
Response Times in Hybrid Scheduled Systems

Jukka Mäki-Turja (presenting author), Kaj Hänninen and Mikael Nolin
Mälardalen Real-Time Research Centre (MRTC)

Box 883, 721 23, Västerås, Sweden
E-mail: {jukka.maki-turja,kaj.hanninen,mikael.nolin}@mdh.se

Phone: {+46-21-101466,+46-21-107322,+46-70-2882829}, Fax: +46-21-103110

MRTC report no. 169, February 2005

Abstract
This paper will show how advanced embedded real-

time systems, with functionality ranging from time-
triggered control functionality to event-triggered user
interaction, can be made more efficient. Efficient with
respect to development effort as well as run-time re-
source utilization. This is achieved by using a hybrid,
static and dynamic, scheduling strategy.

An industrial case study will demonstrate how this
approach enables more efficient use of computational
resources, resulting in a cheaper or more competi-
tive product since more functionality can be fitted into
legacy, resource constrained, hardware.

Keywords: real-time system design, efficient development, hy-
brid scheduled systems, response times

1 Introduction

As the complexity of embedded real-time systems
keeps growing, both by increases in size and in diver-
sity, the developers are faced with the increasing chal-
lenge of modelling, analyzing, implementing and test-
ing both the functional as well as the temporal behavior
of these systems. This paper will present ways to sim-
plify some of that complexity by introducing methods
to verify the temporal correctness for a larger class of
such systems.

Traditionally, one design parameter has been what
execution model to choose. Two common and wide-
spread execution models are the static and dynamic
execution models:
• Static scheduling, where a schedule is produced

off-line. The schedule contains all scheduling deci-
sions, such as when to execute each task or to send
each message. During run-time a simple dispatcher

dispatches tasks according to the schedule. Static
scheduling is sometimes referred to as time-triggered
scheduling.

• Dynamic scheduling, where scheduling decisions
are made on-line by a run-time scheduler. Typically
some task attributes (such as priority or deadline)
are used by the scheduler to decide what task to
execute. The scheduler implements some queueing
discipline, such as fixed priority scheduling or earli-
est deadline first. Dynamic scheduling is sometimes
referred to as event-triggered scheduling.
Since both models have their pros and cons, the de-

sign decision of which one to use is not simple. A few
trade-offs when choosing execution model are:
• Overhead – Since all scheduling and synchroniza-

tion decision are made off-line in the static approach,
the run-time overhead for scheduling is kept low. In
dynamic scheduling these decisions are made on-line,
often resulting in a larger overhead.

• Responsiveness – Statically scheduled systems are
inflexible and have therefore limited possibility in re-
sponding to dynamic events, resulting in poor re-
sponsiveness. Dynamically scheduled systems, on
the other hand, handles dynamic events naturally
and can provide high degree of responsiveness.

• Resource usage – In order to provide some de-
gree of responsiveness for dynamic events in the
environment, statically scheduled systems tend to
waste resources on redundant polling, whereas event-
triggered dynamic schedulers only handle the actual
events, enabling better service to soft or non-real
time functionality when events do not occur at their
maximum rate.

• Overload – In static scheduling the effects of over-
load are highly predictable. The exact capacity, e.g.
in terms of number of inputs handled, is known and

1



the effect of lost events, e.g. due to slow polling,
can be predicted. In dynamic scheduling, no natural
overload control is inherent. Instead, ad-hoc mech-
anisms are used to prevent, e.g., faulty sensors from
flooding the systems with interrupts. A dynamically
scheduled system which becomes overloaded is un-
predictable, it is often difficult to assess which buffer
will overflow and thus which tasks will miss their
deadlines.

• Determinism – A statically scheduled system is
highly deterministic, it executes according to the pre-
defined schedule each time. A dynamically scheduled
system, on the other hand, may exhibit different be-
havior each time the system is run, due to, e.g., race
conditions on shared resources. This has a major
impact on reproducibility, and thus also on the func-
tional testability, of the system. Determinism also
simplifies the verification process which is a major
part when certifying safety critical applications.

