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Abstract—Conducting interactions between shared-purpose or-
ganizations that are not entirely trustworthy of each other
without centralized oversight is an idea that emerged with the
advent of private blockchains such as Hyperledger Fabric and
its smart contracts. It is critical to check contracts to ensure
their proper functionality, as organizations may collaborate with
competitors. Due to the new architecture of Hyperledger Fabric,
tools in this area are limited. To formally verify the source code of
contracts, we mapped Fabric contract concepts into the Rebeca
modeling language. Rebeca is an actor-based language that
enables the modeling of concurrent and distributed systems and
is supported by a model checking tool, Afra. We have identified
vulnerabilities such as deadlock and starvation by examining
the desired properties. Using the model checking approach,
we could debug the code and hence benefit from speeding
up the transactions, creating fewer extra blocks, requiring less
storage space to store the ledger, and avoiding wasting computing
resources.

Index Terms—Hyperledger Fabric, Smart Contracts, Model
Checking.

I. INTRODUCTION

Blockchain [1] is a digital platform providing immutable
data storage and smart contracts. Smart contracts are computer
codes that automatically execute agreements between individ-
uals once certain conditions are met. Ethereum is the most
commonly used blockchain for smart contract execution [2].
From an enterprise perspective, business owners are reluctant
to use it as participants are anonymous, and the access control
level is not defined; therefore, private blockchains are essential.

Hyperledger Fabric [3] is a private blockchain, enabling
secure interactions between shared-purpose organizations that
do not fully trust one another. Hyperledger Fabric utilizes
general-purpose programming languages like Go, Node.js, and
Java to implement smart contracts. One downside of such
languages is that they were not initially intended for direct
use in developing smart contracts. As a result, some flaws in
these languages are not observed in solidity [4].

Detecting vulnerabilities in smart contracts to make them
safe and reliable is essential. Numerous studies have been
conducted on vulnerabilities of public blockchain contracts
[5]–[7], but only a few papers, like [4], [8], focused on risks
related to Fabric contracts. One of the primary motivations for
formal verification of Fabric’s contracts is that risks in Fabric’s

contracts are less well-known than those in Ethereum [9], and
the experience of developing a contract with Golang differs
from Solidity. Static analysis tools, such as SmartCheck in
Ethereum [7] and Chaincode scanner in Fabric [10], examine
known risks and do not consider some run-time errors. Testing
tools, such as Truffle Unit Testing [11] in Ethereum and
HFContractFuzzer [12] in Fabric, examine only a subset of
possible scenarios using test cases. These tools can only show
the presence of bugs and cannot ensure that contracts are
reliable or safe. Consequently, a thorough analysis of smart
contracts, especially their formal verification, is essential for
ensuring their validity. To our knowledge, only two verification
tools exist for Fabric contracts [6], [13]. Still, both are in
their infancy, and no product is publicly available for verifying
contracts written in Golang. Therefore, providing a practical
tool is one of the objectives of this study.

This research is the first to apply the model checking method
to verify Golang-written Fabric smart contracts using the Re-
beca language [14] and a publicly available tool, Afra. Using
our method, we can check the properties of safety, liveliness,
and fairness. In this study, before using formal verification
method, which requires more computational resources, the
code review method first checks the contract, eliminating
evident vulnerabilities.

The remainder of the paper is organized as follows: Section
II summarizes the technical background, including Hyper-
ledger Fabric as the preferred blockchain for this study and
formal verification. Section III discusses related work. Section
IV outlines smart contract security strategies and mapping
of fabric concepts to Rebeca. Section V demonstrates the
feasibility of our approach by modeling four smart contracts
and verifying them with the Afra tool. Section VI presents the
evaluation of improvements due to debugging. Finally, Section
VII presents our conclusions and further work.

