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Abstract

System of systems (SoS) is a collective of multiple system units that have a common purpose. In
this thesis, the Volvo Electric Site is investigated as an example case study in which safety and
performance properties of collaborating autonomous machines are evaluated and analyzed. For-
mal methods in software engineering aim to prove the correctness of the system by evaluating its
mathematical model. We use an actor-based framework, AdaptiveFlow, for modeling system func-
tionalities and timing features. The aim is to link an abstract model evaluation and a simulation
of real-world cases that are deployed in the VCE Simulator. In addition, it is necessary to make
sure that AdaptiveFlow provides correct-by-design scenarios. The verification is conducted by de-
veloping an orchestration method between the AdaptiveFlow framework and the VCE Simulator. A
tool named VMap is developed throughout this thesis for automated mapping of the input models
of AdaptiveFlow and the VCE Simulator to make the orchestration possible. Furthermore, Adap-
tiveFlow is perceived in two different ways, as a design tool, and as an analysis tool. The models
created in AdaptiveFlow are directly mapped to the VCE Simulator by using the VMap tool where
the VCE Simulator is used as a testbed for checking these models. The outcome of this thesis is re-
flected in the establishment of a mapping pattern between AdaptiveFlow inputs and VCE simulator
by developing the VMap tool for automatic mapping. It was shown that there is a natural mapping
between the AdaptiveFlow models and VCE simulator inputs. By using VMap, we can quickly get
to the desired scenarios. Through the development of three different cases, the results show that
it is possible to design safe and optimal scenarios by orchestrating the AdaptiveFlow and the VCE
Simulator using the VMap tool as well as the correlation between results from AdaptiveFlow and
VCE Simulator.
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1. Introduction

Collaborative systems, commonly referred to as system-of-systems (SoS), represent a collective of
independent systems that cooperate to achieve a common goal [1]. Each unit of the SoS is task-
oriented and these tasks are executed in the collaboration with other units. Taking into account
the complexity of the SoS we should use a suitable verification method which would ensure that the
system matches the desired design specification. In order to design such systems, the techniques for
the analysis should be defined. The most common techniques used are testing, simulation, assertion
check, lightweight formal verification, and statistical model checking. Considering the complexity
of collaborative systems, designing models for different levels of abstraction would prove helpful.
As there are many unpredictable factors in this system it is desirable to build adaptive models that
would be able to respond to these obstacles. Due to the fact that modern machines have embedded
software, it is possible to create a collaborative system that would automatize the workflow. For
this thesis, it is envisioned to conduct modeling and analysis of collaborating autonomous heavy
machines for the Volvo construction site in order to check their safety and performance properties.

In order for the appropriate model to evolve, it is necessary to consider all the characteristics
of the system. The main focus is on the modeling of the fleet control system for the scenario
developed for the VCE Simulator. The simulator provides a convenient representation of real-
world cases through which the performance and safety would be evaluated.

There are various modeling languages and techniques available with different characteristics
and supporting tools. Since the nature of this system is distributed and concurrent we should use
appropriate tools for modeling and analysis. The suitable paradigm which would address this is
the usage of actor models introduced by Hewitt [2]. This actor model has been later developed as
an object-based functional language by Agha [3]. In this case, Rebeca modeling language is used
due to the fact that it targets distributed and concurrent systems and its capability to execute
assertion checks and deadline misses. Rebeca (Reactive Objects Language) is an open-source actor-
based modeling language with a formal foundation that has a purpose to bridge a gap between
software engineers and formal method community [4]. It has a syntax similar to Java and it is a
platform for developing object-based concurrent systems that are supported by a model checking
toolset [1]. Additionally, Rebeca has a feature to model timing constraints by using its real-time
extension, Timed Rebeca [5]. Modeling and analyzing this collaborative system is executed with the
AdaptiveFlow framework. This framework is based on the Eulerian model and it makes modeling
and analyzing track-based flow management systems possible [6]. In order to verify safety and
performance properties, the VCE simulator is seen as a testbed.

To conduct this experiment first it is necessary to build TRebeca models with the AdaptiveFlow
framework. In this framework, tracks are modeled as actors and moving objects (autonomous
machines) as messages [6]. Next, the checking of performance and safety properties needs to be
executed. Safety and progress properties include the minimum distance between the machines,
relation between the speed of a machine and its distance from others, and deadlock checks. The
performance properties comprise the system throughput of several collaborating machines and the
least waiting time for a service request to be completed. It is important to adjust mentioned
properties with what VCE simulator can provide. The third step is to map specified properties to
the VCE simulator and verify if the properties hold. Finally, the mapping between AdaptiveFlow
inputs and VCE simulator inputs needs to be automatized.

In this work, we propose a tool orchestration method in which we use both AdaptiveFlow and
VCE Simulator as a complete tool stack for verification and evaluation of collaborating autonomous
haulers. To retrieve results and to provide a depth of this research, we conducted experiments on
three different cases. Each case takes a different approach to tool orchestration to demonstrate the
variety of methods of applying these tools.

The main goal is to close the loop in model-driven development in which the usability of Adap-
tiveFlow is shown. The 2D model abstraction is lowered to a more realistic representation of the
system in order to see whether there is a correlation in results. The mappable attributes/elements
are recognized by which the mapping procedure has been developed. The main challenges and
limitations have also been represented.

1
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1.1. Problem Formulation

In this project, the case study of the electrified site project by Volvo Construction Equipment is
considered. This case is based on collaborating autonomous machines, referred to as automated
haulers, shown in Figure 1, which purpose is to perform several tasks such as loading, unloading,
charging and material transport by operating in the fleet manner [7]. Autonomous machines have
a centralized fleet control server that sends information to the machines in a certain time interval.

Figure 1: Automated Hauler

In this case, AdaptiveFlow is perceived as both, design and analysis tool for collaborative
systems which generates TRebeca models. On the other hand, VCE Simulator acts as a testing
environment for modeled systems. The scope of this thesis includes several objectives. The first step
is to analyze the VCE Simulator by developing a suitable TRebeca model of the quarry site scenario
similar to the one on Figure 2 with machine operations and conduct safety and performance checks.
For this part, it is necessary to design an adequate environment in which the spots for points of
interest (PoIs), as well as available segments of the environment, would be defined. This is done
with the AdaptiveFlow framework. Furthermore, the configuration of the whole system should
be specified. Based on the TRebeca model generated from defined specifications, it is required to
perform a verification of that model. If the verification proves to be successful, the next step is to
investigate how to perform a mapping between AdaptiveFlow inputs and VCE simulator. Based
on this we will run the simulator and see whether the mapping was successful. The final phase is
to discover how to automatize this mapping process.

Figure 2: Volvo Electric Site

2
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1.2. Research Questions

The general question is if AdaptiveFlow framework (the design and analysis methods) is effective
for model-based development of fleet management systems. This framework operate at an abstract
level and to examine its effectiveness we need to see if the analysis results are valid during the
simulation when we add more concrete and detailed features. This question can be broken down
into the following research questions.

• RQ1: How usable is the design model of AdaptiveFlow for model-based devel-
opment of fleet management systems?

The difference in the level of abstraction in the two tools introduces limitations and challenges.
To examine the usability we need to check how challenging it is to map TRebeca models to
more concrete models in the VCE simulator. Considering the implementation within the
VCE Simulator and the nature of AdaptiveFlow, it is necessary to come up with an answer
to what the limitations are when it comes to mapping. To answer this question, on one hand,
we must take into account the complexity of the environment in the VCE Simulator, which is
actually a depiction of the real system in 3D. On the other hand, the system in AdaptiveFlow
is represented as a 2D abstraction. We have to find a common ground between the two in
order to carry out appropriate mapping. Taking this into account, we can concretize the
main question into following sub-questions:

– What is the mapping pattern between AdaptiveFlow inputs and VCE Simulator inputs?

– What are the major challenges and limitations in building this automated mapping?

• RQ2: How much the safety and performance properties verified by AdaptiveFlow
are valid for cooperative construction machines in the VCE Simulator?

Since the AdaptiveFlow framework provides, with the design of TRebeca models, their ver-
ification and performance evaluation, it is necessary to find a way to analyze these prop-
erties inside the VCE Simulator. To answer this question, it is also necessary to perform
an implementation within the VCE simulator that matches the inputs and logic defined in
AdaptiveFlow. This question can be divided into sub-questions below.

– Are the design analysis results of AdaptiveFlow precise enough to be relied on and to
be used for model-based development?

– How effective and precise can the results of analysis performed by AdaptiveFlow be?

1.3. Research Contributions

The contributions of the thesis that are the result of solving the problems described in Section 1.1.
are listed below:

• Patterns for mapping inputs from AdaptiveFlow to VCE Simulator

In order to develop a mapping procedure, we extract mappable elements from the Adaptive-
Flow inputs to VCE Simulator. These elements were identified through the reverse engineer-
ing process in Section 6.1. The main problem is to find out how to transform a concept of
the 2D environment of AdaptiveFlow to a complex 3D simulation scenario.

• The VMap tool developed for automating the mapping procedure

One of the aims of this thesis is not only to derive an algorithm that could be implemented
for the mapping procedure but to also provide a proof of concept by developing a suitable
tool. The major applicative contribution of this thesis work is the VMap tool that represents
a link between an abstract representation of a collaborative system from AdaptiveFlow and
a simulation that provides a representation of real-world cases. This tool could be viewed
as a piece of the puzzle for the verification of collaborative systems in which multiple tools
and frameworks are used. It uses AdaptiveFlow inputs as well as complementary information
from the VCE Simulator input file (dynamic.content) to generate a 2D representation of VCE
elements, such as vertices and edges, and a dynamic.content example file.

3
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• Methods for evaluating collaborative system features through model verification
and simulation

In this thesis, we have also dealt with the verification and evaluation of systems of the
autonomous machines. This is done through orchestration of the AdaptiveFlow and the
VCE Simulator. More explicitly, it is conducted by extracting the safety and performance
results from the TRebeca models as well as from the simulation. The main problem is to find
performance properties that can be measured in AdaptiveFlow as well as in the Simulator.
The comparison of identified performance results is made on the basis of which the conclusions
are drawn.

4



Pavle Mrvaljević Master Thesis

2. Background

To be able to understand the research contributions of this work, in this section a few crucial
areas have been described. In this thesis, we have touched on topics such as actor-based modeling,
system-of-systems, Automated Guided Vehicles (AGVs), formal verification and the tools which
are used in order to realize this research. Rebeca modeling language will be explained in depth.
In addition to that, we will go through the tools necessary to perform a model verification.

2.1. Model-Driven Development

Model-Driven Development (MDD), also referred to as Model-Driven Engineering (MDE), is a field
in software engineering which has an aim to an abstract software system, simplify the development
process and lower the cost of the implementation. The model in MDD is a representation of
the system, including its structure and functionalities. Due to its simplicity, it is a good link in
communication between engineers and clients. Thomas et al. [8] have derived the goals of MDD
and some of them are listed below.

• Increase of development speed - This is achieved due to the automation of generating code
from defined models. Through one or more steps of transformation, this automation is
achieved.

• Enhancement of software quality - Through previously mentioned steps of transformation
and usage of formal languages, the software quality will be enhanced since the modules from
the software architecture will reappear in the implementation.

• Higher level of reusability - As properties such as system architecture, modeling language
and transformation have been specified, they could be used as a foundation for other similar
projects which increases the level of reusability.

• Manageability of complexity through abstraction - Often, there is an increase in system
complexity, so it is necessary to simplify the representation of the system, which MDD does
through abstracting system components and structure.

In this work, MDD was performed as we have created models of the concurrent, distributed
system of autonomous machines by using the Rebeca modeling language which has been described
in the upcoming sections.