• Complex constraints – Statically scheduled sys-
tems can handle more complicated inter-task relation
constraints. For example, control systems, where
control performance is important, need to have small
(input and/or output) jitter, which is easier to ac-
commodate in a static scheduler than with simpler
dynamic scheduling parameters.

• Adding new functionality – Once a static sched-
ule has been constructed it can be very hard to add
new functionality in the system, a completely new
schedule has to be constructed. For a dynamically
scheduled system, new functions can be added with
a minimum of impact on other parts of the system.

For further discussions of these trade-offs see [12] which
advocates cyclic scheduling) and [24] which advocates
dynamic, fixed priority, scheduling.

As can be seen both approaches have their virtues
and one often wishes to have both approaches avail-
able when developing embedded real-time applications.
This desire is clearly illustrated by the last few years
of development in the area of field busses for automo-
tive applications. The Controller Area Network (CAN)
[7] has been predominant in the automotive indus-
try. CAN provides dynamic scheduling (using fixed
priority scheduling). However, the automotive indus-
try felt a need for a more dependable and predictable
bus architecture. So when Kopetz brought attention
to his Time Triggered Protocol (TTP) [11], which pro-
vides static scheduling, many automotive manufactur-
ers and their sub-contractors embraced the new tech-
nology. It was soon recognized that TTP was a bit too
static. Hence, a consortium of automotive manufac-
turers and sub-contractors started the development of
FlexRay [8], which provides both static and dynamic

scheduling. Also, on the operating-system side, prod-
ucts that support both static and dynamic scheduling
have emerged. For instance, Arcticus Systems’ oper-
ating system Rubus [1], and the open source real-time
operating system Asterix [2]. In fact, most priority
driven operating systems can implement hybrid sta-
tic and dynamic scheduling by letting a dispatcher (a
time-table) execute at highest priority.

Thus, we see that the need to combine static and
dynamic scheduling have led to some practical solu-
tions available today. However, one problem with sys-
tems that tries to combine static and dynamic schedul-
ing is that they often consider the dynamic part as
non real-time, e.g. [1, 8]. That is, dynamic scheduled
tasks/messages are not given any response-time guar-
antees, only best-effort service is provided. However,
in order to fully utilize the potential of combining sta-
tic and dynamic scheduling in hard real-time systems,
both the dynamic and the static parts need to be able
to provide response-time guarantees. A recent study of
industrial needs recognizes that one of the key issues
for embedded systems is analyzability [14].

This paper presents a method to model hybrid, stat-
ically and dynamically, scheduled systems with the task
model with offsets [13]. With this model, and the cor-
responding response time analysis, tight response time
guarantees can be given also for dynamically scheduled
tasks. The modelled system can be realized with com-
mercially available operating systems support. Fur-
thermore, in a case study we show how a legacy sys-
tem at Volvo Construction Equipment could benefit
from this approach by migrating functionality from the
resource demanding statically scheduled part to the
dynamically scheduled part, freeing system resources
while still fulfilling original temporal constraints.

Paper Outline: Next, section 2 describes the type
of systems studied in this paper. Section 3 shows how
these systems can be modelled using the task model
with offsets. Section 4 discusses related work. Section 5
illustrates, through a case study, how this approach can
be applied to a legacy system, migrating functions from
a static schedule, freeing system resources. Finally, sec-
tion 6 presents our conclusions.

2 System description

In this paper, we address the issue of providing
tight response-time guarantees to dynamically sched-
uled tasks running “in the background” of a static
schedule. The system model contains:

• Interrupts. There may be multiple interrupt levels,
i.e., an interrupt may be preempted by higher level
interrupts.

2



• A static cyclic schedule.
◦ A set of periodic static tasks (functions) are sched-

uled in the schedule. Each task has a known worst
case execution time (WCET).

◦ The schedule has a length (a duration) that is
equal to the LCM (least common multiple) of all
statically scheduled function periods. The sched-
ule is constructed off-line by a scheduling tool.

◦ Each function is scheduled at an offset relative to
the start of the schedule. This is also referred to
as a function’s release time.

◦ The static cyclic scheduler activates each function
in the schedule at its release time. When the
whole schedule has been executed the schedule is
restarted from the beginning.