II. BACKGROUND

A. Blockchain Technology and Smart Contract

Blockchain orders transactions using a consensus protocol
and then executes them sequentially on all peers. Sequential
transaction execution limits performance and scalability. Also,
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transactions per second do not meet industrial needs [3]. Hy-
perledger Fabric is the first genuinely expandable blockchain
with a modular consensus, designed to fulfill demands such
as scalability, performance, and confidentiality [3]. Fabric
uses the execute-order-validate architecture. Unlike previous
blockchains, transactions are first executed and then placed
in blocks. Smart contracts extend the blockchain platform
from a simple distributed account system to a prosperous
decentralized operating system [12]. A smart contract is an
automated, event-driven application that executes agreements
between parties on a distributed shared ledger. In Ethereum,
developers use a specific domain language to develop con-
tracts, and transactions need to pay for gas [2] to take place.
Paying for a transaction is not desirable for organizations.
Therefore, organizations use Fabric for enterprise usage.

B. Rebeca Modeling Language

Model checking is a fully automated method for analyzing
system behavior [15]. Rebeca is a language based on actors
that can be used to model concurrent and distributed systems
and is supported by a model checking tool, Afra [16]. System
components in a Rebeca model are sets of reactive objects
called rebecs, communicating with their environment through
asynchronous message passing [14]. A Rebeca model consists
of a set of reactive classes and an initial configuration in its
main function, where a set of rebecs are created as instances
of reactive classes. The reactive class’s body contains decla-
rations for the class’s known rebecs, state variables, private
methods, and message servers. The known rebecs are the
rebecs to whom messages can be sent. Each actor’s message
server is responsible for responding to the message sent by the
other actor. State variables contain the local state of a rebec.
Each rebec has an unbounded buffer called a message queue
for arriving messages. Rebeca code can be model-checked
against a given set of Linear Temporal or Propositional Logic
properties, defining the model’s correct behavior.

III. RELATED WORK

Smart contracts manage real assets, and cannot be patched
due to their nature, so they must be developed flawlessly.
Studies in this field can be divided into two categories:

A. Studies on Ethereum

The first group contains static analysis tools that verify the
smart contract’s source code or bytecode [17]. A static analysis
is an algorithm that examines a program to determine whether
it satisfies a specific property. Securify [18] is an automated
verification tool that examines the dependency graph of a
contract symbolically. This tool had both false negatives and a
large number of false positives. Zeus [6] is an automated tool
with an almost zero false negative rate for determining the
correctness and fairness of contracts using abstract interpreta-
tion, symbolic model checking, and Horn clauses. The eThor
tool [19] is the first sound and automated static analyzer for
Ethereum virtual machine (EVM) bytecode, which is based
on an abstraction of the EVM bytecode semantics based on

Horn clauses. Giesen et al. [5] proposed a hardening contract
compiler to harden Ethereum smart contracts. The tool models
a smart contract’s control and data flows using a code property
graph, and due to code property graph notation, it can also
be applied to Fabric. The SmartCheck tool [7] is a static
analysis tool that translates Solidity source code into an XML-
based intermediate representation and checks it against XPath
patterns to detect vulnerabilities. Although static analysis tools
improve the efficiency of contract development, they cannot
detect some run-time errors. Therefore, Dynamic analysis
tools such as the unit testing in Truffle [11] were developed.
Dynamic analysis tools analyze a program’s properties while
it is executing. For smart contracts, dynamic analysis is
typically used to simulate attack scenarios in order to identify
vulnerabilities [17]. Dynamic testing tools check parts of a
contract during execution and cannot be used to prove the
absence of bugs; consequently, they cannot guarantee that the
contract is functioning properly. Hence, formal verification
tools have gained considerable attention.

The third group converts the contract code into formal
languages such as Coq, or F* [20] and then translates it into
Solidity using a standard method after validation. The fourth
group uses secure domain-specific languages like Flint [21]
instead of Solidity, which has fewer commands. So, most of
Solidity’s risks do not occur in them.

B. Studies on Hyperledger Fabric

Research on Fabric vulnerability diagnosis is still in the
early stage due to its novelty [4], [22] and lack of practical and
accessible verification tools to make contracts safer. Hyper-
ledger Fabric uses general programming languages that were
not initially created for developing contracts. As a result, incor-
rect use of these languages may result in inconsistencies [23].
So, developers should avoid non-deterministic chaincodes.

