
Mälardalen University Press Dissertations
No. 402

CONFIGURATION AND TIMING ANALYSIS OF TSN-
BASED DISTRIBUTED EMBEDDED SYSTEMS

Bahar Houtan

2024

School of Innovation, Design and Engineering

Copyright © Bahar Houtan, 2024
ISBN 978-91-7485-634-7
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

Mälardalen University Press Dissertations
No. 402

CONFIGURATION AND TIMING ANALYSIS OF
TSN-BASED DISTRIBUTED EMBEDDED SYSTEMS

Bahar Houtan

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin
för innovation, design och teknik kommer att offentligen försvaras tisdagen den
12 mars 2024, 09.15 i Gamma och via Zoom, Mälardalens universitet, Västerås.

Fakultetsopponent: Professor Jean-Luc Scharbarg, University of Toulouse (France)

Akademin för innovation, design och teknik

Abstract
The set of IEEE Time-Sensitive Networking (TSN) standards is an emerging candidate for backbone
communication in modern applications of real-time distributed embedded systems. TSN provides
various traffic shaping mechanisms that aim at managing the timing requirements of traffic. Emerging
applications of these systems, particularly in the automotive domain, often run complex distributed
software that requires low-latency and high-bandwidth communication across multiple onboard
electronic control units. Using TSN in these systems introduces multiple challenges. Specifically, the
developers of these systems face a lack of development techniques and tools, as TSN standards only
offer general recommendations for the use of its features and mechanisms. There is an urgent need
for development techniques, tools, and methods to assist the developers in effectively leveraging
the features outlined in TSN standards. In this thesis, we identify and address several challenges
encountered in the development of TSN-based distributed embedded systems, particularly focusing on
the stages of system and software modeling, network configuration, and timing analysis. The overall
goal of this thesis is to support the development of these systems in the aforementioned stages while
considering the Quality of Service (QoS) requirements of all traffic classes in TSN. We present techniques
to facilitate the system and software modeling of TSN-based distributed embedded systems. These
techniques enable performing timing analysis in the early stages of system and software development. In
the stage of network configuration, we propose techniques for managing the configuration complexity
and supporting the automatic configuration of mechanisms in TSN. The proposed configuration
techniques consider achieving acceptable QoS in various traffic classes. In the stage of timing analysis,
we address the challenges of incorporating various TSN traffic classes and mechanisms by extending
the existing timing analyses. The results indicate that the proposed techniques effectively facilitate the
system and software modeling, network configuration, and timing analysis of TSN-based distributed
embedded systems.

ISBN 978-91-7485-634-7
ISSN 1651-4238

v

”Peace comes through bearing the hardships. As the treasure
and the dragon, the rose and the thorn, joy and sorrow, all
mingle into one.”

Saa’di Shiraazi

Abstract

The set of IEEE Time-Sensitive Networking (TSN) standards is an emerging candidate
for backbone communication in modern applications of real-time distributed embedded
systems. TSN provides various traffic shaping mechanisms that aim at managing the
timing requirements of traffic. Emerging applications of these systems, particularly in
the automotive domain, often run complex distributed software that requires low-latency
and high-bandwidth communication across multiple onboard electronic control units.
Using TSN in these systems introduces multiple challenges. Specifically, the developers
of these systems face a lack of development techniques and tools, as TSN standards only
offer general recommendations for the use of its features and mechanisms. There is an
urgent need for development techniques, tools, and methods to assist the developers in
effectively leveraging the features outlined in TSN standards. In this thesis, we identify
and address several challenges encountered in the development of TSN-based distributed
embedded systems, particularly focusing on the stages of system and software modeling,
network configuration, and timing analysis. The overall goal of this thesis is to support
the development of these systems in the aforementioned stages while considering
the Quality of Service (QoS) requirements of all traffic classes in TSN. We present
techniques to facilitate the system and software modeling of TSN-based distributed
embedded systems. These techniques enable performing timing analysis in the early
stages of system and software development. In the stage of network configuration,
we propose techniques for managing the configuration complexity and supporting the
automatic configuration of mechanisms in TSN. The proposed configuration techniques
consider achieving acceptable QoS in various traffic classes. In the stage of timing
analysis, we address the challenges of incorporating various TSN traffic classes and
mechanisms by extending the existing timing analyses. The results indicate that the
proposed techniques effectively facilitate the system and software modeling, network
configuration, and timing analysis of TSN-based distributed embedded systems.

vii

Sammanfattning

IEEE Time-Sensitive Networking (TSN) är en framväxande kommunikationsteknik för
moderna tillämpningar inom distribuerade inbyggda realtidssystem. TSN definerar olika
mekanismer för trafikomformning som syftar till att ge flexibilitet i hur fördröjningar
och bandbredd fördelas mellan olika användare. Nya tillämpningar av distribuerade
inbyggda system i realtid har ofta mycket komplex distribuerad programvara som
kräver kommunikation med låg latens och hög bandbredd över flera enheter (ECU i
automotiv system). Att anpassa sig till TSN för att utveckla sådana system innebär
många utmaningar. Dessutom finns det en brist på stödtekniker för utvecklare eftersom
TSN-standarder endast ger generaliserade rekommendationer för tillämpningen av dess
mekanismer. Därför finns det ett behov av tekniker och metoder för att stödja utveck-
lare att använda tillgängliga funktioner i TSN-standarderna. I den här avhandlingen
angriper vi några av utmaningarna i utvecklingsstadierna av TSN-baserade distribuerade
inbyggda system som är modellering, konfiguration av nätverk och tidsanalys. Målet
med avhandlingen är att stödja utvecklingen av TSN-baserade distribuerade inbyggda
system i dessastadier, samtidigt som man tar hänsyn till Quality of Service (QoS) krav
inom alla trafikklasser i TSN. Vi tillhandahåller tekniker för att underlätta system-
och mjukvarumodellering av TSN-baserade distribuerade inbyggda system som ger
ett verktyg för utvecklare att designa sina system i tidiga stadier av systemutveckling.
Inom konfiguration av nätverk föreslår vi tekniker för att hantera komplexiteten och
den automatiska konfigurationen av TSN-formningsmekanismer. Under tiden tar vi
hänsyn till att nå en acceptabel QoS i olika trafikklasser. Inom tidsanalysen tar vi itu
med utmaningarna med att införliva olika TSN-trafikklasser och mekanismer genom att
utöka de befintliga tidsanalysmetoderna. Genom de tre bidragna tillvägagångssätten
underlättar våra resultat processen att utveckla TSN-baserade distribuerade inbyggda
system.

ix

Acknowledgements

I express my gratitude to my supervisors Saad Mubeen, Mohammad Ashjaei, Masoud
Daneshtalab, and Mikael Sjödin. All of you played a very important role in my growth
and preparation of this thesis. I will always be grateful for that. Thank you Saad for
patiently providing me with your insights and comments. I am grateful for the times that
you encouraged me to keep up when even I was doubting myself. I would like to truly
thank Mohammad, one of my co-supervisors who I see as my second main supervisor.
Thank you for always being available for discussions. Either if I came for discussion
when it was early in the morning as you arrived at your office, or if I just approached
you for discussion in the corridor or via chat you were always open for a talk. Thank
you Masoud and Mikael for your valuable advice, suggestions, and encouragement.

Special thanks to John Lundbäck and Kurt-Lennart Lundbäck for allowing me to
experience your nice work environment at Arcticus Systems, applying my research in
RUBUS ICE, and for the enlightening lunch talks. These had a great impact on shaping
my research. Thanks to Sara Afshar, Mehmet Onur Aybek, and Albert Bergström, my
co-authors in the included papers in this thesis.

I find myself more than lucky to have met several amazing, creative, motivating,
and supportive people in my life and education. I want to express my utmost respect to
Professors Mats Björkman, Elizabeth Uhlemann, Thomas Nolte, Cristina Seceleanu,
and Jan Carlson. Besides, I extend my thanks and appreciation to all the teachers,
researchers, staff, and PhD students that I met and had the opportunity to work with
during my PhD studies at Mälardalen University. Listing all of you here is impossible
but I want you to know that each of you has a place in my heart.

Finally, I am eternally grateful to my family, especially my parents and brother for
their endless support and love. Thank you for giving me the motivation to work hard, to
build myself, and to never give up. I owe everything I have achieved in my life to you.

Bahar Houtan,
Västerås, February 2024

xi

xii

This work is supported by the Swedish Governmental Agency for Innovation Sys-
tems (VINNOVA) via the DESTINE project (grant nr. 2018-02728). We would like to
thank our industrial partners, which include Volvo Construction Equipment, Sweden,
and Arcticus Systems, Sweden, for their invaluable feedback.

List of Publications

Main Contributing Publications1

• Paper A: “An Automated Configuration Framework for TSN Networks,” B. Houtan,
A. Bergström, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen, in the
22nd IEEE International Conference on Industrial Technology, Valencia, Spain,
2021.

• Paper B: “Synthesising Schedules to Improve QoS of Best-Effort Traffic in TSN
Networks,” B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen,
in the Proceedings of the 29th International Conference on Real-Time Networks
and Systems, ACM, Nantes, France, 2021.

• Paper C: “Schedulability Analysis of Best-Effort Traffic in TSN Networks,”
B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, S. Afshar, and S. Mubeen, in
the 26th IEEE International Conference on Emerging Technologies and Factory
Automation, Västerås, Sweden, 2021.

• Paper D: “Supporting End-to-End Data Propagation Delay Analysis for TSN-
Based Distributed Vehicular Embedded Systems,” B. Houtan, M. Ashjaei, M.
Daneshtalab, M. Sjödin, and S. Mubeen, in the Journal of Systems Architecture,
vol. 141, 2023.

• Paper E: “End-to-end Timing Modeling and Analysis of TSN in Component-
Based Vehicular Software,” B. Houtan, M. O. Aybek, M. Ashjaei, M. Daneshtalab,
M. Sjödin, J. Lundbäck, and S. Mubeen, in the 26th IEEE International Sympo-
sium on Real-Time Distributed Computing, Nashville, Tennessee, USA, 2023.

• Paper F: “Bandwidth Reservation Analysis for Schedulability of AVB Traffic in
TSN,” B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen, in the
25th IEEE International Conference on Industrial Technology, Bristol, UK, 2024.

1These publications are included in the Ph.D. Thesis.

xiii

xiv

Other Related Publications2

• End-to-end Timing Model Extraction from TSN-Aware Distributed Vehicle Soft-
ware, B. Houtan, M. O. Aybek, M. Ashjaei, M. Daneshtalab, M. Sjödin, S.
Mubeen, in the 48th Euromicro Conference Series on Software Engineering and
Advanced Applications, 2022.

• Configuring and Analysing TSN Networks Considering Low-Priority Traffic,
B. Houtan, Licentiate Thesis, Mälardalen University, Västerås, Sweden, 2021.

• Supporting End-to-end Data-propagation Delay Analysis for TSN Networks,
B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, S. Mubeen, MRTC Re-
port, Mälardalen Real-Time Research Centre, 2021, Report Nr. MDH-MRTC-
339/2021-1-SE.

• Developing Predictable Vehicular Embedded Systems Utilizing Time-Sensitive
Networking–A Research Plan, B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin,
S. Mubeen, in the 15th Swedish National Computer Networking Workshop, 2019.

• Work in Progress: Investigating the Effects of High Priority Traffic on the Best
Effort Traffic in TSN Networks, B. Houtan, M. Ashjaei, M. Daneshtalab, M.
Sjödin, S. Mubeen, in the 40th IEEE Real-Time Systems Symposium, 2019.

2These publications are not included in the Ph.D. thesis.

Acronyms

AADL Architecture Analysis & Design Language.
AUTOSAR AUTomotive Open System ARchitecture.
AVB Audio-Video Bridging.

BE Best-Effort.
BET Bounded Execution Time.
BRA Bandwidth Reservation Analysis.

CAN Controller Area Network.
CAN FD CAN Flexible Data Rate.
CBS Credit-Based Shaping.
CP Constraint Programming.

ECUs Electronic Control Units.

FIFO First-In-First-Out.

GA Genetic Algorithm.
GCL Gate Control List.
GUI Graphical User Interface.

ICE Integrated Component model development Environ-
ment.

ILP Integer Linear Programming.

LET Logical Execution Time.

xv

xvi Acronyms

ML Machine Learning.

NC Network Calculus.

OMT Optimization Modulo Theorem.
OPC UA OPC Unified Architecture.

QoC Quality of Control.
QoS Quality of Service.

RC Rate-Constrained.
RCM RUBUS Component Model.
RG Research Goal.
RGs Research Goals.
ROS Robot Operating System.
RTA Response-Time Analysis.

SA Simulated Annealing.
SMT Satisfiability Modulo Theorem.
SP Strict Priority.
ST Scheduled Traffic.
SWC Software Components.

TAS Time-Aware Shaper.
TC Thesis Contribution.
TCs Thesis Contributions.
TSN Time-Sensitive Networking.
TT Time-Triggered.
TTEthernet Time-Triggered Ethernet.

WCET Worst Case-Execution Time.

Contents

I Thesis 1

1 Introduction 3
1.1 Research Goals . 4
1.2 Research Process . 6
1.3 Thesis Outline . 8

2 Background and Related Works 11
2.1 Real-Time Communication . 11
2.2 Offline Scheduling . 14
2.3 Schedulability Analysis . 22
2.4 End-to-End Data-Propagation Delay Analysis 25
2.5 Software Architecture Modelling . 32

3 Research Contributions 35
3.1 Thesis Contributions . 35
3.2 Research Papers . 39

4 Discussions 47
4.1 Connecting Thesis Contributions to the Research Goals 47

5 Conclusions and Future Works 51
5.1 Conclusions . 51
5.2 Future Works . 52

Bibliography 55

xvii

xviii Contents

II Included Papers 65

6 Paper A:
An Automated Configuration Framework for TSN Networks

66
6.1 Introduction . 70
6.2 Background and Related Work . 71
6.3 Automated Configuration Framework 72
6.4 Implementation . 78
6.5 Evaluation . 81
6.6 Conclusions . 84
Bibliography . 85

7 Paper B:
Synthesising Schedules to Improve QoS of Best-effort Traffic in TSN Net-
works 88
7.1 Introduction . 90
7.2 Background and Related Work . 92
7.3 System Model . 95
7.4 Network Constraints . 96
7.5 Experimental Evaluation . 106
7.6 Conclusion and Future Works . 110
Bibliography . 111

8 Paper C:
Schedulability Analysis of Best-effort Traffic in TSN Networks 118
8.1 Introduction . 120
8.2 Background and Related Work . 121
8.3 System Model . 123
8.4 Revisiting RTA for TSN without the BE Traffic 125
8.5 Proposed RTA for the BE traffic in TSN 131
8.6 Evaluation . 135
8.7 Conclusion and future work . 138
Bibliography . 139

9 Paper D:
Supporting End-to-end Data Propagation Delay Analysis for TSN-based
Distributed Vehicular Embedded Systems 143
9.1 Introduction . 145

Contents xix

9.2 Background and Related Work . 148
9.3 End-to-end Data Propagation Delays 153
9.4 System Model . 158
9.5 End-to-end data-propagation delay analysis 164
9.6 Vehicular Application Case Study 173
9.7 Conclusions and Future Works . 184
Bibliography . 185

10 Paper E:
End-to-end Timing Modeling and Analysis of TSN in Component-Based
Vehicular Software 194
10.1 Introduction . 196
10.2 Background and Related Works . 197
10.3 End-to-end Timing Model . 200
10.4 Proposed End-to-end Timing Model Extraction Methodology 204
10.5 Evaluation on a Vehicular Industrial Use-case 210
10.6 Conclusions . 212
Bibliography . 215

11 Paper F:
Bandwidth Reservation Analysis for Schedulability of AVB Traffic in TSN224
11.1 Introduction . 226
11.2 Background and Related Work . 227
11.3 System Model . 228
11.4 Response-time Analysis for TSN . 230
11.5 Proposed bandwidth reservation analysis 235
11.6 Assessment of the proposed solution 241
11.7 Conclusion and future work . 244
Bibliography . 244

Part I

Thesis

1

Chapter 1

Introduction

Several standardized protocols are used to support high-bandwidth communication
requirements among the Electronic Control Units (ECUs) in the vehicular domain1.
Examples of some commonly used onboard communication protocols in the automo-
tive domain include Controller Area Network (CAN) [1], CAN Flexible Data Rate
(CAN FD) [2], and Flex Ray [3]. The set of Time-Sensitive Networking (TSN) [4]
standards is a relatively recent candidate that further support real-time onboard com-
munication. The TSN standards introduce various mechanisms [5], such as time-
synchronization (IEEE802.1AS), bounded latency (IEEE802.1Qav, IEEE 802.1Qbu,
and IEEE 802.1Qbv), reliability (IEEE 802.1CB), and security (IEEE802.1Qci). With
the support for traffic classes with different timing requirements, i.e., hard real-time
Scheduled Traffic (ST), high bandwidth Audio-Video Bridging (AVB) traffic, and Best-
Effort (BE) traffic, TSN serves for the flexible design of highly complex functions
for distributed embedded systems. However, guaranteeing the timing predictability
of the time-critical functions, while supporting an acceptable level of Quality of Ser-
vice (QoS) for non-critical functions is a challenge in the design and development of
TSN-based automotive systems [6, 7].