Interrupts may preempt the execution of statically
scheduled functions.

• A set dynamically dispatched tasks. We call
each such task a dynamic task. These tasks executes
in the time slots available between interrupts and
statically scheduled functions. Dynamic tasks are
scheduled by a fixed priority preemptive scheduler.
They are assumed to be periodic or, at least, to have
a known minimum time between two invocations.

We assume that a static cyclic schedule has been
constructed prior to the analysis of dynamic tasks. Fur-
thermore, we assume that the schedule is valid even
if its functions are preempted by interrupts. How a
scheduler can generate a feasible schedule, with inter-
fering interrupts, is described in [21].

2.1 Example system

Figure 1 shows a static cyclic schedule of length 20,
with 4 functions released at times 0, 5, 10 and 15, with
WCETs 4, 1, 1 and 3 respectively.

0 2015105

Figure 1. Example of static cyclic schedule

In figure 2 we see an example execution scenario
when executing the schedule from figure 1, with one in-
terfering interrupt source and one dynamically sched-
uled task (two instances of that task are activated).
We make the observation that both interrupts and the
static schedule act like higher priority tasks from the
dynamic tasks’ point of view.

One of the main objectives of this paper is to enable
response-time calculations for dynamic tasks. The goal
is to model static schedules (and interrupts) so as to
incur as little interference on dynamic tasks execution

0 2015105

Interrupt

Static Schedule

Dynamic Task

Execution Pattern

A
rr

iv
al

s 
an

d 
E

xe
cu

tio
n 

T
im

es

Figure 2. Example execution scenario

as possible. Thus, modelling both functions’ WCETs
as well as their release times as accurately as possible.

3 Modelling the system

Classical response-time analysis (see e.g. [3, 5, 10]),
assumes that a critical instant1 occurs when all tasks
are released simultaneously. Using this model, the sta-
tic schedule described in section 2, can be modelled as
4 tasks. These tasks would have a period of 20 and
WCETs of 4, 1, 1, and 3 respectively. However, this
approach is overly pessimistic since it assumes that all
four static tasks can be released for execution at the
same time. In our example, assuming no interrupt in-
terference, a dynamic task with a WCET of 1, would
have a response time of 10 (4+1+1+3+1). However,
looking at figure 1 one can see that the actual worst
possible response-time is 5 (if the dynamic tasks coin-
cides with the static function scheduled at time 0).

In static schedules, however, it is impossible for all
static tasks to start at the same time. Task model
with offset introduced by [17, 22] is able to capture the
time separation in static schedules, and thus reduce the
pessimism. In [13] we further reduced the pessimism
in the corresponding response time formulae.

3.1 Task model with offsets

The task set, Γ, in [13] consists of a set of k transac-
tions, Γ1, . . . , Γk. Each transaction Γi is activated by a
periodic sequence of events with period Ti. A transac-
tion Γi, contains |Γi| number of tasks, and each task is
activated (released for execution) when a relative time,
offset, elapses after the arrival of the event.

τij is used to denote a task. The first subscript de-
notes which transaction the task belongs to, and the

1Point in time, where the task under analysis is released for
execution, resulting in the longest possible response-time.

3



second subscript denotes the number of the task within
that transaction. A task τij is defined by a worst case
execution time (Cij), an offset (Oij), a deadline (Dij),
maximum jitter (Jij), maximum blocking from lower
priority tasks (Bij), and a priority (Pij). The task set
Γ is formally expressed as follows:

Γ :={Γ1, . . . , Γk}
Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline
or jitter. The maximum blocking time for a task, τij , is
the maximum time it has to wait for a resource which
is locked by a lower priority task. In order to calculate
the blocking time for a task, usually, a resource locking
protocol like priority ceiling or immediate inheritance
is needed. Algorithms to calculate blocking times for
different resource locking protocols are presented in [6].
Priorities can be assigned with any method (e.g. rate
monotonic, deadline monotonic, or user defined priori-
ties). One must assume that the load of the task set is
less than 100%.2

0

O i1=2

Oi2=5

C i2=1 Time

1 2 3 4 5 6 7 8 9 10

Ti=10
C i1=2

J i1=8

J i2=1

Figure 3. Example transaction

Parameters for an example transaction (Γi) with two
tasks (τi1 and τi2) is depicted in figure 3. The offset
denotes the earliest possible release time of a task rela-
tive to the start of its transaction and jitter (illustrated
by the shaded region) denotes the variability in the re-
lease of the task. The upward arrows denotes earliest
possible release of a task and the height of the arrow
corresponds to the amount of execution released.