Chaincode Scanner [10] is the first static analysis tool in
Fabric, generating the control flow and dependency graphs and
then detecting errors through a database of known vulnerabil-
ities. Yamashita et al. [4] implement a prototype static tool for
detecting vulnerabilities in chaincode written in Go. Penghui
Lv et al. [22] described a unique static analysis technique
for performing package and function dependency analyses to
provide comprehensive static characteristics of various risks.
Peiru et al. [24] proposed a chaincode vulnerability detection
framework and a tool that combines dynamic symbolic exe-
cution and the static abstract syntax tree analysis technology.
All the above static tools check only known vulnerabilities.
The HFContractFuzzer [12] was developed to create test cases
through the fuzzing method and the go-fuzz tool. Unlike
HFContractFuzzer, which requires manual efforts, SmartFuz-
zDriverGen [8] is a framework to automatically generate fuzz
drivers for Fabric smart contracts using different strategies,
such as sequence-based and heuristic-based.

Verifying smart contracts ensures that the contract’s behav-
ior is as expected. Two tools for verifying contracts correspond
most closely to our research. Although Zeus [6] is made
for Ethereum contracts, it can be adapted to Fabric. There

Authorized licensed use limited to: Malardalen University. Downloaded on January 15,2024 at 14:55:13 UTC from IEEE Xplore.  Restrictions apply. 



is not yet an extension of this tool publicly available for
Fabric contracts. Both the analysis and the properties must
be formalized to provide reliable guarantees. While ZEUS
properties are only described informally, our method formally
defines the properties of smart contracts. In the VeriSmart
project, Key tool [13] verifies contracts implemented in Java.
One of the shortcomings of this study is that it does not
consider the communication of functions with each other.
The Key tool is a deductive theorem prover, so the contract
verification is done semi-automatically. However, our tool is a
publicly available tool that can automatically check contracts.

IV. MAPPING OF GOLANG SMART CONTRACTS TO
REBECA MODELS

Verifying contracts’ logic to find vulnerabilities can prevent
losing confidential information. Before utilizing the model
checking strategy, which requires more computational re-
sources, the contract is first checked out using the code
review, eliminating apparent flaws. Then we employ the
model-checking method as the primary strategy for detecting
vulnerabilities that cannot be identified using the previous
method, like a deadlock. To perform model checking, as shown
in Fig.1, we first mapped contract concepts to Rebeca and
constructed a contract model. The desired properties are also
defined. We removed the code details to avoid exploding state
space while preserving the logic of the contract. The tool
then analyzes whether the model satisfies the properties. If the
model violates a property, the tool provides a counterexample.
The modelers must determine if the bug occurs in the contract
or if the model was incorrectly created. If a bug occurs, it
must be reported to the developer to modify the contract code.
Otherwise, the modelers must create a better model.

For modeling Fabric contracts in the Rebeca language, it is
first required to map Fabric’s concepts to Rebeca’s. In Fabric
contracts, entities that interact through contract functions can
be defined in structures. We mapped this concept to reactive
classes in Rebeca. The contract functions for reading data do
not change the state of the database and ledger; therefore, we
removed them when creating the model. We mapped other
functions to message servers and private methods. In Fabric,
the contract initialization is done through the init function. We
do this initialization in the reactive class constructor. Rebeca
has no uint variable; therefore, to check whether such variables
remain positive, we examined them through assertions to prove
their value is always positive.

Golang uses goroutines and channels to execute transactions
concurrently. If a concurrent program is not appropriately
dealt with, a race condition problem will occur, causing each
node to view the ledger data in a different order. Improper
channel usage can also lead to deadlock errors. Rebeca models
such interactions through asynchronous message passing. We
modeled channel behavior with an intermediate actor. Also, we
model the events that trigger actions as messages and event
handlers as message servers. We checked error handling and
input sanitation through conditional statements in the model
or assertions in the property file.