1Vehicular domain includes systems like cars, trucks, construction vehicles, loading vehicles, recycling
vehicles, and moving cranes, to mention a few. The automotive domain refers to a subset of the vehicular
domain.

3

4 1.1 Research Goals

1.1 Research Goals
Towards facilitating the development of distributed embedded systems that use TSN as
the real-time communication backbone, we have formulated the overall research goal of
this thesis as follows:

To support the development of TSN-based distributed embedded systems in
system and software modeling, network configuration, and timing analysis
stages while considering the QoS requirements of all traffic classes in TSN.

The overall research goal targets the improvement of the process for developing
TSN-based distributed embedded systems. For this, we consider three main development
stages of these systems: system and software modeling, network configuration, and
timing analysis. We aim at supporting the three development stages to facilitate reaching
a satisfactory or improved QoS for all traffic classes depending on the application
requirements. The overall research goal is divided into three Research Goals (RGs) as
we explain in the following subsections.

1.1.1 Research Goal 1 (RG1)

The focus of RG1 is on the timing analysis stage in developing TSN-based systems and
is formulated as follows:

RG1: Develop an end-to-end data-propagation delay analysis for TSN-based
distributed embedded systems.

TSN-based distributed embedded systems comprise multiple end-stations communi-
cating over TSN. Analyzing the end-to-end data-propagation delays in these systems
requires pre-calculated response times of tasks in the end-stations and response times
of TSN messages as essential input parameters. Calculations of these delays is chal-
lenging for several reasons. Firstly, the existing schedulability analysis techniques
do not support all the configuration scenarios of TSN mechanisms. For example, us-
ing new combination of TSN mechanisms, i.e, frame preemption, hold and release,
CBS, and TAS leads to implications for the design and analysis of these systems [8],
whereas the existing worst-case Response-Time Analysis (RTA) supports only the most
common design scenarios. For instance, there is a lack of worst-case RTA to verify
timing requirements of real-time traffic if it is assigned to the lower-priority BE class,
i.e., legacy real-time traffic. Secondly, TSN supports synchronization of the sender

Chapter 1. Introduction 5

and receiver end-stations for deterministic transmission of real-time ST according to
IEEE 802.1AS. The existing end-to-end data-propagation delay analysis supports only
non-synchronized legacy communication protocols, such as CAN [1]. The existing
analysis calculates pessimistic end-to-end delays (data age and reaction time delays)
in the case when the sender and receiver end-stations are synchronized. Hence, the
existing analysis needs extensions to support distributed embedded systems where the
end-stations are synchronized.

In summary, the purpose of RG1 is to address the following gaps: 1) developing
RTA for all traffic classes in TSN, and 2) incorporating the newly developed RTA and
the TSN synchronization mechanism to the end-to-end data-propagation delay analysis.

1.1.2 Research Goal 2 (RG2)

The RG2 addresses the configuration stage in developing TSN-based systems and is
formulated as follows:

RG2: Develop network configuration techniques considering the QoS require-
ments of all traffic classes in TSN-based distributed embedded systems.

One of the challenges that the designers of the systems face at the network con-
figuration stage is that increasing the complexity of applications also increases the
configuration search space for TSN-based distributed embedded systems. Firstly, the
complexity lies in the increasing size of the network and traffic. Secondly, the integration
of more safety-critical applications into the system functionalities demands utilizing a
combination of traffic-shaping mechanisms to manage different timing requirements of
traffic. This, in turn, contributes to the configuration complexity because of the need for
carefully setting up the traffic shaping mechanisms considering the QoS requirements of
the system, i.e., meeting the timing constraints on the data age and reaction time delays.

Traditionally, the configuration of the traffic shapers in the network is conducted
based on experience and understanding of the system. However, finding a proper
configuration for TSN mechanisms for larger applications can become difficult even for
skilled designers. Moreover, the recommendations by the TSN standards are generalized.
There is a lack of methods to configure various mechanisms and features in TSN for the
scenarios that are not anticipated by the TSN recommendations.

To reach RG2, we identify that there is a lack of techniques and methods for 1)
automatic network configuration; 2) managing the configuration complexity of TSN
shaper mechanisms; and 3) reaching an acceptable QoS while using various TSN shaper
mechanisms.

6 1.2 Research Process

1.1.3 Research Goal 3 (RG3)
The RG3 targets the system and software modeling stage in developing TSN-based
systems and is formulated as follows:

RG3: Develop a methodology to extract end-to-end timing information from
TSN-based distributed software architectures to support their timing analysis.

To perform end-to-end data-propagation delay analysis of a distributed embedded
system, it is crucial to extract the necessary timing information from the system. One
of the challenges during the development of TSN-based distributed embedded systems
is to support their analysis at the software architecture abstraction level. The software
architecture of a system can be described in terms of software components and their
interconnections. Software architectures often do not completely describe the end-to-
end timing information. Some of the timing information needs to be derived via/from
automatic configuration tools as a consequence of RG2. For example, some timing
information may come from the network configuration mechanisms. More specifically,
the offsets for ST messages can be manually defined and included in the software
architecture. However, configuring offsets within large and complex systems can be a
significant workload for the software architecture developers/modelers. Therefore, the
offset-related information can come from automatic configuration algorithms that are
typically preferred for scheduling the ST messages in TSN.

To reach RG3, we aim at facilitating the system and software modeling stage
by addressing the challenge of end-to-end timing analysis of software architectures
describing the TSN-based distributed embedded systems.

1.2 Research Process
An overview of the research process of this thesis is included in Figure 1.1. We use the
hypothetico-deductive [9] research method for computer science to conduct research
towards the overall research goal of this thesis. This research is instantiated in close
collaboration with industrial partners: Volvo CE2 and Arcticus Systems3. Therefore,
in the process of this research, we received the industrial partners’ feedback through
discussions.

• Beginning: At the beginning of the doctoral studies the overall research goal is
defined as a research proposal. This overall research goal is then refined through

2https://www.volvoce.com/
3https://www.arcticus-systems.com/

Chapter 1. Introduction 7

Figure 1.1. Research process

discussions. Consequently, we define the RGs of the thesis. Subsequently, the
research challenges that we would face to fulfill RGs are identified through
discussions.

• The state-of-the-art Review: To obtain insights into the state of the art and also
identify the requirements in practice, a literature review is performed towards
each of the RGs. Besides, the latest revisions of the set of TSN standards and
AUTOSAR standards are referred to iteratively.

• Problem Formulation: In this stage, we identify and formulate problems in the
domain of each RG. The identified problems address challenges towards each of
the RGs. Moreover, through the meetings with our industrial partners at Volvo
CE and Arcticus Systems, we develop applicable use-cases of TSN standards
towards each RG.

• Solution Proposal: Novel solutions that address challenges towards each RG
are discussed and proposed. The research methodology and implementation
challenges for the solutions are identified. The proposed solutions are discussed

8 1.3 Thesis Outline

with the partners and revised accordingly before proceeding to the implementation
step.

• Solution Implementation The selected solutions from the previous stage are
implemented by applicable techniques and methods, e.g., simulation tools (i.e.
OMNET++ and NeSTiNg), satisfiability solvers (i.e. Z3 Solver), theoretical
analysis methods (i.e. worst-case RTA and end-to-end data-propagation delay
analysis).

• Solution Evaluation: Each solution is evaluated on an appropriate use case or
using experiments. We select some of the most common use cases and data sets
in the automotive domain. Besides, we receive use cases from our industrial
partners.

• Discussion and Validation The evaluation results are discussed and their validity
is examined. If the evaluation results are judged to require a revision, we trace
back to identify the source and propose a new solution to the problem. Further-
more, in such cases, the research process is reiterated by refining the current
solution or defining a new solution. Finally, if the evaluation results is accepted,
the process is finished by publishing each of the proposed solutions.

1.3 Thesis Outline

This thesis consists of two main parts. The first part provides an introduction to the
overall work of the thesis and consists of five chapters:

Chapter 1 - Introduction: Chapter 1 presented an introduction to the research area.
Besides, this chapter provided a detailed overview of the research in this thesis. We also
presented the overall research goal, RGs, and the challenges faced in reaching the RGs.
Moreover, the research process used in the thesis was presented.

Chapter 2 - Background and Related Works: In this chapter, we provide technical
background on the research area to which this thesis contributes: real-time communi-
cation, offline scheduling, schedulability analysis, end-to-end data-propagation delay
analysis, and software architecture modeling. Moreover, we present state-of-the-art
research and position our contributions within this research landscape.

Chapter 1. Introduction 9

Chapter 3 - Research Contributions: In this chapter, firstly we present our findings
with Thesis Contributions (TCs). Secondly, we provide a mapping of how the TCs
contribute to each of the RGs. Thirdly, this chapter provides a summary of the papers
included in this thesis.

Chapter 4 - Discussions: This chapter presents a discussion of how the research
goals are addressed in this thesis by TCs.

Chapter 5 - Conclusions and Future Works: This chapter concludes the thesis by
summarizing our findings and suggesting potential future works related to the work
presented in this thesis.

Finally, we present all the publications that are included in this thesis. A collection
of six research papers constitutes the second part of this thesis.

Chapter 2

Background and Related Works

This section provides a review of the technical background required to understand the
contributions in this thesis. Additionally, we present the state-of-the-art relevant to the
research presented in the thesis.

2.1 Real-Time Communication

2.1.1 Switched Ethernet
Switched Ethernet [10] is a protocol used in common switches. It features a maximum
of eight First-In-First-Out (FIFO) queues, where each of the queues is associated with a
priority. A network message is allocated to a FIFO queue firstly according to its priority.
Secondly, the message goes through the queue based on its arrival time in the queue.
Strict Priority (SP) algorithm (also known as transmission selection algorithm) allocates
data frame to the FIFO queues. The lack of control over the flow of data in the FIFO
queues is one of the main limitations of switched Ethernet for real-time communication.
For example, there is no mechanism in switched Ethernet to prevent blocking by
lower-priority messages. Moreover, the switched Ethernet hardware architecture allows
only a limited number of (maximum eight queues) which limits the efficiency of its
priority-based scheduling.

2.1.2 Time-Triggered Ethernet (TTEthernet)
TTEthernet [11] protocol enhances the conventional Ethernet to support three traffic
classes namely, Time-Triggered (TT), Rate-Constrained (RC), and Best-Effort (BE). The

11

12 2.1 Real-Time Communication

TT class allows offline scheduling of Ethernet frames to control the transmission flow
of data. In particular, TTEthernet applies to traffic with strict real-time requirements
in a network with globally synchronized switches and end-stations. Traffic with less
strict deadlines are set as RC. The network can be configured to efficiently let RC traffic
utilize a portion of the remaining bandwidth from TT schedules. Therefore, we can only
guarantee that the delay of RC class is within a certain bound. It is worth noting that
TTEthernet is also capable of functioning similarly to conventional switched Ethernet
for the BE class.

2.1.3 Time-Sensitive Networking (TSN)

The IEEE Time-Sensitive Networking (TSN) standards [4] fill the gaps of the previous
generations of Ethernet with features applicable to distributed real-time embedded
systems. TSN enhances various traffic shaping mechanisms and includes several classes
of traffic, i.e., ST, AVB, and BE (Section 8.6.8 of TSN standards [5]). The traffic
shaping mechanisms are designed based on the timing requirements of TSN traffic
classes. In this thesis, we particularly focus on clock synchronization, Time-Aware
Shaper (TAS), and Credit-Based Shaping (CBS) mechanisms in TSN.

Figure 2.1. Time-Aware Shaper (TAS).

Chapter 2. Background and Related Works 13

Clock Synchronization: A set of methods that provide a reliable timing reference for
the correct time-stamping of events, the right sequencing of operations, and deterministic
message delivery in real-time networks is known as clock synchronization. The TSN
standards [5] support synchronization of end-stations according to the IEEE 802.1AS
standard. In particular, the end-stations should be synchronized when the ST class
is used, according to the IEEE 802.1Qbv standard. But in general, when the IEEE
802.1AS standard is used then the end-stations in the TSN network should be considered
synchronized regardless of which TSN traffic class, ST, AVB or BE, is used.

Time-Aware Shaper (TAS): TAS mechanism provides dedicated queues for real-
time traffic as defined in the IEEE 802.1Qbv standard for deterministic transmission
of ST. TAS as depicted in Figure 2.1 uses offline schedules which are time-stamped
gate states defined in the Gate Control List (GCL). Unlike TTEthernet in which we
schedule frames, in the case of TSN we can schedule a stream of data in ST class
(queues) thanks to the GCL. The rows of GCL indicate the time and order of enabling
the gates connected to the queues in the TSN switch. Figure 2.1 shows a simplified
example of TSN egress port with four queues, however, there can be a maximum of
eight queues that can be controlled by eight-bit rows of GCL. ST queues preempt the
transmission of lower-priority traffic. The talker and listener end-stations must meet the
synchronization requirements according to IEEE 802.1AS standard so that the offline
schedules guarantee the low-jitter and predictable transmission of the frames. In Section
2.2, we explain related works in offline scheduling.