3.2 System model

The system in section 2 can be modelled, and dy-
namic tasks subsequently analyzed for response times,
with the above task model as follows (subscripts i, s,
and d denote a generic interrupt, static, and dynamic
transaction respectively):

• Each interrupt will be modelled as a transaction,
Γi, containing one single task (i.e., |Γi| = 1) with Ti

2This can easily be tested, and if not fulfilled some response-
times may be infinite; rendering the task set unschedulable.

set to minimum inter-arrival time of the correspond-
ing interrupt. These interrupt tasks will have the
highest priorities in the system. If there are several
interrupt levels, priorities are assigned accordingly,
i.e., highest priority to highest interrupt level.

• The static schedule is modelled as one transac-
tion, Γs, where each release time in the schedule is
modelled as one task, τsj , where the offset ,Osj , is
set to the corresponding release time. The worst
case execution time, Csj , is set to the corresponding
functions WCET. The priority, one suffices, for sta-
tic tasks must be lower than for any interrupt, but
higher than those for dynamic tasks.

Our example schedule of figure 1 will be modelled as
a transaction (Ts = 20) with 4 tasks, with offsets 0,
5, 10, 15 and worst case execution time of 4, 1, 1, 3
respectively.

• Dynamic tasks will have the most variability on
how they are modelled. In the simplest case they are
modelled exactly the same way as interrupts but with
lower priorities. This situation corresponds to simple
periodic (or sporadic) dynamic tasks with no jitter,
no time separation (offsets), and no blocking. How-
ever depending on the nature of the dynamic tasks
their corresponding transaction can be extended by:

◦ jitter if there is variability in their periodicity,
◦ by blocking if they share resources and providing

the run-time system supports an analyzable re-
source sharing protocol, and

◦ offsets if there are temporal dependencies, such as
precedence, among dynamic tasks.

Note that dynamic tasks cannot communicate with
static tasks, via locked resources, since they must not
affect their temporal behavior. However, there exist
methods to communicate between these two systems
that will not affect the temporal behavior of static
tasks, see e.g. [16].

Assuming the dynamic task of figure 2 is a sporadic
task with minimum inter-arrival time of 10 time units
and a release jitter of 3 time units, it is modelled as
a transaction with Td = 10 containing one task with
Jdj = 3. The execution time is 2 and since it is the
lowest priority task the blocking is zero (Cdj = 2 and
Bdj = 0).

The formulae to calculate the response times rely
on a relaxed critical instant assumption stating that
only one task out of every transaction has to coincide
with the critical instant. The complete formulae can
be found in [13], and would, for our example system of
figure 2, result in a response time of 5 time units for a
dynamic task with Cdj = 1.

4



Since all type of tasks, interrupt, static, and dy-
namic, can be analyzed for responsiveness, the inabil-
ity of providing response time guarantees will no longer
be a basis for rejecting an execution model for a func-
tion, thus making hybrid static and dynamic scheduling
suitable even for hard real-time systems.

4 Related work

There has been number of research projects address-
ing the issue of combining several execution models
[19, 20, 4]. These provide reservation-based guaran-
tees where task characteristics are not fully known in
advance. Furthermore, no commercially available real-
time operating system support exist for them. Our
approach is to model existing systems, supported by
commercial RTOSes, where task attributes are fully
known at design time. However, [18] aims at mod-
elling real situations through hierarchically modelling
different schedulers. They cover preemptive and non-
preemptive priority schedulers and do not model static
schedulers. In fact, the work presented in this paper
could extend their more general framework with the
ability to model static schedulers.