We use the casino game example to explain more about the
mapping concept. To start the game, the casino owner tosses
a coin, and the player determines the amount of money he
wants to bet and his guess. If the player guesses correctly,
he will receive his prize. There are three structures in the
casino game contract. Listing 1 (in Golang) and Listing 2
(in Rebeca) show how the mapping of these concepts from
Golang to Rebeca is done. The casino structure in the first row
of Listing 1 indicates the object of the contract. The casino
owner’s structure (line 3) and the player’s structure (line 8) of
Listing 1 show entities in the contract. Reactive classes of the
same name are provided for each structure, as expressed in the
first, seventh, and twelfth lines of Listing 2, respectively. We
have considered only essential variables for further abstraction
in the contract model.

Fig. 1. Using Rebeca for Model Checking of Golang Contract Code

1 type casino struct {
2 }
3 type csnOwner struct {
4 ...
5 CoinResult bool ‘json:"coinResult"‘
6 GameState uint ‘json:"gameState"‘
7 }
8 type player struct {
9 ...

10 Balance uint64 ‘json:"balance"‘
11 GuessedValue bool ‘json:"guessedValue"‘
12 BetValue uint64 ‘json:"betValue"‘
13 }

Listing 1. Casino Game Structs in Golang.

1 reactiveclass Casino(5){
2 knownrebecs {
3 CasinoOwner owner;
4 Player player;
5 }
6 }
7 reactiveclass CasinoOwner(3){
8 knownrebecs{
9 Casino casino;

10 }
11 }
12 reactiveclass Player(3){
13 knownrebecs {
14 Casino casino;
15 }
16 statevars{
17 int balance;
18 }
19 }

Listing 2. Mapping of the Casino Game Structs to Rebeca.
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For example, in the model, we only include the balance
variable that deals with financial matters (line 17) in Listing 2.
Listing 3 (in Golang) and Listing 4 (in Rebeca) show how
the betting function is mapped to Rebeca. After receiving the
player’s guess, this function reduces the bet amount from the
player’s account and adds it to the casino account. To model
this function, the placeBet message server in the casino
reactive class and the withdrawMoney message server in
the player reactive class are required, as shown in Listing 3.
After creating the contract model, assertions and properties are
defined to ensure that the model satisfies them. In a casino
game, for example, the progress property is defined as G
(!(stateStart) || F(stateStop)), checking that
if the game starts, it finally ends because the previous game
needs to be over to start a new one. In the following, we
will describe the contracts modeled in this research. Moreover,
we will discuss their vulnerabilities and show the benefits of
model checking method.
1 func (t *casino)placeBet(...)peer. Response {
2 ...
3 if player.Balance < pBetValue {
4 return shim.Error("you don’t have enough money!")
5 } else {
6 player.BetValue = pBetValue
7 player.Balance -= pBetValue
8 owner.Balance += pBetValue
9 }

10 player.GuessedValue = pGuessedValue
11 owner.GameState = stateGameBetPlaced
12 }

Listing 3. The placeBet Function in the Casino Game in Golang.

1 msgsrv placeBet(int value , boolean guess){
2 if(state == GameStarted){
3 betValue = value;
4 state = BetPlaced;
5 guessedValue = guess;
6 player.withdrawMoney(value);
7 balance += value;
8 } else{
9 player.doSomething(); }

10 }
11 msgsrv withdrawMoney(int value){
12 if (balance > value ){
13 balance -= value; }
14 self.doSomething();
15 }

Listing 4. Mapping of the Casino Game placeBet Function to Rebeca.

V. OUR APPROACH: PRACTICAL RESULTS OF
FABRIC CONTRACTS MODEL CHECKING

Compared to Ethereum, fewer Fabric real-world smart con-
tracts are available in the public repositories. Consequently, we
evaluated our tool and strategy using four close-to-real-world
smart contracts developed by our team [25] and discovered
that three, except the bank contract, include vulnerabilities,
demonstrating the tool’s effectiveness. Following is a brief
description of the contracts and how we modeled them.