Credit-Based Shaping (CBS): The CBS mechanism reserves bandwidth for the AVB
classes while it also limits the AVB traffic to interfere with traffic in the lower-priority
classes. CBS can be enabled for all of the eight available queues per port of a TSN
switch in the standards [5], thus it can include a maximum of eight classes. It is very
common to use only classes A and B in analysis and practice.

The credit of AVB can have the following states:

• Positive credit: A message in an AVB class starts its transmission when it is
ready for transmission and the credit of the class is greater than or equal to zero.
If at the same time, there are other active sources of interference and blocking
using the bandwidth, the message must wait. The credit increases while this
message waits for available bandwidth.

• Frozen credit: An ST message can preempt AVB traffic. During the preemption,
the credit of the AVB class freezes until the transmission of the ST message is
completed.

14 2.2 Offline Scheduling

• Negative credit: the credit decreases while a message in this class uses the
bandwidth. If a message is activated while the credit is below zero, it will not
be transmitted. The message must wait until the credit is replenished to zero, or
goes above zero, i.e., until the bandwidth is free for its transmission. When there
are no messages ready for transmission in the class and the credit is negative, the
credit increases until it reaches zero.

2.2 Offline Scheduling
According to [12], offline scheduling is a method in which all scheduling decisions are
pre-computed before the run time of the system. Therefore, offline scheduling is also
known as pre-run-time scheduling. To perform offline scheduling, we require complete
knowledge of the task set and its constraints, such as deadlines, computation times,
precedence constraints, etc.

ST in TSN must be scheduled offline. Different variations can be included in the ST
scheduling problem [13, 14], to name a few, routing of the traffic, preemption, porosity
in the schedules, redundant transmissions, or system-level scheduling are some of the
parameters to be taken into account. The complexity of the ST scheduling problem
depends on the aforementioned variations. On one hand, some variations increase the
schedule solution search space. For example, if we combine routing and scheduling of
ST. On the other hand, other variations can remove some schedule solutions from the
search space, i.e., synthesizing porous schedules.

There are two main approaches to address the ST scheduling problems [15]. Firstly,
the exact approaches that use Satisfiability Modulo Theorem (SMT)/ Optimization
Modulo Theorem (OMT) to perform an exhaustive search between all the possible
offline schedule solutions. This approach is exponentially time-complex in the case
of large-scale networks. Secondly, there are more efficient heuristics/meta-heuristic
approaches that find a locally optimized offline scheduling solution in a shorter time
than the exact approaches.

In this section, we focus on the related works in literature contributing to each of
the aforementioned approaches under different offline scheduling problem variations.
Figure 2.2 shows the trend in the related works in offline scheduling in TTEthernet and
TSN.

2.2.1 Exact Approaches

The seminal work [16] introduces a set of scheduling constraints for TTEthernet in a
multi-hop network, which later was used as the foundation of other scheduling solutions

Chapter 2. Background and Related Works 15

Fi
gu

re
2.

2.
O

ve
rv

ie
w

of
th

e
ne

tw
or

k
of

fli
ne

sc
he

du
lin

g
ap

pr
oa

ch
es

.

16 2.2 Offline Scheduling

that used exact approaches. These constraints are as follows.

• Constraint on the frame size: The frame constraint ensures that the value of the
offset on one link does not force the arrival of the message after its next period of
activation.

• Constraint on the overlapping of messages on a link: The overlapping con-
straint checks whether the offset of two different messages on the same link will
not cause overlapping time slots for these two messages.

• Constraint on the order of traversed links: The order of the offset for the same
message on subsequent links must consider the propagation of the message from
the source end-station link to the sink end-station link (avoiding time travel).

• Constraint on meeting the deadline: The offsets per links in the route of the
message must enforce the message to arrive at the destination end-station before
the message’s deadline (implicitly the next period activation of the sending task).

Later the work in [17], proposed a post-processing heuristic algorithm that receives
the TT schedules as input and generates porosities in TT schedules to leave bandwidth
that could be efficiently used by RC traffic. Furthermore, the work in [18] combines task-
level and network-level offline scheduling for TTEthernet. For this, extra constraints to
incorporate the scheduling of Time-Triggered (TT) tasks1 are defined in [18].

Some of these additional scheduling constraints are as follows:

• Constraint on the precedence of tasks within end-stations: This constraint
can be included if there exists specific dependencies between the tasks within the
chain of tasks inside the talker (sender) or listener (receiver) end-stations; and

• Network switch memory constraints: This constraint defines the effect of the
buffering approach inside network switches on the traffic. Since, the physical
memory in the network switches can use different assumptions for buffering
network frames.

The aforementioned constraints for TTEthernet also apply to TSN, although they are
not enough to generate deterministic ST schedules. In TTEthernet the offline schedules
are defined for each frame, whereas in TSN schedule windows are defined by scheduling
the opening and closing times of the gates. This is because TSN aims at providing
flexibility of configuration from a larger perspective, i.e., scheduling streams instead of
frames.

1Time-Triggered (TT) task is a task that can be independently triggered by an event source, e.g., a periodic
clock.

Chapter 2. Background and Related Works 17

To show the difference between the scheduling problems in TTEthernet and TSN,
we present an example in Figure 2.3. In Figure 2.3, ES1 and ES2 are two end-stations
that are sending messages to ES3 via the switch SW . We assume that the messages
have different sizes. The switch in Figure 2.3(a) is a TTEthernet switch. Since an offset
(denoted by Ox) is defined for each of the frames the order of receiving the frames at
ES3 is exactly known. Whereas, we can create a scheduling window for the same set
of traffic in the case of using TSN as shown in Figure 2.3(b). However in this type of
schedule, we do not have any control over the flow of frames the order of frames inside
the queues can become non-deterministic.

(a) Scheduling frames in TTEthernet.

(b) Gate scheduling in TSN.

Figure 2.3. Comparing offline scheduling in TTEthernet and TSN.

The work in [19] solves the aforementioned non-determinism at the frame level by
proposing two constraints, called the frame and stream isolation constraints as shown

18 2.2 Offline Scheduling

in the example in Figure 2.4. The isolation constraints ensure the non-interleaving
transmission of frames through the same queue (temporal isolation). Moreover in [19],
the authors introduce an alternative isolation that restricts the transmission of streams
by scheduling them in different queues (spatial isolation).

Figure 2.4(a) is an example of isolating the transmission of every frame of different
streams in the queue. This scenario is depicted in Figure 2.4 assuming two streams
denoted by si and sj have the same periods (periods of si and sj are subsequently
denoted by si.T and sj .T). At the right side of Figure 2.4(a) we see the transmission
trace on link [SW,ES3] with two possible schedules. The transmission trace on top
shows the interleaving of frames of the two streams.

Besides, the transmission of multiple streams via the same queue can cause vari-
ations in the arrival times of the frames belonging to different streams for preventing
this. Figure 2.4(b) shows how we can isolate the streams. According to the stream
isolation constraint when the first frame of a stream is scheduled for transmission (sj in
this example) no other frames of other streams are scheduled until all frames of sj are
dispatched (si in this example). In Figure 2.4, for simplicity of illustration, we assumed
that the periods of si and sj are the same, hence the hyper period is the same as the
periods of the two streams.

Porous scheduling can be chosen for different purposes. For example, The work
in [20] creates slacks in the offline schedules of the frames (in TTEthernet). These
slacks are used at the run-time of the network e.g. for repairing the routing in the case
of unpredictable changes such as link failure. Moreover in [21], we propose a porous
offline scheduling solution and present simulation results on the impact of schedule
slacks on the end-to-end delays of the BE traffic. The results in [21] we show that
scheduling ST streams closer to their deadlines will lead to a better QoS for BE traffic
(i.e. reduced response times and fewer deadline misses). An alternative for that is to
generate slacks between the ST frames for the benefit of BE frames which is in turn
also faster than maximizing ST offsets.

Figure 2.5 shows examples of schedule solutions. In Figure 2.5(a) time stamps
[0, T0], [T1, T2] and [T3, T4] are reserved for ST frames. The time slots represented by
white boxes in Figure 2.5(a) indicate the times when the gates are open for transmission
of BE frames. The downward arrows show the deadline of each BE frame. Based on
this schedule, ST frames that are packed subsequently within the time slot [T1, T2],
cause deadline miss for the BE frame, BE3. On the other hand, Figure 2.5(b) shows the
sparsification of ST frames within time stamp [T1, T2] from the previous example into
new scheduled time stamps [T1, T2], [T3, T4] and [T5, T6]. Consequently, by just adding
a few more gate state changes, all BE frames meet their deadlines. The work in [22]
considers scheduling ST streams with a perspective on the QoC (control performance).
QoC is defined as the variations in the end-to-end delays of the system.

Chapter 2. Background and Related Works 19

(a) Frame isolation.

(b) Stream isolation.

Figure 2.4. Scheduling streams in TSN.

2.2.2 Heuristics Approaches
Many works in literature benefit from the flexibility of the heuristics algorithms for
the sake of faster offline scheduling for ST class. This flexibility also allows for

20 2.2 Offline Scheduling

Figure 2.5. Example of schedule bin-packing and the effect on schedulability of BE traffic [21].

addressing more complex problem variations for different use cases of TSN. The authors
in [23] consider multi-queuing in the offline scheduling. Considering the existence of
multiple queues (all with the same priority) in the TSN egress port leads to increased
schedulability of ST frames. To tackle the complexity of multi-queuing the algorithm
in [23] schedules the ST streams subsequently per links in their route.

Reusch et al. in [24] point out sacrificing the frame-level network scheduling as
the downside of asserting the formally defined frame and stream isolation constraints
in the exact approaches, i.e., the isolation constraints in [19]. The authors [24] argue
that in some use cases, the frame-level determinism of TTEthernet may still be required
to be employed besides the stream-level determinism of TSN. Formally defining such
requirements is challenging, hence the existing exact approaches for offline scheduling
did not provide such flexibility. Accordingly, they propose a window-based heuristics
that relaxes the isolation constraints.

The work by Gavrilut et al. [25] discusses that the network scheduling strategies
for ST traffic can potentially increase the worst-case response times of the lower
priority classes. This work proposes a two-stage heuristics for scheduling and routing
ST. The objective of the solution is to simultaneously increase the schedulability of
the traffic assigned to AVB class. Similarly, the authors in the work [26] synthesize
offline schedules for TT traffic in TTEthernet with regards to the QoS of the RC traffic.
Moreover, the algorithm proposed in [25] addresses the same problem for TSN traffic
since it also accounts for the temporal isolation of the queues for deterministic ST
schedules.

The work in [27] also aims at offline scheduling with considerations on improved

Chapter 2. Background and Related Works 21

schedulability of AVB class. The proposed AVB-aware network scheduling algorithm
in [27] improves the work in [25] by considering the effect of preemption in the
schedulability of the streams. In the first stage, the worst-case response times of the
traffic assigned to the AVB class are calculated. Then, the response times of AVB
streams are utilized in scheduling and choosing the best route for the ST streams.

Recently, a scheduling algorithm has been proposed in [28] that is intended for
increasing the QoS of BE while increasing the pessimism in the schedules for the
RC traffic in TTEthernet. The work in [29] presents a joint routing and scheduling
algorithm along with two methods to reduce the number of back-jumps in the algorithm.
These methods expedite the search for feasible solutions, therefore the algorithm is
significantly more efficient than the previous related works, e.g., compared to [25].
Hence, it is claimed by the authors as suitable for solving scheduling problems for
large-scale TSN networks.

Pahlevan et al. [30] propose a global heuristic list scheduler for scheduling tasks and
ST streams for inter-task communication. One objective of this algorithm is to schedule
ST frames back-to-back and inter-frame slacks to reduce the guard band overhead.
Furthermore, in the work in [31], the same authors propose a Genetic Algorithm (GA)-
based global scheduling. The motivation is faster network scheduling. The global
heuristic list scheduler in [30] solves the network scheduling and routing problems
independently from each other, therefore the generated schedules may over-utilize
the links. Because the algorithm is agnostic of the link utilization, hence it assigns
the frames to the first available link in the route to the destination end-station. In
contrast, the proposed GA-based method in [31] performs the scheduling of the tasks
and messages, and the routing of the inter-task communication depends on each other.
Therefore, the method also optimizes the link utilization.

A recent similar work in [32] also employs GA for scheduling ST in TSN. The
authors propose a genetic model for the ST frames, that can only be used for network
scheduling to optimize end-to-end delays, jitter, and bandwidth utilization guard band.
A recent GA-based approach is proposed in [33] that formulates a network scheduling
objective function by reducing the schedule make-span (flow span) from the hyper
period. The most suitable schedule is generated by maximizing the remaining bandwidth
size. With this variation, the problem is still NP-hard. However, maximizing the
remaining bandwidth and network utilization helps improve the QoS of the rest of the
traffic classes in TSN, like the BE traffic. The authors further show improvement in the
results with a GA-based approach compared to the optimization via an Integer Linear
Programming (ILP)-based approach.

In the case of allowing multiple routes for the frames of the same stream, the arrival
order of the frames to the destination can be affected. In the algorithm, proposed in [30],
multi-cast transmission is supported by considering such paths as a set of uni-cast

22 2.3 Schedulability Analysis

transmission paths. Consequently, the network scheduling is performed on each of
those paths in an isolated manner. However, the multi-cast transmission model in [34]
performs routing and scheduling of multi-path and forked streams (splitting streams)
with the assumption that the destination node recovers out-of-order delivered frames.

Moreover, the work in [35] considers the redundancy, safety, and security require-
ments in large-scale TSN use cases. The authors in [35] propose two different solu-
tions: firstly, a Constraint Programming (CP)-based routing and scheduling solution
for small- to medium-scale problems, and secondly a two-phase solution that combines
list scheduling and a Simulated Annealing (SA)-based algorithm for large-scale routing
and scheduling problems. This work is the first work that embeds security constraints
for scheduling ST streams.

Finally, [36] presents a hybrid task and message scheduling heuristic. The algorithm
proposed in [36] schedules the tasks and messages separately in one phase. The next
phase matches the task and message schedule in a way to optimizes the end-to-end
data-propagation delays for the ST streams. The limitation of the proposed algorithm is
that it only supports tasks with harmonic periods at the destination end-station. Though,
outperforms the previous work with the exact approach [18] in terms of scheduling
computation time.

2.3 Schedulability Analysis
This section presents the existing techniques for schedulability analysis of TSN networks.
In general, there are four main techniques, including: (1) worst-case RTA; (2) Network
Calculus (NC); (3) the concept of eligible intervals; and (4) TSN verification based
on Machine Learning (ML) techniques. Figure 2.6 shows a timeline of the existing
schedulability analysis approaches. According to [7], the focus of the first works on
the existing schedulability analysis has evolved from only supporting CBS to more
sophisticated models, which include the combination of CBS and TAS and frame
preemption support. Moreover, the most recent works, e.g., [37], [38], and [39], include
support for preemption in the schedulability analysis for networks based on TSN
standards.

2.3.1 Worst-Case Response-Time Analysis (RTA)

The work in [40] is one of the first works targeting the application of Ethernet AVB for
in-vehicle communication. The proposed RTA only supports CBS. In such a system
model, traffic passing through class A is assumed to be the highest priority traffic.
Hence, interference by any higher-priority traffic than class A is not considered.

