
Enhancing CRYSTAL: Preventive Recovery in Brief

Fereidoun Moradi1, Zahra Moezkarimi1, and Marjan Sirjani1

School of Innovation, Design and Engineering, Mälardalen University, Väster̊as, 722 20, Sweden
fereidoun.moradi,zahra.moezkarimi,marjan.sirjani@mdu.se

Abstract

We propose a model-based mechanism for recovering the system into its normal state
when it is partially damaged by CPS attacks. The CRYSTAL framework includes mech-
anisms for monitoring and detecting cyber and physical attacks that exploit CPS-related
vulnerabilities in communication channels and components. We enhance the framework
with a module that generates repair actions instead of just terminating the system in case
of successful attack detection. When an attack is detected at runtime, the module drops
the malicious action and transfers the system back to its normal execution. The repair ac-
tions are defined at the design phase using counterexamples generated by model checking,
and our approach is able to automatically identify and use such repair actions.

1 Introduction

CRYSTAL framework is introduced in [4] for building safe and secure Cyber-Physical Systems
(CPS). CRYSTAL provides a set of methods and tools for modeling the system, defining and
augmenting attack models in the system model (a Timed Rebeca model [6]), then abstract-
ing the model and creating a Tiny Digital Twin, and finally, developing a monitor to detect
cyberattacks. A Tiny Digital Twin is an abstract behavioral model of the system [5]. It is
automatically derived from the Timed Rebeca model by excluding actions that are not observ-
able from the monitor perspective. The Tiny Digital Twin is constructed at the design phase
and is used by the monitor at the operational phase to ensure that the system is functioning
as intended. The architecture of CRYSTAL is inspired by the MAPE-K1 feedback loop [3].
The monitor is strategically positioned between the control part and the sensor and actuator
components in CPS applications. It observes the visible inputs and outputs of the controllers,
traverses state transitions in the Tiny Digital Twin, and detects any misbehavior occurring
during system operation.

In CRYSTAL, whenever the target system is about to execute an action that is not specified
in the Tiny Digital Twin, the monitor drops the action and stops the system execution. In this
short paper, we present the idea of a recovery mechanism that reacts to malicious actions and
transfers the system back to its normal execution after the malicious action is dropped. The
recovery mechanism can be considered as Runtime Enforcement [1] since the system is enforced
to run according to its specification.

2 Recovery Mechanism

We propose a preventive recovery mechanism. The preventive recovery mechanism starts when
an execution deviates from the intended behavior specified by Tiny Digital Twin. In CRYSTAL,
the STRIDE threat modeling [7] is used as a guideline to define attack scenarios and build attack
models. The attack models are used to verify the correct behavior specified in the model and

1The acronym MAPE-K stands for Monitor, Analyze, Plan, Execute, plus Knowledge.

discover all counterexamples that violate the safety properties of interest. We derive all known
failures from counterexamples generated by the Timed Rebeca model checker while exploring
the state space. The reactions to known failures might be different.

We propose a preventive recovery mechanism that addresses deviations from the reference
model (Tiny Digital Twin) by two main techniques consisting of a sequence of repair actions.
The first technique is applied when there is an attack changing the actuation command of the
controllers, like a successful tampering attack on a controller. Here, we modify the incorrect
actuation command of the controllers and reconfigure the mode of the controllers to a safe state.
The reconfiguration is applied based on the state information available on counterexamples and
the state transitions on the Tiny Digital Twin. The second technique is needed when there
is false sensor data, like when there is an injection of false sensor data. Here, we need to
replace the incorrect values with the correct ones, and for that we need redundant sensors. The
reaction to a deviation is determined based on counterexamples and may vary across different
CPS applications. It may involve reverting the system to its previous state and executing an
alternative action.

3 A Small Example

C
ylinder B

Cylinder A

C
ylinder B

Controller
A

Controller
B

Location X Location Y

1

2

3

6

4

5

Figure 1: PCS with two cylinders
(adapted from [2]). The cylinders work to-
gether to pick up a particle from location
X and move it to location Y.

Figure 1 shows a Pneumatic Control System
(PCS) 2 case study. The control system regu-
lates the movement of two cylinders in multiple
directions. Each cylinder is controlled by a dedi-
cated controller to regulate the movement in ei-
ther left-right or up-down directions. The de-
sired sequence of movements of the cylinders is
as follows: (1) CylinderB moves down (picks up
a particle), (2) CylinderB moves up, (3) CylinderA
moves right (pushes CylinderB to the right), (4)
CylinderB moves down (leaves the particle) and (5)
then up, (6) CylinderA moves left. We assume that
ControllerA starts its linear motion from the left at
the top of location X.

For this case study, we checked 3037 attack
scenarios on the Timed Rebeca model of PCS.
Only in 383 cases, these attacks caused the viola-
tion of safety properties (and hence a failure), and
383 counterexamples are generated by the model
checker when verifying the PCS Timed Rebeca
model augmented with attack scenarios. In this small example, we consider two counterex-
amples out of the 383 total counterexamples, as shown in Table 1.

By comparing each counterexample with its corresponding correct execution path in Tiny
Digital Twin, we identify an action or a sequence of actions that returns the control system
to a state where it can perform a different execution path to avoid failure. These actions are
called repair actions. We keep both counterexamples and their corresponding repair actions in
a repository. At runtime, if the monitor detects a malicious action present in a counterexample,
it executes its corresponding repair actions from the repository.