A. Model Checking of the Bank Contract

A bank contract illustrates the characteristics of an actual
bank. Listing 5 states two properties considered for the bank
contract. In Rebeca, assertions must be correct in all states.
The first assertion (line 8) states that the bank account’s total

1 property {
2 define{
3 PWAUser1 = (bank.wAmount[0] < bank.withdrawLimit);
4 PWAUser2 = (bank.wAmount[1] < bank.withdrawLimit);
5 equallityofBankBalance = ( bank.balance ==

user1.balance + user2.balance);
6 }
7 Assertion {
8 a1: bank.balance >= 0;
9 }

10 LTL{
11 safety: F (equallityofBankBalance);
12 }
13 }

Listing 5. Bank Contract Property File.

balance must be non-negative. Since the input validation is
done correctly, a negative value cannot be sent to the contract,
so this assertion is valid. The safety property (line 11) stipu-
lates that the bank balance should equal the total of the account
balances once all network transactions are completed, which
is satisfied in this model. The satisfaction of all properties by
the model indicates that the developer designed the contract
in accordance with the intended properties.

B. Model Checking of the Casino Contract

We used a random number to simulate the coin toss in this
game. Since endorsers must receive the same random number
to avoid non-determinism, the time stamp of the player’s
system is used for generating coin value. Listing 6 shows a
set of properties considered in the game. The first assertion
(line 6) states that the casino account balance must be greater
than the amount given to the player if he guessed correctly.
This assertion is violated after 1482 states, according to Fig.2,
which is the Afra tool’s counterexample output. As a result,
developers must modify the contract code so that the casino
balance is thoroughly checked before placing a bet, and no
further bets are placed until the casino balance is added.

In a casino game, the amount withdrawn from the casino
account should always be less than the casino account balance;
otherwise, the casino balance may receive the maximum
incorrect amount, known as a variable underflow. The second
assertion in Listing 6 (line 7) examines variable underflow. The
model does not satisfy this assertion; therefore, the contract
code must check the casino balance using a conditional expres-
sion when executing the function and give the appropriate error
message when it occurs. The balance overflow must also be
prevented; otherwise, a malicious attacker can zero the casino
balance by sending money to the game. Line 10 shows the
progress property, which means that if a game starts, it will
eventually end, and the system will not be locked because
the previous game needs to be over to start a new one. This
property is always satisfied by the model.

C. Model Checking of the Local Blockchain Energy Market-
place Contract

In the local energy marketplace contract [26], consumers
send the requested amount to the smart contract, using the
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1 property {
2 define {
3 ...
4 }
5 Assertion {
6 a1: casino.balance > (18*casino.betValue)/10;
7 a2: casino.wAmount < casino.balance;
8 }
9 LTL {

10 progress: G(!(stateStart) || F(stateStop));
11 }
12 }

Listing 6. Casino Contract Property File.

Fig. 2. Afra Tool Counterexample for Casino Game Contract

allocation algorithm to fairly divide the energy among con-
sumers. Finally, the energy token is transferred to the consumer
through the physical infrastructure after transferring the energy
cost to producers. The contract in this research has vulnerabili-
ties resulting from the developer’s negligence in converting the
requested logic into the contract code. We developed a simpler
version to model this code with two energy consumers, Bob
and Tom, and a single producer, Alice. We have also set a
fixed price of one coin for each energy unit. Listing 7 lists
some properties for this contract. The safety property (line
14) states that the energy will be transferred to consumers
before the market closes if they have made the payment.
The model always meets this property. No starvation property
(line 15) states that the algorithm finally allocates energy to
all customers, meaning each customer must receive energy.
Therefore, the modified variable, which represents the energy
transfer for each customer, must be true. The implemented
algorithm assigns tokens to each energy request based on
Alice’s production, so the model satisfies this property. The
third property in (line 16) states that Alice cannot sell more
energy than she produces. So, in the end, the sum of the two
buyers’ tokens should be less than Alice’s production. The
contract code model also satisfies this property.