5 Case Study

A case study [9] conducted at Volvo Construction
Equipment (VCE) [23], with the objective of finding a
way to use available resources in a more efficient way
has studied the design trade-offs between static and
dynamic scheduling.

VCE has a tradition in statically scheduled systems.
This is mainly due to the safety critical nature of their
control systems in their heavy machinery, e.g., artic-
ulated haulers, trucks, wheel loaders and excavators.
Rubus OS by Arcticus [1], used by VCE, has run-time
support for the system model described in section 2.

Currently at VCE, all safety critical functionality is
implemented in the static part and only soft real-time
or non real-time activity resides in the dynamic part.
In recent interviews (in an ongoing research project)
they state that about 20-25% of their applications are
considered safety critical, mainly residing in transmis-
sion and engine control. However, some operational
modes, have static schedule utilization as high as 74%.

The demand on more functionality in next genera-
tion machinery is growing. However, the static sched-
ule is getting close to full utilization, leaving little or
no room for new functionality. This can either be ad-
dressed with new and more expensive hardware or to
find a better way of utilizing the current hardware re-
sources.

Demand on responsiveness (i.e. deadlines) for func-
tionality in the static part ranges from a few millisec-
onds up to several seconds. This could potentially re-
sult in very large schedules (with corresponding high
memory consumption). VCE’s solution to this has
been to fix the schedule length at 100ms, which re-
sult in waste of computing resources due to redundant
polling for any function with a responsiveness demand
higher than 100ms (even functions with responsive-
ness demand within 100ms but associated with events
that occur seldom will in this case waste computing
resources). A solution that could get rid of this redun-
dant polling, while still guaranteeing the responsive-
ness and without increasing the schedule length, would
be highly desirable.

5.1 An example system

Here we will present an example system that can be
viewed as a simplified version of one of the systems con-
structed by VCE. A complete system would consists of
several hundreds of tasks [9] and would be too complex
to present in this paper. We will show how functions
currently residing in the static part can be moved to the
dynamic part and, by using the response-time analysis
of [13], still guarantee that the function deadlines will
be met. Type of functionality that could be moved,
according to [9], consists of events that by nature are
event-triggered, visual interaction with driver, and log-
ging of operational statistics. For our example, the task
specification in table 1 will be used. (For simplicity we
will in this example ignore interrupt interference.)

Task i Ti Ci Di U100 UT

A 10 2 10 20% 20%
B 20 2 5 10% 10%
C 50 1 2 2% 2%
D 50 6 50 12% 12%
E 100 8 100 8% 8%
F 2000 7 100 7% 0.35%
G 2000 8 100 8% 0.4%
H 2000 8 2000 8% 0.4%

Table 1. The set of tasks in the Static system

Tasks F and G handle events that may occur once
every 2000ms, and with a response time requirement
of 100ms. Placing tasks F and G in a static schedule,
means that they would have to be polled at the rate of
their deadline (100ms) instead of their period (2000ms)
(since we do not know exactly when the events are go-
ing to occur). Task H, however, could be polled at
the rate of its period (2000ms), however, the resulting

5



schedule would become too large and memory consum-
ing (it would have to extend for 2000ms and thus con-
sume over 20kb of ROM). Setting the schedule length
to 100ms would be adequate for all tasks except task H.
Hence, the schedule length is set to 100ms, and a re-
sulting schedule can be seen in figure 4.

In table 1 on the previous page, U100 represents the
task utilization when scheduled in a static schedule
with a period of 100ms, and UT represents the uti-
lization when tasks are scheduled with their period.

0 40302010 50 90807060 100

ABc DG FE c D BBBB AAAAAAAA A H

Figure 4. Static schedule for table 1 task set

The total utilization of the static schedule is 75%.
Adding new functionality, requiring some kind of tem-
poral guarantee, to this system can be difficult, there
are not many free time-slots in the schedule, especially
if there has to be room also for interrupts and non-real-
time functionality.

