
Transparent Actor Model

Fatemeh Ghassemi∗†, Marjan Sirjani‡ Ehsan Khamespanah∗, Mahrokh Mirani† and Hossein Hojjat†∗
∗University of Tehran, Iran

Email: fghassemi, e.khamespanah, hojjat@ut.ac.ir
‡Mälardalen University, Sweden
Email: marjan.sirjani@mdh.se

†Khatam University, Iran

Email: m.mirani@khatam.ac.ir

Abstract—Several programming and formal modeling lan-
guages are designed based on actors. Each language has certain
policies for message delivery between actors and for handling
the messages in the buffers. These policies are implicit in the
semantics of each language. One can infer interesting properties
of actor languages related to communication and coordination
based on different policies and their interactions. We define the
“Transparent Actor” model where we make policies explicit as
points of possible variations. We identify an abstract network
entity and define the semantics of Transparent Actors in three
parts: actors, network, and composition. We define a core actor
language named BABEL as a basis to describe the semantics of
Transparent Actors using structural operational semantics (SOS)
rules with variation points. These parametric rules make the
implicit policies clear and can be used as a template to define
the semantics of different actor-based languages. We evaluate
the applicability of the template by examining the semantics
for actor-based languages Rebeca, Lingua Franca, ABS, AKKA,
and Erlang. We implement BABEL in Maude as a proof of
concept, then concretize the parametric rules to implement some
of the above languages. We consider a few properties, check
them via a set of designated litmus test cases using our Maude
implementations, and discuss the policy interactions.

Index Terms—Distributed systems, Actor languages, Design
policy, Structural operational semantics

I. INTRODUCTION

Actors are getting more attention as the number of dis-

tributed and networked systems increases. For example, in

managing complex cyber-physical systems, connected vehi-

cles, and highly-sensitive distributed data we need precise

synchronization and coordination in a networked system. We

introduce the “Transparent Actor” model to make communi-

cation and coordination among actors, and local scheduling of

tasks within an actor, explicit and transparent.

Hewitt [1] introduced the actor model as an agent-based

language in the 70s, and Agha [2] developed it as a concurrent

object-based language. Actors have been used as a framework

for theoretical understanding of concurrent and distributed

computation, as the basis for designing many modeling and

programming languages, and as a model for many practical

implementations of concurrent systems. Actors are units of

concurrency, with no shared variables, communicating via

asynchronous message passing. Each actor has a mailbox with

a unique address to store the received messages. An actor’s

behavior is defined using a set of “message handlers” or

“methods” that specify how the actor reacts to each received

message. Many modeling languages, like Timed Rebeca [3]

and ABS [4], and many programming languages like Erlang

[5], Scala [6], Go [7], and Lingua Franca [8] are designed

based on actors. Languages are designed with different prime

purposes. For example, Rebeca and ABS are designed for

analysis and code generation [9], while Lingua Franca aims

at providing timed deterministic programs, and Erlang is

optimized for efficient execution.

Motivation: Different languages adopt different features

and these subtle differences may make confusion in un-

derstanding the semantics. According to [10], the best way

for understanding a language is to reduce it to its essence,

figure out its features and determine how these features are

composed. The selected feature set and composition reveal the

design decisions. Karmani et al. [11] argue that understanding

the implications of the various design decisions in building or

using a particular actor-based framework is not always easy.

The goal of Transparent Actors is to make the communication

and coordination among actors, and local scheduling of tasks

within an actor explicit and transparent; and we select the

features of our focus according to this goal. Our main decision

is to make the network explicit in our Transparent Actor model

(and define an abstract network entity). We structure the se-

mantics of Transparent Actors as “actor”, “abstract network”,

and their “composition”. For communication, we consider the

operations of sending and receiving messages by actors and

transferring messages from one actor to another by the abstract

network. For task scheduling in an actor, we consider taking a

message from the mailbox by actors, and for coordination,

we consider the scheduling of actors. We distinguish the

variation points in all the above operations. We believe these

are the main features in designing actor languages that affect

communication and coordination. There are several features

of actor languages, e.g. dynamic actor creation, dynamic

topology, and typical features in programming languages like

typing, that we do not consider or discuss in our work. We can

use these features to investigate different properties of actor

languages. We do not claim that this is a canonical form for

defining the features of actors, but we came up with these

features and properties based on our years of experience with

different actor languages and actor-based applications.

We define a basic actor language and use Structural Oper-

ational Semantics (SOS) to define its semantics as a labeled

97

2023 IEEE/ACM 11th International Conference on Formal Methods in Software Engineering (FormaliSE)

979-8-3503-1263-8/23/$31.00 ©2023 IEEE
DOI 10.1109/FormaliSE58978.2023.00018

20
23

 IE
EE

/A
C

M
 1

1t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

or
m

al
 M

et
ho

ds
 in

 S
of

tw
ar

e
En

gi
ne

er
in

g
(F

or
m

al
iS

E)
 |

97
9-

8-
35

03
-1

26
3-

8/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Fo

rm
al

iS
E5

89
78

.2
02

3.
00

01
8

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

transition system. These rules are defined with variation points

that allow them to be used as templates for defining the

semantics of different actor languages. We use these templates

to define the semantics of Rebeca and Lingua Franca. We also

discuss how they can be extended to support the languages

ABS, AKKA, and Erlang. We show the design decisions of

each language at the variation points.

We organize the rules into three levels: actor, abstract

network, and their compositions. At the actor level, we have

two variation points: one for receiving and one for taking a

message. For example, when the mailbox is full, the receiving

policy in some languages is to drop new messages, and in

others, to overwrite the old messages. The policy for taking a

message from the buffer realises the scheduling of tasks within

an actor, it may be FIFO (First-In First-Out), EDF (Earliest

Deadline First), or based on priority or pattern matching. At

the abstract network level, the transfer of messages can be

based on different policies. For example, in Timed Rebeca

and LF the messages are transferred respecting the order

of their time tags, in Rebeca the order of sending (in one

actor) determines the order of transfer, and in ABS it is

nondeterministic. At the composition level, the semantics

of the language decides which actor is scheduled next. We

manage to capture different coordination and synchronization

mechanisms of Rebeca, ABS, and LF at the composition

level. Rebeca schedules actors in a nondeterministic way, ABS

shares a thread among a group of concurrent objects, and the

semantics of LF is close to synchronous languages. Generally,

these policies are not explicitly stated in the definitions of

languages and they can only be extracted from their formal

semantics (if any). The variation points that we identify in

this paper are the questions one usually asks to understand the

semantics of an actor-based language. These questions may

also be used for understanding many features of distributed

systems in general. In summary, our contributions are as

follows:

• We make the communication and coordination in actor

languages more explicit and transparent, and divide the

semantic rules into three parts of actor, abstract network,

and their composition;

• We make the variation points (features) in designing actor

languages explicit and transparent. We formalise these

decisions as policies in the transition relations in the

semantics;

• We express policies of several actor-based languages

based on their design decisions;

• We discuss language properties as the consequence of

choosing different policies (feature interaction).