2.2. Formal Methods

In software engineering, formal methods represent a set of techniques for development, verification
and analysis of software systems. These techniques allow a more reliable design of complex systems
by introducing a more mathematically-oriented approach to software development. Due to the
discontinuous nature of software systems, minor changes could cause huge and unpredictable errors
which highlight the difference in software engineering from other engineering disciplines [9]. This
is why formal methods are essential for developing a robust and correctly designed system. When
developing autonomous systems, such as the one covered in this thesis, the specification is arguably
the biggest bottleneck in performing the verification and validation [10].

Even though formal methods do not guarantee the development of systems that are prone to
errors, they do help in developing a greater understanding of the system, by pointing out the
inconsistencies in system design. These flaws are of great importance due to the consequences
that they could cause [11]. In our case, we are modeling a system that manages autonomous
machines. In this field, suitable formal methods are imperative since they would decrease the cost
of development of these systems to a great extent.

Formal methods can be categorized in several different ways. In [12] formal methods have
been differentiated as lightweight vs. heavyweight and the application of formal methodologies
has been defined horizontal and vertical. By the lightweight formal methods we refer to partial
specification and do not require high expertise, which is in contrast to the heavyweight formal
methods. The horizontal application of formal methods implies a formally designed software,
whereas the vertical application is pointed to a correct-by-construction approach.

5
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2.2.1. Formal specification

In systems development, formal specification is a set of techniques used for a better understanding
and safer construction of systems based on mathematical representation [13]. These techniques are
used to lower the cost of system construction and to prevent faults that would be more difficult
and expensive to correct in further stages of development. In formal verification, multiple aspects
of the system are covered. It can be used for multiple purposes such as better grasp of the system
functionalities, analysis of properties of interest and directing the development process [13].

2.2.2. Formal Verification

Formal verification is a method used for proving the system correctness by verifying specific prop-
erties of the system or by examining its alignment to the formal specifications. It is performed
on the mathematical model of the system that is an abstract representation. Timed automata,
finite state machine, Petri nets, vector addition systems are just some of the examples of these
mathematical models [14]. The approach used in this thesis is model checking. Generally, this
approach is applied to finite models. As in Rebeca, model checking goes through the whole state
space of the system and explores all of its states and transitions.

The model checking is performed by verification of properties defined as temporal logic. The
most common types of properties are linear temporal logic (LTL), Property Specification Language
(PSL) and computational tree logic (CTL). LTL represents time as a sequence of states which
expand infinitely to the future [14]. To keep the explanation simple, we will make LTL formulations
as following. If G represents all future states, F stands for some future state and p is some property
of a system, this can be noted as shown in Equations 1 and 2.

G(p) (1)

F (p) (2)

If we want to define that whenever property p is true globally in the system, the property q
will be finally true, we could formulate it as in Equation 3 if we use notation as in [14].

G(p→ Fq) (3)

In this thesis, we will use Rebeca model checking tools for the verification of models generated
from AdaptiveFlow.

2.3. Actor model

For the purpose of explaining the Rebeca modeling language and the AdaptiveFlow framework,
it is crucial to comprehend the concept of actor-based modeling and the most important features
of this paradigm. Actor-based modeling represents a higher abstraction level of concurrent com-
putation in which actors are presented as universal primitive [2]. In these models, main units
are actors that communicate with other actors through asynchronous message transmission. The
states and behaviors of actors are encapsulated and they have ability to create new actors, change
behavior and redirect communication link through an exchange of actor identities [15]. This model
was invented by Carl Hewitt [2], afterward developed as a concurrent object-based language [3]
and finally formalized by Agha et al. [16].

2.4. Rebeca Modeling Language

Reactive Objects Language (Rebeca) [15, 17] represents an actor-based modeling language which
is used for modeling concurrent and distributed systems, with formal verification support. The
main characteristics of the Rebeca model are similar to the actor model, considering that it has
asynchronous message passing between reactive objects referred to as rebecs. Rebecs have an
unbounded buffer, labeled as a message queue, which contains all of the messages related to it.
The computation in Rebeca is event-driven and the rebecs are taking the messages (events) from

6



Pavle Mrvaljević Master Thesis

the top of the queue [17]. Execution of functions is performed atomically which means that they
are not interleaved with other functions [17].

The structure of the Rebeca Model is shown on Listing 1. When defining reactive class, we need
to declare queue size, even though that does not match to principles of actor modeling since queue
size in that paradigm is unbounded. Another two declarations which are defined are knownrebecs
and statevars. Knownrebecs represent other reactive objects which communicate with declared
rebec. The statevars can be perceived as variables that represent the current state of the rebec.
Message servers, labeled as msgsrv, are methods used to handle incoming messages from other
rebecs. Finally, there are methods that are executed locally inside the message server and method
of the same rebec.

r e a c t i v e c l a s s Rebec1 (2 )
{

knownrebecs Rebec2 d ;
s t a t e va r s {}

/∗ the con s t ruc to r ∗/
Rebec1 ( )
{ s e l f . msg1 ( ) ;
}

/∗ Handling message 1∗/
msgsrv msg1 ( )
{ d . askForServ i ce ( ) ;
}

/∗ Handling message 2∗/
msgsrv msg2 ( )
{
. . . .
}

}

Listing 1: Class definition in Rebeca

2.4.1. Timed Rebeca

There is an extension of Rebeca which has a feature of defining timing constraints. This extension
is called Timed Rebeca and it is used within the AdaptiveFlow framework. The features addressed
with this extension are computation time, message delivery time, message expiration and
periods of occurrences of events [5]. Each rebec has a local time by which new statements are
being handled, but also there is a global time used for rebec synchronization. Modeling with Timed
Rebeca still includes non-preemptive (atomic) execution of methods, but it also includes modeling
of passing time [5]. New primitives which are included in this extension are delay, deadline, deadline
and now. The delay keyword represents a time for the method execution, whereas deadlines could
be put on messages which means that messages will not be valid after the expiration of the deadline.
Local time of the rebec can be retrieved with the statement now and the after statement assigns
that the message cannot be taken from the message bag before determining time [5].

2.4.2. Rebeca model checking tools

In this section, we are going to take a brief overview of the tools used for the verification of Rebeca
models. Two tools that are mainly used are Rebeca Model Checker (RMC) and Afra IDE.

Rebeca Model Checker (RMC)

Throughout this project, we will use RMC as a tool for performing a direct model verification. This
tool consists of the Modere tool which is used for the linear temporal logic (LTL) model checking.
It uses an automata-theoretic method which means that system and its negation are defined with
a Buchi automation [18]. The result of these two automata will be empty if the system satisfies
the specification. RMC generates C++ classes that represent automata for the system and the
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negation of its specification [18]. These files and the engine of Modere must be compiled to deliver
the executable file which performs model checking of the Rebeca model and produces a state space
file.

Afra

Afra is an IDE used for property specification, model-checking and counter-example visualization
of Rebeca models [18]. The user interface of this IDE consists of the project browser, and model
and property editor. In Afra, for performing a model verification, we need to specify two files,
model and property file. In the model file, we develop a Rebeca model whose properties need to
be satisfied. In the property file, we specify LTL or CTL properties which are later used for model
verification. Afra is developed as a symbiosis between Sytra, Modere and Symon including the
Rebeca and SystemC modeling environments [18].

The workflow of Afra is segregated into several steps. First, Afra receives SystemC models
and LTL or CTL properties. The model received is translated to Rebeca by using Sytra tool.
After that, the Rebeca toolset for model verification is used to verify models and their properties.
Additionally, Afra has a feature of displaying a counter-example if the system does not satisfy
specified properties.

2.5. Volvo Electric Site

This section provides brief information about Volvo Electric Site since this is the case study covered
in this thesis. The goal of the electrified quarry site is improving the efficiency, safety as well as
environmental benefits by decreasing the carbon emission to a great extent [19]. The goal of the
research is to electrify every process in construction sites, from machine movement to crushing
and excavating. The benefits of this research are significant which is proven through testing of
this system. The results report over 98% of the decrease in carbon emission, 70% lower energy
cost and 40% lower operational cost [19]. In this thesis, we delve into the formal verification of
the electrified quarry site by merging the Rebeca actor-based modeling language that addresses
concurrent distributed systems and Volvo simulators which provide an accurate representation of
real-world cases of electrified quarry sites.

2.6. Automated Guided Vehicles - Distributed Systems

Automated Guided Vehicles (AGVs) represent autonomous machines whose purpose is to perform
tasks, most likely transportation. The implementation of AGVs in the industry varies from hos-
pitals (e.g. transportation of the laundry) to harbors [20]. AGVs are equipped with sensors and
actuators and in most cases, they operate in a fleet manner. The general representation of the
AGV system consists of coordinated autonomous guided vehicles. The main modules if this sys-
tem is presented in Figure 3a and they are production planning and control (PPC) module, AGV
control system (ACS) and the AGVs [20]. Communication between these modules is considered
a part of the internal system. In Figure 3b detailed representation of AGV system is presented.
ACS is in charge of assigning routes to each AGV and it plans optimal routes for AGVs. AGVs
have behaviour controller (BC) which is making binary decisions and selects role-plays. BC is in
direct communication with ACS and it sends success/failure messages.
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Figure 3: AGV system properties

3. Related Work

To put this work into a broader context, compare it to current research and to expand an un-
derstanding of a problem, we need to explore papers which are relevant to the topics covered in
this thesis. Researching topics such as system-of-systems, AGVs, actor-based modeling and for-
mal verification was conducted by searching through scientific databases such as IEEE Xplore and
Scopus. Additionally, on the Publications section of the Rebeca website, there are several works
closely related to the topic.

Direct correlation with works which include the Volvo Electric Site case study are [1], [6] and
[7]. In [1] and [6], the AdaptiveFlow framework was explained in-depth and some examples for
Electric Site case were provided. These papers show the applicability of the AdaptiveFlow through
the example of this case. As the main difference from these papers, for this thesis, it is necessary
to make a model of a suitable environment for the VCE Simulator scenario and in addition to that,
we need to perform the mapping procedure from AdaptiveFlow to VCE Simulator. Jafari et al. [7]
have performed formal modeling, using Timed Rebeca, and verification of fleet control system of
autonomous haulers. The model proposed in this work uses a different perspective for modeling.
More particularly, the machines on the site are perceived as actors, whereas in this project we
are using the AdaptiveFlow principle of defining roads as actors and machines as messages sent
between actors.

Modeling of self-adaptive systems has been introduced by Bagheri et al. [21]. In this paper,
the focus was on Track-Based Traffic Control Systems (TTCS) with centralized control in which
traffic flows through pre-specified sub-tracks. They have introduced a coordinated actor model
which can be used to design self-adaptive TTCSs. Additionally, authors have proposed several
mappings from different TTCSs to the coordinated actor model. However, this paper does not
provide model checking solutions.

This work targets distributed systems and it is necessary to find relevant papers that are based
on modeling and inspection of such systems. Distributed and asynchronous system modeling and
analysis were done by Jafari et al. [22]. Due to the non-deterministic nature of these systems,
authors have used Probabilistic Timed Rebeca (PTRebeca) to perform modeling. They have
provided SOS rules for PTrebeca, presented a new toolset that generates Markov Automation from
PTRebeca models in the form of the input language of the Interactive Markov Chain Analyzer
(IMCA) [22]. Khamespanah et al. [23] conduct modeling of real-time Wireless Sensor and Actuator
Network. They provide a very accurate view of WSAN application through actor modeling. In
this work, authors have also used Timed Rebeca and Afra model checking tool.

