
ate blueprints for testing in the form of implementation-agnostic
test scenarios, through mapping rule sets. These agnostic test sce-
narios can later be concretized and executed on a specific system
implementation.

4.1 Security Tests and their relationship with
the Security Analysis

Following the method in Section 2.3, we store blueprints for test
cases in a system-agnostic manner in the ALIA DSL [39] as test
scenarios (see Figure 5 for an example). These test scenarios are an
abstract representation of actions to be taken to execute a test case.
The actions are accompanied by preconditions that determine if an
action is to be carried out (i.e., is the step sensible in the current
situation). Postconditions determine the expected result and con-
tain therefore information for a test oracle. The respective steps in
the scenarios (test patterns) use symbolic instructions. Concrete
test cases are compiled by augmenting the scenarios with concrete
information about the system-under-test (e.g., exploit code, or spe-
cific messages on the CAN bus that would yield an expected result).
This scenario can be seen as a recipe for an attack with the concrete
information as ingredients. The result is a concretely executable set
of instructions (in JSON format) to be ran on a Linux-based attack
system. To generate tests that would subsequently provide evidence
for the successful satisfaction of the requirements derived from the
TARA, taking CAL and TAF into account, we propose a flow that
uses the attack tree analysis’ results and transforms it into attack
scenarios that can be augmented with concrete implementation
details in later phases of the development.

4.2 Security Test Generation
Using an attack graph (such as a tree, but also other structures
like petri nets [27] are thinkable) allows for closing the loop from
TARA to testing through an automated process. The missing link

to achieve this pervasive chain is a transform mechanism from
paths in the generated attack graph structure to test scenarios in
the DSL. We therefore propose a mechanism that transforms a
specific path in an attack tree (see Section 3.1) into a test scenario.
This is achieved by mapping the edges of that path with actions
in a DSL-based test scenario. The basic idea is that an action is
required to realize a threat. Therefore, traversing trough a path
in an attack tree requires a set of actions, each action responsible
getting from one node in the tree to another. As the test patterns in
the DSL principally consist of such (abstract) actions (accompanied
by optional sets of pre- and postconditions), the resolution is a
rule-based translation function to simply map the tree edges to test
patterns. Figure 6 gives an overview of this process. Formally, the
attack tree can be seen as a directed graph with rules (sequencing
and parallelization). This resembles a Transition System (TS), defined
as a set of states (𝑄) and a transition relation (→∈ 𝑄 × 𝑄 , with
𝑞, 𝑞′ ∈ 𝑄 ;𝑞 → 𝑞′). In this case, 𝑄 is the set of nodes in the attack
graph, while → is determined by the edges and rules in the tree.
A Labelled Transition System (LTS) additionally possesses a set of
labels (Σ), such that each transition is named with a label 𝜎 in Σ

(𝑞, 𝑞′ ∈ 𝑄, 𝜎 ∈ Σ;𝑞
𝜎−→ 𝑞′) [17]. The set of labels is taken from the set

of test patterns (i.e., possible actions) in the DSL. A labeling function
attributes a label 𝜎 to a transition using an associative array. Once
this LTS has been established, generating the abstract test case
is trivially conducted by traversing along the respective path in
the LTS an collecting the labels. The sequential set of collected
labels (i.e., test patterns) automatically constitutes a test scenario.
In simple words, we use an attack tree to select actions needed for
an test scenario out of the set of all available test patterns and brings
them into sequence. The way the DSL is currently structured, an
action can be identified by the tuple keyword (currently one of scan,
exploit, and execute - the first two are to detect and attack devices,
while the latter is a generic keyword for auxiliary tasks) and type
(which defines the action closer). There are other attributes like
interface, target, and shell, that depend on the action type. More
than one action can be necessary to change the state in an attack
tree (i.e. to traverse from one node to another). In this case the label
attributed to the transition contains both actions. As an abstract
example, the transition from access to a system to control of a system
could require execute, escalate privilege as an action from the DSL.
Therefore the resulting transition in the LTS would be 𝐴𝑠

𝑥𝑐𝑒𝑝
−−−−→ 𝐶𝑠

with𝐴𝑠 is the system access,𝐶𝑠 system control and 𝑥𝑐𝑝𝑒 the execute
(𝑥𝑐) privilege escalation (𝑝𝑒). A more concrete example follows in
the case study in Section 5.