Related Work: It is a common practice to design frame-

works in order to compare various aspects of programming

languages [10]. Henderson and Horn [12] give a comparison

of four popular object-oriented languages of the time (Oberon,

Modula, Sather and Self). The features of comparison in [12]

include inheritance, dynamic dispatch, code reuse, informa-

tion hiding, and performance. Features of context-oriented

programming languages (COPL) are identified in [13]. Based

on variations of these features, they compare eleven COPLs

and assess the overhead of design decisions using a set of

benchmarks. A framework for analyzing the properties of

COPLs is proposed in [14]. The framework serves as an

evaluation means based on a set of the COPL’s concepts,

the development process support, and pragmatics issues. To

the best of our knowledge, we are the first in proposing a

comparison framework for actor-based languages.

II. TRANSPARENT ACTORS

In Transparent Actors (see Fig 1) we make the transfer of

messages among actors explicit and model that as an abstract

network. In Transparent Actors we consider three phases for a

point-to-point message communication as illustrated in Fig. 1a:

• Sending: The actor pushes its messages into the buffer of

the abstract network.

• Transferring: The abstract network delivers messages to

the receiver. The abstract network behaves like an actor in

transferring a message, it takes a message from its buffer

and then sends it to the receiver actor.

• Taking: The actor chooses a message from its buffer to

handle.

For these three phases, we define a set of operations with

well-defined responsibilities for actors, the abstract network,

and buffer entities. Policies are the variation points in these

operations. Fig. 1b shows the relation between entities and

their operations. The sending phase starts when an actor calls

its send operation. This operation pushes a message into

the abstract network by calling (asynchronously) its receive
operation. The receive operation stores the received messages

into the network buffer by calling the operation insert . The

transferring phase starts when the abstract network calls its

transfer operation to dispatch received messages to their

recipients. The transfer operation first selects a message from

the network buffer, based on a policy that determines which

messages should be dispatched. The message is removed from

the network buffer by calling the remove operation of the

buffer. When a message is selected for delivery, it is delivered

to its destination actor by calling the receive operation of the

actor which has a policy of its own. This policy indicates

whether the message can be accepted or dropped, and in the

case of acceptance how the buffer should be updated. This

operation calls the insert operation of the buffer. The taking

phase starts when actors call the operation take to handle the

messages in their buffers. This operation selects a message

based on a policy that determines which messages should be

handled. When a message is selected, it is removed from the

buffer by calling the remove operation of the buffer.

III. ACTOR LANGUAGE FRAMEWORK

To concretely highlight the variation points, we introduce a

simple language, called BABEL: Basic Actor-based Language.

We define its semantics by providing a set of template SOS

rules that have a set of variation points at their assumptions.

Fixing those variation points leads to the concrete semantics

98

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

Handlers

State

Buffer

Th
re

ad

Buffer

Abstract Network

Bu

Handlers

State

Buffer

Th
re

ad

1

k

2send transfer

3 take

(a) Three phases of point-to-point communication.

Actor Buffer Actor BufferNetwork Buffer

send

transfer

take

receive

receive insert

remove

msg

insert

remove

msg

(b) Actors sending and receiving messages. Network transfer and
buffer operations are transparent.

Fig. 1: Transparent Actors

of an actor-based language. These variation points show the

decisions that should be made in designing actor-based lan-

guages. We distinguish these assumptions by ? preceding the

name given to the assumptions.

We rely on a set of notations and assumptions to define the

rules. Assume Var is the set of variable identifiers and Value
is the set of possible values for variable identifiers. We define a

valuation function (environment) as Env : Var → Value . Let

domain(e) denote the domain variables of the environment e
and e[x �→ y] denote updating e with the mapping x to y. We

use the type Buffer to address the actor mailbox and network

buffer in the semantics. We consider a set of operations on this

type: insert , remove, contains , and size. We use ∅ to denote

an empty buffer. The items in the buffer are of type Msg .

ID is the set of actor identifiers and each actor has a unique

identifier. Messages are a tuple of elements that essentially

include the method name and the endpoint. Let Name be the

set of method names. Note that the message tuple may also

include the method parameters, the sending actor identifier,

and the delivery time, depending on the target language. We

use the dot notation to access elements of a message tuple.

We assume that m.rcv specifies the receiving actor which can

be inferred from the endpoint in the message.

A. BABEL: Basic Actor Language - The Syntax

BABEL has the core features of actor-based languages.

There is no shared variable, communication takes place

through asynchronous message passing, and the computation is

message-driven (messages trigger method activation). We con-

sider non-preemptive execution of methods (like most actor-

based languages); meaning that an actor cannot handle another

message unless it completes its previous method execution.

We do not include the features (like actor creation) that do

not impact the variation points of our interest. The syntax of

BABEL is given in Fig. 2 inspired by the Rebeca syntax.

A model is defined by a set of actor classes and a main

block. Each actor class is declared by keyword actorclass. We

define the state variables of a class by using statevars and

its methods by method. The body of methods is specified by

a list of statements. Execution of a send statement generates

a message. We do not fix the syntax of the send statement

deliberately. Generally speaking, v ! name expresses that a

message corresponding to the method name is sent to an

endpoint v. The variable v in some languages may directly

refer to an actor or maybe an output port. The statement end
defines the end of a method.

B. BABEL Semantics

We define the semantics of BABEL in terms of the labeled

transition system 〈S,−→, s0〉, where S is the set of global

states, −→⊆ S × Act × S is the set of transition relations,

Act is the set of actions, and s0 is the initial state. We

provide a set of template rules to derive the transition relation

−→ over the global states. The global states are defined as

the composition of the local states of actors and the abstract

network. The transition relation over the global state is defined

based on the transition relations over the local states of actors

and the abstract network. We provide the transition rules for

local states of actor and abstract network levels. We organize

these template rules into three levels: actor, network, and

composition, depicted in Table I. The template rules may have

a variation point.

1) Transition Relation Rules of the Actor Level: We define

the transition relation of actors as −−−�⊆ LocalSt × Act ×

Model ::= 〈Class〉+ Main

Main ::= main {ActorInstance+}
ActorInstance ::= C actor : (〈const〉∗)

Class ::= actorclass C {Vars Method+}
Vars ::= statevars 〈T v; 〉∗

Method ::= method name {〈Stmt;〉∗end}
Stmt ::= v = expr | v!name | skip |

if(expr) {〈Stmt;〉+} else {〈Stmt;〉+} | end
Identifiers C, T , name, v, const, expr , and actor resp. denote class,
type, handler name, variable, constant, expressions, and actor name.
〈 〉 denotes meta parenthesis, + and ∗ denote resp. one or more and zero
or more repetitions.

Fig. 2: BABEL Syntax.

99

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

LocalSt where LocalSt ⊆ Env ×Buffer ×Stmt∗ is the set of

local states of actors, and Act = {τ, end} ∪ {m!,m?,m|m ∈
Msg}. The action τ denotes an internal action, end indicates

completion of a method, m shows taking the message m from

the buffer, m? receipt of the message m, and m! sending the

message. The local state of an actor is (e, b, π) where e ∈ Env
is a valuation function with the domain of state variables, b ∈
Buffer is the local buffer and π ∈ Stmt∗ is the remaining

statements from a method that should be executed. An empty

sequence, denoted by ε, shows that an actor is not executing

any methods.