Chapter 2. Background and Related Works 23

Fi
gu

re
2.

6.
Ti

m
el

in
e

of
sc

he
du

la
bi

lit
y

an
al

ys
is

te
ch

ni
qu

es
fo

rT
SN

si
nc

e
20

14
.

24 2.3 Schedulability Analysis

The work in [41] considered the CBS and TAS mechanisms in combination, where
the TAS mechanism was a variation of the TSN standards. Furthermore, the work in [37]
proposes a worst-case RTA that takes into account TAS, CBS, and different variations
of frame preemption support (i.e., with and without Hold and Release mechanisms
according to the TSN standard). Finally, the work in [42] introduced a worst-case
traversal analysis, that is based on a prior technique that introduced a system model
allowing multiple preemption levels [38].

The worst-case RTA is used in the work in [43] to calculate the minimum required
bandwidth for CBS in a non-preemptive combination of TAS and CBS, i.e., in AVB ST
[44]. AVB ST was proposed before the TSN standard amendments on the support for
ST, thus the model and credit utilization were different than the TSN standards.

2.3.2 Network Calculus (NC)

Network calculus is a well-known technique to calculate the worst-case delays in
networks. A network calculus analysis for AVB was introduced in [45]. Later, the work
in [46] provided an approach to integrate the timing analysis for periodic TT traffic and
RC sporadic traffic in TTEthernet. Although TTEthernet has several similarities to TSN,
it does not feature the CBS mechanism. Thus, these analyses were not applicable to be
used for TSN.

Within the context of TSN, the works in [47, 48] considered ST preempting AVB
traffic. The focus of this work is to apply network calculus to calculate tighter worst-
case bounds on delays for classes A and B in TSN. The work was further developed
in [39] with an analysis based on network calculus for the case of having multiple AVB
classes in the system model. It included the effects of traffic classes such as ST, A,
and B. Besides, the work in [49] presented a solution that utilizes network calculus to
include the credit behavior while generating ST schedules. Finally, recent work in [50]
proposes a minimum bandwidth reservation technique for CBS classes based on NC.
The technique proposed in [50] considers only CBS and excludes the effect of TAS
mechanism.

2.3.3 Machine Learning (ML)

An approach for verifying the feasibility of TSN configurations by combining a schedu-
lability analysis and an ML technique is presented in [51, 52]. The work in [53] further
improved the approach by applying deep learning-based techniques. These techniques
are not primarily proposed to provide predictability guarantees for TSN networks, yet
they are interesting for verifying the TSN network configurations.

Chapter 2. Background and Related Works 25

2.3.4 Eligible Intervals
Besides the aforementioned works, a technique based on the concept of eligible intervals
was proposed in the context of AVB network, considering solely the CBS mechanism
in [54]. Further, the work in [55] used the same concept to analyze the delays of classes
A and B in the presence of the ST class. However, this technique was not used in more
complex models in TSN timing analysis. Finally, the work in [56] proposes an RTA
for the BE class. The analysis in [56] does not support preemption and considers AVB
class as the highest priority class. Moreover, there are a few works that use eligible
intervals, such as [57] and [58], to analyze the bandwidth reservation for AVB class in
TSN networks. However, these works are limited to a single-switch architecture, and
the effect of ST traffic on lower-priority traffic is neglected.

2.4 End-to-End Data-Propagation Delay Analysis
Embedded real-time systems are often modeled with chains of tasks and messages. To
verify the timing behavior of these chains, not only their end-to-end response times
need to be calculated and compared against the corresponding deadlines, but also the
end-to-end data-propagation delays (data age and reaction time) should be calculated
and compared with the corresponding data age and reaction time constraints. The
timing constraints on the data age and reaction time delays are often specified on these
distributed chains. The constraint on the data age delay is important, in particular,
for control applications where the freshness of the data is of value. Whereas, the
reaction time constraint is important in applications where the time of the first reaction
to the input event is of value. These constraints are included in the timing model of
the AUTOSAR standard [59] and are translated to several modeling languages in the
vehicular domain [60].

2.4.1 Data-Propagation Delays in Single-Node Embedded Systems
To explain the data age and reaction time delays, consider a task chain consisting of
three tasks τ1, τ2, and τ3, as shown in Figure 2.7. All tasks belong to a single-core
node and are activated independently. The periods of activation for tasks τ1, τ2, and
τ3 are 8 ms, 8 ms, and 4 ms, respectively. The Worst Case-Execution Time (WCET)
of each task is assumed to be 1 ms. For simplicity, we assume that the priority of
τ1 is higher than the priority of τ2 and the priority of τ2 is higher than the priority of
τ3. By this priority assignment policy, we ensure that the precedent elements in the
chain should be executed before their subsequent elements in the chain. The tasks use
register-based communication, i.e., they communicate with each other and with their

26 2.4 End-to-End Data-Propagation Delay Analysis

environment using writing data to/ and reading data from the registers. The registers are
of non-consuming type. This means that data stays in the register after the reader has
read the data. Furthermore, the registers are over-writable, i.e., if the writer is faster than
the reader then the previous data in the register can be overwritten by the new data before
the reader can read the previous data. The data read by τ1 from Reg-1 corresponds to
the input of the chain. Similarly, the data written to Reg-4 by τ3 corresponds to the
output of the chain.

Figure 2.7. An example of a task chain that uses register-based communication.

As the tasks are activated independently and some tasks have different periods, the
data traverses through the chain via multiple paths from the input to the output of the
chain as shown in Figure 2.8. These paths are called timed-paths (also referred to as
data-paths). Due to multiple timed-paths, there can be various delays in delivering the
data from the input to the output of the chain.

The data age delay is the time elapsed between the arrival of data at the input and
the latest availability of the corresponding data at the output. In the data age delay
analysis, we are interested in identifying the longest time difference between the input
data and the last sample of corresponding output data. On the other hand, the reaction
time delay corresponds to the earliest availability of the data at the first instance of the
output corresponding to the data that just missed the read access at the input. An event
(corresponding to the availability of data) is considered readable by an instance of a
task if it occurs at or before the activation of the task. If the event happens just after
the activation of the task instance, the data is not readable to this instance, i.e., the data
is just missed by the current instance of the task. The missed data is read by the next
instance of the task. This is illustrated by the white thunderbolt in Figure 2.8, where
the first instance of τ1 at time 0 misses the data but the same data is read by the next
instance of τ1 at time 8.

Possible data age and reaction time delays in the chain in Figure 2.7 are shown in
Figure 2.8. On the one hand, the data from the event happening a bit before time 16
is accessible to the third instance of τ1 (activated at time 16). In such a case, the latest
impact of this event is available at the output of the chain until 5 ms after the occurrence

Chapter 2. Background and Related Works 27

of the event (data age delay). On the other hand, the sampling of the data coming from
the event happening a bit after the time 0 is delayed until the time 8, where the data
can be read by the second instance of τ1. Accordingly, the earliest time the impact of
the data appears at the output of the chain is 11 ms after the occurrence of the event
(reaction time delay).

Figure 2.8. Data age and reaction time delays in the task chain are depicted in Figure 2.7.

2.4.2 Data-propagation Delays in Distributed Embedded Systems
The data-propagation delays are equally valid in distributed embedded systems. Let us
consider a distributed task chain in a distributed embedded system depicted in Figure 2.9,
where two nodes are connected via a network. In this example, the tasks are activated
periodically with periods of 6 ms and 3 ms, respectively. Task τ1 in Node 1 sends a
message to task τ2 in Node 2 through the network.

1W
0 20105 15 25

0 20105 15 25

Reaction delay = 10

2W
0 20105 251m

Reg‐1 Reg‐2 Reg‐3

Period = 6ms

WCET = 1ms

Reg‐41W 1m 2W
WCET = 1ms

Period = 3ms

Node 1 Node 2Network

15

Age delay = 7

1W
0 20105 15 25

0 20105 15 25

Reaction delay = 16

2W
0 20105 251m 15

Age delay = 13

1W
0 20105 15 25

0 20105 15 25

Reaction delay = 16

2W
0 20105 251m 15

Age delay = 16

(a)

(b)

(c)

Figure 2.9. A multi-rate chain in a distributed embedded system.

Depending on the type of network, we may have different possible timed-paths

28 2.4 End-to-End Data-Propagation Delay Analysis

through which the data can propagate from the sender task to the receiver task. For
example, when the network is not capable of initiating communication independent of
the sending tasks, a message can only be queued for transmission at the network interface
by the sending task. This is the case for many event-triggered network protocols, like
CAN [1]. In this case, the message inherits its period from the sender task. Furthermore,
the timed-paths in a distributed task chain also depend upon whether the network
supports the synchronization of nodes. For example, TSN supports synchronization
among the end-stations via the IEEE 802.1AS standard, whereas the CAN protocol
does not support synchronization. Figure 2.10 shows an execution trace when the nodes
are synchronized in the system that is shown in Figure 2.9. The data age and reaction
time delays in this distributed chain are identified as 7 ms and 10 ms, respectively.

Figure 2.10. A possible execution trace for the distributed embedded system example is shown in
Figure 2.9 when source and destination end-stations are synchronized.

A possible execution trace of the distributed task chain in Figure 2.9 when the nodes
are not synchronized is shown in Figure 2.11(a). To create worst-case conditions when
the nodes are not synchronized, we assume that the receiver task τ2 is activated “just
before” the arrival of the message at the receiver node. Hence, the current instance of τ2
(the first period activation) will miss the read access of the message. The message will
be read by the next instance of τ2 (second period activation) as shown in Figure 2.11(a).
The corresponding data age delay is identified as 9 ms as shown in Figure 2.11(a).

To increase readability, we draw the same execution trace separately for the case of
reaction time delay in the distributed task chain (as shown in Figure 2.9) when the nodes
are not synchronized as depicted in Figure 2.11(b). In Figure 2.11(b), the first instance
of τ1 is activating the first instance of the message m1. According to the assumption for
the reaction time delay, the first instance of τ1 has missed the sampling of the chain’s

Chapter 2. Background and Related Works 29

input event, thus the first instance of m1 does not deliver valid data from the input event
to the receiver task. However, as the second instance of τ1 reads the input event, the
second instance of the message m1 also holds fresh data. Since τ2 is not synchronized
with τ1, the worst-case assumption is that τ2 is activated a small amount of time earlier
than the arrival of the message that holds the sampled data. Consequently, the first
instance of τ2 misses to read data of the event, which is being written by the second
instance of m1. But, at the next instance of τ2 (second period activation), τ2 can read
the incoming data from m1. Accordingly, the reaction time delay is 12 ms.

(a) Data age delay.

(b) Reaction time delay.

Figure 2.11. A possible execution trace for the distributed embedded system example is shown in
Figure 2.9 when source and destination end-stations are not synchronized.

According to the classification in the work in [61], there are three approaches for

30 2.4 End-to-End Data-Propagation Delay Analysis

calculating the worst-case end-to-end data-propagation delays: 1) simulation-based
method that obtains the maximum end-to-end delays from a set of selected scenarios.
The simulation approach does not necessarily show the maximum end-to-end delay,
because it might not cover all the possible assumptions for the worst-case scenario;
2) model-checking based on an exhaustive search can provide exact worst-case end-
to-end delays even on large-scale networks. However, these methods have high time
complexity; and 3) an analytical approach that provides upper bounds on end-to-end
delays with a certain pessimism. The focus of this thesis is on the group of analytical
approaches in the above-mentioned classification.

From a different perspective, the work in [62] mentions active and passive ap-
proaches for the end-to-end data-propagation delay analysis. Active approaches opti-
mize the pattern of task releases in a chain to achieve optimal delays. Whereas, passive
approaches study the worst-case assumptions for the end-to-end delays in distributed
embedded systems to find upper bounds on the delays.

The existing end-to-end data-propagation delay analysis can incorporate the response-
time analysis of various legacy real-time networks, such as CAN [63], FlexRay, legacy
Ethernet [64], or TSN. In the following paragraphs, we present various existing end-
to-end data-propagation delay analysis approaches that are related to the work in the
thesis.

Active Approaches The set of works in this category focuses on different network
design and configuration strategies that lead to optimized end-to-end data-propagation
delay analysis. Some design parameters include periods and offsets. Active approaches
are similar to system-level off-line scheduling approaches, though the scope of these
approaches also covers optimizing the end-to-end data-propagation delays of the non-
real-time traffic.

The work in [65] targets data age delay in cause-effect chains within one execution
node. The tasks are synchronized inside an end-station, and they are scheduled with
offsets. The aim of the work in [65] is to find priorities, and offsets and to optimize the
design mapping for tasks to minimize the data age delays in a chain of tasks. Similarly,
the work in [66] aims at finding offsets for the chain of tasks to optimize the end-to-end
delays. The works in [65, 66] belong to the active end-to-end data-propagation analysis.
Moreover, the work in [67] studies the dependencies between the task instances. Such
dependencies can be specified at early development stages to guarantee data age delay
constraint.

Passive Approaches The work in [62] performs end-to-end timing analysis for the
systems with locally synchronized periodic tasks in one end-stations. The end-stations

Chapter 2. Background and Related Works 31

only support non-synchronized communication, i.e., via CAN, or FlexRay. Similarly,
the work in [68] considers globally non-synchronized communication among the end-
stations, while the tasks within the end-stations are considered synchronized. The
authors in [68] propose a computationally efficient analysis compared to the analysis
in [62]. Besides, the work in [68] achieves a higher upper bound on the data age delay
than the work in [62].

The focus of the aforementioned works is only on data age delay, whereas our
analysis also includes the analysis of the reaction time delay. The work in [69] is a
seminal work in the literature that introduces a formal framework for defining end-to-
end delays in periodic and register-based systems. The task model in [69] is based on the
Bounded Execution Time (BET) task model. In the BET task model, the communication
between the tasks is implicit where a task reads data from the register at its beginning
and writes to the register at its end of execution. Furthermore, the work in [70] proposes
an end-to-end data-propagation delay analysis that includes sporadic tasks based on
the BET task model. The work in [71] builds on the Logical Execution Time (LET)
paradigm by proposing a system-level LET-based communication model for distributed
embedded systems. LET is an inter-task communication model that augments the
read/write access times (input and output of the task) to the task’s physical execution
time model. System-level LET models the communication between tasks of different
end-stations. In the work presented in [71], the end-stations have their local clocks
(timeline). The global timeline is approximated based on the local timeline of the sender
and receiver end-stations with a bounded error. In our end-to-end data-propagation
delay analysis, we rely on the determinism promised for ST traffic, and exclude the
global synchronization error for analyzing transactions that utilize ST traffic. The
work in [72] considers globally non-synchronized and locally synchronized task chains
and proposes a method to calculate a limited number of timed-paths2 that lead to the
maximum end-to-end delays.

While the majority of the works focus on providing methods for calculating the
maximum end-to-end delays in the chains, the work in [73] discusses robustness margins
around the end-to-end timing constraints. The work in [73] employs BET and system-
level LET communication model, and further studies the variations in the tasks’ response
times and the influence on the robustness of the system (i.e., variations in the end-to-end
delays).