2https://github.com/fereidoun-moradi/Reconfigurable-Pneumatic-System

2

Table 1: The counterexamples (known failures) for safety properties
safety property counterexample repair action

1 !((motionR&&motionU)||(motionL&&motionD)) S67
controllerb.getsense[0]−−−−−−−−−−−−−−−→ S65,...,S70

cyla.actuate[1]−−−−−−−−−→ S83 dropping and reconfig.

2 !(locXa outRange||locXb outRange) S67
controllerb.getsense[0]−−−−−−−−−−−−−−−→ S65,...,S74

controllera.getsense[2]−−−−−−−−−−−−−−−→ S84 dropping

cyla: CylinderA, cylb: CylinderB, actuate[1]: moves right/down, actuate[-1]: moves left/up

Table 1 shows the safety properties along with counterexamples and their corresponding
repair actions. The properties are defined using the values of the variables loc and motion for
two cylinders in the PCS Timed Rebeca model. Property #1 ensures that both cylinders do not
move diagonally. In this system, CylinderB cannot move up (motionU) or down (motionD) while
CylinderA is moving to the right (motionR) or left (motionL). Property #2 ensures that both
CylinderA and CylinderB only have motion between the initial position and the end position in
locations X or Y.

In the counterexample for property #1, as shown in the state transitions in Figure 2(a), in
state S67, controllerA and controllerB receive the location information of the cylinders through
sensor data, i.e., controllerb.getsense[0] and controllera.getsense[0] (state S67 to state S70). At
state S70, according to the outgoing transition, the intended action is cylb.actuate[−1] that
actuates CylinderB to move downward and pick up the particle. However, at the current state,
the action cyla.actuate[1] is transmitted by controllerA to move CylinderA to the right (see the
dotted red outgoing transition from S70 to S83). The monitor detects a deviation at state S70
and consequently drops the action cyla.actuate[1]. To recover the system from the deviation, the
controllerA is reconfigured. According to the transition controllera.getsense[0] from S65 to S70,
the recovery module keeps state S70 as the current state and executes the monitor to proceed
with the system execution.

S3

S67

@[28>>30]

S65

S70

controllera.getsense[0]

S66

controllerb.getsense[0]

controllerb.getsense[0]controllera.getsense[0]

S71

cylb.actuate[-1]

S83

cyla.actuate[1]

S76

time +=2

(a)

S59

S75

S60

time +=2

S68

controllera.getsense[0]

S74

controllerb.getsense[-2]

S79

controllera.getsense[0]

S84

controllera.getsense[2]

time +=2

controllerb.getsense[-2]

(b)

Figure 2: The violation of property #1 (a) and property #2 (b) are shown on a subset of the
state transitions in the Tiny Digital Twin for the PCS case study.

3

In the counterexample for property #2, controllerA receives sensor data controllera.getsense[2]
at state S74 as shown in Figure 2(b). At state S74, CylinderB has been moved down and the lo-
cation information is transmitted to the controllerB through sensor data controllerb.getsense[−2].
However, at the current state, incorrect sensor data is injected into the system. The monitor
detects the deviation and drops the sensor data controllera.getsense[2]. In this case, the incorrect
sensor data can be injected either by an attacker or by a compromised sensor. The recovery
module does not modify any values on the controllers, but it triggers the monitor (when in-
correct sensor data is dropped) to proceed and check the status of the system execution. This
failure can be recovered using a redundant sensor if the original sensor has been compromised.

4 Future Direction

We address known failures based on the insights gained from property violations during the
design phase. This research study also involves the development of a pathfinding method, aimed
at identifying the recovery paths within the Tiny Digital Twin, with a focus on achieving the
shortest possible recovery times. In addition, we work on addressing unknown failures, such
as attacks that are not discovered during the design phase (e.g., stealthy attacks). For these
challenges, we propose self-healing mechanisms that rely on both the Tiny Digital Twin and a
set of meta-rules prepared by experts.

References

[1] Yliès Falcone, Leonardo Mariani, Antoine Rollet, and Saikat Saha. Runtime failure prevention
and reaction. Lectures on Runtime Verification: Introductory and Advanced Topics, pages 103–134,
2018.

[2] Zivana Jakovljevic, Vuk Lesi, and Miroslav Pajic. Attacks on distributed sequential control in
manufacturing automation. IEEE Transactions on Industrial Informatics, 17(2):775–786, 2020.

[3] Jeffrey Kephart and David Chess. The vision of autonomic computing. Computer, 36(1):41–50,
2003.

[4] Fereidoun Moradi, Sara Abbaspour, Bahman Pourvatan, Zahra Moezkarimi, and Marjan Sirjani.
Crystal framework: Cybersecurity assurance for cyber-physical systems. submitted to Journal of
Logical and Algebraic Methods in Programming (JLAMP), 2023.

[5] Fereidoun Moradi, Bahman Pourvatan, Sara Abbaspour Asadollah, and Marjan Sirjani. Tiny Twins
for detecting cyber-attacks at runtime using Concise Rebeca Time Transition System. Journal of
Parallel and Distributed Computing, page 104780, 2023.

[6] Arni Hermann Reynisson, Marjan Sirjani, Luca Aceto, Matteo Cimini, Ali Jafari, Anna
Ingólfsdóttir, and Steinar Hugi Sigurdarson. Modelling and simulation of asynchronous real-time
systems using Timed Rebeca. Sci. Comput. Program., 89:41–68, 2014.

[7] Adam Shostack. Threat modeling: Designing for security. Wiley, 2014.

4

	1 Introduction
	2 Recovery Mechanism
	3 A Small Example
	4 Future Direction
	References