However if tasks F, G, and H could be made event
triggered, by placing them in the dynamic part of the
Rubus OS, some resources could be freed. The result-
ing static schedule can be seen in figure 5. The uti-
lization for the static schedule now becomes 52%. The
utilization for the three dynamic tasks are 1,15%, re-
sulting in a total utilization of just above 53%. Thus,
by moving these three tasks from the static schedule
we free nearly 22%3 of the CPU resources.

0 40302010 50 90807060 100

ABc DE c D BBBB AAAAAAAA A

Figure 5. Schedule without tasks F, G and H

Now, it remains to see whether the three tasks will
meet their deadlines when running as dynamic tasks.
To be able to calculate response times for tasks F, G,
and H we model the static schedule as a transaction
with Ts = 100. WCETs and offsets are set as follows:

Csj = (5, 10, 4, 2, 10, 3, 10, 2, 4, 2)
Osj = (0, 10, 20, 30, 40, 50, 60, 70, 80, 90)

Assuming that F, G, and H have priorities high,
medium, and low respectively, we can calculate the re-
sponse times for the three tasks according to [13]. And
the result is:

RF = 26 RG = 40 RH = 64
3Increase in overhead for tasks F, G, and H as dynamic tasks

will be marginal, hence not considered here.

We see that all three tasks will meet their dead-
lines of table 1 and, in fact, that their responsiveness
is considerably increased compared to being statically
scheduled every 100ms. It could be mentioned that by
removing tasks F, G and H from the schedule we have
enabled shorter response times for any other dynamic
tasks that might have existed in the system. The sched-
ule in figure 4 has a longest busy period of 54ms (be-
tween 30–84), whereas the new schedule in figure 5 has
a longest busy period of 14ms (between 10–24). Since
any dynamic task (in the worst case) will have to wait
for the longest busy period, we now have significantly
reduced that time.

With the approach presented in this paper the sta-
tic schedule could be kept small (with respect to mem-
ory consumption as well as utilization). By modelling
the static schedule as one transaction, response time
analysis for task with offsets can be used to evaluate
timeliness for the dynamic part.

Our solution reduce utilization by moving func-
tionality, previously polled excessively, from the static
schedule to the dynamic part. Our method also gives a
possibility to shrink the static schedule since functions
with long periods can be moved from the static sched-
ule. It should be mentioned however, that all tasks
in the static schedule share a common stack, whereas
moving tasks from the schedule to the dynamic part
may require them to have separate stacks, hence in-
creasing the memory consumption for dynamic tasks.
However, using a resource locking protocol such as the
immediate inheritance allows also dynamic tasks to
share a single stack [6, 15].

The possibility to selectively migrate functions from
static scheduled legacy systems to dynamic scheduled
systems will substantially facilitate for companies to
gradually move into the area of dynamic scheduling,
and thus, in the long run, help companies to use
cheaper hardware for, or fit more functions into, their
products. Also the development process becomes eas-
ier because event triggered functionality does not have
to be force-fitted into a static model.

6 Conclusions

As stated in [14] analyzability is one of the major
concern for embedded systems development. We have
in this paper shown how a hybrid, static and dynamic,
scheduling model can be modelled and dynamic tasks
analyzed for responsiveness. The type of system pre-
sented can be realized by commercially available OS
support, e.g., Rubus OS by Arcticus [1]. In fact, any
fixed priority OS complemented with an external static
scheduler can implement this type of system with the

6



static schedule as a task at highest priority.
A hybrid, static and dynamic, scheduling model sim-

plifies the design trade-offs of which scheduling model
to choose. Appropriate scheduling model can be chosen
on function level instead of system level. Since tempo-
ral guarantees can be provided, this approach will also
be applicable for hard real-time systems. Choosing the
most appropriate model for each function, instead of
force-fitting it to an overall model, not only simplifies
the design choices but also gives the possibility to save
system resources and improve responsiveness. This is
demonstrated in a case study [9] at Volvo Construction
Equipment using the commercial real-time operating
system Rubus by Arcticus [1].

References

[1] Arcticus Systems Web-Page. http://www.arcticus.se.
[2] The Asterix Real-Time Kernel. http://www.mrtc.-

mdh.se/projects/asterix/.
[3] N. Audsley, A. Burns, R. Davis, K. Tindell, and

A. Wellings. Fixed Priority Pre-Emptive Schedul-
ing: An Historical Perspective. Real-Time Systems,
8(2/3):173–198, 1995.