The work in [74] proposes an end-to-end data-propagation delay analysis for the
chains of tasks in the context of Robot Operating System (ROS). The analysis before [74]
mainly focused on analyzing periodic and sporadic tasks. The work in [74] extends
the end-to-end timing analysis to support ROS2 task chains that deal with a mix of

2We use the terms timed-paths and data-paths interchangeably to refer to the path that the data traverses
from one task to another within the task chain.

32 2.5 Software Architecture Modelling

time-triggered and event-triggered functions. Besides, the network model in [74] is
based on the publisher-subscriber communication model. The communication model is
therefore inherently non-synchronized.

The existing timed-path calculation used in the end-to-end data-propagation delay
analysis algorithms, such as [69, 72], applies to traffic classes that do not require offline
schedules, i.e., AVB and BE. For example, the work in [72] provides end-to-end analysis
for the synchronized communication between sender and receiver end-stations, but it
only considers the case when non-ST are transmitted between synchronized end-stations,
i.e. AVB or BE.

Though the BET and LET models can be mapped to each other according to [73]. In
this thesis, we chose to use the BET model because it is already integrated into several
tools (including industrial tools) that support model- and component-based software
development of vehicular embedded systems, e.g., in [75, 76].

2.5 Software Architecture Modelling

There are several software architecture modeling languages and component models,
such as AUTOSAR, RCM, AMALTHEA, EAST-ADL, AADL, to mention a few.

2.5.1 AUTomotive Open System ARchitecture (AUTOSAR)

AUTOSAR is widely used for developing software architecture for automotive systems.
SymTA/S [77] is one of the commercial timing analysis and optimization toolchains
that complies with AUTOSAR. A recent work in [78] integrates AUTOSAR adaptive
with applicable standards to develop more sophisticated systems. The proposed three-
layer architecture coordinates a binding between AUTOSAR Adaptive, OPC Unified
Architecture (OPC UA) standards [79], and TSN standards. Notnetheless, the work
in [78] argues that the proposed architecture in later work lacks maturity since all the
involved technologies in the architecture layers are still under development.

2.5.2 RUBUS Component Model (RCM)

According to the work in [80], RCM is the architectural language supporting the largest
number of modelling elements required by centralised architectures than the other
software architecture modeling languages. Besides, as evaluated in [81, 82], RCM
comprises hierarchical entities that are necessary to model a distributed embedded
system that supports TSN. At the highest level, the system contains at least two nodes

Chapter 2. Background and Related Works 33

and a network element that interconnects the nodes. A node (end-station) is a processing
element that provides a run-time environment for one or more Software Applications.

In RCM, a software architecture is modeled by interconnecting a set of SWC. An
SWC is a design-time entity that may correspond to a task at run-time or in the timing
model. The SWCs communicate with each other by their interfaces (a set of data and
trigger ports). To the best of our knowledge, RCM is the first and only component
model that supports comprehensive modeling of TSN. Recently, there have been some
efforts in increasing the performance and applicability of the other modeling approaches
to RCM by model transformation [83]. The work in [84] proposes a mapping technique
between AMALTHEA and RCM to enable timing analysis of AMALTHEA-based
component models in RCM. In addition, the work in [85] presents a mapping from
EAST-ADL models to RCM to enable the timing analysis of a non-RCM model.

2.5.3 Simulation of Vehicular Systems
Besides the analytical schedulability analysis techniques, simulation and modeling of
TSN networks can also contribute to more efficient configuration design and scheduling
of TSN networks [7]. OMNeT++ is an open-source discrete event simulation platform,
primarily used for constructing simulations of networks3. INET4 is another widely used
open-source simulation framework that models wired, wireless, and mobile networks.
There are two most commonly used simulation frameworks for TSN built on OMNeT++:
(i) Core4INET [86] (ii) NeSTiNg [87]. Firstly, Core4INET allows the simulation of
TSN networks based on various standards, e.g., IEEE 802.1Q, IEEE 802.1p VLANs and
Priorities, IEEE 802.1 AVB, and TTEthernet (AS6802). Secondly, NeSTiNg supports
several TSN features, including the ST (IEEE 802.1Qbv), frame preemption (IEEE
Std 802.1Qbu and IEEE Std 802.3br), credit-based shaper (IEEE Std 802.1Qav), and
clock synchronization (IEEE Std 802.1AS). However, the aforementioned simulation
frameworks are ongoing projects, and the TSN features are partially implemented in
them.

3https://omnetpp.org/
4https://inet.omnetpp.org/

Chapter 3

Research Contributions

In this chapter, we briefly present the three Thesis Contributions (TCs). Then, we
present the mapping between the RGs, the TCs, and the included publications in this
thesis. Finally, a summary of each of the included papers is presented.

3.1 Thesis Contributions

3.1.1 TC1: End-to-end Timing Analysis of TSN-based Systems

We extend the existing worst-case RTA [37] for TSN to support the BE traffic class.
Thanks to the extended RTA, we can take the second step in TC1 and develop an
end-to-end data-propagation delay analysis that supports synchronization as well as
non-synchronization among the end-stations. The proposed end-to-end data-propagation
delay analysis is built on an existing analysis [69, 88] and extends the time-path calcula-
tion algorithm to support the analysis of the systems where the end-stations connected
to the TSN network are synchronized. The proposed analysis is backward compatible
with the analysis of all non-scheduled traffic (non-ST) classes (AVB or BE) when the
end-stations are not synchronized in the TSN networks.

The purpose of the developed techniques within TC1 is to address the challenges
that are faced in achieving the research goal RG1.

35

36 3.1 Thesis Contributions

3.1.2 TC2: Configuration of Various Traffic Classes in TSN

Firstly, we propose a modular framework as shown in Figure 3.1 for the automatic config-
uration of ST. The proposed framework consists of four main modules, namely 1) traffic
generator (Figure 3.1-module 1); 2) schedule synthesizer (Figure 3.1-module 2); 3) auto-
mated configurator and Graphical User Interface (GUI) (Figure 3.1-module 3); and 4) re-
sults interpretation (Figure 3.1-module 4). The proposed framework integrates the
TSN schedule synthesizer with a widely used TSN simulation tool (NeSTiNg plug-
in [87, 89]). Besides, it allows to automatically generate and visualize schedules for
TSN switches, i.e., visualizing TSN flows, GCL, and the gate states at an egress port.

Secondly, we propose a technique to generate optimized schedules for ST in TSN
while considering the QoS for the BE traffic. The proposed technique comprises
scheduling constraints for a CP-based scheduler and various objective functions to
generate ST schedules with different patterns, i.e., packing schedules by minimization
or maximization of offsets, or generating sparse schedules.

Thirdly, we develop a solution to analyze the required bandwidth for AVB traffic
considering features such as multi-hop architecture, impact of ST traffic, and preemption
support of ST over lower-priority traffic classes. The proposed solution analyzes the
required bandwidth according to the widely adopted worst-case RTA and calculates the
minimum credit which makes all traffic assigned as AVB schedulable.

The purpose of the developed techniques within TC2 is to address the challenges
that are faced in achieving the research goal RG2.

3.1.3 TC3: Timing Analysis of Component-based Distributed Soft-
ware Architectures

In TC3, we propose an automated methodology for extracting the end-to-end timing
model from component-based software architectures of TSN-based embedded systems.
In particular, to generate an end-to-end timing model, we have identified various
sources of end-to-end timing information within the development process of TSN-based
systems. These sources include: 1) user (i.e., software architecture developer); 2)
software architectures; 3) system configuration; and 4) end-to-end timing analysis.

The proposed methodology within the system and software modeling stage is
shown in Figure 3.2. The methodology is aimed at extracting the end-to-end timing
information and populate them in en end-to-end timing model within module c as shown
in Figure 3.2. In this methodology, the component model description of the system
(Figure 3.2-module b1) and the network configuration (Figure 3.2-module b2) are the

Chapter 3. Research Contributions 37

Fi
gu

re
3.

1.
A

ut
om

at
ic

co
nfi

gu
ra

tio
n

fr
am

ew
or

k
fo

rT
SN

[9
0]

.

38 3.1 Thesis Contributions

Figure 3.2. Timing model extraction methodology [91].

sources of timing information. Accordingly, the timing information is extracted from
the appropriate sources which we identified. Then, the end-to-end timing models are
provided as input to the end-to-end timing analysis stage (Figure 3.2-module d).

The purpose of the developed techniques within TC3 is to address the challenges
that are faced in achieving the research goal RG3.

Chapter 3. Research Contributions 39

3.2 Research Papers
The TCs are encapsulated in six publications: five conference papers and one journal
article. Table 3.1 presents the mapping of the included papers, RGs, and TCs. This
section presents a summary of the publications included in this thesis.

RG1 RG2 RG3

Paper A TC2

Paper B TC2

Paper C TC1

Paper D TC1

Paper E TC3

Paper F TC2

Table 3.1. Mapping of the publications, Research Goals (RGs) and the Thesis Contributions
(TCs).

3.2.1 Paper A: An Automated Configuration Framework for TSN
Networks

Title: An Automated Configuration Framework for IEEE 802.1 Time Sensitive Net-
working [90]
Authors: Bahar Houtan, Albert Bergström, Mohammad Ashjaei, Masoud Daneshtalab,
Mikael Sjödin, Saad Mubeen.
Status: Published in the IEEE 22nd International Conference on Industrial Technology
(ICIT), 2021.

Abstract:
Designing and simulating large networks, based on the Time-Sensitive Network-

ing (TSN) standards, require complex and demanding configuration at the design and
pre-simulation phases. Existing configuration and simulation frameworks support only
the manual configuration of TSN networks. This hampers the applicability of these
frameworks to large-sized TSN networks, especially in complex industrial embedded
system applications. This paper proposes a modular framework to automate offline
scheduling in TSN networks to facilitate the design-time and pre-simulation automated
network configurations as well as interpretation of the simulations. To demonstrate and
evaluate the applicability of the proposed framework, a large TSN network is automati-
cally configured, and its performance is evaluated by measuring end-to-end delays of

40 3.2 Research Papers

time-critical flows in a state-of-the-art simulation framework, namely NeSTiNg.

Contributions:

• Integrating the traffic generation and network schedule synthesis to a TSN open-source
simulation framework, i.e., NeSTiNg;

• Addressing the complexity of flow configuration by automatically translating configu-
ration for the ST into the syntax compliant with the NeSTiNg simulation framework;

• Addressing the complexity of gate state configuration by automatically translating
the synthesized ST schedules into the syntax compliant with NeSTiNg simulation
framework; and

• Automatic generation and modification of the configuration files by a GUI that is
integrated into the NeSTiNg simulation framework.

Authors’ Contributions:
Part of this work was initiated as a master thesis work, in which Albert Bergström

was supervised by me and Mohammad Ashjaei. The work in the master thesis was
used as the basis for the publication and then further reworked and developed by me,
supervised by the rest of the co-authors. I performed the tool evaluations and wrote the
draft of the paper. The co-authors reviewed the paper, after which I improved it.

3.2.2 Paper B: Synthesising Schedules to Improve QoS of Best-
effort Traffic in TSN Networks

Title: Synthesising Schedules to Improve QoS of Best-effort Traffic in TSN Net-
works [21]
Authors: Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin,
Saad Mubeen.
Status: Published in the 29th International Conference on Real-Time Networks and
Systems (RTNS), 2021.

Abstract:
The IEEE Time-Sensitive Networking (TSN) standards’ amendment 802.1Qbv

provides real-time guarantees for Scheduled Traffic (ST) streams by the Time-Aware
Shaper (TAS) mechanism. In this paper, we develop offline schedule optimization
objective functions to configure the TAS for ST streams, which can be effective to

Chapter 3. Research Contributions 41

achieve a high Quality of Service (QoS) of lower priority Best-Effort (BE) traffic. This
becomes useful if real-time streams from legacy protocols are configured to be carried
by the BE class or if the BE class is used for value-added (but non-critical) services.
We present three alternative objective functions, namely Maximization, Sparse and
Evenly Sparse, followed by a set of constraints on ST streams. Based on simulated
stream traces in OMNeT++/INET TSN NeSTiNg simulator, we compare our proposed
schemes with a most commonly applied objective function in terms of overall maximum
end-to-end delay and deadline misses of BE streams. The results confirm that changing
the schedule synthesis objective to our proposed schemes ensures timely delivery and
lower end-to-end delays in BE streams.

Contributions:

• Mathematically modeling and presenting optimization constraints to consider the
QoS for the BE traffic;

• Presenting new optimization objective functions to obtain a feasible ST schedule
while improving the QoS of the BE traffic;

• Comparing the commonly used objective function (minimizing the ST offsets) with
the proposed objective functions, in terms of affecting the QoS for any lower priority
traffic class;

• Evaluating the proposed solutions using an OMNeT++ simulation platform.

Authors’ Contributions:
I was the main driver of the work under the supervision of the co-authors. The plan

for the paper was formed in joint discussions with the co-authors. I performed the tool
evaluations and wrote the draft of the paper. The co-authors reviewed the paper, after
which I improved it.

3.2.3 Paper C: Schedulability Analysis of Best-Effort Traffic in TSN
Networks

Title: Schedulability Analysis of Best-Effort Traffic in TSN Networks [92]
Authors: Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin,
Sara Afshar, Saad Mubeen.
Status: Published in the IEEE 26th International Conference on Emerging Technologies

42 3.2 Research Papers

and Factory Automation (ETFA), 2021.

Abstract:
This paper presents a schedulability analysis for the Best-Effort (BE) traffic class

within Time-Sensitive Networking (TSN) networks. The presented analysis considers
several features in the TSN standards, including the Credit-Based Shaping (CBS), the
Time-Aware Shaper (TAS) and the frame preemption. Although the BE class in TSN is
primarily used for the traffic with no strict timing requirements, some industrial applica-
tions prefer to utilize this class for the non-hard real-time traffic instead of classes that
use the CBS. The reason mainly lies in the fact that the complexity of TSN configuration
becomes significantly high when the time-triggered traffic via the TAS and other classes
via the CBS are used altogether. We demonstrate the applicability of the presented
analysis on a vehicular application use case. We show that a network designer can
get information on the schedulability of the BE traffic, based on which the network
configuration can be further refined with respect to the application requirements.

Contributions:

• A schedulability analysis to verify the worst-case response time of each individual
BE message in the network when CBS, TAS, and frame preemption are used.

Authors’ Contributions:
I was the main driver of the work under the supervision of the co-authors and Sara

Afshar who provided me with feedback as the representative of our industrial partners.
The plan for the paper was formed in joint discussions with the co-authors. I performed
the tool evaluations and wrote the draft of the paper. The co-authors reviewed the paper,
after which I improved it.

3.2.4 Paper D: Supporting End-to-end Data-Propagation Delay
Analysis for TSN-based Distributed Vehicular Embedded Sys-
tems

Title: Supporting End-to-end Data-Propagation Delay Analysis for TSN-based Dis-
tributed Vehicular Embedded Systems [93]
Authors: Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin,
Saad Mubeen
Status: Published in the Journal of Systems Architecture (JSA), 2023.