Since this work deals with the case of collaborating AGVs, a few works on this topic have been
extracted. Saddem et al. [24] targets path-finding algorithms in a 2D grid environment. They
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have conducted their model-checking by using UPAAL Timed Automata. A similar problem was
covered in [25], where authors inspect the automated planning of optimal paths for multiple robots.
They have used weighted transition systems and Linear Temporal Logic (LTL) formula for the goal
specifications. In this project, we have to adapt simulator scenarios and the behavior of machines
in order to adequately perform the mapping. Authors in [20] have explored the main challenges
when it comes to the distribution of knowledge and autonomy of AGVs. This work will provide
a better understanding of the AGV system architecture. Transport assignments and collisions in
AGV systems have been examined and verified by Weyns et al. [26]. The software architecture has
been evaluated and through running the simulation, the test results were obtained. The authors
have developed decentralized control architecture by applying Multiagent System (MAS).

In [27] mapping Robot Operating System (ROS) to Rebeca properties has been conducted.
Furthermore, this work also examines the Volvo Electric Site case. The contribution of this work
is the development of a mapping algorithm between ROS and Rebeca, therefore it proves possible
verification of real robotic applications with Rebeca modeling language. The work is highly relevant
since it has a similar purpose to this thesis and it is also based on the mapping procedure in which
Rebeca is included. Differences reflect in that this thesis focuses on another way of mapping, from
Timed Rebeca model to VCE Simulator and different perspectives have been chosen when it comes
to modeling. In [27] actors were machines on the site, whereas in this work, due to the nature of
the AdaptiveFlow, the roads are perceived as actors that exchange machines as messages.

Webster et. al. [28] introduce a case study of robotic assistants and their formal verification.
The experimentation was done through verifying four sample properties of models that were trans-
lated from Brahams into the input PROMELA modeling language. The case in this thesis covers
the translation of system specifications defined in AdaptiveFlow to both, Rebeca models used for
model checking and the Volvo Simulator inputs used for simulating the model. An additional
difference is that our focus is on a collaborative system of multiple autonomous machines. In [29]
there is a correlation with our project such that authors cover construction machines and their au-
tomatization properties. The verification is performed with UPAAL. However, the main difference
is that the subject of their research is an autonomous wheel loader and formal verification of its
internal properties, whereas in our work the wheel loader is abstracted and is perceived as a part
of a collaborative system. Zita et. al. [30] apply the formal verification to a specific module of
autonomous vehicles. The lane change module was covered which is a part of the control system
inside autonomous vehicles. Our work examines a track-based control system that directs machine
movement in the quarry site.
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4. Method

The goal of this thesis is to develop a technique for orchestration of several tools in order to
evaluate and analyze collaborative systems of heavy machines. As a reference for choosing a suitable
method(s), H̊akansson [31] has provided a convenient overview of research methods generally used
in any kind of research that helped us in identifying the most suitable ones for this project.

The initial point of this research is a hypothesis which states that AdaptiveFlow is useful
for the model-driven development of the fleet management systems. Hence, our focus will be
on quantitative research methods. This hypothesis will be measured through three cases whose
experiments will be run on the Volvo Simulators and through model verification and evaluation.
Through these experiments, the logs from the simulator will be used to extract the performance
properties of the system. The models will also provide safety and performance information about
the system by analyzing the state-space file generated from the model verification.

Data is collected through the model, as well as the simulation experiments. Besides, we have
gone through three case studies in which tools have been used differently and have compared results
from model checking and simulations for all three of them. Data collected has been analyzed by
using statistical methods.

To ensure that this project is replicable and reliable we have provided detailed information
about each case and how it was implemented. Each method and methodology has been shown
through their applications in multiple activities during this project. Results gathered have been
discussed and conclusions have been outlined.

4.1. Performed activities

To answer previously mentioned research questions, defining an appropriate method for conducting
this project is imperative. We have split the workflow into four phases which are shown in Figure
4, where each phase is validated.

The first phase of the project is focused on the understanding of the case which is being covered
therefore, the background study was conducted. In this phase, it is necessary to understand what
problems ought to be solved and how would it be done. In addition to that, the next step is the
literature review in which relevant findings and contributions have been extracted.

The second phase consists of model design, mapping, and automatization of the mapping
procedure. The first step is to analyze VCE Simulator and its properties. The next step is to
generate the Timed Rebeca model, using the model generator from the AdaptiveFlow, by providing
3 input XML files (environment, configuration, and topology). These files are be modified based
on what could be derived from the VCE Simulator. The environment.xml file has to be modified
based on the terrain of the scenario in the VCE simulator. To assign points of interest (PoIs), such
as parking station, charging station, and loading/unloading points, topology.xml file is specified.
To define the configuration of the whole system we have to provide configuration.xml file. After
that, it is necessary to identify mappable properties between AdaptiveFlow and VCE simulator.
Lastly, the mapping procedure is developed and automatized.

The third phase is based on safety verification and performance evaluation. This is done by
examining both, models as well as scenario representation of it in the VCE Simulator. Finally,
in the fourth phase, the result analysis is performed by comparing results from model verification
and the simulation, and finally, the conclusions are derived.
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Figure 4: Research Method

5. Mapping AdaptiveFlow Models to VCE Simulator Inputs

This section provides a description of each tool used for the verification and evaluation of the
collaborative systems, as well as information on how the mapping was performed. First, we have
to go through the AdaptiveFlow framework. Each input file is described in detail because it
is necessary to understand all elements and their attributes. The workflow of AdaptiveFlow is
provided to make a connection between defined input files, that provide system specifications, and
model generating verification, and performance evaluation. Following that, the outline of the VCE
Simulator is given. Mainly, the dynamic.content input file used for the definition of elements is
explained to show a connection between this file and AdaptiveFlow’s environment, topology, and
configuration files.

During this thesis, we have developed the VMap tool for automatic mapping. It can be seen as
just another part of the orchestration which is used for faster development of desired simulation
scenarios derived from AdaptiveFlow specifications. Its development, role, as well as the mapping
pattern, is thoroughly described in this section.

5.1. AdaptiveFlow framework

AdaptiveFlow [1, 6] is an actor-based Eulerian framework which is used for a track-based flow
management system. Usually, when we think of actors in track-based systems, such as traffic
systems, we would think of vehicles as actors. By making a parallel with fluid mechanics, this
perception would be categorized as the Lagrangian view. In the AdaptiveFlow framework, we
use the Eulerian view where the roads would be considered as actors and vehicles as messages
sent between the actors. To explain the architecture of the AdaptiveFlow, first, it is necessary to
explain in detail three files that are used for the system specification, as it is done did below.

5.1.1. AdaptiveFlow input files

The environment file

The environment.xml file is used for defining the base layer of the system, represented as a
matrix, in which movement of the vehicles takes place [6]. The layer is split into segments that
communicate with each other. Each segment is surrounded by neighboring segments and each
neighboring segment is labeled based on the location relative to the current one (i.e. NE-northeast,
SW-southwest, E-east, etc.). Segments also have unique identifiers, a capacity that usually assigns
the number of vehicles that can be on the segment at the time and free speed which sets the allowed
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speed for each segment in m/s. Coordinates of the segments are also defined. The example of the
environment.xml file is presented below.

<environment>
<segments>

<segment id=” s e g 0 0 ” N=” nu l l ” NE=” nu l l ” E=” s e g 0 1 ” ES=” s e g 1 1 ”
S=” s e g 1 0 ” SW=” nu l l ” W=” nu l l ” WN=” nu l l ” a v a i l a b l e=” f a l s e ” x=”0” y=”0

” capac i ty=”1” length=”200” f r e e sp e ed=”6”/>

<segment id=” s e g 0 1 ” N=” nu l l ” NE=” nu l l ” E=” s e g 0 2 ” ES=” s e g 1 2 ”
S=” s e g 1 1 ” SW=” s e g 1 0 ” W=” s e g 0 0 ” WN=” nu l l ” a v a i l a b l e=”
f a l s e ” x=”0” y=”1” capac i ty=”1” length=”200” f r e e sp e ed=”6”/>

<segment id=” s e g 0 2 ” N=” nu l l ” NE=” nu l l ” E=” s e g 0 3 ” ES=” s e g 1 3 ”
S=” s e g 1 2 ” SW=” s e g 1 1 ” W=” s e g 0 1 ” WN=” nu l l ” a v a i l a b l e=”
f a l s e ” x=”0” y=”2” capac i ty=”1” length=”200” f r e e sp e ed=”6”/>

. . .
</ segments>

</ environment>

Listing 2: Example of the environment.xml file

The topology file

The topology.xml is used for assigning the locations of the points of interest (PoIs). PoIs contain
unique identifiers, x and y coordinates, type of the point, and operating time. The PoIs can be
perceived as key spots on which tasks are executed. An example of a topology file is shown below.

<topo logy>
<POIs>

<poi id=”0” x=”1” y=”3” type=”Park ingStat ion ”/>
<poi id=”1” x=”3” y=”3” type=”ChargingStat ion ” chargingTime=” 0 .1 ”/>
<poi id=”2” x=”3” y=”1” type=”LoadUnloadingPoint ” loadTime=” 0 .5 ”/>
<poi id=”3” x=”8” y=”1” type=”LoadUnloadingPoint ” loadTime=” 0 .5 ”/>
<poi id=”4” x=”1” y=”7” type=”LoadUnloadingPoint ” loadTime=” 0 .5 ”/>
<poi id=”5” x=”6” y=”7” type=”LoadUnloadingPoint ” loadTime=” 0 .5 ”/>

</POIs>
</ topology>

Listing 3: Example of the topology.xml file

The configuration file

To specify the system configuration the configuration.xml file (Listing 4) should be defined. It
includes information such as the number of machines, resending periods for requests, safe distance
between machines, policy for bypassing obstacles, fuel reserve of each machine, and the maximal
number of allowed attempts to send a request to the unavailable segment before rerouting. The
example part of the configuration.xml file for the system features is presented below.

<system>
<r e s end ing pe r i od value=”15”/>
<number veh ic l e s va lue=”5”/>
<s a f e d i s t a n c e value=”20”/>
<ba t t e r y l im i t va lue=”1000”/>
<po l i c y value=”1”/>
<ob s t a c l e o c cu r en c e s va lue=”5”/>
<obstac le number value=”4”/>
<obstac le max t ime value=”1000”/>
<obstac l e max durat ion value=”100”/>
<max attempts va lue=”2”/>

</ system>

Listing 4: Example of the system element in configuration.xml file
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The remaining part of the configuration file is adding machines and their properties. Each
machine has tasks that are assigned as a set of IDs of PoIs. The attributes of the machines are
unique identifiers, machine type, leaving time from parking station, fuel capacity, fuel consumption,
speed, CO2 emission, capacity, and unloading time, as it is shown on Listing 5.

<machines>
<machine id=”0” type=” hau le r ” leavingTime=”10” fue lCapac i ty=”7000”

fuelConsumption=”1” speed=”6” emis s ion=”6” capac i ty=”100”
unloadTime=” 0 .1 ”>
<ta sk s>5 ,3 , 2 , 4 , 5 , 3 , 0</ ta sk s>

</machine>
<machine id=”1” type=” hau le r ” leavingTime=”20” fue lCapac i ty=”7000”

fuelConsumption=”1” speed=”6” emis s ion=”6” capac i ty=”100”
unloadTime=” 0 .1 ”>
<ta sk s>3 ,2 , 5 , 4 , 3 , 2 , 0</ ta sk s>

</machine>
. . .