[4] S. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dy-
namic Integrated Scheduling of Hard Real-Time, Soft
Real-Time, and Non-Real-Time Processes. In Proc.
24th IEEE Real-Time Systems Symposium (RTSS).
IEEE Computer Society, December 2003.

[5] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages. Addison-Wesley, second edi-
tion, 1996. ISBN 0-201-40365-X.

[6] G. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic Publishers, 1997. ISBN 0-7923-
9994-3.

[7] Road Vehicles – Interchange of Digital Information –
Controller Area Network (CAN) for High Speed Com-
munications, February 1992. ISO/DIS 11898.

[8] FlexRay Home Page. http://www.flexray-group.org/.
[9] K. Hänninen and T. Riutta. Optimal Design. Mas-

ter’s thesis, Mälardalens Högskola, Dept of Computer
Science and Engineering, 2003.

[10] M. Joseph and P. Pandya. Finding Response Times
in a Real-Time System. The Computer Journal,
29(5):390–395, 1986.

[11] H. Kopetz and G. Grünsteidl. TTP – A Protocol for
Fault-Tolerant Real-Time Systems. IEEE Computer,
pages 14–23, January 1994.

[12] C. Locke. Software Architecture For Hard Real-Time
Applications - Cyclic Executives vs. Fixed Priority Ex-
ecutives. The Journal of Real-Time Systems, 4:37–53,
1992.

[13] J. Mäki-Turja and M. Nolin. Tighter Response-Times
for Tasks with Offsets. In Proc. of the 10th Inter-
national conference on Real-Time Computing Systems
and Applications (RTCSA’04), August 2004.

[14] A. Möller, J. Fröberg, and M. Nolin. Industrial
Requirements on Component Technologies for Em-
bedded Systems. In 7th International Symposium
on Component-based Software Engineering (CBSE7).
IEEE Computer Society, May 2004.

[15] Northern Real-Time Applications. SSX5 True RTOS,
1999.

[16] D. Nyström, M. Nolin, A. Tesanovic, C. Norström,
and J. Hansson. Pessimistic Concurrency-Control and
Versioning to Support Database Pointers in Real-Time
Databases. In Proc. of the 16th Euromicro Conference
on Real-Time Systems, June 2004.

[17] J. Palencia Gutierrez and M. Gonzalez Harbour.
Schedulability Analysis for Tasks with Static and Dy-
namic Offsets. In Proc. 19th IEEE Real-Time Systems
Symposium (RTSS), December 1998.

[18] J. Regher, A. Reid, K. Webb, M. Parker, and J. Lep-
reau. Evolving real-time systems using hierarchical
scheduling and concurrency analysis. In Proc. 24th

IEEE Real-Time Systems Symposium (RTSS). IEEE
Computer Society, December 2003.

[19] J. Regher and J. Stankovic. HLS: A framework for
composing soft real-time schedulers. In Proc. 22th

IEEE Real-Time Systems Symposium (RTSS). IEEE
Computer Society, December 2001.

[20] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein.
Analysis of hierarchical fixed priority scheduling. In
Proc. of the 14th Euromicro Conference on Real-Time
Systems. IEEE Computer Society, June 2002.

[21] K. Sandström, C. Eriksson, and G. Fohler. Handling
Interrupts with Static Scheduling in an Automotive
Vehicle Control System. In Proc. of the 5th Inter-
national conference on Real-Time Computing Systems
and Applications (RTCSA’98), 1998.

[22] K. Tindell. Using Offset Information to Analyse Static
Priority Pre-emptively Scheduled Task Sets. Technical
Report YCS-182, Dept. of Computer Science, Univer-
sity of York, England, 1992.

[23] Volvo Construction Equipment. http://www.volvoce.-
com.

[24] J. Xu and D. Parnas. Priority Scheduling Versus Pre-
Run-Time Scheduling. The Journal of Real-Time Sys-
tems, 18(1):7–23, January 2000.

7