Chapter 3. Research Contributions 43

Abstract:
In this paper, we identify that the existing end-to-end data-propagation delay analy-

sis for distributed embedded systems can calculate pessimistic (over-estimated) analysis
results when the nodes are synchronized. This is particularly the case of the Scheduled
Traffic (ST) class in Time-Sensitive Networking (TSN), which is scheduled offline
according to the IEEE 802.1Qbv standard, and the nodes are synchronized according
to the IEEE Std 802.1AS standard. We present a comprehensive system model for dis-
tributed embedded systems that incorporates all of the above-mentioned aspects as well
as all traffic classes in TSN. We extend the analysis to support both synchronization and
non-synchronization among the end-stations as well as offline schedules on the networks.
The extended analysis can now be used to analyze all traffic classes in TSN when the
nodes are synchronized without introducing any pessimism in the analysis results. We
evaluate the proposed model and the extended analysis on a vehicular industrial use case.

Contributions:

• We extend the timed-path computation algorithm within the existing end-to-end
data-propagation delay analysis to support all traffic classes in TSN networks
when the end-stations are synchronized using the IEEE Std 802.1AS standard.
Unlike the existing algorithm, the analysis results with the extended algorithm
do not include any pessimism when the end-stations in the TSN networks are
synchronized. The extended algorithm is backward compatible to support the anal-
ysis of all non-ST classes1 (A, B, BE) when the end-stations are not synchronized
in the TSN networks.

• We present a comprehensive system model for distributed embedded systems to
support the extended algorithm, which incorporates all traffic classes in TSN. The
model can express distributed task chains that can contain various types of traffic
supported by TSN, including the ST, A, B, and BE traffic.

• We demonstrate the applicability of the presented model and analysis to a ve-
hicular industrial use case. We also perform a comparative evaluation of the
extended analysis with the existing analysis by analyzing the use case with the
two analyses. Furthermore, the presented model and analysis are evaluated by
experiments to show the effect of various configurations of ST class, receiver peri-
ods, and synchronization of the sender and receiver end-stations on the end-to-end
data-propagation delays.

1It is required to use synchronization when the ST traffic class in TSN is used.

44 3.2 Research Papers

Authors’ Contributions:
I was the main driver of the work under the supervision of the co-authors. The plan

for the paper was formed in joint discussions with the co-authors. I performed the tool
evaluations and wrote the draft of the paper. The co-authors reviewed the paper, after
which I improved it.

3.2.5 Paper E: End-to-end Timing Modeling and Analysis of TSN
in Component-Based Vehicular Software

Title: End-to-end Timing Modeling and Analysis of TSN in Component-Based Vehicu-
lar Software [91]
Authors: Bahar Houtan, Mehmet Onur Aybek, Mohammad Ashjaei, Masoud Daneshta-
lab, Mikael Sjödin, John Lundbäck, Saad Mubeen
Status: Published in the IEEE 26th International Symposium On Real-Time Distributed
Computing (ISORC), 2023.

Abstract:
In this paper, we present an end-to-end timing model to capture timing information

from software architectures of distributed embedded systems that use network communi-
cation based on Time-Sensitive Networking (TSN) standards. Such a model is required
as an input to perform end-to-end timing analysis of these systems. Furthermore, we
present a methodology that aims at automated extraction of instances of the end-to-end
timing model from component-based software architectures of the systems and the TSN
network configurations. As a proof of concept, we implement the proposed end-to-end
timing model and the extraction methodology in the RUBUS Component Model (RCM)
and its toolchain Rubus-ICE that are used in the vehicle industry. We demonstrate the
usability of the proposed model and methodology by modeling a vehicular industrial
use case and performing its timing analysis.

Contributions:

• We propose an end-to-end timing model to describe TSN networks with all
configuration parameters in the distributed vehicular embedded software systems.

• We provide an automated methodology to extract instances of the end-to-end
timing model from component-based software architectures of vehicular systems.

Chapter 3. Research Contributions 45

• We provide a proof of concept for the proposed timing model and extraction
methodology by integrating them with the component-based software engineering
environment of an industrial tool suite, namely Rubus-ICE.

• We evaluate the proposed model and methodology as well as their integration
with the Rubus-ICE tool suite on a vehicular industrial use case.

Authors’ Contributions:
I was the main driver of the work under the supervision of the co-authors, Mehmet

Onur Aybek and John Lundbäck as representatives of our industrial partners. The plan
for the paper is formed in joint discussions with the co-authors. I performed the tool
evaluations and wrote the draft of the paper. The co-authors reviewed the paper, after
which I improved it.

3.2.6 Paper F: Bandwidth Reservation Analysis for Schedulability
of AVB Traffic in TSN

Title: Bandwidth Reservation Analysis for Schedulability of AVB Traffic in TSN [94]
Authors: Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin,
Saad Mubeen
Status: Accepted for publication in the IEEE 25th International Conference on Indus-
trial Technology (ICIT), 2024.

Abstract:
In this paper, we present a Bandwidth Reservation Analysis (BRA) for Audio-Video

Bridging (AVB) traffic in the Time-Sensitive Networking (TSN) standards. The pro-
posed analysis is based on the existing worst-case Response-Time Analysis (RTA)
and can be used to calculate the minimum required bandwidth for guaranteeing the
schedulability of the messages in AVB classes. The proposed analysis is applicable for
allocating sufficient bandwidth for the schedulability of AVB traffic in case of using
a combination of Time-Aware Shaper (TAS) and Credit-Based Shaping (CBS) mech-
anisms and takes into account the interference by Scheduled Traffic (ST) preemption
and overhead. Besides, the proposed BRA is applicable for allocating bandwidth per
link in the route of the AVB traffic according to the deadlines per link of traffic. We
present an evaluation based on an automotive use case. We evaluate the schedulability
of AVB traffic by comparing the proposed BRA with the utilization-based bandwidth
reservation as recommended by the TSN standards.

46 3.2 Research Papers

Contributions:

• In this paper, we propose a Bandwidth Reservation Analysis (BRA) for calculating
the lowest value of the bandwidth for classes A and B such that they become
schedulable. The solution is based on the existing worst-case RTA to consider
the impact of ST traffic, multi-hop architecture, and preemption of ST on the
lower-priority traffic.

Authors’ Contributions:
I was the main driver of the work under the supervision of the co-authors. The plan

for the paper was formed in joint discussions with the co-authors. I performed the tool
evaluations and wrote the draft of the paper. The co-authors reviewed the paper, after
which I improved it.

Chapter 4

Discussions

In this chapter, we first assess the extent to which the TCs address the challenges to
the RGs. We further discuss the results and limitations that we faced in the research
process.

4.1 Connecting Thesis Contributions to the Research
Goals

RG1: Develop an end-to-end data-propagation delay analysis for TSN-based dis-
tributed embedded systems. In our studies, we have perceived that the general
concern of the research on schedulability analysis has been on the worst-case scenarios
for analyzing the ST and AVB classes which subsequently undergo the TAS and CBS
mechanisms. These classes come with TSN mechanisms to support preserving the
timing requirements of the traffic class that they are intended for. However, in practice,
the TSN standards still allow the designers to assign real-time traffic to the lower priority
traffic class, i.e. BE class.

We observed that the flexibility of choosing the BE class gives the developers
free hands for increasing the system’s functionalities. The benefits of this flexibility
are: firstly, legacy real-time systems without TSN support can be easily integrated to
TSN via BE class; secondly, the workload of configuration can be compensated by
assigning some real-time traffic with less strict timing requirements to BE class. For
example, BE can be used when one of the higher priority classes is overloaded in an
application, or when the designers face a high configuration workload in case multiple
traffic shaping mechanisms are used; thirdly, new traffic can be included in the system

47

48 4.1 Connecting Thesis Contributions to the Research Goals

simply by assigning them to go through BE class. As a result, there is no need to
change the configuration of the shaping mechanisms that have been set to guarantee the
schedulability of the already existing traffic.

Our first step towards reaching RG1 was to address the challenge of incorporating
TSN classes in the worst-case RTA (RG1-challenge1). We particularly aimed to support
the QoS of BE by verifying its timing requirements at the timing analysis stage.

To the extent of our knowledge, the proposed worst-case RTA for BE was the only
analysis, among the few existing, that incorporated various TSN classes and mecha-
nisms, i.e., for classes ST, A and B via the TAS and CBS, and the frame preemption
mechanisms. Nevertheless, due to limitations of the existing analysis approaches, i.e.
lack of support for BE or limitations in supporting TSN mechanisms, we could not
perform a comparative evaluation of the proposed analysis. Thus our use case evaluation
showed the applicability of the proposed analysis for calculating the worst-case response
times of the frames in BE class. Moreover, we have integrated the proposed RTA for
BE in an industrial tool suite, namely Rubus Integrated Component model development
Environment (ICE) which has undergone evaluation using several industrial use cases.

However, it is still challenging to guarantee the schedulability of BE traffic. Because
of the lack of a shaping mechanism, there can be no guarantee for the schedulability of
the BE traffic within the development process. This raises the need for further supporting
the QoS of BE via the configuration stage, e.g., leaving sufficient bandwidth for traffic
assigned to BE classes via properly configuring the shaper mechanisms intended for the
higher priority traffic. This problem is later studied in RG2.

In our next step towards RG1, we expanded our perspective towards incorporating
various TSN mechanisms within the end-to-end data-propagation delay analysis which
was the second identified challenge towards this RG (RG1-challenge2). Throughout our
literature reviews, we noticed that the majority of the existing works only considered
local synchronization with a local notion of time within the end-stations. The synchro-
nization mechanisms defined in IEEE 802.1AS enable global synchronization of the
sender and receiver end-stations. Moreover, TSN traffic classes have different synchro-
nization requirements, e.g., ST requires synchronization for deterministic transmission
of frames via TAS mechanism. However, synchronization mechanisms are optional for
other traffic classes and their need for synchronization of end-stations depends on the
application requirements.

In our proposed end-to-end data-propagation delay analysis, we elaborate on dif-
ferent worst-case assumptions for calculating the end-to-end delays in the case where
end-stations are globally synchronized. In particular, we extended the timed-path calcu-
lation algorithm to remove the pessimistic assumption of the existing analysis which
only supported the non-synchronized end-stations. It is worth mentioning that we kept
the proposed analysis backward compatible to let it remain applicable to analyzing

Chapter 4. Discussions 49

non-synchronized end-stations.
The proposed analysis further allowed us to demonstrate the effect of various config-

urations of TAS mechanism for ST class, receiver task periods, and synchronization of
the sender and receiver end-stations on the end-to-end data-propagation delays of trans-
actions dealing with ST class. In particular, the results of the proposed analysis showed
that the configuration of TAS has a great impact on the end-to-end data-propagation
delays of traffic passing through ST class. We deem the aforementioned insight sig-
nificant since the existing end-to-end data-propagation analysis was not applicable for
calculating end-to-end delays for the transactions that utilize ST class. This insight
shows the applicability of the proposed analysis for further research on the configuration
of TSN systems.

RG2: Develop network configuration techniques considering the QoS requirements
of all traffic classes in TSN-based distributed embedded systems. We address
each of the three identified challenges for RG2 to different extents. In the following
paragraphs, we describe how we connect the findings of the thesis to each of the
challenges towards RG2.

Firstly, in the scope of RG2-challenge1, we aimed at automatic network configu-
ration. Our focus in the proposed CP-based offline scheduling approach in [21] was
in line with RG2-challenge1 in the sense that we proposed network constraints and
objective functions for automatically generating ST schedules using SMT/OMT solvers.
Next in [90], we moved the focus towards applying the automatically generated offline
schedules to the TSN networks in simulation environments. We discussed the necessity
for the automation and visualization of network configuration. Our experience revealed
that even in the case of small networks, manually configuring a large number of acti-
vation times for flow instances within our NeSTiNg simulator’s simulation framework
was excessively laborious, time-consuming, and prone to errors. The proposed frame-
work facilitated offline scheduling, pre-simulation configurations, and interpretation
of simulation results in NeSTiNg. We evaluated the applicability of the developed
framework for setting up larger networks, as well as an extensive evaluation of use
cases was conducted in two of the publications included in this thesis [90, 21]. The
automated configuration framework was made available to the research community
as an open-source plugin1 for the NeSTiNg simulator. The proposed framework was
proven efficient for the simulation environment under our study, i.e., the NeSTiNg
simulator. Due to its modular design, the proposed framework can be further enhanced
to support other TSN development platforms.

In the scope of RG2-challenge2, we further moved the focus towards managing

1https://gitlab.com/Scipsybee/automated-tsn-configuration-plugin

50 4.1 Connecting Thesis Contributions to the Research Goals

the complexity of configuring TSN shaper mechanisms. The porous offline schedules
generated by the proposed techniques in [21] allow for using the remaining bandwidth
from the ST class for other lower priority classes. In our study, we showed via simulation
results that the porous schedules have an effect on the QoS of BE class, i.e., reducing
the response times within the network and deadline misses. By benefiting from BE
class, we contribute to facilitating the design of systems by reducing the configuration
workload for some traffic with less critical timing requirements. We associate this
solution, aimed at increasing the QoS of BE, with the next challenge within the RG2.

The next challenge, RG2-challenge3, targets reaching an acceptable QoS while
using various TSN shaper mechanisms. In line with this challenge, we identified that
the bandwidth allocation strategy based on the standard recommendations results in
under-reservation of the bandwidth for AVB traffic. As a result, the bandwidth for AVB
traffic is limited to the extent that frames in this class miss their deadlines. We addressed
this challenge by proposing a technique called BRA to calculate the minimum required
bandwidth for configuring the CBS. BRA guarantees the schedulability of all traffic
going through the AVB classes. This technique allows the TSN network designers
to allocate credits efficiently to AVB traffic classes ensuring the schedulability of the
systems. The technique is agnostic of the ST offline schedule, which can be done before
this analysis with any scheduling solution that exists in the literature. BRA is based on
the existing worst-case RTA, and is pseudo-polynomial.

RG3: Develop a methodology to extract end-to-end timing information from
TSN-based distributed software architectures to support their timing analysis. A
challenge towards RG3 is the end-to-end timing analysis of software architectures of
TSN-based distributed embedded systems (RG3-challenge1). The contributions of this
thesis in the scope of RG3-challenge1 were 1) identification and classification of the
sources of the end-to-end timing information in more complex TSN setups; 2) automated
methodology to collect the necessary end-to-end timing information and requirements;
3) generating end-to-end timing models to be used as input to end-to-end timing analysis
techniques. This set of proposed methodologies is integrated and evaluated as proof of
concept within the industrial tool suite RUBUS ICE.

Chapter 5

Conclusions and Future Works

In this chapter, we conclude the thesis and reflect on the remaining research gaps.

5.1 Conclusions

In this thesis, we studied the need for enhancing the usability of the TSN standards for
developing predictable distributed embedded systems considering the QoS requirements
of all traffic classes in TSN, i.e., ST, AVB, and BE. The TSN standards introduce
promising mechanisms for supporting high-bandwidth and low-latency in-vehicle com-
munication. Nevertheless, the adoption of the real-world automotive use cases with
TSN remains a challenge.

In Chapter 1, we formulated the overall research goal of the thesis to support
the development of TSN-based distributed embedded systems at the stages of system
and software modeling, network configuration, and timing analysis while considering
the QoS requirements of all traffic classes in TSN. Furthermore, we identified three
challenges that need to be addressed to support the aforementioned development stages.