In implementing the energy allocation algorithm, if Bob and
Tom both request more than half of Alice’s output, regardless
of the amount requested, the algorithm must allocate energy
equal to half of Alice’s output to each one. In the implemented
algorithm, this happens if the amount requested by Bob and
Tom is equal to each other and is greater than half of Alice’s

output, but in a particular case where Bob and Tom request
different amounts of energy, the algorithm does not work fairly
and allocates more energy to the one who requested more.
For example, if inputs sent to the contract are equal to 60 for
Bob’s requested amount and 40 for Tom’s requested amount,
both of which are more than half of Alice’s output, which is
equal to 25, instead of allocating 25 energy tokens to each, the
algorithm allocates 30 tokens to Bob and 20 tokens to Tom.
Hence, this violates assertion a1 (line 11).

1 property {
2 define {
3 consumerPaid = market.paid;
4 marketStatus = market.status;
5 modifiedAccount = market.modified;
6 equalEnergyAllocation=(market.tBuy == market.bBuy);
7 rMTHB = (market.reqTokenB > (market.tokenForSale/2));
8 rMTHT = (market.reqTokenT > (market.tokenForSale/2));
9 aliceOverSelling = ((market.tBuy + market.bBuy)

> market.tokenForSale);
10 Assertion {
11 a1: ( !(rMTHB && rMTHT ) || (equalEnergyAllocation));
12 }
13 LTL {
14 safety: G(!(consumerPaid)||U(marketStatus,

modifiedAccount));
15 noStarvation: F(modifiedAccount);
16 safety2 : F(!aliceOverSelling);
17 }
18 }

Listing 7. Local Energy Marketplace Property File

D. Model Checking of the Asset Delivery Contract

There are two post offices, and each office has several postal
addresses. Post office number one checks the postal address of
the package received; if it is one of its addresses, the package
is sent to that address; otherwise, the package is delivered to
post office number two. Post office number two also checks
the postal address of the package received; if it is one of its
addresses, it sends the package to that address; otherwise, it
delivers it to post office number one. This contract sometimes
goes wrong. The bug in the logic of this contract is that if
the postal address of a package is not in any of the offices,
office one sends the package to office two, and office two
sends it to office one, and there is a loop that causes the
package never to reach the destination. Line 8 of Listing 8
indicates the property that the violation of it causes finding
the bug in this contract. This feature states that, eventually,
all packages must be delivered, meaning there should never
be a package that is not delivered. Fig. 3 shows the tool’s
output. An infinite loop is seen between the two post offices
in the counterexample. This loop causes the third asset never
to be delivered. The primary purpose of examining the fabric
contract model is to find such risks due to a weakness in the
program logic that causes the contract to behave unexpectedly.
Thus, identifying risks automatically using our method can
gain organizations’ trust, allowing them to take advantage of
the platform’s capabilities. In the following, we will examine
the tool’s efficiency and perform experiments to express the
percentage of improvement after finding the contract defects
and creating the correct code.
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1 property {
2 define{
3 asset1Deliverd = asset1.deliverd;
4 asset2Deliverd = asset2.deliverd;
5 asset3Deliverd = asset3.deliverd;
6 }
7 LTL {
8 noStarvation:F(asset1Deliverd) && F(asset2Deliverd)

&& F(asset3Deliverd);
9 }

10 }

Listing 8. Asset Delivery Contract Property File

Fig. 3. Counterexample of the Asset Delivery Contract

VI. EVALUATION OF IMPROVEMENTS DUE TO THE
DEBUGGING

We conducted numerous experiments to demonstrate the
model checking method’s efficacy. Since Fabric also puts
invalid transactions in blocks, a bug in the contract slows
the execution of transactions, and endorsers also waste their
computing resources by performing invalid transactions. In this
section, the speed of transactions executed in a contract with
flaws is measured relative to the correct contract after using
the model checking method. Finally, we examine the increase
in transaction execution speed and the rate of improvement.
We examine the asset delivery contract to calculate these
improvements. As mentioned, the contract has a bug that
makes it impossible for the package to reach its destination if
its postal address does not exist in the offices.