</machines>

Listing 5: Example of the machine specifications

5.1.2. AdaptiveFlow workflow

AdaptiveFlow workflow is split into three phases. The initial phase is the pre-processing phase in
which TRebeca models are generated by processing three input files (environment, configuration,
and topology) with a Python script that represents the model generator. The next phase consists
of formal verification of the generated model by generating the state space [1]. The verification is
performed with model checking tools such as Afra or Rebeca Model Checker (RMC) [1]. These tools
convert Rebeca models to C++ files which are afterward compiled to an executable file [1]. This
file implements the model checking algorithm and it returns results. As mentioned before, model
checking tools also generate state space of models used for the final, post-processing phase. In this
phase, state-space goes through the Python script that analyses each state. The representation of
the whole workflow is presented in Figure 5. Each phase of the workflow is described in-depth in
the following sections.

environment.xml

topology.xml
Python

script

OUTPUT

OUTPUT

model.rebeca RMC statespace.xml Python
script

fuel consumptions

material delivered

operating time

emissions

Pre-processing: model generation Model run and state-space generation Post-processing: state-space analysis

Figure 5: AdaptiveFlow workflow [1]

Phase 1: Pre-processing phase

In the AdaptiveFlow framework 3 input files are used for the system specification and those are
environment.xml, topology.xml and configuration.xml.

After defining the elements of three input files, the next step is to run the model generator script
which will derive the TRebeca model based on those input files. The representation of the model

14



Pavle Mrvaljević Master Thesis

could be designed as a matrix with PoIs. This representation is an abstraction of the scenario
which excludes details of the system. The example of scenario depiction is shown below.
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Figure 6: AdaptiveFlow environment [1]

Phase 2: Model run and state-space generating

In this phase, by using a model checking tool (either Afra or RMC) the model analysis is executed by
generating C++ files from the input files. Compiling C++ files results in generating an executable
file. The execution of this file performs a model checking algorithm on the input model and
based on the results, the state space file is generated. Aside from checking regular properties
such as deadlock-freedom and safety, AdaptiveFlow also verifies properties like fuel consumption
of machines, correct machine movement, absence of machine collision with obstacles, and no-
starvation property[6]. The generated state space file is used in the upcoming phase for extracting
the performance properties.

Phase 3: Post-processing phase

The last phase of the AdaptiveFlow workflow consists of the evaluation of the performance prop-
erties of the system through analysis of resulting, state space, file from the previous phase. The
state-space file is analyzed with a Python script that extracts the evaluation of performance prop-
erties. The performance evaluation includes total CO2 emissions of machines, the amount of
consumed fuel, moved material, and operating time of the collaborative system.

5.1.3. Novel features of AdaptiveFlow

Throughout this thesis, AdaptiveFlow has been improved and upgraded in alignment with con-
ducted project. New features that are implemented are proven as helpful when it comes to the
mapping because these changes helped in developing more realistic cases.

With the new features of AdaptiveFlow, this framework now supports unidirectional routes,
and users can specify directions between segments in the environment file. This means that even
though segments are adjacent they are not necessarily linked. In Listing 6, specification of direction
attribute of the segment element is presented.

<environment>
<segments>

<segment id=” s e g 0 0 ” N=” nu l l ” NE=” nu l l ” E=” s e g 0 1 ” ES=” s e g 1 1 ”
S=” s e g 1 0 ” SW=” nu l l ” W=” nu l l ” WN=” nu l l ” d i r e c t i o n=”E,ES” av a i l a b l e=”

f a l s e ” x=”0” y=”0” capac i ty=”1” length=”200” f r e e sp e ed=”6”/>
. . .

</ segments>
</ environment>
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Listing 6: Segment’s ”direction” attribute

An additional feature that was implemented is policy 4 and the routes element in the topology
file. Since machines have tasks specified as a set of PoI IDs, the policy 4 specifies that the machines
should follow the path between PoIs that is explicitly specified in routes element. The route element
has attributes origin, destination and path. It is a sequence of segments that the vehicles must
follow for reaching a PoI (destination) from the current PoI (origin). The values of origin and
destination correspond to the ID of the PoI itself. The example of the routes element is shown in
Listing 7.

<topo logy>
<POIs>

. . .
</POIs>
<route s>

<route o r i g i n=”0” de s t i n a t i on=”2” path=” s e g 8 7 , . . . , s e g 6 8 ”/>
. . . .
<route o r i g i n=”0” de s t i n a t i on=”3” path=” s e g 8 7 , s e g 7 8 , . . . . . . ,

s e g 3 7 , s e g 2 8 ”/>
</ route s>

</ topology>

Listing 7: Defined routes in toplogy file

5.2. VCE Simulator

Volvo Simulators provide a real-life imitation of processes in Volvo construction sites. The features
range from simulating the process of the individual machine to building up authentic scenarios
[32]. VCE Simulator also provides data analysis of the scenarios in which users can evaluate the
performance and efficiency of defined simulation models. In this case, we focus on the scenario
building feature of the Volvo Simulators in which we build scenarios that are a convenient repre-
sentation of the models. The simulation is used as an adjunct to the TRebeca models for system
design, verification and evaluation.

For the scenario buildup, Volvo Simulators use a dynamic.content file as an input in which
each object inside the simulation scenario is defined as an element in Extensible Markup Language
(XML) format. In this file, we define elements such as edges, vertices, loading material, machines,
etc. Our goal is to generate dynamic.content file according to the specification inside AdaptiveFlow
inputs. The following section describes a tool developed to bridge a gap between the level of
abstraction of AdaptiveFlow and VCE Simulator.

5.3. VMap: the conversion tool description

In this section, AdaptiveFlow is perceived as a design tool. Section 6.1. shows the case that
has been examined in order to perform the analysis of VCE Simulator and AdaptiveFlow. De-
scribed steps were necessary to derive mappable elements and based on that the tool for mapping
automatization has been developed. The mapping automatization has been developed to bridge
a gap between AdaptiveFlow specifications and VCE simulations and to complete model-driven
development loop.

VMap is a tool developed in order to perform the mapping automatization from the Adaptive-
Flow inputs (environment, configuration and topology) to the dynamic.content file that consists
of static features for the simulator. These static features are an XML representation of elements
inside the simulator scenarios such as vertices, edges, path points, automated haulers, loading
machines, etc. What AdaptiveFlow provides us is a convenient method for design, analysis and
verification of collaborative systems. The VMap tool has been developed with a goal to make a
transition from an abstraction such as a TRebeca model to a concrete simulation of real-world
scenarios. In addition to that, it is necessary to verify whether this transformation from TRebeca
models to simulation provides correct-by-design scenarios. To conduct this transition in a valid
way and to a full extent, it was essential to implement a logic that is a core of the AdaptiveFlow
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inside a Simulator. To illustrate all of the tools involved in orchestration process, including all of
the inputs and outputs, we have designed a diagram shown in Figure 7. In upcoming sections,
each part of the workflow is be thoroughly described.
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Figure 7: Tools used with their inputs and outputs

5.3.1. Development phases of modeling and conversion

Phase 1

The first phase consists of designing a suitable representation of the system. This includes designing
the environment of the system, defining properties of machines and setting up the location of each
PoI. When all of this has been set up, the next step is divided into two subbranches. The first
branch includes defining AdaptiveFlow input files based on the desired requirements. Specified files
will be used as inputs for two tools: Model Generator, which is a part of the AdaptiveFlow, and
VMap. The second branch of the initial phase represents an extraction of complementary files for
previously mentioned input files. The complementary file is extracted from dynamic.content file
of scenarios inside the simulator and it differs based on the scenario. The contents of this file are
all elements in the simulation which cannot be mapped directly from the AdaptiveFlow, such as
camera elements, a base asset of the scenario, etc. Furthermore, the environment in VCE Simulator
is represented in 3D, whereas in AdaptiveFlow we have a 2D representation of the environment.
Since our goal here is to perform mapping and its automatization from an abstract 2D TRebeca
model to a 3D environment in the simulator it would not be adequate to choose scenarios with the
inconsistent and steep environment, therefore the scenarios with the relatively flat surface have
been segregated.

Phase 2

The second phase is also split into two different sections. The first section, consists of the model
generating, verification and evaluation, whereas the second section consists of the mapping from
the defined environment to the VCE Simulator. The first section uses AdaptiveFlow input files
for the model generation and goes through the whole process of AdaptiveFlow workflow. A first
section is executed before the second one because it is necessary to first verify and evaluate the
generated TRebeca model and then map model inputs to the Simulator.
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Pavle Mrvaljević Master Thesis

The second section consists of a mapping procedure from AdaptiveFlow inputs to the VCE
Simulator. In second part, AdaptiveFlow input files with the VCE complementary file, extracted
in a previous phase, are used for generating two outputs. The first output file is an image that
is a visual representation of a 2D environment that should be designed inside the Simulator. The
second file represents a dynamic.content file example that shows how the input file in the Simulator
is supposed to look like. It is used to define a suitable simulation scenario for the TRebeca model.

Phase 3

In the final phase, the comparison of the results from two sections of Phase 2 is conducted. De-
pending on the TRebeca model verification result, that result will be compared to the outcome in
the simulator scenario. If the model checking results in dissatisfaction of checked properties, then
that counter example will be mapped to the simulator to verify whether that scenario also fails
there. Otherwise, if the model satisfies checked properties then the performance evaluation will be
conducted and its results will be compared to the simulation results of the mapped model.

5.3.2. Description of files generated by the tool

The VMap tool is developed in Python programming language. It generates two output files
that are dynamic.content example file and a guideline image which is an abstracted illustration of
the desired Simulator scenario represented in 2D. Generated two files are then used to develop a
suitable simulation scenario. At the current stage of development, the dynamic.content example
file is used as a proof of concept. This is the case because there are several attributes in the certain
XML representation of objects that could not be assigned externally.

VCE Guideline

Referring back to the previous explanation, the guideline image, generated with the script, is a
representation of the AdaptiveFlow specifications in VCE Simulator fashion. This image can be
used as an instruction for developing an adequate simulation scenario by converting AdaptiveFlow
segments into edges and vertices defined in the script. In addition to that, information from
the topology file is extracted to place each PoI to a vertex which is in that PoI location. In
shown image, each PoI is labeled relative to its type. The coordinate plane of represented image
is calculated based on a scenario. The starting and ending coordinates are extracted from the
simulation scene and after that, the coordinate plane is split into a 10x10 grid to equalize it
with the AdaptiveFlow segmented environment. After that calculation, each vertex is put on the
midpoint of every available segment and every vertex has a directed edge towards those vertices to
which that segment is directed to. Identified connections stand for edges in the simulation terms.
In Figure 8, for the illustration purpose, we show the transformation from the AdaptiveFlow
environment of scenario described in previous sections to the 2D Simulator representation.

Figure 8: Conversion from AdaptiveFlow inputs to VCE guideline file
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The dynamic.content example

The VCE Simulator uses a dynamic.content file for each scenario which is an Extensible Markup
Language (XML) representation of every element, its attributes and their communication. Based
on the information from this file every element is properly set up inside the scenario. The other
file that is generated with the VMap tool is dynamic.content example file. It used as a proof of
concept which tells us that the AdapiveFlow input files could be mapped directly and automatically
with the VMap tool. The only obstacle/limitation in running the dynamic.content file, generated
by the tool, directly inside the simulator is the generating of persistentID for each new element
created. The VCE Simulator has a specific method for generating this attribute which could not
have been accessed. Despite that, the VMap tool can be used with the Rebeca tool stack and VCE
Simulator in a combination to perform formal verification of collaborative systems, moreover, it
can be observed as a link between the two. For now, this file in a combination with an image file,
generated by the VMap tool, is used as instruction files to develop a suitable simulation scenario
based on the AdaptiveFlow specifications by using VCE Simulator’s Scene Editor. Figure 9 shows
an example of how the elements can be generated directly inside the simulator just by strictly
following the outputs of the VMap tool.

Figure 9: Scenario developed by following the guideline

5.4. Conversion of elements from AdaptiveFlow to VCE Simulator

This section gives an in-depth description of elements that were identified as mappable from Adap-
tiveFlow to VCE Simulator. The conceptual, as well as applicative description of the mapping
pattern, was presented to better grasp how the mapping pattern has been defined and to provide
a better understanding of how the VMap tool for mapping automatization, described in section
5.3. has been developed.