The course of action to use the TARA results for test cases also
allows for prioritizing test cases, as attack paths can have calcu-
lated path costs (based on CALs and TAFs). As perfect security is
infeasible, a sufficiently secure system can be defined as a system
that does not exhibit an attack path with a cost below a certain
threshold. Through the test case generation, it can be verified that
relevant attack paths discovered through the threat modeling are
mitigated through the measures in the security concept and effec-
tively blocked in the implementation later.

The reason for using an LTS as a transition model is that it can
be regarded as a more powerful structure than a tree (a tree can
be viewed as a subset of an LTS in this regard) and can be easily

Automated Automotive Cybersecurity Test Generation Out of Threat Modeling CSCS ’23, December 05, 2023, Darmstadt, Germany

Figure 5: Example for a test scenario in the used attack description language.

Figure 6: Attack tree to Test Scenario transformation exam-
ple.

converted into other structures like Directed Acyclic Graphs or
even a general directed graph (in case of allowed loops needed),
which makes it suitable as an internal structure. It can also be
practically used in a three-layered process in this application. First,
the attribution between tree edges andDSL actions (i.e., the labelling
function) must be established only once initially and if the base set
of node types in the TARA process or the possible actions in the
DSL change (this happens rarely). Second, the LTS generation (low
effort if the labelling function is present) must be done once, when
an attack tree is generated or updated. Thirdly, the test cases have
to be generated based on selection of paths, defining an origin (i.e.

an entry point into the system) and a target is trivial, just collecting
labels.

5 CASE STUDY
To practically demonstrate the approach, we give an example of a
realistic use case scenario. This use case has been practically tested
using our test system. It consists of a standard car model that pos-
sesses a single can bus with an after-market infotainment system,
running on Android, built in. The conducted test was to manipulate
the speed gauge using a wireless access an entry point. We first
created an architecture model using ThreatGet. The critical compo-
nents for the attack are the infotainment system, the CAN bus the
attacked dash board (including a screen) and a smart phone that is
under the attacker’s control (i.e., it is the attacker’s smartphone) –
see Figure 3. The threat analysis using the tool yielded a list of 103
threats (using the STRIDE methodology [18]). Using the methodol-
ogy in Section 4.2, we generate attack trees and respective paths
using different origin and destination points in the architecture dia-
grams and the threat attributions along the way. One specific result
of this process is the attack tree in Figure 4. In this sequence, access
to infotainment is followed by control of the infotainment, which is
succeed by control (implying access) to the dashboard. This enables
to corrupt the integrity of displayed information. This in practice
means e.g., fake readings on the speed and RPM gauges or similar
things - including potential safety implications – Table 1 provides
an overview of threats applicable to the display. Please note that
those apply directly to the display, while the attack tree allows for
applying threats indirectly not requiring direct access to the system.
The key element is the CAN bus, any device (also the cabin master
control unit) connected to the (right) CAN bus (cf. Figure 3) that is
taken control of could be used to gain access to the dashboard and
manipulate the display under certain circumstances modeled in the
threat model and attack tree. The transitions between these items
have been matched with fitting action items from the DSL. To reach
access to the Infotainment from an initial state in the LTS, a wireless

CSCS ’23, December 05, 2023, Darmstadt, Germany Marksteiner, Schmittner, Christl, Ničković, Sjödin, Sirjani

scan and already an exploit (labels 𝑠𝐵𝑙𝑢𝑒𝐵𝑜𝑟𝑛𝑒 and 𝑥𝑝𝐵𝑙𝑢𝑒𝐵𝑜𝑟𝑛𝑒 for
scanning and executing a BlueBorne attack, with 𝑠 for a scan and 𝑥𝑝
for an exploit) has to be take as actions. Please note that this is one
of more possibilities to gain access, there could be others. To gain
control, we use the actions of opening a connection to a remote
hotspot using the access (𝑥𝑝𝑂𝑝𝑒𝑛𝐴𝑛𝑑𝑟𝑜𝑖𝑑𝐻𝑜𝑡𝑠𝑝𝑜𝑡) and opening an
Android Debug (ADB) shell (𝑥𝑝𝑂𝑝𝑒𝑛𝐴𝐷𝐵). The rest of the tree is a
special case, as the access to the Dashboard, its control and the data
manipulation can occur in one step by sending fake CAN messages.
These messages are represented by the different step can_attack
in the DSL (𝑥𝑝𝐶𝑎𝑛𝐴𝑡𝑡𝑎𝑐𝑘). Figure 5 shows the resulting attack de-
scription in the DSL. The steps immediately preceding the CAN
attack (install_python_env, install_python_lib, and attackScript) are
intrinsic, as these are just necessary steps to fulfill the last one. In
that sense, they can also be seen as part of gaining control over
the infotainment, as it is only after these three steps capable of
carrying out the rest of the attack. The concretization for a specific
system eventually works by generating a JSON code that contains
executed environments and exploit code, as well as information as
CAN packet structures from a database or directly given informa-
tion from the tester as form of a grey-box test. This is out-of-scope
of this paper and already published elsewhere [39] in detail, but
for the sake of the functioning of the approach it should be briefly
mentioned that the DSL items (i.e. Test Patterns) are augmented
with information from a systems database containing information
about the systems-under-test (partially pre-filled and completed
by a client in a grey box setting or penetration testers in a black
box setting) with the necessary information (e.g., pieces of code to
exploit a certain software or version, specific data of CANmessages
to send, etc.). This is translated into a JSON format containing an
environment (e.g., BASH, Python, a framework like Metasploit, etc.)
and sent to an execution engine that is instrumented with the SUT
and calls the respective software tools tools to execute the concrete
attack.