Each actor has a thread that invokes the operation take to

process a message from the buffer. The abstract network calls

the operation receive to deliver a message to the actor. We

define the behavior of an actor by defining the semantics of

these two operations, namely receive and take , and how the

actor internally evolves, shown in Table I. The rule RECEIVE

specifies the semantics of the operation receive. This rule

explains that an actor can receive message m ∈ Msg if it

is admissible by its receive policy based on the status of the

actor buffer.

The predicate ?rcvPolicy(b,m) determines whether the

receiving actor can receive m with respect to the receive

policy and the current state of the buffer b. Different policies

can be used for inserting a message into the buffer. When

there is a buffer overflow, one policy is to overwrite the oldest

message in the buffer or to purge the new arriving message.

In timed models, we may have different policies for handling

timestamped messages, e.g., for handling duplicate messages

(the same messages sent by a sender at different timestamps)

or old (stale) messages (messages with timestamps too old to

be valuable). We can also enforce the visibility of messages

and generally, privacy rules like who can receive a message

from whom in the receive policy.

According to the rule TAKE (semantics of the operation

take) an actor can take a message from its buffer when it

is not busy handling any other messages, i.e., when it has

no remaining statement to execute (ε). The actor handles the

taken message by executing the statements of its corresponding

method Method(m.name). The rule has two assumptions. The

predicate contains(b,m) expresses that the actor can only take

messages from its buffer. The predicate ?takePolicy(e, b,m)
determines whether the message m can be taken with respect

to the take policy, the actor buffer b, and its local variables in

e. For example, taking the message with the highest priority,

or the message with the smallest timestamp. If the policy is

the smallest timestamp and more than one message has the

same timestamp, there should also be a policy to determine

whether we take a message nondeterministically, or, if there

is a pre-defined priority. Another example is languages such

as Erlang where pattern matching is used for the incoming

messages. As a result of the take operation, the content of b
is updated by calling remove(b,m).

We separate the semantics of method statements and the

actor-level semantics to simplify the rules at the Actor-level

semantics. The semantics of the statements of a method is

TABLE I: Semantics of BABEL

A
ct

o
r

(STMTEXEC)
e, π

α
↪−→ e′, π′

(e, b, π)
α−−−� (e′, b, π′)

(TAKE)
contains(b,m)?takePolicy(e, b,m)

(e, b, ε)
m−−−� (e, remove(b,m),Method(m.name))

(RECEIVE)
?rcvPolicy(b,m)

(e, b, π)
m?−−−� (e, insert(b,m), π)

N
et

w
o

rk (RECEIVE) (e, b)
m?

(e, insert(b, tag(e,m)))

(TRANSFER)
contains(b,m)?transferPolicy(e, b,m)

(e, b)
m!

(e, remove(b,m))

C
o

m
p

o
si

ti
o

n

(ACTORPROG I)
s(x)

m−−−� (e′, b′, π′) ?schedPolicy(e, s, x)

(e, s, n)
m−→ (start(e, x), s[x �→ (e′, b′, π′)], n)

(ACTORPROG II)
s(x)

τ−−−� (e′, b′, π′)

(e, s, n)
τ−→ (e, s[x �→ (e′, b′, π′)], n)

(ACTORPROG III)
s(x)

end−−−� (e′, b′, π′)

(e, s, n)
τ−→ (finish(e, x), s[x �→ (e′, b′, ε)], n)

(COMM I)
s(x)

m!−−−� (e′, b′, π′)n m?
(e′′, b′′)

(e, s, n)
τ−→ (e, s[x �→ (e′, b′, π′)], (e′′, b′′))

(COMM II)
n

m!
(e′′, b′′)m.rcv = ys(y)

m?−−−� (e′, b′, π′)

(e, s, n)
τ−→ (e, s[y �→ (e′, b′, π′)], (e′′, b′′))

TABLE II: Semantics of BABEL statements. α ∈ {τ, end ,m!}
where m ∈ Msg .

(COND 1)
eval(expr , e)

e, if (expr) π1 else π2

τ
↪−→ e, π1

(COND 2)
¬eval(expr , e)

e, if (expr) π1 else π2

τ
↪−→ e, π2

(SEQ 1)
e, π1

α
↪−→ e′, π′

e, π1;π2

α
↪−→ e′, π′;π2

(SEQ 2) e,�;π
τ

↪−→ e, π

(SKIP) e, skip
τ

↪−→ e,� (END) e, end
end
↪−−−→ e,�

(ASSIGN) e, v = expr
τ

↪−→ e[v �→ eval(expr , e)],�
(SEND) e, v!n

GenerateMsg(e,v,n)!

↪−−−−−−−−−−−−−→ e,�

shown in Table II. Rule STMTEXEC connects the rules in Table

II to the rules in the Actor-level semantics rules. The rule

indicates that the execution of a statement does not have any

effect on the buffer.

The relation ↪−→ expresses the semantics of statements as

given in Table II. The function eval(expr , e) evaluates the

given expr based on the actor environment e. We denote

the successful termination of a single statement by
. The

function GenerateMsg(e, v, n) generates a message of Msg ,

based on the actor environment e, the variable v, and the

method name n. This function depends on the structure of

the message in each language. For example, it may generate

a message with the tuples (i, v, n) in Rebeca where i is the

identifier of the sending actor retrieved from e.

2) Transition Relation Rules of the Abstract Network Level:
We define the transition relation of the abstract network

by ⊆ NetLocal × Act × NetLocal where NetLocal ⊆
Env × Buffer is the set of network local states and Act =

100

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

{m!,m? | m ∈ Msg}. For brevity, we use “network” instead

of “abstract network”. We represent the local state, NetLocal ,
by a pair of (e, b) where e ∈ Env is the valuation of

network local variables and b ∈ Buffer is its local buffer.

The network provides two operations receive and transfer .

An actor calls the operation receive to deliver its message

for transmission. The network calls its transfer operation to

dispatch the buffer messages to their recipients. The network-

level transition relation rules define the semantics of the

network operations, shown in Table I. The rule RECEIVE

specifies the semantics of operation receive. The rule explains

that the network can always receive a message. The network

may add some information, by calling tag , to the received

messages before their insertion into the buffer. For example,

the network may add the delivery time of the message based

on the communication delay between two actors.

The rule TRANSFER defines the semantics of the

transfer operation. The rule has two assumptions

contains(b,m) and ?transferPolicy(e, b,m). The predicate

?transferPolicy(e, b,m) determines whether the message m
can be selected from the buffer b to dispatch with respect

to the transfer policy and the network variables in e. By

specifying this assumption, we explicitly identify the policy

on selecting messages for transmission. For instance, this

policy may dispatch messages based on their arrival or

timestamps. For messages with the same timestamp, the

policy may consider a priority among messages or transfer

them nondeterministically.