The thesis contributions were introduced in Chapter 3. These contributions target
the challenges towards the overall research goal. In particular, we extend the worst-case
RTA for TSN to support BE traffic, and subsequently extend the end-to-end data-
propagation delay analysis to support synchronized communication of all TSN traffic
classes. Moreover, we proposed new schedule synthesis techniques for the ST class
in TSN to improve the QoS of the BE class within the network. Then, we investigate
automatic configuration techniques to facilitate developing software architectures of
TSN-based distributed embedded systems. To this end, we propose a framework to

51

52 5.2 Future Works

automatically generate TSN network configuration and an end-to-end timing model
extraction technique to support the timing analysis of software architectures of these
systems. Then, we provided supporting techniques for applying the developed timing
analysis techniques at the system and software modeling stage of development. In
Chapter 4, we presented an assessment of how each of the thesis contributions can be
useful in reaching the research goals of this thesis.

5.2 Future Works
The results presented in this thesis indicated that the proposed techniques are useful to
facilitate the system and software modeling, network configuration, and timing analysis
stages during the development of TSN-based distributed embedded systems. However,
there are remaining gaps to address the challenges towards each research goal that we
suggest in this section as the potential Future Works (FW) of this thesis.

FW1: In Section 2.2, we showed that the focus of the state-of-the-art in offline
scheduling has moved towards holistic scheduling of the chains of tasks and messages
in the TSN-based distributed embedded systems. Such works aim at techniques for
simultaneously calculating schedules for a chain of TT tasks and ST messages to
optimize the end-to-end data-propagation delays in the chains. The existing techniques
face various limitations, e.g., when considering the preemption effects, assigning non-
harmonic periods, or task priorities. In the context of this thesis, we suggest investigating
the scheduling techniques for TT tasks and ST messages that consider QoS of the lower
priority traffic such as BE. Moreover, the contributions of this thesis regarding the timing
analysis further enable analysis-based optimization of the end-to-end data-propagation
delays.

FW2: In this thesis, we only focused on the challenges for performing timing analysis
on the software architectures that are modeled with RCM. However, there are several
other software architecture modeling languages and component models that are widely
used for developing software architecture for automotive systems, such as AUTOSAR,
AMALTHEA, EAST-ADL, AADL. Potential future work is to propose techniques
for increasing interoperability and integrating the contributions of this thesis with
model-based software development frameworks for distributed embedded systems.

FW3: In this thesis, we have used CP techniques for network scheduling. However,
the heuristics scheduling approaches are becoming a popular choice in the research
community for solving various scheduling problems in TSN networks as they are

Chapter 5. Conclusions and Future Works 53

easier to be implemented and applied in the industrial tool sets. Besides, the heuristic
techniques are faster than CP approach in calculating schedules for scenarios with larger
network and traffic. As a future work, we suggest further investigations for heuristic
techniques for scheduling ST while considering the QoS of lower priority traffic AVB
and BE.

Bibliography

[1] ISO Standard-11898, Road Vehicles–interchange of digital information–controller
area network (CAN) for high-speed communication, 1993.

[2] R. Bosch, “CAN with Flexible Data-Rate,” International Organization for Stan-
dardization, Geneva, Switzerland, Specification, vol. 1, p. 2012, 2012.

[3] ISO 17458:2013, “FlexRay Communications System Protocol Specification Ver-
sion 3.0.1.,” 2013.

[4] IEEE 802.1 Time-Sensitive Networking (TSN) Task Group, https://1.
ieee802.org/tsn.

[5] 802.1Q-2022, “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks,” 2022.

[6] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent Advances and
Trends in On-Board Embedded and Networked Automotive Systems,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1038–1051, 2019.

[7] M. Ashjaei, L. Lo Bello, M. Daneshtalab, G. Patti, S. Saponara, and S. Mubeen,
“Time-Sensitive Networking in Automotive Embedded Systems: State-of-the-art
and Research Opportunities,” Journal of Systems Architecture, vol. 117, p. 102137,
2021.

[8] M. Ashjaei, L. Murselović, and S. Mubeen, “Implications of Various Preemption
Configurations in TSN Networks,” IEEE Embedded Systems Letters, vol. 14, no. 1,
pp. 39–42, 2022.

[9] G. Dodig-Crnkovic, “Scientific Methods in Computer Science,” in Proceedings of
the Conference for the Promotion of Research in IT at New Universities and at
University Colleges in Sweden, Skövde, Suecia, pp. 126–130, 2002.

55

56 Bibliography

[10] J. Jasperneite, P. Neumann, M. Theis, and K. Watson, “Deterministic real-time
communication with switched ethernet,” in 4th IEEE International Workshop on
Factory Communication Systems, pp. 11–18, 2002.

[11] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, “Time-Triggered Ethernet,” in
Time-Triggered Communication, pp. 209–248, CRC Press, 2018.

[12] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algo-
rithms and applications, vol. 24. Springer Science & Business Media, 2011.

[13] T. Stüber, L. Osswald, S. Lindner, and M. Menth, “A Survey of Scheduling in
Time-Sensitive Networking (TSN),” arXiv preprint arXiv:2211.10954, 2022.

[14] A. Minaeva and Z. Hanzálek, “Survey on Periodic Scheduling for Time-Triggered
Hard Real-Time Systems,” ACM Comput. Surv., vol. 54, no. 1, 2021.

[15] V. Gavriluţ, A. Pruski, and M. S. Berger, “Constructive or Optimized: An Overview
of Strategies to Design Networks for Time-Critical Applications,” ACM Comput.
Surv., vol. 55, no. 3, 2022.

[16] W. Steiner, “An Evaluation of SMT-based Schedule Synthesis for Time-triggered
Multi-hop Networks,” in 2010 31st IEEE Real-time Systems Symposium, IEEE,
2010.

[17] W. Steiner, “Synthesis of Static Communication Schedules for Mixed-
Criticality Systems,” in 2011 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Work-
shops, pp. 11–18, 2011.

[18] S. S. Craciunas and R. S. Oliver, “Combined Task-and Network-level Scheduling
for Distributed Time-triggered Systems,” Real-Time Systems, 2016.

[19] S. S. Craciunas and R. S. Oliver, “An Overview of Scheduling Mechanisms
for Time-Sensitive Networks,” Proceedings of the Real-Time Summer School,
pp. 1551–3203, 2017.

[20] F. Pozo, G. Rodriguez-Navas, and H. Hansson, “Schedule Reparability: Enhanc-
ing Time-triggered Network Recovery Upon Link Failures,” in 2018 IEEE 24th
International Conference on Embedded and Real-Time Computing Systems and
Applications, pp. 147–156, 2018.

Bibliography 57

[21] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen, “Synthesising
Schedules to Improve QoS of Best-effort Traffic in TSN Networks,” in Proceedings
of the 29th International Conference on Real-Time Networks and Systems, no. 10,
p. 68–77, ACM, 2021.

[22] M. Barzegaran and P. Pop, “Communication Scheduling for Control Performance
in TSN-Based Fog Computing Platforms,” IEEE Access, vol. 9, pp. 50782–50797,
2021.

[23] D. Bujosa, M. Ashjaei, A. V. Papadopoulos, T. Nolte, and J. Proenza, “HERMES:
Heuristic Multi-queue Scheduler for TSN Time-Triggered Traffic with Zero Re-
ception Jitter Capabilities,” in Proceedings of the 30th International Conference
on Real-Time Networks and Systems, p. 70–80, ACM, 2022.

[24] N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop, “Window-based Schedule
Synthesis for Industrial IEEE 802.1qbv TSN Networks,” in IEEE International
Conference on Factory Communication Systems, pp. 1–4, 2020.

[25] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop, “AVB-Aware Routing and
Scheduling of Time-Triggered Traffic for TSN,” IEEE Access, vol. 6, pp. 75229–
75243, 2018.

[26] Y. Mi, J. Qu, J. Zhang, and M. Yao, “A Scheduling Algorithm of Maximize the
Number of Porosity for the Time-Triggered DIMA System,” in 2020 IEEE 3rd
International Conference on Electronics Technology, pp. 68–73, 2020.

[27] A. Berisa, L. Zhao, S. S. Craciunas, M. Ashjaei, S. Mubeen, M. Daneshtalab,
and M. Sjödin, “AVB-aware Routing and Scheduling for Critical Traffic in Time-
Sensitive Networks with Preemption,” in Proceedings of the 30th International
Conference on Real-Time Networks and Systems, p. 207–218, ACM, 2022.

[28] O. Hotescu and A. Finzi, “Scheduling Rate Constrained traffic in End Systems of
Time-Aware Networks,” in 2021 26th IEEE International Conference on Emerging
Technologies and Factory Automation, pp. 1–8, 2021.

[29] M. Vlk, K. Brejchová, Z. Hanzálek, and S. Tang, “Large-Scale Periodic Schedul-
ing in Time-Sensitive Networks,” Computers Operations Research, vol. 137,
p. 105512, 2022.

[30] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic List Scheduler for
Time Triggered Traffic in Time-Sensitive Networks,” SIGBED Rev., vol. 16, no. 1,
p. 15–20, 2019.

58 Bibliography

[31] M. Pahlevan and R. Obermaisser, “Genetic Algorithm for Scheduling Time-
Triggered Traffic in Time-Sensitive Networks,” in 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation, vol. 1, pp. 337–
344, 2018.

[32] H.-J. Kim, K.-C. Lee, M.-H. Kim, and S. Lee, “Optimal Scheduling of Time-
Sensitive Networks for Automotive Ethernet Based on Genetic Algorithm,” Elec-
tronics, vol. 11, no. 6, 2022.

[33] M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang, W. Liu, and A. M.-C. So, “A Unified Flow
Scheduling Method for Time-Sensitive Networks,” Computer Networks, vol. 233,
p. 109847, 2023.

[34] Y. Zheng, S. Wang, S. Yin, B. Wu, and Y. Liu, “Mix-Flow Scheduling for Con-
current Multipath Transmission in Time-Sensitive Networking,” in 2021 IEEE
International Conference on Communications Workshops, pp. 1–6, 2021.

[35] N. Reusch, S. S. Craciunas, and P. Pop, “Dependability-Aware Routing and
Scheduling for Time-Sensitive Networking,” IET Cyber-Physical Systems: Theory
& Applications, vol. 7, no. 3, pp. 124–146, 2022.

[36] X. Zhou, F. He, L. Zhao, and E. Li, “Hybrid Scheduling of Tasks and Messages
for TSN-Based Avionics Systems,” IEEE Transactions on Industrial Informatics,
pp. 1–12, 2023.

[37] L. Lo Bello, M. Ashjaei, G. Patti, and M. Behnam, “Schedulability Analysis
of Time-Sensitive Networks with Scheduled Traffic and Preemption Support,”
Journal of Parallel and Distributed Computing, vol. 144, pp. 153–171, 2020.

[38] M. Ojewale, P. M. Yomsi, and B. Nikolic, “Multi-Level Preemption in TSN:
Feasibility and Requirements Analysis,” 2020 IEEE 23rd International Symposium
on Real-time Distributed Computing, pp. 47–55, 2020.

[39] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, and M. Boyer, “Latency Analysis of
Multiple Classes of AVB Traffic in TSN with Standard Credit Behavior using
Network Calculus,” IEEE Transactions on Industrial Electronics, vol. 68, no. 10,
pp. 10291–10302, 2020.

[40] U. D. Bordoloi, A. Aminifar, P. Eles, and Z. Peng, “Schedulability Analysis
of Ethernet AVB Switches,” in 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications, pp. 1–10, 2014.

Bibliography 59

[41] M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi, and L. Lo Bello, “Schedu-
lability Analysis of Ethernet Audio Video Bridging Networks with Scheduled
Traffic Support,” Real-Time Systems, vol. 53, pp. 526–577, 2017.

[42] M. A. Ojewale, P. M. Yomsi, and B. Nikolić, “Worst-Case Traversal Time Analysis
of TSN with Multi-level Preemption,” Journal of Systems Architecture, vol. 116,
p. 102079, 2021.

[43] M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi, and L. Lo Bello, “Schedu-
lability Analysis of Ethernet Audio Video Bridging Networks with Scheduled
Traffic Support,” Real-Time Systems, 2017.

[44] G. Alderisi, G. Patti, and L. L. Bello, “Introducing Support for Scheduled Traffic
over IEEE Audio Video Bridging Networks,” in 2013 IEEE 18th Conference on
Emerging Technologies Factory Automation, pp. 1–9, 2013.

[45] J. A. R. De Azua and M. Boyer, “Complete Modelling of AVB in Network
Calculus Framework,” in Proceedings of the International Conference on Real-
Time Networks and Systems, p. 55–64, ACM, 2014.

[46] M. Boyer, H. Daigmorte, N. Navet, and J. Migge, “Performance Impact of the
Interactions between Time-Triggered and Rate-Constrained Transmissions in
TTEthernet,” in 8th European Congress on Embedded Real Time Software and
Systems , 2016.

[47] L. Zhao, P. Pop, Z. Zheng, and Q. Li, “Timing Analysis of AVB Traffic in TSN
Networks Using Network Calculus,” in 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 25–36, 2018.

[48] L. Zhao, P. Pop, and S. S. Craciunas, “Worst-Case Latency Analysis for IEEE
802.1Qbv Time Sensitive Networks Using Network Calculus,” IEEE Access, vol. 6,
pp. 41803–41815, 2018.

[49] L. Maile, K.-S. Hielscher, and R. German, “Network Calculus Results for TSN:
An Introduction,” in 2020 Information Communication Technologies Conference,
pp. 131–140, 2020.

[50] L. Zhao, Y. Yan, and X. Zhou, “Minimum Bandwidth Reservation for CBS in TSN
With Real-Time QoS Guarantees,” IEEE Transactions on Industrial Informatics,
pp. 1–12, 2023.

60 Bibliography

[51] T. L. Mai, N. Navet, and J. Migge, “A Hybrid Machine Learning and Schedulability
Analysis Method for the Verification of TSN Networks,” in 2019 15th IEEE
International Workshop on Factory Communication Systems, pp. 1–8, 2019.

[52] T. L. Mai, N. Navet, and J. Migge, “On the use of Supervised Machine Learning
for Assessing Schedulability: Application to Ethernet TSN,” in Proceedings of the
27th International Conference on Real-Time Networks and Systems, p. 143–153,
ACM, 2019.

[53] T. Long Mai and N. Navet, “Improvements to Deep-Learning-based Feasibility
Prediction of Switched Ethernet Network Configurations,” in Proceedings of the
29th International Conference on Real-Time Networks and Systems, p. 89–99,
ACM, 2021.

[54] J. Cao, P. J. L. Cuijpers, R. J. Bril, and J. J. Lukkien, “Tight Worst-case Response-
time Analysis for Ethernet AVB using Eligible Intervals,” in 2016 IEEE World
Conference on Factory Communication Systems, pp. 1–8, 2016.

[55] D. Maxim and Y.-Q. Song, “Delay Analysis of AVB Traffic in Time-Sensitive
Networks (TSN),” in Proceedings of the 25th International Conference on Real-
Time Networks and Systems, p. 18–27, ACM, 2017.