6 RELATEDWORK
Threat modeling is an approach that responds to the increasing
need to address security concerns from the early phases of product
development. The popularity of threat modelling is reflected by a
variety of available methods and tools, ranging from open-source
academic prototypes to full-fledged commercial solutions. There are
roughly speaking three categories of threat modeling approaches.
The first class of tools only allow manual modeling based on Excel
sheets and questionnaires [34]. Threat identification and mitigation
is identified without and automated reasoning support. The second
class of tools improves the modelling experience by providing a
graphical modelling environment but without a rigorous formal
model [6, 9, 29, 38]. Finally, the third class of tools are model-based
system engineering solutions with an underlying formal threat
model and provide full support for automated threat analysis [6, 9,
29, 38].

Attack trees [24] describe sophisticated attack patterns that cap-
ture sequences of basic attack steps and describe how these can
be combined to reach a target. Graphical modelling and analysis
of attack trees is supported by several tools [1, 16]. Attack trees
can be extended with additional attributes such as possibility, cost,

resources [24] or time [3]. Attack trees can be combined with fault
trees for a more integrated safety and security analysis or with
defender’s mitigation measures resulting in the attack-defence tree
model [19]. Attack trees are complementary to themore static threat
model and the relation between the two has been only seldomly
investigated. Isograph AttackTree [16] supports threat analysis
and risk assessment from the attack tree, following the relevant
ISO standards. On the other hand, THREATGET allows automatic
generation of attack trees from threat analysis results [5].

The integration of the threat and attack tree modeling and analy-
sis and testing has not been sufficiently investigated in the literature.
The only work that we are aware of on this topic is about test gener-
ation from attack trees has been studied in the context of the vehicle
security in the automotive domain [4]. In this paper, we propose a
methodology that goes from threat modelling to the generation of
test cases, where attack trees are used as an intermediate step in
this process.

7 CONCLUSION
We described a method to automatically generate abstract test
scenarios out of a TARA using attack trees and LTSs. The main
improvement of this method is that these test scenarios can be
derived from a process that is mandated by a CSMS in a simple,
automated, and resource-efficient way, which surpasses manual
test case generation while still maintaining targeted tests as a result.
The resulting scenarios can be further compiled into executable
test cases with very low effort once the details of the impleme-
nation are known. We also showed incorporation of CALs and
TAF into a security analysis and testing pipeline. These concepts
define the level of thoroughness of testing as well as providing a
metric for the effectiveness of included safeguards. The required
formalization in this manifestation of a testing process is used to
increase completeness and efficiency in security testing by using
the products of formalized steps in an automated process. Overall,
this paper demonstrates a workflow originating from CALs and
a TARA, which results are used to generate test cases in an au-
tomated manner (via attack tree generation). These tests can be
used at various stages of the life cycle and also determine TAFs
in the practical implementation stages. Future work includes to
utilize machine learning to attribute the test patterns to attack tree
edges (instead of a fixed function). This allows for more flexible
and experience-based test case generation.

ACKNOWLEDGMENTS
This research has received funding within the ECSEL Joint Under-
taking (JU) under grant agreements No.101007326 (project AI4CSM)
and No. 101007350 (project AIDOaRt). The JU receives support from
the European Union’s Horizon 2020 research and innovation pro-
gram and Austria, Sweden, Spain, Italy, France, Portugal, Ireland,
Finland, Slovenia, Poland, Netherlands, Turkey. The document re-
flects only the author’s view, and the Commission is not responsible
for any use that may be made of the information it contains.