The main elements that have been mapped from AdaptiveFlow to the Volvo Simulator are
segments and PoIs. The attributes of elements such as speed, capacity, length, type, etc. have been
mapped to the Edge element of the input file for the Simulator. Newly developed route element
from AdaptiveFlow has been mapped to the AhMission in the Simulator’s file in which we define
machine paths (missions). As for the machines, AdaptiveFlow provides more specific information
than the Simulator. Attributes such as leavingTime, unloadTime and speed are related to the
same attributes of the Simulator’s Edge element. However, other information could not be used
in the Simulator’s input file, since attributes like fuelConsumption or emission have not yet been
implemented. The system element in AdaptiveFlow specification represents a very convenient
way of specifying system properties of fleet management, but only safe distance, number of vehicles
and policy could be mapped to the VCE Simulator. As for the policies, policies for rerouting and
bypassing obstacles are yet to be implemented in the simulation.

19



Pavle Mrvaljević Master Thesis

5.4.1. AdaptiveFlow environment

As previously noted, the environment in the AdaptiveFlow is split into segments that communi-
cate with each other, by sending machines as messages. Defined segments represent tracks through
which machines travel. Each segment is represented as an actor that includes additional attributes
such as allowed speed, segment length, capacity, etc. To derive the mapping pattern, the track rep-
resentation inside VCE Simulator needs to be identified. The track representation in the simulator
consists of multiple components that have been described below.

• Vertices – This element is identified in the initial scenario, but it is not considered as essential
for a mapping.

• Edges – The edges are elements which consist of path points and a script that represents logic
for the edge control. There are also dynamic properties such as poiType, speed and capacity
that were subsequently implemented and defined in examined cases based on attributes of
the AdaptiveFlow segments.

• EdgeControl – This component represents a script in which edge is being controlled by certain
attributes. This script has been implemented in Section 6.1. of reverse engineering and it is
based on the logic of AdaptiveFlow in which all edges are controlled.

• PathPoints - All edges consist of path points that machines are following when they are
moving through edges.

Segments from the AdaptiveFlow have been mapped to the several elements described above.
All of the segments can be transformed into path points and edges. In the defined mapping
pattern, in the middle point of each segment, the path point is put. Adjacent segments, which
have defined paths between them by assigned directions in AdaptiveFlow, are connected with
edges. For example, if there are segments A and B and if the direction in environment.xml file is
defined as from A to B, by using this mapping pattern, the result would be 2 PathPoints in the
middle of both segments and one Edge that represents the connection between these two points.
It is important to note that in the mapping procedure, the starting point of the edge is located at
the center of that segment and the ending point is located in the middle of the adjacent segment
to which the current one is connected to. The new representation could be also defined as a graph.
For this case, the environment in AdaptiveFlow is illustrated as a graph G, vertices are PathPoints
defined as Pi = (Xi, Yi) by which Edge lengths is derived as a cost matrix E = (eij). The Edge
element length eij is Euclidean distance between PathPoints which is formulated as in Equation
4.

eij =
√

(Xi −Xj)2 + (Yi − Yj)2 (4)

Segement attributes, such as capacity and allowed speed are defined in the Edge component
and are controlled in the EdgeControl script.
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AdaptiveFlow environment

VCE Simulator dynamic.content - PathPoint

VCE Simulator dynamic.content - Edge

Figure 10: Mapping segment attributes to simulator elements
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5.4.2. AdaptiveFlow topology

Since current implementation inside the simulator did not have defined edge types by which it
could be determined whether one edge is loading track, unloading track or parking track, we had
to make that implementation to develop a convenient mapping pattern. In the AdaptiveFlow,
a topology file contains information about PoIs. The current state of the implementation sup-
ports the most essential PoIs which are Parking Station, Charging Station and Loading/Unloading
point. Additionally, the information about the x and y coordinate of that PoI in the segmented
environment is also defined. Based on that, we can see to which segment that PoI belongs to.

Taking this into consideration, the PoI information was perceived just like additional informa-
tion to specific segments. New attributes depend on the PoI type, so for the Loading/Unloading
point there is an additional loadTime attribute and for the Charging Station there is a charging-
Time. In the simulator’s dynamic.content file added attributes were merged to an Edge object.
Newly defined attributes are poiType and waitTime. In the Figure below we can see how mentioned
attributes are converted.

AdaptiveFlow topology

VCE Simulator dynamic.content - Edge

Figure 11: Mapping PoI attributes to simulator Edge attributes

5.4.3. AdaptiveFlow configuration

A final module that is mapped from the AdaptiveFlow is the system configuration. The configu-
ration is divided into two parts: system and machines. In the system specification, the elements
that were recognized as mappable are the number of vehicles and safe distance between machines.
The number of machines is not explicitly specified inside the dynamic.content file but we can
define as many machines as we need. The safe distance between machines is specified in meters
and this property is mapped to the GraphicalField component inside the machine element in the
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dynamic.content file. It represents the range around the machine which could be considered as a
safe zone. If the obstacle appears inside the zone the machine will automatically stop.

Obstacle

Autonomous hauler

GraphicalField
(safety zone)

EllipseOutline

Figure 12: Machine safety zone

The second part is the machine specification. For attributes such as fuelCapacity, fuelConsump-
tion, emmision and capacity we do not have equivalent attributes implemented inside machine
objects in the VCE Simulator. Regardless, the machine attributes in AdaptiveFlow such as leav-
ingTime and unloadTime is attached to the edge object in dynamic.content file. The final mapped
machine property is machine tasks. This property is connected to the routes from the topology
file in AdaptiveFlow in which PoIs are also defined. Machine tasks are specified as a set of PoI
identifiers and inside the routes element we set up paths between PoIs. Those paths represent a
set of segments through which machines go in order to reach their destination. The combination
of machine tasks and routes results in the mapping to the simulator’s AhMission object inside the
machine. The AhMission is a set of edges that defines a full path that the machine has to follow
for the purpose of executing its tasks. In Table 1 a mapping pattern of each element and their
attribute is presented.
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AdaptiveFlow concept Attribute Mappable Directly mappable VCE Simulator concept Attribute
x and y coordinates Yes No PathPoint:Start

direction Yes No PathPoint:End
x and y coordinates

freespeed Yes Yes speed
capacity Yes Yes capacity

Segment

length Yes No length
type Yes Yes poiType

PoI
loadTime/chargingTime Yes Yes

Edge

waitTime
origin Yes No

destination Yes NoRoute
path Yes No
tasks Yes No

AH15 AhMission

leavingTime Yes Yes
unloadTime Yes Yes

waitTime

speed Yes Yes
Edge

speed
fuelConsumption No No / /

fuelCapacity No No / /

Machine

emission No No / /
resending period No No / /
number vehicles Yes No Derived pattern /

safe distance Yes Yes AH15 GraphicalField
battery limit No No / /

policy Yes No Derived pattern /
obstacle occurences No No / /

obstacle number No No / /
obstacle max time No No / /

obstacle max duration No No / /

System

max attempts No No / /

Table 1: Mapping pattern from AdaptiveFlow to VCE Simulator

6. Safe-by-Construction Simulator

For the first case covered in this thesis we have looked at the existing scenario in the Simulator that
had some faults in the implementation. The goal was to provide a safe-by-construction alternative
to the current scenario by implementing AdaptiveFlow track-based logic as a guide, but yet not to
change scenario drastically.

In this case, AdaptiveFlow has been used as an analysis tool. We have set the requirement to
develop the closest model representation of this scenario. After the verification and evaluation, we
had to implement track-based control logic in the simulation which is also used for the implemen-
tation of the other two scenarios from the Section 7. This scenario has helped us in analyzing VCE
Simulator and deriving the mapping pattern from which the VMap tool, described from Section
5.3. emerged.

6.1. Initial scenario – Fleet management

In the initial scenario, there were three autonomous machines – automated haulers, and one loading
and one unloading point. Each of the machines had a task to transfer material from a loading
point to an unloading point and in that execution, it was required to make sure that there would
be no collisions nor deadlocks and that each machine would perform tasks undisturbed. To analyze
this scenario further, the control system has been examined which is also depicted in Figures 13
and 14.

As can be seen in the figure, several edges are in control of the loading and unloading site.
These control systems work with several variables based on which the movement of machines is
executed. First, there is loading and dumping time, measured in seconds, assigned to loading
site and dumping site control systems, respectively. Next, Touche Sensor is a Boolean variable
by which it is determined whether the movement of machines from the waiting queue towards the
exact spot for loading/unloading has been initialized and detected. Finally, the Loading/Unloading
variables are self-explanatory to an extent. They represent the state of task execution.

The main execution of loading/unloading is determined by these variables. It can be noticed
in Figure 13 that there are 4 edges in control - Edge 3, Edge 5, Edge 7 and Edge 0. All of these
edges have an initial speed of 0km/h until the event from the loading/dumping site control system
is triggered. Edges 3 and 7 represent tracks for machine queuing that have a maximum capacity
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Loading Time = 20
Touche Sensor = False
Loading = False

Dumping Time = 40
Touche Sensor = False
Dumping = False

Edge 4
Drive - to - Stop
No speed limits
Edge 5
Loading Site Pause
Speed = 0 (controlled)

Edge 3
Loading Site Queue
Speed = 0 (controlled)

Edge 6
Loading Site to
Dump Site
Speed = 50 (fixed)

Edge 2
Dump Site to
Loading Site
Speed = 50 (fixed)

LOADING
SITE

DUMP
SITE

Edge 8
Drive - to - Stop
No speed limits
Edge 0
Dump Site Pause
Speed = 0 (controlled)

Edge 7
Dump Site Queue
Speed = 0 (controlled)

Edge 1
Dump Site Exit
Speed = 20 (fixed)

Figure 13: Fleet management scenario - Control System

of 2 machines. When the movement of machines has been triggered by the control system, the
allowed speed of this track is set up to 20km/h which initializes the movement of machines from
the queue. Other two controlled edges, Edge 5 and Edge 0 represent tracks for the main execution
of the loading/unloading. The initial speed allowed on these tracks is 0km/h and the allowed speed
changes to 20km/h when the loading/unloading has been finished, so a machine could continue to
execute upcoming tasks and the first next machine from the queue could move to that spot. Edges
4 and 8 represent a route of connection between the waiting queue and loading/unloading spot
and the speed of these tracks is not in control of the system. Edges 2 and 6 have a fixed speed of
50km/h, so whenever the machine enters this track, it accelerates to that speed until it reaches the
next track. Finally, Edge 1 has allowed speed of 20km/h even though it is not a queuing track.

IDLE

Tp = 0 km/h
Tq = 20 km/h

LOADING

Tp = 0 km/h
Tq = 0 km/h

IDLE

Tp = 20 km/h
Tq = 0 km/h

Touche = 1
Loading = 0

Touche = 0
Loading = 0

Loading = 1

Figure 14: Loading site logic
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In Figure 14 the logic behind the loading site has been shown. The same logic is implemented for
the dumping site also. The rectangles on the figure represent the state of the control systems which
can be either idle or loading. The variables inside the squares represent allowed speed on certain
edges. On the one hand, there is a Tp variable which is a speed allowed on loading/unloading
site pause tracks, which in our case are Edges 5 and 0. On the other hand, there is a Tq variable
which represents allowed speed on queuing tracks. There are also previously mentioned variables,
Touche and Loading, which are Boolean variables, here this domain is represented as 0, 1.