3) Transition Relation Rules of the Composition: We define

the transition relation for the composition level by −→⊆
GlobalSt×Act×GlobalSt where GlobalSt is the set of global

states and Act = {τ} ∪ {m | m ∈ Msg}. The global state

is defined by the values of global variables, and the local

states of actors and the network. Note that there are no shared

variables among the actors. Global variables refer to e.g. the

variables required for scheduling actors in ABS or the global

time in LF and Timed Rebeca. A global state is (e, s, n) where

e ∈ Env is the valuation function for the global variables,

s : ID → LocalSt is a mapping from actor identifiers to their

local states, n ∈ NetLocal is the network local state.

The rules at this level define the semantics of (1) com-

munication between actors and the network, (2) the progress

of actors, given in Table I. An actor locally evolves when

either it takes a message from its buffer or it executes the

statements of a method. Executing a send statement results

in communication from the sending actor to the network, and

then from the network to the receiving actor.

ACTORPROG I rule: An actor x among those that can take

a message, is selected. The assumption ?schedPolicy(e, s, x)
shows the scheduling policy on selecting x for execution. This

policy may select an actor based on the priority of actors given

by e and the local states of actors. The function start(e, x)
defines how the environment should be updated based on

the scheduling policy upon starting the execution of an actor

method.

ACTORPROG II rule: An actor x executes a statement (except

send and the end of a method) and locally updates its state.

As a consequence, the global state changes accordingly.

ACTORPROG III RULE: An actor x terminates the execution

of a method by executing end. The function finish(e, x)
defines how the environment should be updated based on the

scheduling policy upon the termination of a method.

COMM I RULE: This rule shows the communication of an

actor x with the network. The assumption s(x)
m!−−−� (e′, b′, π′)

indicates that the actor with the identifier x has the message m
for delivery (by executing a send statement). The assumption

n
m?

(e′′, b′′) expresses that the network is ready to receive

m.

COMM II RULE: This rule shows the communication of the

network with an actor x. When the network has a message

ready to deliver, i.e., n
m!

(e′′, b′′), and the intended actor to

receive m is ready to receive, i.e., s(y)
m?−−−� (e′, b′, π′), the

message is transferred.

We have summarized the transition relation rules for each

level with their variation points in Table III. To define the

semantic rules of a language, we mainly instantiate those

rules by specifying their variation points. The rules with

no variation point are inherited from the generic framework

with no modification. This table makes the decision points in

designing actor languages explicit and transparent. Note that

for some languages like LF and Timed Rebeca, the rules given

in Table I are extended to address real-time behavior.

IV. CORE REBECA AND LINGUA FRANCA

We show the semantics of two actor-based modeling lan-

guages using the proposed frameworks. The first language,

Core Rebeca, does not support timing. Lingua Franca supports

real-time features and we will show how they are supported by

the framework. Note that in most timed languages, the progress

of time is modeled by computation time and/or communication

time.

To derive the semantics of each language, we instantiated

the variation points of the template rules of the framework

based on our comprehension of their given semantics. We

iteratively moved between the framework and the semantics of

each language to revise the framework many times to remove

ambiguities and inconsistencies.

A. Core Rebeca

Rebeca [15], [16] is an actor-based language for modeling

and verification of concurrent and distributed systems. Rebeca

has a Java-like syntax and is supported by the model checking

tool Afra [17]. A Rebeca model consists of a set of class

declarations and a main block. Actors, called rebecs, are

instantiated from the defined reactive classes in the main block

in the model. Each class has three parts: state variables, known
rebecs, and message servers (methods).

Example 1: The Rebeca model given in Fig. 3 shows a

system composed of a monitor and an alarm. The monitor is

informed of the temperature of its environment by receiving

a check message. If the received value is above the specified

101

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Variation points of semantics rules at each semantic level. Semantic rules with no variation points are not included.

Level
Rule
Name Assumption Intuition of assumption

Actor RECEIVE ?rcvPolicy When a message can be inserted into the buffer. Can we insert when the buffer is full or we should drop
or rewrite?

TAKE ?takePolicy The policy by which a message is selected, based on e.g., arrival order (FIFO), deadline (EDF), timestamp,
priority, the sender, pattern matching or nondeterministic.

Network TRANSFER ?transferPolicy The policy for transferring a message, e.g., after a network delay or based on the priority of the receiver,
or the network communication protocol e.g., token ring, Time Division Multiple Access.

Composition ACTORPROG I ?schedPolicy The policy for selecting an actor to execute, based on e.g., the priority of actors or nondeterministically
among a group of actors.

1 reactiveclass Monitor(5) {
2 knownrebecs { Alarm a; }
3 statevars { int max; }
4 Monitor(int x) {
5 max = x;
6 }
7 msgsrv check(int temp) {
8 if (temp > max) {
9 a. notify () ;

10 }
11 }
12 }

13 reactiveclass Alarm(5) {
14 knownrebecs { }
15 statevars { }

17 msgsrv notify () {
18 // Play the alarm
19 }
20 }
21 main {
22 Monitor m (a) :(25) ;
23 Alarm a() :() ;
24 }

Fig. 3: A Rebeca model of a monitor and an alarm.

value max, it sends a notify message to its known rebec of

class Alarm (line 9). In the main block, the known rebecs and

actual values of parameters of the constructors are passed via

two pairs of parenthesis (lines 22-23). So the known rebec a of

monitor m is initialized by the first pair of parenthesis while

max is initialized by passing 25 to the constructor via the

second pair of parenthesis (line 22). The numeric arguments

to the reactive class declarations are the buffer lengths.

For simplicity, we assume that messages have no parame-

ters. The ID set includes the name of instantiated rebecs, and

the Name set includes the names of all message servers. The

set of statements in the body of message servers is the same

as BABEL. The variable in the send statement should be a

variable declared within the knownrebecs scope.

Structure of Messages and Buffers The messages consist of

three parts: the sender identifier, the message name, and the

receiver identifier, i.e., Msg = ID × Name × ID .

The buffers of actors are unbounded buffers with the FIFO

policy. However in practice, the buffers are bounded in the

model checking tool Afra, specified by the arguments of

reactive class declarations in Fig. 3. The function head(b)
specifies the message that was inserted at first. In Rebeca,

the order of delivery of messages matches the order of their

sending. So, the network buffer is a set of unbound buffers,

one for each actor. We assume that the network buffer has the

function getBuff (b, x) which returns a buffer of the pending

messages in the network buffer b with the actor x as their

receiver. The order of sending is preserved in this buffer.

So, the function head(getBuff (b, x)) returns the first pending

message sent to x.

Semantic Rules The semantic rules derived from the generic

framework are given in Table IV. We only include the rules

with variation points. The variation points are fixed accord-

TABLE IV: Semantic rules of Core Rebeca. β = {τ, end} ∪
{m | m ∈ Msg}.

A
ct

o
r (RECEIVE) (e, b, π)

m?−−−� (e, insert(b,m), π)

(TAKE)
contains(b,m)m = head(b)

(e, b, ε)
m−−−� (e, remove(b,m),Method(m.name))

N
et

w
o
rk (RECEIVE) (e, b)

m?
(e, insert(b,m))

(TRANSFER)
contains(b,m)∃x ∈ ID ·m = head(getBuff (b, x))

(e, b)
m!

(e, remove(b,m))

C
o
m

p
o
s.