REFERENCES
[1] Amenaza Technologies Limited. 2023. SecurITree. Online. https://www.amenaza.

com Accessed: 2023-10-03.

https://www.amenaza.com
https://www.amenaza.com

Automated Automotive Cybersecurity Test Generation Out of Threat Modeling CSCS ’23, December 05, 2023, Darmstadt, Germany

Table 1: Threats related to the display in the case study example
(MED=medium; MOD=moderate; SEV=severe)

Target Affected Asset Damage Scenario Threat Title Category Impact Cat. Likel. Impact Risk

Touchscreen n/a n/a Tamper through external ports TAMPERING MED MOD 3
Touchscreen n/a n/a Physical Tampering TAMPERING MED MOD 3
Touchscreen Information Availability Operational impact Physical Tampering TAMPERING Operational MED SEV 1
Touchscreen Information Integrity Operational impact, Physical Tampering TAMPERING Operational MED SEV 1
Touchscreen Information Integrity Safety impact Physical Tampering TAMPERING Safety MED SEV 1

[2] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. 2002. Scalable, Graph-
Based Network Vulnerability Analysis. In Proceedings of the 9th ACM Conference
on Computer and Communications Security. ACM, New York, NY, USA, 217–224.

[3] Jeremy Bryans, Hoang Nga Nguyen, and Siraj Ahmed Shaikh. 2019-01. Attack
Defense Trees with Sequential Conjunction. In 2019 IEEE 19th International
Symposium on High Assurance Systems Engineering (HASE). IEEE, Hangzhou,
China, 247–252. https://doi.org/10.1109/HASE.2019.00045

[4] Madeline Cheah, Hoang Nga Nguyen, Jeremy Bryans, and Siraj A. Shaikh. 2018.
Formalising Systematic Security Evaluations Using Attack Trees for Automotive
Applications. In Information Security Theory and Practice, Gerhard P. Hancke
and Ernesto Damiani (Eds.). Vol. 10741. Springer International Publishing, Cham,
113–129. https://doi.org/10.1007/978-3-319-93524-9_7 Series Title: Lecture
Notes in Computer Science.

[5] Sebastian Chlup, Korbinian Christl, Christoph Schmittner, Abdelkader Magdy
Shaaban, Stefan Schauer, and Martin Latzenhofer. 2023. THREATGET: Towards
Automated Attack Tree Analysis for Automotive Cybersecurity. Inf. 14, 1 (2023),
14. https://doi.org/10.3390/info14010014

[6] Korbinian Christl and Thorsten Tarrach. 2021. The analysis approach of
ThreatGet. CoRR abs/2107.09986 (2021), 57 pages. arXiv:2107.09986 https:
//arxiv.org/abs/2107.09986

[7] Frédéric Cuppens and Rodolphe Ortalo. 2000. Lambda: A Language to Model a
Database for Detection of Attacks. In International Workshop on Recent Advances
in Intrusion Detection. Springer, Berlin, Heidelberg, 197–216.

[8] Dag Eng. 2017. Integrated Threat Modelling. Master’s thesis. University of Olso.
[9] Foreseeti AB. 2020. Foreseeti. Online. https://foreseeti.com/ Accessed: 2020-11-

29.
[10] Md. Shariful Haque and Travis Atkison. 2017. An Evolutionary Approach of

Attack Graph to Attack Tree Conversion. International Journal of Computer
Network and Information Security 9, 11 (Nov. 2017), 1–16. https://doi.org/10.
5815/ijcnis.2017.11.01

[11] Terrance R Ingoldsby. 2021. Attack Tree-Based Threat Risk Analysis. Technical
Report. Amenaza Technologies Limited.

[12] International Organization for Standardization. 2022. Information Security, Cy-
bersecurity and Privacy Protection – Evaluation Criteria for IT Security – Part 2:
Security Functional Components. ISO/IEC Standard 15408-2:2022. International
Organization for Standardization.

[13] International Organization for Standardization and Society of Automotive Engi-
neers. 2021. Road Vehicles – Cybersecurity Engineering. ISO/SAE Standard "21434".
International Organization for Standardization.

[14] International Organization for Standardization and Society of Automotive
Engineers. 2022. ISO/SAE PAS8475 (WIP) Road Vehicles – Cybersecu-
rity Assurance Levels and Targeted Attack Feasibility - SAE International.
https://www.sae.org/standards/content/iso/sae%20pas8475/.