To explain the execution of the logic it is necessary to choose the starting point for the iteration.
We have chosen an idle state, where Tp = 0km/h and Tq = 20km/h, as the initial state. In this
state, Tq is set to 20km/h which means that the event for moving of the machines from the queue
to loading/unloading point has been triggered. Here the Touche sensor detects a movement and
its value is set to 1 (True). After execution of this event, the machine arrives at the loading point
where both Tp and Tq is set 0km/h until the machine finishes its task. As can be assumed,
during the execution of this task the Loading variable is set to 1 (True). When this task has been
executed, the Tp is being set to 20km/h which initializes the machine moves to the next edge and
finally, Touche and Loading variables are set to 0 (False).

6.1.1. The crash occurrence

In the described scenario, the main issue that has been noticed is a crash that occurs if we place
one more machine on the Edge 5 and occupy the loading point for too long while the machines
are waiting on the queue. The crash happens when the third machine is arriving at the queuing
track while the other two are still waiting. The third machine will not be stopped from entering
the queuing track even though the capacity of that track can only handle 2 machines, therefore it
will cause a collision.

6.1.2. Design parameters

In order to execute the next step, which is designing a suitable model, the design parameters need
to be extracted and defined. Based on the previous analysis of the scenario, the design parameters
will be drawn out taking into account what AdaptiveFlow can provide. Some of these design
parameters are listed below.

• Number of vehicles

• Path segmentation and allowed speed

• Loading and dumping time

In the upcoming section, the focus will be on the model development, design and the way of
inclusion of parameters mentioned above in the model design. Additionally, the collision described
in this section is going to be addressed by modifying the logic of the system inside the scenario
based on the AdaptiveFlow principles.

6.1.3. Model development with the AdaptiveFlow

For this phase, the extracted design parameters were included in the model design. In Figure 15
the environment representation which is an illustration of the previously described and analyzed
scenario is introduced. This interpretation is an abstraction of the respective scenario and all
elements have been roughly distributed according to the environment inside the simulator. The
whole scenario has been split into segments with specific attributes that communicate and interact
in a concurrent manner. For the sake of reminiscing, the PS stands for the parking station, or the
starting point from where machines start their execution, LUP stands for loading/unloading point
and CS is for the charging station. The charging station has not been implemented inside the
simulator, but it has been included in this model because it is mandatory to define it. Segments
Ql and Qd represent queuing segments for the loading and dumping. The DE is a segment that
represents the ”Dump Site Exit” edge from Figure 15. AdaptiveFlow generates models based on
the three input files, the definition of those files will be described in more detail.
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Figure 15: AdaptiveFlow environment of initial scenario

Defining the environment

The attributes of segments that need to be defined are freespeed, capacity, length, availability,
neighbours and directions. The freespeed property is used for assigning the allowed speed in each
segment whose speed unit is m/s. In this case, the speed described in scenario analysis has been
converted and assigned for each segment. On the segments Ql, Qd, DE and LUPs the assigned
speed has been set to 6m/s, whereas for the other segment was set to 14m/s. Next, the capacity
of each segment has been set to 1 except for the queuing segments, which have been set to 2 based
on the requirements, and parking spot which has been set to 3 since there are 3 machines in this
scenario. The length of each segment was set to 75 meters and neighbors were added based on
all adjacent segments. The new feature that has been developed during this work introduced the
novel attribute for segments which are directions. This feature allows us to specify the linkage
between the segments. In other words, it means that the neighboring segments are not necessarily
connected, as it was before this upgrade.

Defining the toplogy

The topology file is used for setting the location of the PoIs and their properties. For this scenario
there are 2 loading/unloading points (LUPs) with attribute loadTime set to 20 seconds based on
the scenario. Even though, one LUP is unloading point this attribute also needs to be set even
though it will not be used.

Defining the configuration

The whole system configuration is set in the configuration file. The properties of the control
system are set here, including the properties of each machine. Based on the requirements some
of these properties have been assigned, other attributes that have not been defined inside the
simulator have been set arbitrarily. Properties for the whole system that have been specified
are the numberMachines, which is set to 3 since there are 3 machines and policy, which is set
to 1 (waiting policy) because in this scenario machines strictly follow only one path. As for
the machines, the type has been set to “hauler”, capacity has been set to 15, speed is set to
14m/s as an average speed and unloadTime was set to 40 seconds based on the requirements.
Additionally, tasks for each machine are defined as 2− > 3− > 2− > 3− > 0 or in different
notation LP− > UP− > LP− > UP− > PS, where LP stands for loading point, UP stands for
unloading point and PS stands for the parking station.
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6.1.4. Model generating

The final step of this phase consists of model generating by using previously defined files as inputs.
This TimedRebeca model will be used in the upcoming stage for verification and performance
evaluation.

6.1.5. Model verification results and performance evaluation of initial scenario

This phase of AdaptiveFlow can be performed by using one of the Rebeca model-checking tools
such as Afra or RMC. For verification of a current model, an RMC has been used and the following
results have been generated.

<model−checking−r epo r t>
<system−i n f o>

<t o ta l−spent−time>3</ to ta l−spent−time>
<reached−s t a t e s>846</ reached−s t a t e s>
<reached−t r a n s i t i o n s>958</ reached−t r a n s i t i o n s>
<consumed−mem>388400</consumed−mem>

</system−i n f o>
<checked−property>

<type>Reachab i l i t y</ type>
<name>Deadlock−Freedom and No Deadl ine Missed</name>
<r e s u l t> s a t i s f i e d</ r e s u l t>

<opt ions>
<opt ion>Export s t a t e space</ opt ion>
<opt ion>FTTS</ opt ion>

</ opt ions>
</checked−property>
<counter−example−t r a c e>
</ counter−example−t r a c e>

</model−checking−r epo r t>

Listing 8: Model checking results

This listing shows the output of RMC in which it can be noticed that there have been 846
reached states and 958 reached transitions. Received results show that this model does not result
in deadlock and that there are no missed deadlines. Another output of RMC is a state space file
that shows all of the possible system configurations. Using this file, the post-processing phase of
AdaptiveFlow is executed. By taking values from the state space, the statespace-analyzer tool
derives the evaluation of performance properties. For this model, the performance properties are
presented below.

Experiments opera t ing time
MODEL: model

FINAL STATE: 846 0
VEHICLE: 0 , time : 441
VEHICLE: 1 , time : 571
VEHICLE: 2 , time : 506

TOTAL TRAVELLED TIME: 1518

Experiments mate r i a l
MODEL: model

FINAL STATE: 846 0
VEHICLE: 0 , mate r i a l : 30
VEHICLE: 1 , mate r i a l : 30
VEHICLE: 2 , mate r i a l : 30

TOTAL MATERIAL MOVED: 90

Experiments CO2 emiss ion
MODEL: model

FINAL STATE: 846 0
VEHICLE: 0 , emis s ion : 16
VEHICLE: 1 , emis s ion : 35
VEHICLE: 2 , emis s ion : 22

TOTAL CO2 EMISSION: 73

Listing 9: Performance evaluation results
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By the results of performance evaluation, each machine needs roughly 8 minutes to execute
their tasks. The total material moved is 90 tonnes because the machine load capacity has been
set to 15 and all machines are loaded and unloaded twice in this scenario. The CO2 emission
calculation is an interesting feature of the AdapiveFlow. Here the total CO2 emission is presented
based on the state space file. Modeling a close scenario to the one defined at the beginning of
this section and its verification has been performed. Based on results, this model has passed all
assertions and there were no collisions or deadlocks detected. The next step is to implement the
logic of AdaptiveFlow, in which all edges are controlled in order to get simulation results.

6.1.6. Changes inside the Simulator scenario based on the AdaptiveFlow

After running the model verification and its performance evaluation, which was passed successfully,
the last step of the reverse engineering procedure is to make crucial, but not too radical changes
to detach it from the initial scenario. This is mandatory so that the scenario would work in a
predictive way, without any flaws.

In the initial version of the scenario, the control was established only over the 4 edges, whereas
the other edges remained uncontrolled. This was the main cause of the crash occurred in that
scenario. Following the AdaptiveFlow logic in which all tracks communicate between each other,
the sensor on each track has been set up. By doing this, the control over every edge in the scenario
has been established. To define the control system over every edge the desired logic needed to be
implemented. To each Edge object inside the simulator, the EdgeControl object was added to it
as a sub-element that would determine the behavior of that Edge. To initiate the EdgeControl we
needed to define some additional attributes to each Edge. This was done dynamically through the
code and these new edge attributes are presented and described below.

• poiType – This attribute was derived from the AdaptiveFlow topology file in which essential
PoIs have been defined. The values of this variable can be: track, loading, unloading, parking
and charging.

• waitTime – This value is used for charging, loading and unloading PoIs. It represents the
value of time needed to execute a certain task on that PoI.

• capacity – Similarly to the segment capacity, edge capacity represents the number of ma-
chines that are allowed to be on it at the same time.

• load – The number of machines that are currently on the edge is controlled with this variable.

• length – This is a variable calculated from the path points of the edge and it represents the
edge length.

• speed – This variable represents the allowed speed on each edge. This is equivalent to he
freespeed variable from AdaptiveFlow environment file.

The EdgeControl logic was implemented with the Javascript programming language. This
script is set up in the sensor and each sensor is located at the endpoint of each edge. By using the
attributes mentioned above, the script for edge control has been developed. The script is perceived
as an internal part of the edge. There is also another part of the implementation that is confidential
and that is the implementation in the internal code of the automated hauler. For the explanation
purposes, it is only important to know that each automated hauler has an AhMission property
defined that represents a set of edges. This set is the path that haulers need to go through in order
to execute their tasks.

6.1.7. Edge control implementation

Before defining the function for the edge control the interacting objects and adequate variables
have to be assigned. In the Listing 10 initialization of the variables has been shown. First, the
defineProperty function is called. This function defines the property in touchingBodies inside the
edge object, which will refer to the machine touching the sensor. Next, the currentAh, currentPath
and nextPath variables are initialized. The currentAh refers to the automated hauler that has
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touched the sensor, the currentPath refers to the current edge which is used to change the load,
that is the current number of machines on the edge, and the nextPath path is used to see whether
the next edge is free and if it is to allow the current machine to enter that edge and to increase
its load. Finally, the currentPathIndex is used as an index used to retrieve the current edge from
AhMission and assign that object to the currentPath variable. The last variable initialized is the
nextPathAvailable which is more or less self-explanatory. This variable is used to check whether
the next edge is free for the current machine to enter.

1 de f ineProper ty ( ” in touch ingBod i e s ” , new ObjectRef ( ) ) ;
2
3
4 var currentAh = new ObjectRef ( ) ; // to send event ”playNext”
5 var currentPath = new ObjectRef ( ) ; // to change i t s load
6 var nextPath = new ObjectRef ( ) ; // to check i t s capac i ty and change i t s load
7 var currentPathIndex = 0 ;
8 var nextPathAvai lable = f a l s e ;

Listing 10: Initialized variables inside the script

After everything has been initialized, the next step is the event handling of sensor touching.
This event is triggered when a machine touches the edge sensor and this function retrieves the
automated hauler object which is handled with its values. To assign the machine to the currentAh
variable, this function takes the object defined in the “in touchingBodies” property of the Edge
object. After the machine object is received, the values to other variables are set up.

The next condition that is checked is whether the current edge is the last one in the AhMission.
If it is not, then the nextPath value receives an edge that comes up next. Otherwise, we need to
see whether the AhMission is defined as a loop. If it is, then the AhMission will be repeated and
if not, the machine will stop.

In the following step, we have to check whether the next path in the AhMission exists. If
it does, we need to check if that track is available by checking its load property. After that, for
every PoI, except for the parking spot, the function sendEventRecursively() is called. This function
sends the automated hauler to the next track. In addition to that, this function is being delayed
by the waitTime of the PoI if the current edge’s poiType attribute is either loading, unloading
or charging. The waitTime represents the necessary time for the execution of the task on the
current edge.