(ACTORPROG)
s(x)

β−−−� (e′, b′, π′)

(e, s, n)
β−→ (e, s[x �→ (e′, b′, π′)], n)

ing to the Rebeca semantics. The local state of an actor

is defined by the triple (e, b, π) where domain(e) contains

state variables, known rebecs names, and self (e(self) is the

name of rebec). Actors can send messages to themselves by

using the reserved word self . The function GenerateMsg
in the rule SEND of Table II generates a triple in the form

of (e(self),n, v) for the statement v!n, where n refers to a

message server name. As the actor buffers are unbounded, the

rule RECEIVE has no limitation and its ?rcvPolicy is set to

true. The actor buffer take policy chooses the message first

inserted into the buffer, denoted by head(b) as shown in the

rule TAKE.

At the network level, the environment is empty. In the rule

RECEIVE, the network does not change the received message,

i.e., tag(e,m) = m. In the rule TRANSFER, the transfer policy

of messages is FIFO for each receiver who has at least one

pending message in its buffer. The selection among those

receivers is nondeterministic. At the composition level, the

environment is empty. The scheduling policy for executing

actors is nondeterministic, ?schedPolicy(e, s, x) = true in

the rule ACTORPROG I. There is no update upon execution

and termination of a method in rules ACTORPROG I/III,

so start(e, x) = e, and finish(e, x) = e. As a result, the

assumptions and conclusions of the three rules for actor

progress in Section III-B3 are the same (except for the labels of

the transitions). We represent them by one rule ACTORPROG

by using the label β in Table IV.

B. Lingua Franca

The Lingua Franca (LF) language is a language for mod-

eling distributed real-time systems [18]. An LF model is a

collection of reactors and how they are connected together.

Reactors are deterministic actors including methods that are

102

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

1 reactor Monitor(max:int (10))
{

2 output notify : bool(false) ;
3 logical action temp;
4 reaction (temp)−>notify {=
5 if (temp > max)
6 SET(notify, true) ;
7 =}
8 }
9 reactor Alarm {

10 input notify :bool;

11 reaction (notify) {=
12 // Play the alarm
13 =}
14 }
15 main reactor System {
16 m = new Monitor(25);
17 a = new Alarm();
18 m.notify −> a.notify after

1 sec ;
19 }

Fig. 4: A model of a monitor and an alarm specified in LF

called reactions. Reactions are invoked in response to triggered

events, based on discrete event semantics of Ptolemy [19]. The

parameters of a reaction are the input ports or clock variables.

Messages (events) are timestamped, and their corresponding

reactions are invoked based on the order of their timestamps.

Note that events with identical timestamps (logically simulta-

neous) are handled in a deterministic order based on the order

of the definition of their reactions in the reactor. Reactors have

state variables, input/output ports, and actions, i.e. variables

that their values are assigned externally. The composition of

reactors is defined in the “main” reactor of the model by

binding of input and output ports. An output port may be

connected to multiple input ports, but an input port can only

be connected to one output port [8].

Example 2: An LF implementation of the Rebeca model of

Fig. 3 is presented in Fig. 4. As shown in line 18 of Fig. 4, the

communication delay of 1 unit of logical time is associated

with the communication link between the alarm and monitor.

The notify input port of Alarm is defined in line 10 and upon

any change to the value of this variable, its corresponding

reaction (lines 11 to 13) is executed. In Monitor, the value of

temp is set from the outside of the model, as it is defined as

a logical action variable. Checking the value of the received

temperature and notifying the alarm is presented in lines 5

and 6. Note that setting a value to an output variable takes

place using the SET method. The composition of reactors is

presented in the main reactor, which contains instances of each

of the reactors and connects their ports. The bodies of reactions

are written in some target languages; in our example, they are

written in C. The target code in the figure is delimited by {=
and =}.

The ID set includes the name of instantiated reactors, and

Name set includes the input ports, output ports, and logical

actions. The set of statements in the body of reactions is

the same as BABEL except for the send statement. In LF, a

message is sent using set(v, val) statement by which the value

of the output port v is set to the value val.
Structure of Messages and Buffers Messages in LF are tu-

ples of four parts: the receiving (or sending) reactor identifier,

the port name, the sent value, and the message delivery time,

i.e., Msg = ID×Var×Value×(N×N). Time in LF is a pair

of type N×N. For a given time pair (st,ms), st, and ms are

called the system time and micro-step, respectively. We use dot

notation m.prt, m.val, m.time to access the corresponding

receiving port identifier, the sent value, and the delivery time

of a given message m.

The buffers of reactors are bounded buffers with a priority

policy based on the order of reactions in the code. The size

of this buffer is the same as the number of input ports. The

function head(b) specifies the message that has the highest

priority. The buffer of the network in LF also follows a priority

policy based on the time tags of messages. The function

head(b) nondeterministically specifies a message among the

ones with the smallest time tag.

Semantic Rules The semantic rules derived from the generic

framework are given in Table V. We only include the rules

with variation points, and the variation points are determined

based on the LF semantics. In LF, a reactor has a fixed number

of input ports and in each time step only one value can be

set for an input port. This way, overflow does not happen

and ?rcvPolicy in RECEIVE is set to true. In the TAKE rule,

a reactor chooses an element from the head of its buffer.

The local state of a reactor is defined by the triple (e, b, π)
where domain(e) contains this and state variables of the

reactor, where e(this) is the name of the reactor. The function

GenerateMsg in the rule SEND of Table II generates a tuple in

the form of (e(this), p, v, t) for the statement set(p, v), where

p refers to an output port name, v refers to a value which is

set for the output port, and t is the transmission time, initially

set to (0, 0).

At the network level, the environment includes variables

now and map, and e(now) shows the time of the network. The

variable map is in the form of ID×Name → ID×Name×N
and shows the topology of the LF model, i.e. bindings among

input/output ports together with their communication delays.

The map function maps its given sender reactor id and output

port id to a tuple that contains the receiver reactor id, the input

port id, and its communication delay time. The RECEIVE rule

receives a message and updates the elements of the message by

using tag function before its insertion into the network buffer.

This function replaces the sending id and output port with

the receiver reactor id and input port based on the network

configuration (map) of the model. It also updates the time

tag; if the message is sent via a connection link with a

communication delay of zero, the micro-step part of the time

tag of the message has to be set to the next micro-step. If the

connection link has a communication delay d, the transmission

time is set to (now +d , 0). Function tag(e,m) is defined as:{
(a′, p′, v, (t.st, t.ms+ 1)), map(a, p) = (a′, p′, 0)
(a′, p′, v, (t.st+ t′, 0)), map(a, p) = (a′, p′, t′) ∧ t′ �= 0

where a, p and a′, p′ are m.rcv and m.ptr before and after

the mapping, respectively, v = m.val , map = e(map), and

t = e(now). In the rule TRANSFER, the network policy for

dispatching messages is based on their time tags. The transfer

policy delivers messages that their transmission time (m.time)

is the current time.

In actor-based languages with the concept of time like

Timed Rebeca [3], realtime ABS [20], and realtime Creol

[21], the global time evolves in agreement with actors and

103

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

TABLE V: The semantic rules of LF. β = {τ, end}.