[15] International Organization for Standardization and Society of Au-
tomotive Engineers. 2023. ISO/SAE PAS8477 (WIP) Road Vehi-
cles - Cybersecurity Verification and Validation - SAE International.
https://www.sae.org/standards/content/iso/sae%20pas8477/.

[16] Isograph. 2023. Isograph AttackTree. Online. https://www.isograph.com/
software/attacktree/ Accessed: 2023-10-03.

[17] Robert M. Keller. 1976. Formal Verification of Parallel Programs. Commun. ACM
19, 7 (July 1976), 371–384. https://doi.org/10.1145/360248.360251

[18] Rafiullah Khan, KieranMcLaughlin, David Laverty, and Sakir Sezer. 2017. STRIDE-
based threat modeling for cyber-physical systems. In 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, New York, NY,
1–6.

[19] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer. 2011.
Foundations of Attack–Defense Trees. In Formal Aspects of Security and Trust,
Pierpaolo Degano, Sandro Etalle, and Joshua Guttman (Eds.). Vol. 6561. Springer
Berlin Heidelberg, Berlin, Heidelberg, 80–95. https://doi.org/10.1007/978-3-642-
19751-2_6 Series Title: Lecture Notes in Computer Science.

[20] D Richard Kuhn, Raghu N Kacker, and Yu Lei. 2010. Practical Combinatorial
Testing. SP 800-142. National Institute of Standards and Technology.

[21] Harjinder Singh Lallie, Kurt Debattista, and Jay Bal. 2020. A Review of Attack
Graph and Attack Tree Visual Syntax in Cyber Security. Computer Science Review
35 (Feb. 2020), 100219. https://doi.org/10.1016/j.cosrev.2019.100219

[22] Georg Macher, Harald Sporer, Reinhard Berlach, Eric Armengaud, and Christian
Kreiner. 2015. SAHARA: A Security-Aware Hazard and Risk Analysis Method. In
2015 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
Grenoble, France, 621–624. https://doi.org/10.7873/DATE.2015.0622

[23] Stefan Marksteiner, Nadja Marko, Andre Smulders, Stelios Karagiannis, Flo-
rian Stahl, Hayk Hamazaryan, Rupert Schlick, Stefan Kraxberger, and Alexandr
Vasenev. 2021. A Process to Facilitate Automated Automotive Cybersecurity
Testing. In 2021 IEEE 93rd Vehicular Technology Conference (VTC Spring). IEEE,
New York, NY, USA, 1–7.

[24] Sjouke Mauw and Martijn Oostdijk. 2005. Foundations of Attack Trees. In
Information Security and Cryptology - ICISC 2005, Dong Ho Won and Seungjoo
Kim (Eds.). Vol. 3935. Springer Berlin Heidelberg, Berlin, Heidelberg, 186–198.
https://doi.org/10.1007/11734727_17

[25] C. C. Michael, Ken vanWyk, andWill Radosevich. 2005. Risk-Based and Functional
Security Testing. Technical Report. U.S. Deparmtent of Homeland Security.

[26] Cédric Michel and Ludovic Mé. 2001. ADeLe: An Attack Description Language for
Knowledge-Based Intrusion Detection. In Trusted Information (IFIP International
Federation for Information Processing), Michel Dupuy and Pierre Paradinas (Eds.).
Springer US, Boston, MA, 353–368. https://doi.org/10.1007/0-306-46998-7_25

[27] Carl Adam Petri. 1962. Kommunikation mit Automaten. Ph. D. Dissertation.
Technische Universität Darmstadt.

[28] Cynthia Phillips and Laura Painton Swiler. 1998. A Graph-Based System for
Network-Vulnerability Analysis. In Proceedings of the 1998 Workshop on New
Security Paradigms. ACM, New York, NY, USA, 71–79.

[29] Magdy El Sadany, Christoph Schmittner, and Wolfgang Kastner. 2019. Assur-
ing Compliance with Protection Profiles with ThreatGet. In SAFECOMP 2019
Workshops (Lecture Notes in Computer Science). Springer, Berlin, 62–73.