In Ethereum, a concept called gas [2] prevents infinite
contract execution. Still, there is no such concept in the Fabric
network, so contracts that are weak in implementation may run
into problems. A recursive call in the asset delivery contract
is an example of this. In Fabric’s newer versions, contract
execution has a time limit of 30 seconds by default. This
means that if, after this period, the contract execution does
not complete, the execution of the contract will be terminated,
and Fabric will place the related transaction in the block
as an invalid one. The execution timeout solves the non-
termination of the transaction, but it causes each endorser
to try for 30 seconds to perform a transaction stuck in the

loop. A correct transaction, on the other hand, may take about
0.1 seconds; therefore, contract modeling reduces the number
of such invalid transactions and increases user satisfaction.
Note that the improvements obtained are due to the network
configuration specific to this study, and different percentages
may be obtained in other network configurations.

To experiment, we must first estimate the percentage of
invalid transactions. Since there was no study in this area, we
considered that in our network, 5% of transactions might be
invalid. Therefore, we first send the number of 100 transactions
to the contract with a bug, and for more accurate calculations,
we increase this number to 200, 400, 600, 800, 1000, and
2000 transactions each time. For the percentage of invalid
transactions, after every twenty valid transactions, an invalid
transaction that falls into the loop is sent to the contract
so that the transaction execution is closer to the real world.
An invalid transaction is a transaction whose postal address
does not exist in any office. Therefore, out of 100 transac-
tions, 95 are valid, and five are invalid. We then measure
the execution time of each valid and invalid transaction. To
calculate the execution time of each transaction, we use the
nsec = now.UinxNano()function, indicating the number
of nanoseconds that have passed since January 1, 1970. We
call this function before the execution of the transaction and
after receiving the transaction’s response. Then, by taking the
difference between them, we obtain the execution time of each
transaction. Finally, we obtain the sum of all execution times
and their average in milliseconds.

For instance, the total execution time for 100 transactions
is close to 4786 seconds. This high execution time is due
to invalid transactions, each of which uses the endorser’s
computational resources for about 30 seconds. After modeling
the contract, detecting the bug, and correcting it, we repeated
the experiment for the same number of transactions. The total
execution time for 100 valid transactions is approximately
51 seconds. We notice a significant difference between the
execution times of these two experiments. This difference im-
plies that having only 5% invalid transactions creates a heavy
computational overhead for the network. As the total number
of transactions increases, this overhead increases dramatically.

According to calculated averages, if the contract has a
bug, each transaction request takes an average of 48 seconds,
whereas, in a bug-free contract, it takes half a second. This
means user satisfaction with the transaction execution is about
96 times better. Therefore, using the model checking method
can significantly increase the speed of transactions. This
method reduces the load on the fabric network caused by
additional invalid transaction computations. In the following,
we will perform these calculations and improvements. To show
the improvement and efficiency of the tool, we calculate the
speedup using the latency formula, which is the improvement
in the execution speed of a specified number of transactions on
a contract with and without bugs. According to Formula 1, for
a hundred transactions, the execution speed of the transaction
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TABLE I
TOTAL EXECUTION TIME IN A VALID AND INVALID STATE IN

ASSETS DELIVERY CONTRACT.

Number of
transac-

tions

Total execution time in
contract without bugs

(sec)

Total execution time in
contract with bugs (sec)

200 109.608 9611.051
400 210.833 18953.457
600 343.433 25237.918
800 439.552 51124.189

1000 547.439 60931.083
2000 1128.088 192851.356

has increased 94 times in total.

latency(ms) =
Time

workload

Speedup =
L1

L2
=

T1

T2

Speedup100 =
4785650

50766
= 94.2

(1)

Performance improvements can also be measured. According
to Formula 2, for a hundred transactions, after model checking
and correcting the code, we have a 93% increase in perfor-
mance; this means that 93 times more transactions can be done
in the same amount of time before modeling. Please note that
the total execution time (T) is in milliseconds.

Told − Tnew

Tnew
=

4785650− 50766

50766
× 100 = 93% (2)

It should be noted that values in this study were obtained
despite an endorser node and a system with eight GB of RAM,
so when an invalid transaction is performed, the system CPU
becomes busy, and this invalid transaction delays the execution
of the following valid transaction. There are more endorsers in
real-world networks, and when one endorser executes an in-
valid transaction, another can respond to the valid transaction.
Therefore, the execution of the valid transaction is not delayed,
and side effects are reduced. If we set the consensus policy
as weak or equal to the majority, all endorsers may respond
to the invalid transaction. Consequently, this experiment can
likewise occur in the real world.