A
ct

o
r

(RECEIVE) (e, b, π)
m?−−−� (e, insert(b,m), π)

(TAKE)
contains(b,m)m = head(b)

(e, b, ε)
m−−−� (e, remove(b,m),Method(m.ptr))

(TIMESYNC)
b = ∅

(e, b, ε)
t−−−� (e[now �→ t], b, ε)

N
et

w
o
rk

(TRANSFER)
contains(b,m)m.time = e(now)

(e, b)
m!

(e, remove(b,m))
(TIMESYNC)

head(b).time �= e(now)

(e, b)
t
(e[now �→ t], b)

C
o
m

p
o
si

ti
o
n

(ACTORPROG I)
s(x)

m−−−� (e′, b′, π′)∀ y ∈ ID · e(pty(y)) > e(pty(x)) ⇒ (s(y) = (e′′, ∅, ε))�m ′ ∈ Msg · n m′!
n ′

(e, s, n)
m−→ (e, s[x �→ (e′, b′, π′)], n)

(ACTORPROG)
s(x)

β−−−� (e′, b′, π′)

(e, s, n)
β−→ (e, s[x �→ (e′, b′, π′)], n)

TABLE VI: Template rules for addressing the timed actor-

based languages

A
ct

o
r

(TIMESYNC)
?synCondition(e, b, t)

(e, b, π)
t−−−� (e[now �→ t], b, π)

N
et

w
o
rk

(TIMESYNC)
?synCondition(e, b, t)

(e, b)
t
(e[now �→ t], b)

C
o
m

p
.

(TIMEPROG)
n

t
n′∀x ∈ ID · s(x) t−−−� s′(x)

(e, s, n)
t−→ (e[now �→ t], s′,n ′)

the network. We extend the framework to address real-time

features by introducing two rules of Table VI. Both actors

and network have a local variable now in their environment

which shows their local times. The rule TIMESYNC at the

actor and network levels makes the progress of time explicit

by updating now . The rule has an assumption, denoted by

?synCondition(e, b, t), for identifying conditions to indicate

when time with the amount of t ∈ N can progress. The variable

now in the environment of the composition level shows the

global time. The rule TIMEPROG at the composition level

advances the global time in agreement with actors and the

network. Generally speaking, actors and the network agree

that time advances when they cannot progress. In LF, actors

cannot progress when they have no message to handle. So, the

assumption SynCondition is b = ∅ in the rule TIMESYNC

at the actor level. The network cannot progress when it has

no message to deliver at the current time, So, the assump-

tion SynCondition is head(b).time �= e(now) in the rule

TIMESYNC at the network level.

At the composition level, the environment includes the

mapping pty : ID → N which assigns a priority to reactors.

This priority is obtained by a topological sort of the reactors

in the model. The scheduling policy for executing reactors

is based on their priority and the state of the network. A

reactor can be executed if the network has no message to

dispatch (�m′ ∈ Msg · n m′!
n ′) and there is no reactor

with a higher priority with an unhandled message, i.e., ∀ y ∈
ID · e(pty(y)) > e(pty(x)) ⇒ s(y) = (e ′′, ∅, ε). There is no

update upon execution and termination of a reactor message

handler in rules ACTORPROG I/III, so start(e, x) = e, and

finish(e, x) = e. As a result, the assumptions and conclusions

of ACTORPROG II and ACTORPROG III become the same

except for the labels of the transitions. We represent them by

one rule ACTORPROG by using the label β in Table V.

V. BRIEF OVERVIEW OF FEW OTHER LANGUAGES

Here we briefly show how we can use the framework by

adding or changing rules to capture the semantics of (a subset

of) Erlang, Akka, and ABS actor languages.

Erlang [5] is designed for building massively scalable

software systems. It supports user-defined pattern matching for

taking messages from a mailbox via receive blocks: patterns

in each receive block are sequentially matched against the

messages and their time order in the mailbox. This user-

defined pattern is addressed by defining ?takePolicy in our

framework that identifies which messages can be handled

based on the state of the actor. There is a possibility for a

message to be lost in Erlang. We can model message loss by

splitting the RECEIVE rule at the network level into two rules

as shown in Table VII. The new extension ignores the received

message m by not inserting m into the buffer (RECEIVE II).

Actors with the same priority are executed using round-robin

scheduling. At the composition level, we need to have a set

of buffers. Each buffer stores the actor identifiers with the

same priority level. We need to adjust the scheduling policy

?schedPolicy to result in selecting the buffer with the highest

priority. The scheduling policy should also consider a round-

robin scheduler for each buffer as well. The other semantic

rules of Erlang, as far as we studied, are similar to Core

Rebeca.

Akka is an actor framework for the Java and Scala lan-

guages [22]. From what we understood, Akka provides three

different message delivery policies which are exactly-once, at-

most-once, and at-least-once. Exactly-once delivery means the

message can neither be lost nor duplicated. The semantic rule

of Akka for exactly-once policy is the same as Core Rebeca.

In the at-most-once policy there is no guarantee for message

delivery. The RECEIVE II rule in Table VII can be used to

express the possibility of missing a message for this policy.

Finally, for the case of at-least-once policy, for each message

potentially multiple attempts are made to deliver it. We split

the rule TRANSFER at the network level to make the possibility

104

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Extensions of the network level rules to support

message loss and multiple deliveries.

(RECEIVE I) (e, b)
m?

(e, insert(b,m))

(RECEIVE II) (e, b)
m?

(e, b)

(TRANSFER I)
contains(b,m)

(e, b)
m!

(e, remove(b,m))

(TRANSFER II)
contains(b,m)

(e, b)
m!

(e, b)

of multiple deliveries by not removing a message from the

buffer.

The ABS modeling language [4] allows to compose actors

into concurrent object groups (cogs), and cogs are units of

concurrency. Conceptually, each cog has a dedicated execution

thread that is shared among its actors. An idle actor can take

one of its received messages if the thread which is associated

with its corresponding cog has not been assigned to another

actor of that cog. We can address this concept by adding

a mapping cog : ID → Bool to the environment of the

composition level. For an actor x, the true value of cog(x)
indicates that the thread of the cog of x is assigned to an actor.

An actor x can take a message if its thread is not assigned (i.e.,

¬cog(x)). Upon starting and termination of an actor method,

cog(x) is updated accordingly (i.e., start and finish).

As we discussed, Transparent Actor highlights the design

decisions (features) of languages by explicating the policies

chosen at the three levels of our framework. These policies

show the design decisions at variations points. We compare

different actor languages in Table VIII based on these policies.

Each column characterizes a language by a feature vector.

VI. EXPERIMENTAL COMPARISON OF LANGUAGES

We implemented BABEL in the Maude language [23] as

the proof of concept. We modeled the semantics of ABS,

Rebeca, Timed Rebeca, and LF as an extension of BABEL.

The models are accessible through this link: https://github.

com/mirgit/Babel. We employ the Maude implementations

of these languages to empirically compare them based on

some properties related to actor languages. Using our BA-

BEL implementation, one can derive a naive prototype of its

language based on its selected features and then investigate its

properties.