[30] Christoph Schmittner, Bernhard Schrammel, and Sandra König. 2021. Asset
Driven ISO/SAE 21434 Compliant Automotive Cybersecurity Analysis with
ThreatGet. In Systems, Software and Services Process Improvement (Communica-
tions in Computer and Information Science), Murat Yilmaz, Paul Clarke, Richard
Messnarz, and Michael Reiner (Eds.). Springer International Publishing, Cham,
548–563. https://doi.org/10.1007/978-3-030-85521-5_36

[31] Bruce Schneier. 1999. Attack Trees. Dr. Dobb’s journal 24, 12 (1999), 21–29.
[32] Raivo Sell, Mairo Leier, Anton Rassõlkin, and Juhan-Peep Ernits. 2020. Au-

tonomous Last Mile Shuttle ISEAUTO for Education and Research. International
Journal of Artificial Intelligence and Machine Learning 10, 1 (Jan. 2020), 18–30.
https://doi.org/10.4018/IJAIML.2020010102

[33] Adam Shostack. 2014. Threat Modeling: Designing for Security. John Wiley &
Sons, Indianaplois, IN.

[34] Tutamantic Ltd. 2020. Tutamen Threat Model Automator. Online. https:
//www.tutamantic.com/ Accessed: 2020-11-29.

[35] United Nations Economic and Social Council - Economic Commission for Europe.
2020. UN Regulation on Uniform Provisions Concerning the Approval of Vehicles
with Regard to Cyber Security and of Their Cybersecurity Management Systems.
Technical Report ECE/TRANS/WP.29/2020/79. United Nations Economic and
Social Council - Economic Commission for Europe / United Nations Economic
and Social Council - Economic Commission for Europe, Brussels.

[36] Upstream Security. 2020. Upstream Security Global Automotive Cybersecurity
Report. Technical Report. Upstream Security.

[37] David Ward, Ireri Ibarra, and Alastair Ruddle. 2013. Threat Analysis and Risk
Assessment in Automotive Cyber Security. SAE International Journal of Passenger
Cars-Electronic and Electrical Systems 6, 2013-01-1415 (2013), 507–513.

[38] Jan Was, Pooja Avhad, Matthew Coles, Nick Ozmore, Rohit Shambhuni, and Izar
Tarandach. 2020. OWASP pytm. Online. https://owasp.org/www-project-pytm/
Accessed: 2020-11-29.

[39] ChristianWolschke, StefanMarksteiner, Tobias Braun, andMarkusWolf. 2021. An
Agnostic Domain Specific Language for Implementing Attacks in an Automotive
Use Case. In The 16th International Conference on Availability, Reliability and
Security (ARES 2021). Association for Computing Machinery, New York, NY, USA,

https://doi.org/10.1109/HASE.2019.00045
https://doi.org/10.1007/978-3-319-93524-9_7
https://doi.org/10.3390/info14010014
https://arxiv.org/abs/2107.09986
https://arxiv.org/abs/2107.09986
https://arxiv.org/abs/2107.09986
https://foreseeti.com/
https://doi.org/10.5815/ijcnis.2017.11.01
https://doi.org/10.5815/ijcnis.2017.11.01
https://www.isograph.com/software/attacktree/
https://www.isograph.com/software/attacktree/
https://doi.org/10.1145/360248.360251
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1016/j.cosrev.2019.100219
https://doi.org/10.7873/DATE.2015.0622
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/0-306-46998-7_25
https://doi.org/10.1007/978-3-030-85521-5_36
https://doi.org/10.4018/IJAIML.2020010102
https://www.tutamantic.com/
https://www.tutamantic.com/
https://owasp.org/www-project-pytm/

CSCS ’23, December 05, 2023, Darmstadt, Germany Marksteiner, Schmittner, Christl, Ničković, Sjödin, Sirjani

1–9. https://doi.org/10.1145/3465481.3470070
[40] Mark Yampolskiy, Péter Horváth, Xenofon D. Koutsoukos, Yuan Xue, and Janos

Sztipanovits. 2015. A Language for Describing Attacks on Cyber-Physical Sys-
tems. International Journal of Critical Infrastructure Protection 8 (Jan. 2015), 40–52.

https://doi.org/10.1016/j.ijcip.2014.09.003

https://doi.org/10.1145/3465481.3470070
https://doi.org/10.1016/j.ijcip.2014.09.003

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Automotive Security Communication
	2.1 Cybersecurity Assurance Level (CAL)
	2.2 Target Attack Feasibility (TAF)
	2.3 Integrating CAL and TAF in security testing

	3 Threat Modeling
	3.1 Threat-Interdependencies and Attack Trees

	4 Automated Testing
	4.1 Security Tests and their relationship with the Security Analysis
	4.2 Security Test Generation

	5 Case Study
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