In the same way, after calculating the total execution time up
to 2000 transactions, values for other experiments are obtained.
Table I shows the total transaction execution time in a valid
and invalid state. According to the plot in Fig. 4, the total
execution time of transactions in the contract with a bug (blue
chart), compared to the bug-free contract (red chart), increased
ascending as the number of transactions increased, while the
execution time of each transaction in the bug-free contract is
almost equal and the total execution time in it has increased
slightly. Based on the results, it can be concluded that running
a bug-free code is crucial. The total amount of transaction
execution time creates many blocks that require more storage
space. So consequently, model checking can boost transaction
speed and reduce the number of such invalid transactions,
thereby enhancing user satisfaction with the contract.

The red chart in Fig.5 shows how the total transaction
number vs. speedup relationship changes. According to the red

Fig. 4. Comparison of the total execution time of transactions against the
number of transactions in a buggy (blue chart) and a bug-free contract (red
chart).

Fig. 5. The plot of speed up against total transaction in both a buggy and a
bug-free asset delivery contracts by executing the contract on a server (blue
chart) and without executing it on a server(red chart).

plot, as the total number of transactions increases, transactions
execution speed in the bug-free contract will be much faster
than the execution speed of transactions in the contract with
bugs for the same number of transactions; this indicates that
invalid transactions cause a significant delay in the execution
speed of the transactions as a whole. As mentioned, the
execution of an invalid transaction affects the execution time
of the following valid transaction. So, to reduce this side
effect and ensure our method’s efficiency, we repeated the
experiment when the contract was placed on a server. Thus, we
simulated a server that did not return the transaction response
in some cases. We designed the contract on the server so that if
the postal code starts with one or two, the server adds it to the
post office one or two; otherwise, the transaction is delayed for
30 seconds. In this case, the CPU is not as involved as before
because it simply waits and does not perform any calculations.
Fig. 5 shows a comparison of plots of the two experiments,
which, as expected, using the server and reducing the side
effect, the increase in total execution time is lower than before,
therefore, compared to the executing contract without a server,
we have less increase in the speedup.
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VII. CONCLUSIONS AND FUTURE WORK

Hyperledger Fabric is one of the most popular blockchains
used by enterprises. However, due to the platform’s unique
operating environment, it is facing a new challenge in detecting
vulnerabilities. Thus, providing automated tools for verifying
contracts is an essential step. Using existing strategies for
reviewing the code is necessary but insufficient to ensure the
validity of contracts. Therefore, this study suggested using the
Rebeca modeling language and the Afra tool to verify fabric
contracts. This study mapped fabric contract concepts to the
Rebeca and demonstrated the method’s efficiency by modeling
contracts. By measuring the performance improvement, it was
shown that we would have a 93% increase in performance.
Significant increases in the percentage of improvement men-
tioned are because there are also invalid transactions in fabric
blocks, unlike other blockchains. By validating the contract,
the number of invalid transactions could be reduced so that
endorsers respond to the transactions more quickly. It should
be noted that the percentage of improvements obtained is due
to the network configuration used for this research. In the real
world, the number of endorsers will be higher, and the side
effects of the transaction will be reduced.

The method presented in this research has performed well
because, in addition to scanning the contract code through
the code review method, unknown risks were also discovered
through the model checking method, making it possible to
deal with the automation of agreements between parties with
greater confidence. In the future work of this research, we plan
to improve and expand the tools for considering interactions
and communications between contracts. We will compare the
Afra tool with other tools after becoming publicly available.
The accuracy and precision of the tool will be checked if a
sufficient number of real-world and organizational contracts
are reached. From the program logic, we will create a secure
model in the Rebeca language and then translate it into
Golang. This means we will reverse the work done in this
study and generate the contract code from a secure model.
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