Each model of a language consists of three files; basics,

buffer, and semantics. The file basics contains the

basic structures like variable environments. Buffers and poli-

cies are exclusively defined for each targeted language. The

semantics file imports buffer. The main idiosyncrasies

of a language are demonstrated in the file buffer. This

file should provide two modules. The first module Buffers
defines the message structure, as it is not fixed in Babel,

and two buffer structures, bufferNet and bufferActor.

These buffers need to support insert and remove functions to

be used by semantic rules. The second module Policies
defines equations that are used to fill variation points in the

rules. For example, take policy, in Rebeca, is head(buffer)
since a rebec’s buffer is modeled as a queue. The same policy

in ABS is taking an arbitrary message from the buffer.

Finally, all the semantic rules are defined in the file

semantics. This file also can vary slightly across different

languages in order to add extra rules like time progress or

particular statements of a language e.g. set(p,v) for Lingua

Franca which sets the value of an output port p to v. Transition

relations (with assumptions) are modeled by (conditional)

rules. For example, the TAKE rule in Rebeca is modeled as a

conditional rule:

conditional rule [TAKE] :
< e,b,ε> => <e[sender−>sender(m)], remove(b,m),

handler (m.name)>
if m := takePolicy (e ,b) ∧ not(empty(b)).

This rule means that a transition is possible when an actor

has an empty statement list ε; as a result, a message m is

removed from its buffer b and handler(m.name) is added

to its statements if m is the message that takePolicy
returns. We remark that instead of modeling the predicate

takePolicy(e, b,m), we have modeled it as a function that

returns the message that can be taken with respect to b and e.

We considered three properties to compare the modeled

languages. For each property, we conducted litmus tests to

illustrate the answer for the languages, inspired by [24]:

P1: Are two messages that are sent from one actor to

another handled in the same order as their sending order? We

call this the in-order property.

Litmus test: Actor A sends two consecutive messages m1 and

m2 to actor B. We check if B handles m1 before m2. This

property depends on the actor’s take policy and the network’s

transfer policy. Changing any of these policies may affect the

order of handling of messages in B.

We specified two types of actors A and B, such that A
sends m1 and then m2 to B in its constructor. We use the

search command of Maude to inspect the state space of the

model for a state in which actor B handles m2 before m1.

Table IX shows the search results. Maude found at least

one state for Timed Rebeca and ABS in which the order

of messages is reversed. In contrast, the result of the search

for Rebeca is “No Solution”, denoted by “Yes” in Table IX.

This is expected since the buffers of actors and the network

in Rebeca are designed as a queue and a set of queues,

respectively. For LF, we experimented this test with different

priorities for m1 and m2 ports. Only in cases where in B
the input port priority for m1 is higher than m2, it handles

m1 first. As Timed Rebeca and LF are timed languages, we

considered the same communication delay for both messages

in their experiments. Due to nondeterminism in the transfer

policy for messages with equal timestamps in Timed Rebeca,

both message delivery orders are possible (and then the FIFO

take policy does not change them). However, the scheduling

policy of LF forces the messages to be delivered first to B.

Depending on the port priorities, the take policy results in only

one handling order.

105

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: Variation points and selected policies across different languages

Rebeca ABS LF Timed Rebeca
Actor Buffer Unbounded FIFO Multiset Priority Queue Unbounded Bag
Actor’s receive policy Always enabled,

no restriction
Always enabled,
no restriction

Always enabled, no restriction Always enabled, no restriction

Actor’s take policy Takes the head of its mes-
sage queue

Takes from the multiset
nondeterministically

Takes the message with the
highest priority

Takes the messages with the
least time tag, if more than
one, then choose nondetermin-
istically

Network Buffer Set of Unbounded FIFOs Set of Multisets Priority Queue Unbounded Bag
Network’s transfer policy Dispatch the head of the

queue of any actor that has
a message, nondeterminis-
tically

Dispatches the messages
of any actor, nondetermin-
istically

Dispatches the message with
the least time tag and highest
priority

Dispatches messages with the
least time tag, if more than
one, then choose nondetermin-
istically

Composition scheduling
policy

Choose an enabled actor
for execution, nondeter-
ministically

Choose an enabled actor
for execution, if the thread
corresponding to its group
is free

Choose an enabled actor for
execution, if no actor with
higher priority nor network
can progress

Choose an enabled actor for
execution, nondeterministi-
cally

Time synchronization in
timed models

- - Time can progress if neither
network nor actor can progress

Time can progress if nei-
ther network nor actor can
progress, or when a suspended
actor (because of a delay) can
resume

P2: Is the scheduling of actors fair? We call this the actor
scheduling fairness property. Our notion of fairness is absolute

(a.k.a. impartiality), which means every process should be

executed infinitely often [25].

Litmus test: Actor A sends a message to actor B and B sends

a response to A and the actors repeat this message exchange

infinitely. Actor A has a similar loop with another actor called

C. The desired behavior is that both loops proceed and B or C
never get starved. This property depends only on one policy:

the scheduling of actors (note that in all the languages that we

consider no message is lost, i.e., the network transfer policy

is not lossy). We created A, B, and C, and their methods in

our Maude model. We used LTL model-checking provided

by Maude to see if one actor, e.g. C, gets starved. Since

the properties in Maude are state-based, we made a small

change in the PROGRESS rules of Table I to set the flag prog
when they make a progress. We then checked fairness by the

command:

reduce modelCheck(initialState ,
[]<> progb ∧ []<> progc).

This means starting from initialState, always eventually

progb and progc become true. The progb and progc
flags denote setting the prog flag in the actors B and C.

The result is false for all of our considered languages, and

a counter-example is returned in which only one of the

Rebeca ABS Timed Rebeca Lingua Franca
in-order Yes No No depends on

port priorities
actor scheduling

fairness No No
No,
with delay, Yes

No,
with delay, Yes

message
interleaving 6 6 6 1

TABLE IX: The result of experiments

loops {A,B} or {A,C} is executed. Up to this point, we

assumed no delay in our examples. If we add a computation or

communication delay in timed languages, the model-checker

succeeds. That is because, in both Timed Rebeca and LF,

time progresses after all actors have executed their current

statements, and there is no message left to handle. In our

experiments, this property depends on both scheduling and

time synchronization policies.

P3: If a group of actors sends a message to an actor, what

permutations of messages are possible in the destination actor?

We call this the message interleaving property.

Litmus test: Consider three actors, A, B, and C. Each actor

sends a message to actor D. The actor D stores the order

of the messages in the variable ord. For example, if D
receives messages from B, A and C, the result of ord will

be [B,A,C]. There can be 6 different orders of actors in

ord. We are interested to know how many of those orders

are actually possible in each language. By using the search

command of Maude, we check the number of possible final

states of the program. As shown in Table IX, all of the tested

languages except LF let messages shuffle in any order and give

all possible combinations of messages. In contrast, LF always

gives one unique result independent from sending orders due

to its deterministic execution, which stems from predefined

priorities for ports.

Similar to P1, this property focuses on the order of handling

messages. As multiple sending actors are involved, besides

the take and transfer policies, the investigated property also

depends on the scheduling policy. In these experiments, we

considered equal communication delay for all messages. The

nondeterminism in scheduling and transfer policies in Re-

beca and ABS results in any orders for message delivery.