Lastly, the load attribute of currentPath and nextPath are updated. For the current path, the
load is decreased by 1 because the machine is leaving the current edge and for the next path, the
load is increased since the machine has entered it.

1 handleProperty ( ” in sensorTouches ” , f unc t i on ( ) {
2 de lay ( 1 . 0 , f unc t i on ( ) {
3 // execute when in sensorTouches change from 0 to 1 ( and not from 1 to 0)
4 i f ( property . in sensorTouches ) {
5 currentAh = property . in touch ingBod i e s [ 0 ] . scope ;
6 currentPathIndex = currentAh . AhMission . currentPath ;
7 currentPath = currentAh . AhMission . plannedMiss ion [ currentPathIndex ] ;
8 // I f i t i s not the l a s t path
9 i f ( ! ( currentPathIndex == currentAh . AhMission . plannedMiss ion . l ength −

1) ) {
10 nextPath = currentAh . AhMission . plannedMiss ion [ currentPathIndex +

1 ] ;
11 }
12 e l s e i f ( currentAh . AhMission . loop ) { // Loop
13 nextPath = currentAh . AhMission . plannedMiss ion [ 0 ] ;
14 conso l e . l og ( ”Loop Loop Loop” ) ;
15 }
16 i f ( nextPath . i sVa l i d ( ) )
17 // check a v a i l a b i l i t y randomly f o r concurrency
18 de lay (Math . round (Math . random ( ) ∗ (5 − 1) + 1) , f unc t i on ( ) {
19 i f ( nextPath . S c r i p t . load < nextPath . S c r i p t . capac i ty )
20 nextPathAvai lable = true ;
21 i f ( nextPathAvai lable )
22 i f ( currentPath . S c r i p t . poiType == ” track ” ) { // check

the t rack type
23 sendEventRecurs ive ly ( currentAh , ”playNext” , nextPath .

S c r i p t . speed ) ;
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24 // send other events
25 }
26 e l s e i f ( currentPath . S c r i p t . poiType == ” load ing ” ) {
27 // send other events
28 de lay ( currentPath . S c r i p t . waitTime , func t i on ( ) {
29 sendEventRecurs ive ly ( currentAh , ”playNext” ,

nextPath . S c r i p t . speed ) ;
30 })
31 // send other events
32 }
33 e l s e i f ( currentPath . S c r i p t . poiType == ”unloading ” ) {
34 // send other events
35 de lay ( currentPath . S c r i p t . waitTime , func t i on ( ) {
36 sendEventRecurs ive ly ( currentAh , ”playNext” ,

nextPath . S c r i p t . speed ) ;
37 })
38 // send other events
39 }
40 e l s e i f ( currentPath . S c r i p t . poiType == ”parking ” ) {
41 // send other events
42 }
43 e l s e i f ( currentPath . S c r i p t . poiType == ” charg ing ” ) {
44 // send other events
45 de lay ( currentPath . S c r i p t . waitTime , func t i on ( ) {
46 sendEventRecurs ive ly ( currentAh , ”playNext” ,

nextPath . S c r i p t . speed ) ;
47 })
48 // send other events
49 }
50 e l s e {
51 // send other events
52 }
53
54
55 // I f automated hau le r s t a r t ed to play the next path , update

the paths parameters
56 de lay ( 2 . 0 , f unc t i on ( ) {
57 i f ( currentAh . AhMission . currentPath == currentPathIndex +

1) {
58 currentPath . S c r i p t . load−−;
59 nextPath . S c r i p t . load++;
60 }
61 e l s e {
62 // send other events ( a f t e r 2 seconds , automated hau le r

i s not p lay ing the next path )
63 }
64 })
65 })
66 }
67 })
68 }) ;

Listing 11: Function for handling sensor touching event

6.1.8. Simulation results

After everything has been implemented correctly, we had to explore what performance properties
can we measure with the Simulator. In Figure 16 we show the speed of each hauler during their
task execution. Due to the bigger edge length, we can see periodic consistency at the peak of
allowed speed.

In Figure 17 we present the relation between the total traveled distance of each hauler and time.
Because of the randomized delay in the edge control, implemented for the concurrency purposes
the third autonomous hauler finishes execution of its tasks first. Although AdaptiveFlow does not
measure the traveled distance of each machine, we will use this data as complementary information
to the evaluation of models.

31



Pavle Mrvaljević Master Thesis
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Figure 16: Fleet Management: Path index and autonomous hauler speed
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Figure 17: Fleet Management: Traveled distance of each autonomous hauler

6.1.9. Comparing the simulation results and model performance evaluation

The final phase of this process is to compare evaluations from the model and simulation. Identified
property that can be compared between the two is the operational time. It is important to note that
segment length in the models is probably not completely accurate to the represented simulation due
to the difference in the level of abstraction. This is why the other two scenarios have been developed.
It is necessary to obtain and compare results when these tools are orchestrated differently.
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Figure 18: Fleet Management: Operating time in AdaptiveFlow and VCE Simulator

Here we can see that the model designed with AdaptiveFlow results in a higher operational
time than its simulation equivalent. This can be attributed to the design of AdaptiveFlow that
is exempt from details in the environment. To see whether this case stands we need to develop
models that will be mapped to the Simulator in which the segment length of the model and track
length in the simulation will be equal.
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7. The Analysis Results of Case Studies

In this section, we have followed through the development of two new scenarios. The whole cycle
of design, verification, mapping and evaluation of these three examples has been described. Each
scenario focuses on a different perspective of tool orchestration. At the end of each subsection, we
have compared results received from the Timed Rebeca model and simulation scenario.

In the Volvo Electric Site scenario, the aim was to develop a correct by design scenario from
scratch, first in AdaptiveFlow and then following to that in the VCE Simulator. It was necessary
to make sure that the newly designed model will be prone to errors and that it will not result in
deadlock or an assertion check failure.

The counter-example was built in order to see how would we fix the falsely designed scenario by
using the simulator. First, the designed model went through the model verification which reported
an assertion failure. Next, that model was mapped to the simulator and we verified that the model
is not correctly designed in the simulator also. Then, we have applied the fix in the simulation by
modifying routes of machines and in that way, we ensured that there would be no deadlock or any
other fallacies with the scenario. Finally, changes were then applied to the previously built model
and result from the simulation and model evaluation were compared.

7.1. Volvo Electric Site example scenario

The second scenario which is covered was inspired by the schema from [6]. This schema is shown
in Figure 19. For our case, we have chosen to design a scenario with three autonomous machines.
In this case, there are two loading sections and one, common, unloading section. We need to
develop a suitable AdaptiveFlow model which will go through model verification and performance
evaluation. If the results were successful the next step is to map this model by using the VMap
tool and we need to verify whether the properties hold.

Figure 19: Volvo Electric Site Schema

7.1.1. Model verification and performance evaluation

The model developed consisted of 3 automated haulers (AH), 2 loading points and 1 unloading
point. Depending on whether the model goes through the verification successfully, we need to see
how much material was transferred and how long did it take in the performance evaluation of the
model. Figure 20 represents a design of the model for the scenario shown in the previous section.
The task for each hauler is presented below in Table 2 as the set of PoI IDs. Each machine moves
in speed of 15m/s, loading time on both loading points is set to 20s and machine unloading takes
40s.
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Figure 20: Volvo Electric Site: Model design

Machine Tasks Speed (m/s) Capacity
AH 1 2, 4, 2, 4, 0 15 15
AH 2 3, 4, 3, 4, 0 15 15
AH 3 2, 4, 2, 4, 0 15 15

Table 2: Volvo Electric Site: Machine attributes and tasks

Model-checking results

After the designed model was generated, we had to run the model verification with the RMC tool.
The resulting state space file was then inspected with the state-space-analyzer tool by which the
performance results for this model were extracted. We were interested in the operational time and
transferred material since those two properties can be evaluated in the simulator. Listings 12 and
13 shows the results of the model verification and performance evaluation.

<model−checking−r epo r t>
<system−i n f o>

<t o ta l−spent−time>7</ to ta l−spent−time>
<reached−s t a t e s>1248</ reached−s t a t e s>
<reached−t r a n s i t i o n s>1377</ reached−t r a n s i t i o n s>
<consumed−mem>499200</consumed−mem>

</system−i n f o>
<checked−property>

<type>Reachab i l i t y</ type>
<name>Deadlock−Freedom and No Deadl ine Missed</name>
<r e s u l t> s a t i s f i e d</ r e s u l t>

<opt ions>
<opt ion>Export s t a t e space</ opt ion>
<opt ion>FTTS</ opt ion>

</ opt ions>
</checked−property>
<counter−example−t r a c e>
</ counter−example−t r a c e>

</model−checking−r epo r t>

Listing 12: Volvo Electric Site: Model checking results

Experiments opera t ing time
MODEL: vce model

FINAL STATE: 1211 0
VEHICLE: 0 , time : 258
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VEHICLE: 1 , time : 304
VEHICLE: 2 , time : 359

TOTAL TRAVELLED TIME: 921

Experiments mate r i a l
MODEL: vce model

FINAL STATE: 1211 0
VEHICLE: 0 , mate r i a l : 30
VEHICLE: 1 , mate r i a l : 30
VEHICLE: 2 , mate r i a l : 30

TOTAL MATERIAL MOVED: 90

Listing 13: Volvo Electric Site: performance evaluation results

The results show that the model of this system does not lead to a deadlock nor any deadline is
missed. The performance evaluation results display that each machine needs about 5 minutes to
execute their tasks and each machine has moved 30 tonnes of material.

7.1.2. Mapping the model from AdaptiveFlow to the VCE Simulator

The third step of this process consists of mapping the inputs of this model to the VCE simulator.
This was done by using the VMap tool. By generating the dynamic.content example file the
information on how each edge in the simulation is supposed to be defined. The attribute of
each hauler, AhMission, is set according to the set of edges which lead to PoIs assigned in tasks.
The image is file generated as a result of the conversion of AdaptiveFlow inputs to suitable 2D
representation for the simulator. By combining this and dynamic.content example file, the suitable
scenario was designed in the Simulator. In Figure 21 we can see how the environment was set up
to conduct the experiment by following the guidelines.

Figure 21: Volvo Electric Site: Transformation from guideline to the Simulator environment

7.1.3. Simulation results

In relation to the previous case, this scenario has a more dynamic change of hauler speed. We can
see frequent oscillations in speed due to the shorter length of edges. This is the case because of
the arrangement of edge sensors in the environment. Each sensor causes machines to stop because
the edge control is triggered. Edge control after that redirects the machine to its next path. In
Figure 22 we can see that machines do not reach the peak of allowed speed because of the edge
shortness and because of the acceleration and deceleration. These details are not covered in the
model verification.

Figure 23 represents the distance traveled within a specified time for each machine. Inconsis-
tency in speed shows the difference in the smoothness of the line representing the traveled distance
in relation to the previous case.
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Figure 22: Volvo Electric Site: Path index and autonomous hauler speed
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Figure 23: Volvo Electric Site: Traveled distance of each autonomous hauler

7.1.4. Comparing the simulation results and model performance evaluation

In this case, we can see a shift when it comes to operational time measurement with the tools used.
This is caused mostly because of the more accurate representation of the Rebeca model inside
the simulation. In Figure 24 we can see that there is no much difference in the operational time
between the model and Simulator scenario, except for the first machine.
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Figure 24: Volvo Electric Site: Operating time in AdaptiveFlow and VCE Simulator
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7.2. Counter-example scenario
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Figure 25: Counter-example: Model design

To make this story complete, we have built a third scenario which represents a counter-example.
We had to make sure that the model was designed in such a way that it causes an assertion failure
and/or deadlock. Figure 25 shows the design of this model. The main features of the scenario are
listed below.

• One loading site with loading time 2s.

• One dump site with dumping time 4s.

• One charging station.

• Three autonomous haulers (AHs).

In Table 3 machine attributes and tasks are presented.

Machine Tasks Speed (m/s)
AH 1 2, 3, 2, 3, 0 14
AH 2 3, 2, 3, 2, 0 14
AH 3 2, 3, 2, 3, 0 14

Table 3: Machine attributes and tasks for a counter-example scenario

The scenario specification also included battery consumption, even though the battery con-
sumption is not implemented in the simulator. This was done to retrieve results from the model
checking, otherwise, the model verification would be executed indefinitely.

7.2.1. Model-checking results

From the specification above it is more or less trivial why would it come to the failure of the system.
Listing 14 shows model verification results with this configuration. In this case, two vehicles need
to recharge their batteries and try to access the charging station from two different segments (from
West and South). However, at the same time a third vehicle, that has been just refilled, wants to
leave the charging station. Since the segment’s capacities are all equal to one, they will attempt
to access their next segment until they run out of battery.
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<model−checking−r epo r t>
<system−i n f o>

<t o ta l−spent−time>0</ to ta l−spent−time>
<reached−s t a t e s>197</ reached−s t a t e s>
<reached−t r a n s i t i o n s>214</ reached−t r a n s i t i o n s>
<consumed−mem>28368</consumed−mem>

</system−i n f o>
<checked−property>

<type>Reachab i l i t y</ type>
<name>Deadlock−Freedom and No Deadl ine Missed</name>
<r e s u l t>a s s e r t i o n f a i l e d</ r e s u l t>
<message>The batte ry i s out o f charge !</message>

<opt ions>
<opt ion>Export s t a t e space</ opt ion>
<opt ion>FTTS</ opt ion>

</ opt ions>
</checked−property>

Listing 14: Model checking results

7.2.2. Implementation of the counter-example in the simulator

Given that the implementation of the battery consumption is not implemented in the simulation,
we have assigned machine tasks so they could move in the same direction as they move in the
model. It turned out that this case would cause the deadlock as the machines would stop after
a certain period because they would try to go in the opposite direction. To demonstrate the
malfunction of this model, we have disabled machine sensors and executed the scenario. Figure 26
shows snapshots of the scenario execution.

(a) Snapshot 1 (b) Snapshot 2 (c) Snapshot 3

(d) Snapshot 4

Figure 26: Counter-example: Scenario execution

The next step was to modify the scenario to provide a correct execution of machine tasks. The
main change reflected in the changing of AhMission for each machine. Figure 27 shows the setup
of the scenario in the simulator.

The modified scenario consisted of 1 loading site and 1 unloading site and 7 tracks. Each track
has a specific feature such as allowed speed, type and waiting time. In Table 4 the attributes of
each path are presented.
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Figure 27: Counter-example: Simulator environment

Path number Path type Speed (km/s) Waiting time (s)
P0 Track 20.0 0.0
P1 Track 50.0 0.0
P2 Loading 20.0 2.0
P3 Track 50.0 0.0
P4 Unloading 50.0 4.0
P5 Track 20.0 0.0
P6 Track 20.0 0.0
P7 Parking 20.0 10.0

Table 4: Paths in the counter-example scenario

To run this scenario successfully we had to make some changes relative to the initial setup. It
was necessary to ensure that machines would go through the same tasks as in the model. Hence, the
main solution was to modify machine routes to each task to avoid deadlock. After going through
changes and testing the final routes for each machine are derived. In Table 5 the final AhMission
for each autonomous hauler is displayed.

AH\Path 1 2 3 4 5 6 7 8 9 10 11 12 13 14
AH1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P7
AH2 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5
AH3 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P7

Table 5: Mission of each automated hauler in the counter-example scenario

7.2.3. Simulation results

After the configuration has been set, the scenario was executed. Figures 28, 29 and 30 present
results extracted from the simulation. Figure 28 shows the route of each automated hauler in the
2D space representation. Next, Figure 29 is a representation of a change of speed during a certain
amount of time. Besides, the change of the path inside AhMission is also shown to see a relation
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between the speed and the path index. Finally, the traveled distance has been compared between
automated haulers in Figure 30.
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Figure 28: Counter-example: The path played by each autonomous hauler

0 50 100 150 200
time[sec]

0

2

4

6

8

10

sp
ee

d[
m

/s
]

Path Index
AH1 Speed

(a) AH1

0 50 100 150 200
time[sec]

0

2

4

6

8

10

12

sp
ee

d[
m

/s
]

Path Index
AH3 Speed

(b) AH2

0 50 100 150 200
time[sec]

0

2

4

6

8

10

12

sp
ee

d[
m

/s
]

Path Index
AH3 Speed

(c) AH3

Figure 29: Counter-example: Path index and autonomous hauler speed

In Figure 29 we can notice the oscillations of the hauler speed when performing tasks. These
oscillations are caused by the implementation inside the simulator where the machine after reaching
the end sensor of each edge waits to be directed to the next path.
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Figure 30: Counter-example: Traveled distance of each autonomous hauler

As we have successfully executed the scenario, the next step is to make identical changes within
the model. If the verification proves to be successful, the final step is to compare the results.

7.2.4. Comparing the simulation results and model performance evaluation

To correct the model we have used a policy 4 in AdaptiveFlow which allows us to define strict
routes between the PoIs that machines should follow. The changes were made in topology file and
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Pavle Mrvaljević Master Thesis

the path between all PoIs have been assigned based on Table 5. With these changes, the model
has successfully passed the verification, and the results of the performance analysis are extracted.
The main property which we are interested in is the operating time because we can compare it to
the simulation. The operating time results for this model is presented on Listing 15.

Experiments opera t ing time
MODEL: model4

FINAL STATE: 1143 0
VEHICLE: 0 , time : 113
VEHICLE: 1 , time : 122
VEHICLE: 2 , time : 127

TOTAL TRAVELLED TIME: 362

Listing 15: Performance evaluation results of modified model

The last phase of analysis is the comparison between results from the simulation and a model. A
bar chart presented in Figure 31 shows the difference in operational time between the AdaptiveFlow
model and the VCE Simulator scenario.
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Figure 31: Counter-example: Operating time in AdaptiveFlow and VCE Simulator

The discrepancy between the results of the operating time in the model evaluation and simula-
tion is noticeable. Each machine takes longer to execute their tasks in the simulation environment
mostly due to the delay in the simulation where each machine has to wait a few seconds before
it is sent to another edge. This causes speed oscillations that do not happen in Rebeca models,
where speed is more or less consistent.
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8. Discussion

Throughout this work, we have covered the Volvo Electric Site case as we have performed formal
verification and evaluation of collaborative systems. The main goal was to discover how could
abstract Timed Rebeca models, generated by AdaptiveFlow, be transformed into a complex 3D
simulation in Volvo Simulator scenarios. This has been done by developing a VMap tool which is
used as a link between abstract models and simulation. VMap was envisioned to provide an input
file that can be directly used in the Simulator. Due to the inaccessibility to the most internal parts
of the Simulator, VMap provides an example of the input file that could be used as a directive
for creating an adequate scenario. This tool transforms the segmented 2D environment from
AdaptiveFlow to 3D simulated complex environment.

The results of the orchestration have been extracted by examining three case studies covered
in this thesis. Each case covers a unique way of tool orchestration. The results indicate that
design, verification and evaluation of collaborative systems could be performed with AdaptiveFlow
and VCE Simulator as complementary tools. The analysis confirms that AdaptiveFlow can be
used as both, design and analysis tool. By conducting case studies we have derived three different
methods of performing safety and performance evaluation of collaborating heavy machines. In the
“Fleet management” scenario, evaluation of the system was performed by an in-depth analysis of
the existing scenario, developing a suitable model with AdaptiveFlow and finally implementing
the track-based control logic to the simulation which was used for other cases also. In the Volvo
Electric Site example, we have developed a model from scratch. This model had to go through
safety verification successfully to ensure the correct design of the system. Through the medium of
the VMap tool, the simulation of this model has been developed. The final scenario represented a
counter-example which was developed to verify whether the faulty models developed with Adap-
tiveFlow would cause faults in the simulation. Additionally, the VCE Simulator has been used as
a correction tool where we modified scenarios to ensure proper execution and those changes have
been reversely mapped to the AdaptiveFlow to verify whether a model is correctly designed.

The results show a correlation in safety verification between AdaptiveFlow and VCE Simulator.
The common property in performance evaluation between these tools was the operational time.
Results differ depending on the approach to the tool orchestration. If AdaptiveFlow is perceived
as an analysis tool there can be the inaccuracy of some details of the system due to lifting the
complex simulation to a simplified model. Comparing the results from the first case to the other two
examples we can see a shift in results. In the first case, where AdaptiveFlow is seen as an analysis
tool, the performance evaluation shows that operational time is higher in Rebeca models. However,
this could go the other way around, depending on the method of deriving adequate AdaptiveFlow
specifications. On the other hand, two other cases provide a more suitable representation of the
model in the simulation and results here show that AdaptiveFlow provides models with lower
operational time in relation to the scenario in the Simulator. If we see AdaptiveFlow as a design
tool, this would provide more reliable data for its comparison with VCE Simulator. From retrieved
results, we can conclude that Rebeca models exclude some of the real-world constraints, such as
machine acceleration. The reliability of retrieved data is impacted by the implementation of the
edge control inside the simulator since its execution causes a delay in machine movement. Other
performance properties have been used as complementary data for the system evaluation.

This work provides the applicability of AdaptiveFlow in the specific domain by using tool
orchestration. This could be seen as an extension to [1] and [6] where the models generated with
AdaptiveFlow have been shifted to an adequate simulated environment. AdaptiveFlow, VMap and
VCE Simulator could be used as a tool stack for the design and analysis of collaborative systems.
As a difference to papers such as [28], [29] and [30], we provide a different perspective when it
comes to formal verification of autonomous systems.

Further research is required to establish the adaptability in the simulation by implementing pol-
icy such as rerouting taken from the AdaptiveFlow. Besides, more cases with varying complexities
should be examined in order to provide more reliable generalization.

42



Pavle Mrvaljević Master Thesis

9. Conclusions

The formal verification of collaborative systems represents a complex process in which multiple tools
are involved. This thesis provides a proposal of the tool orchestration methods for verification of
these types of systems for the electrified quarry site. The verification was done through developing
and evaluating models with the AdaptiveFlow framework that were mapped with the VMap tool
to the Volvo Simulator. The mapping procedure was required to remove a gap between abstract
Timed Rebeca models and simulation scenarios. All of these tools are a part of tool stack adequate
for addressing the complexity of safety verification and performance evaluation of collaborative
autonomous machines.

Through the development of three case studies, these methods are proven as adequate for devel-
oping correct-by-design systems. Features of AdaptiveFlow and VCE Simulator present different
ways of evaluation of these systems. Safety verification is shown as a common ground between
these tools. The difference in the evaluated performance properties is viewed as complementary
information that provides a broader picture of the system itself. Regardless, the operational time is
recognized as a common performance property that can be evaluated. A combination and a map-
ping between AdaptiveFlow and VCE Simulator impart a more reliable verification that allows a
more secure and efficient development of collaborative systems.

The extension of this work includes the development of more cases with different specifications.
Additionally, the VMap tool should be upgraded as the understanding of specific modules of the
VCE Simulator increases. Following that, the AdaptiveFlow framework is also a work in progress
that is getting more sophisticated as its usage expands. Also, we see an open field for research
when it comes to the automatization of reverse mapping in which complex environments would be
translated into abstract models. Finally, the domain of this analysis should broaden to other use
cases as these tools continue to evolve.
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