In timed languages, first, all messages are delivered to the

network and after time progresses, messages are delivered. The

nondeterminism in the transfer policy of Timed Rebeca for

106

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

messages with equal timestamps makes any order of delivery

possible (which is not changed by the take policy). However,

the scheduling policy of LF enforces D to handle its messages

only when all are delivered to its buffer. So, the priority

of ports defines the resulting unique permutation. When the

communication delays differ, the order of handling is also

affected by the delays.

VII. CONCLUSION

We show how we can use the Transparent Actor model to

highlight the features and design decisions of different actor-

based languages. We defined BABEL and its formal semantics

to build a framework for designing actor-based languages. This

not only helps when designing a new actor-based language but

also helps when building asynchronous event-based distributed

software systems. While writing the formal semantics of

BABEL as SOS rules we needed to revise the framework many

times to remove ambiguities and inconsistencies. Using our

framework, one can infer specific properties of a language

based on its selected features. We believe that our framework

helps the formal methods community in understanding crucial

features of actor-based languages related to communication

and coordination, and our intuitive discussions and experi-

ments help the language and software designers to better grasp

the decision points and feature interactions.

Acknowledgments: The work of Marjan Sirjani is sup-

ported by SSF Serendipity project, KKS DPAC Project (De-

pendable Platforms for Autonomous Systems and Control),

and KKS SACSys Synergy project (Safe and Secure Adaptive

Collaborative Systems). The authors would like to thank the

anonymous reviewers for their helpful comments on this

manuscript.

REFERENCES

[1] C. Hewitt, “Viewing control structures as patterns of passing
messages,” Artificial Intelligence, vol. 8, no. 3, pp. 323–364, 1977.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0004370277900339

[2] G. A. Agha, ACTORS - a model of concurrent computation in distributed
systems, ser. MIT Press series in artificial intelligence. MIT Press, 1990.

[3] M. Sirjani and E. Khamespanah, “On time actors,” in Theory and
Practice of Formal Methods - Essays Dedicated to Frank de Boer on
the Occasion of His 60th Birthday, vol. 9660, 2016, pp. 373–392.
[Online]. Available: https://doi.org/10.1007/978-3-319-30734-3 25

[4] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen, “ABS:
A core language for abstract behavioral specification,” in Proceedings
of the 9th International Symposium on Formal Methods for Components
and Objects, vol. 6957, 2010, pp. 142–164.

[5] J. Armstrong, “A history of Erlang,” in Proceedings of the 3rd ACM
SIGPLAN Conference on History of Programming Languages. ACM,
2007, pp. 1–26. [Online]. Available: https://doi.org/10.1145/1238844.
1238850

[6] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger, “The scala language specifica-
tion,” 2004.

[7] “Go programming language homepage,” https://golang.org, accessed:
2022-08-01.

[8] M. Lohstroh, Í. Í. Romeo, A. Goens, P. Derler, J. Castrillón, E. A. Lee,
and A. L. Sangiovanni-Vincentelli, “Reactors: A deterministic model for
composable reactive systems,” in Proceedings of the 9th International
Workshop on Cyber Physical Systems. Model-Based Design, vol. 11971.
Springer, 2019, pp. 59–85.

[9] F. S. de Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C.
Din, E. B. Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-Reyes,
and A. M. Yang, “A survey of active object languages,” ACM
Computing Surveys, vol. 50, no. 5, pp. 76:1–76:39, 2017. [Online].
Available: https://doi.org/10.1145/3122848

[10] S. Krishnamurthi, “Programming languages: Application and interpre-
tation,” https://cs.brown.edu/∼sk/Publications/Books/ProgLangs/, 2007.

[11] R. K. Karmani, A. Shali, and G. Agha, “Actor frameworks
for the JVM platform: a comparative analysis,” in Proceedings
of the 7th International Conference on Principles and Practice
of Programming in Java, 2009, pp. 11–20. [Online]. Available:
https://doi.org/10.1145/1596655.1596658

[12] R. Henderson and B. Zorn, “A comparison of object-oriented
programming in four modern languages,” Software: Practice and
Experience, vol. 24, no. 11, p. 1077–1095, 1994. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380241106

[13] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid,
“A comparison of context-oriented programming languages,” in
International Workshop on Context-Oriented Programming. ACM,
2009, pp. 6:1–6:6. [Online]. Available: https://doi.org/10.1145/1562112.
1562118

[14] A. Elyasaf and A. Sturm, “Towards a framework for analyzing
context-oriented programming languages,” in Proceedings of the
13th ACM International Workshop on Context-Oriented Programming
and Advanced Modularity, 2021, pp. 16–23. [Online]. Available:
https://doi.org/10.1145/3464970.3468414

[15] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling and
verification of reactive systems using rebeca,” Fundamenta Informaticae,
vol. 63, no. 4, pp. 385–410, 2004.

[16] M. Sirjani, “Rebeca: Theory, applications, and tools,” in Proceedings of
the 5th International Symposium on Formal Methods for Components
and Objects,, vol. 4709, 2006, pp. 102–126. [Online]. Available:
https://doi.org/10.1007/978-3-540-74792-5 5

[17] “Afra homepage,” http://rebeca-lang.org/alltools/Afra, accessed: 2022-
08-01.

[18] M. Lohstroh, M. Schoeberl, A. Goens, A. Wasicek, C. Gill, M. Sirjani,
and E. A. Lee, “Actors revisited for time-critical systems,” in Proceed-
ings of the 56th Annual Design Automation Conference 2019, 2019, p.
152.

[19] C. Ptolemaeus, System Design, Modeling, and Simulation: Using
Ptolemy II. Ptolemy. org Berkeley, CA, USA, 2014.

[20] E. B. Johnsen, R. Schlatte, and S. L. T. Tarifa, “Integrating
deployment architectures and resource consumption in timed object-
oriented models,” Journal of Logical and Algebraic Methods in
Programming, vol. 84, no. 1, pp. 67–91, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352220814000479

[21] F. S. de Boer, M. M. Jaghoori, and E. B. Johnsen, “Dating concurrent
objects: Real-time modeling and schedulability analysis,” in Proceedings
of the 21st International Conference on Concurrency Theory, vol. 6269,
2010, pp. 1–18.

[22] “Akka homepage,” https://akka.io, accessed: 2022-08-01.
[23] “The Maude system,” http://maude.cs.illinois.edu, accessed: 2022-08-01.
[24] S. Mador-Haim, R. Alur, and M. M. K. Martin, “Litmus tests for

comparing memory consistency models: How long do they need to be?”
in Proceedings of the 48th Design Automation Conference, 2011, p.
504–509. [Online]. Available: https://doi.org/10.1145/2024724.2024842

[25] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
verification of finite-state concurrent systems using temporal logic
specifications,” ACM Transactions on Programming Languages and
Systems, vol. 8, no. 2, p. 244–263, 1986. [Online]. Available:
https://doi.org/10.1145/5397.5399

107

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:20:35 UTC from IEEE Xplore. Restrictions apply.