[56] R. J. Bril, “Independent WCRT Analysis for the Best-Effort Class BE in Ethernet
AVB,” in 2022 IEEE 18th International Conference on Factory Communication
Systems, pp. 1–4, 2022.

[57] J. Cao, M. Ashjaei, P. J. L. Cuijpers, R. J. Bril, and J. J. Lukkien, “An Independent
yet Efficient Analysis of Bandwidth Reservation for Credit-based Shaping,” in
2018 14th IEEE International Workshop on Factory Communication Systems,
pp. 1–10, 2018.

[58] R. J. Bril, H. Hassani, P. J. Cuijpers, and G. Nelissen, “Cost of Robustness of
Independent WCRT Analysis for CBS of Ethernet AVB Using Eligible Intervals,”
in 2023 IEEE 19th International Conference on Factory Communication Systems
(WFCS), pp. 1–4, 2023.

[59] AUTOSAR Consortium, AUTOSAR Techincal Overview [online], Release 4.1,
Rev.2, Ver.1.1.0., http://autosar.org.

[60] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, and K.-L. Lundbäck, “Supporting
Timing Analysis of Vehicular Embedded Systems through the Refinement of
Timing Constraints,” Software & Systems Modeling, vol. 18, no. 1, pp. 39–69,
2019.

Bibliography 61

[61] L. Zhao, F. He, E. Li, and J. Lu, “Comparison of Time-Sensitive Networking (TSN)
and TTEthernet,” in 2018 IEEE/AIAA 37th Digital Avionics Systems Conference,
pp. 1–7, 2018.

[62] M. Günzel, K.-H. Chen, N. Ueter, G. v. d. Brüggen, M. Dürr, and J.-J. Chen,
“Timing Analysis of Asynchronized Distributed Cause-Effect Chains,” in 2021
IEEE 27th Real-Time and Embedded Technology and Applications Symposium,
pp. 40–52, 2021.

[63] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for End-to-end Response-time
and Delay Analysis in the Industrial Tool Suite: Issues, Experiences and a Case
Study,” Computer Science and Information Systems, vol. 10, no. 1, pp. 453–482,
2013.

[64] M. Ashjaei, N. Khalilzad, S. Mubeen, M. Behnam, I. Sander, L. Almeida, and
T. Nolte, “Designing End-to-end Resource Reservations in Predictable Distributed
Embedded Systems,” Real-Time Systems, vol. 53, pp. 916–956, 2017.

[65] J. Schlatow, M. Mostl, S. Tobuschat, T. Ishigooka, and R. Ernst, “Data-Age Anal-
ysis and Optimisation for Cause-Effect Chains in Automotive Control Systems,”
in 2018 IEEE 13th International Symposium on Industrial Embedded Systems,
pp. 1–9, 2018.

[66] J. Martinez, I. Sañudo, and M. Bertogna, “Analytical Characterization of End-to-
end Communication Delays with Logical Execution Time,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11,
pp. 2244–2254, 2018.

[67] T. Klaus, F. Franzmann, M. Becker, and P. Ulbrich, “Data Propagation Delay
Constraints in Multi-Rate Systems: Deadlines vs. Job-Level Dependencies,” in
Proceedings of the 26th International Conference on Real-Time Networks and
Systems, p. 93–103, ACM, 2018.

[68] R. Bi, X. Liu, J. Ren, P. Wang, H. Lv, and G. Tan, “Efficient Maximum Data Age
Analysis for Cause-Effect Chains in Automotive Systems,” in Proceedings of the
59th ACM/IEEE Design Automation Conference, p. 1243–1248, ACM, 2022.

[69] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compositional Frame-
work for End-to-end Path Delay Calculation of Automotive Systems under Differ-
ent Path Semantics,” in IEEE Real-Time Systems Symposium, IEEE Communica-
tions Society, 2009.

62 Bibliography

[70] M. Dürr, G. V. D. Brüggen, K.-H. Chen, and J.-J. Chen, “End-to-End Timing Anal-
ysis of Sporadic Cause-Effect Chains in Distributed Systems,” ACM Transactions
on Embedded Computing Systems, vol. 18, no. 5, 2019.

[71] K.-B. Gemlau, L. KÖHLER, R. Ernst, and S. Quinton, “System-level Logical Exe-
cution Time: Augmenting the Logical Execution Time Paradigm for Distributed
Real-time Automotive Software,” ACM Transactions on Cyber-Physical Systems,
vol. 5, no. 2, 2021.

[72] T. Kloda, A. Bertout, and Y. Sorel, “Latency Analysis for Data Chains of Real-
Time Periodic Tasks,” in 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation, vol. 1, pp. 360–367, 2018.

[73] L. Köhler, P. Hertha, M. Beckert, A. Bendrick, and R. Ernst, “Robust Cause-Effect
Chains with Bounded Execution Time and System-Level Logical Execution Time,”
ACM Transactions on Embedded Computing Systems, vol. 22, no. 3, 2023.

[74] H. Teper, M. Günzel, N. Ueter, G. von der Brüggen, and J.-J. Chen, “End-To-
End Timing Analysis in ROS2,” in 2022 IEEE Real-Time Systems Symposium,
pp. 53–65, 2022.

[75] M. Ashjaei, S. Mubeen, J. Lundbäck, M. Gålnander, K.-L. Lundbäck, and T. Nolte,
“Modeling and timing analysis of vehicle functions distributed over switched
ethernet,” in 43rd Annual Conference of the IEEE Industrial Electronics Society,
pp. 8419–8424, 2017.

[76] S. Mubeen, M. Gålnander, J. Lundbäck, and K.-L. Lundbäck, “Extracting Timing
Models from Component-based Multi-Criticality Vehicular Embedded Systems,”
in Information Technology-New Generations: 15th International Conference on
Information Technology, pp. 709–718, Springer, 2018.

[77] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “System level
performance analysis–the SymTA/S approach,” IEE Proceedings-Computers and
Digital Techniques, vol. 152, no. 2, pp. 148–166, 2005.

[78] A. Arestova, M. Martin, K.-S. J. Hielscher, and R. German, “A service-oriented
Real-Time Communication Scheme for AUTOSAR Adaptive using OPC UA and
Time-Sensitive Networking,” Sensors, vol. 21, no. 7, p. 2337, 2021.

[79] D. Bruckner, M.-P. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. Seewald, and
T. Sauter, “An Introduction to OPC UA TSN for Industrial Communication Sys-
tems,” Proceedings of the IEEE, vol. 107, no. 6, pp. 1121–1131, 2019.

Bibliography 63

[80] A. Bucaioni, P. Pelliccione, and S. Mubeen, “Modelling Centralised Automo-
tive E/E Software Architectures,” Advanced Engineering Informatics, vol. 59,
p. 102289, 2024.

[81] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback, and K.-L.
Lundback, “The Rubus Component Model for Resource-Constrained Real-Time
Systems,” in 2008 International Symposium on Industrial Embedded Systems,
pp. 177–183, 2008.

[82] S. Mubeen, H. B. Lawson, J. Lundbäck, M. Gålnander, and K.-L. Lundbäck, “Pro-
visioning of Predictable Embedded Software in the Vehicle Industry: The Rubus
Approach,” in 4th International Workshop on Software Engineering Research
and Industry Practice, located at the 39th International Conference on Software
Engineering, pp. 3–9, 2017.

[83] A. Bucaioni, L. Addazi, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen, and
M. Sjödin, “MoVES: A Model-Driven Methodology for Vehicular Embedded
Systems,” IEEE Access, vol. 6, pp. 6424–6445, 2018.

[84] A. Bucaioni, M. Becker, J. Lundbäck, and H. Mackamul, “From AMALTHEA to
RCM and Back: a Practical Architectural Mapping Scheme,” in 2020 46th Euromi-
cro Conference on Software Engineering and Advanced Applications, pp. 537–544,
2020.

[85] A. Bucaioni, V. Dimic, M. Gålnander, H. Lönn, and J. Lundbäck, “Transferring
a Model-Based Development methodology to the automotive industry,” in 2021
22nd IEEE International Conference on Industrial Technology, vol. 1, pp. 762–767,
2021.

[86] J. Jiang, Y. Li, S. H. Hong, A. Xu, and K. Wang, “A Time-Sensitive Networking
(TSN) Simulation Model Based on OMNET++,” in 2018 IEEE International
Conference on Mechatronics and Automation, pp. 643–648, 2018.

[87] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and K. Rother-
mel, “NeSTiNg: Simulating IEEE Time-sensitive Networking (TSN) in OM-
NeT++,” in IEEE Proceedings of the International Conference on Networked
Systems, 2019.

[88] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-to-end Timing
Analysis of Cause-effect Chains in Automotive Embedded Systems,” Journal of
Systems Architecture, vol. 80, pp. 104–113, 2017.

[89] D. Hellmanns and J. Falk, “NeSTiNg - Network Simulator for Time-Sensitive
Networking [Online, 2020-10-26].”

[90] B. Houtan, A. Bergström, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen,
“An Automated Configuration Framework for TSN Networks,” in 2021 22nd IEEE
International Conference on Industrial Technology, vol. 1, pp. 771–778, 2021.

[91] B. Houtan, M. O. Aybek, M. Ashjaei, M. Daneshtalab, M. Sjödin, J. Lundbäck, and
S. Mubeen, “End-to-end Timing Modeling and Analysis of TSN in Component-
Based Vehicular Software,” in 2023 IEEE 26th International Symposium on Real-
Time Distributed Computing, pp. 126–135, 2023.

[92] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, S. Afshar, and S. Mubeen,
“Schedulability Analysis of Best-Effort Traffic in TSN Networks,” in 2021 26th
IEEE International Conference on Emerging Technologies and Factory Automa-
tion, pp. 1–8, 2021.

[93] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen, “Supporting
End-to-end Data Propagation Delay Analysis for TSN-Based Distributed Vehicular
Embedded Systems,” Journal of Systems Architecture, vol. 141, p. 102911, 2023.

[94] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen, “Bandwidth
Reservation Analysis for Schedulability of AVB Traffic in TSN,” in the 25th IEEE
International Conference on Industrial Technology.

Part II

Included Papers

65

Chapter 6

Paper A:
An Automated Configuration
Framework for TSN Networks

Bahar Houtan, Albert Bergström, Mohammad Ashjaei, Masoud Daneshtalab, Mikael
Sjödin, Saad Mubeen.
In the 22nd IEEE International Conference on Industrial Technology (ICIT), 2021.

66

Abstract

Designing and simulating large networks, based on the Time Sensitive Network-
ing (TSN) standards, require complex and demanding configuration at the design and
pre-simulation phases. Existing configuration and simulation frameworks support only
manual configuration of TSN networks. This hampers the applicability of these frame-
works to large-sized TSN networks, especially in complex industrial embedded system
applications. This paper proposes a modular framework to automate offline scheduling
in TSN networks to facilitate the design-time and pre-simulation automated network
configurations as well as interpretation of the simulations. To demonstrate and evaluate
the applicability of the proposed framework, a large TSN network is automatically con-
figured and its performance is evaluated by measuring end-to-end delays of time-critical
flows in a state-of-the-art simulation framework, namely NeSTiNg.

70 6.1 Introduction

6.1 Introduction

Time-Sensitive Networking (TSN) is a set of standards, developed by the IEEE 802.1
TSN task group [1], to support high-bandwidth, time-critical, and low-latency commu-
nication over the switched Ethernet. These standards offer several novel features, e.g., a
common notion of time through clock synchronization, resource reservation for various
types of traffic, traffic shaping, scheduled traffic support, frame preemption, and much
more. There is a huge interest in utilizing TSN in time-critical applications, in particular
in the automotive [2] and industrial automation domains [3]. However, there are several
challenges that are encountered when utilizing TSN in industrial applications. One
core challenge is to perform the TSN network configuration during the design, analysis
and simulation phases, while taking the applications’ timing requirements into account.
These applications often require complex configuration measures at the design and
pre-simulation phases, such as creating offline schedules for the scheduled traffic. The
existing network design and simulation frameworks for TSN lack automation in the
network configuration. Manually configuring a large number of parameters associated
to various types of traffic in TSN can be time consuming, error prone and cumbersome
for the network designers.

To address this challenge, this paper proposes an automated framework that fa-
cilitates the design-time and pre-simulation network configuration of TSN networks.
The proposed framework uses one of the state-of-the-art open-source TSN simulation
platforms, namely NeSTiNg [4, 5]. The source code for the proposed framework is
openly provided in gitlab1. The proposed framework is desinged in a modular way and
it uses the Extensible Markup Language (XML) format for the information exchange,
which allow the framework to be easily adapted to other simulation platforms. The
main contributions in the proposed framework are as follows:

• integrating the traffic generation and optimized network schedule synthesis to the
NeSTiNg open-source simulation framework for TSN;

• addressing the flow configuration complexity by automatically translating configura-
tion for the scheduled flows’ into the NeSTiNg syntax compliant configuration;

• addressing the gate states configuration complexity by automatically translating the
synthesized schedules into the NeSTiNg syntax compliant configuration; and

• finally, allowing to automatically configure the configuration files by a Graphical User
Interface (GUI) that is integrated into the simulation framework.

1https://gitlab.com/Scipsybee/automated-tsn-configuration-plugin

Paper A 71

6.2 Background and Related Work

The Time-Aware Shaper (TAS) mechanism in the IEEE 802.1Qbv standard allows
arbitration of various types of traffic based on priorities at a TSN switch’s egress port.
TSN composes eight traffic priorities that are encoded by a 3-bit priority code point
(PCP), which is associated with the index of 8 priority queues at TSN switch’s egress
port. For example, to reserve the switch bandwidth for the highest priority real-time
class, the Scheduled Traffic (ST) with PCP = 7, a time-division multiple access
transmission selection algorithm is used. Egress data flow from each priority queue
is controlled by a gate. Based on this algorithm, the offline schedules must be time-
stamped in a Gate Control List (GCL), which contains the starting and finishing times of
allowed time slots for each queue and associated configuration of the gate states (GS).

There are several works that discuss automatic synthesis of optimized gate schedules
in TSN by using solvers like the Satisfiability/Optimized Modulo Theorem (S/OMT),
e.g., the works by Craciunas et al. [6], Hashemi et al. [7], Schneider and Santos et
al. [8], and Gavrilut et al. [9]. The work by Pahlevan et al [10] uses the Genetic
Algorithm to automatically synthesize the gate schedules. There are several simulation
frameworks for pre-implementation evaluation of TSN networks. OMNeT++ is an open-
source discrete event simulation platform, primarily used for constructing simulations
of networks2. INET3 is another widely used open-source simulation framework that
models wired, wireless and mobile networks. Core4INET [11] is an open-source TSN
simulation framework that is built on OMNeT++. Core4INET allows simulation of
TSN networks based on various standards, e.g., IEEE 802.1Q, IEEE P802.1p VLANs
and Priorities, IEEE 802.1 AVB and TTEthernet (AS6802). Another notable example
of the TSN simulation frameworks is NeSTiNg [4]. NeSTiNg supports several TSN
features, including the scheduled traffic (IEEE 802.1Qbv), frame preemption (IEEE
Std 802.1Qbu and IEEE Std 802.3br), credit-based shaper (IEEE Std 802.1Qav), time
synchronization (IEEE Std 802.1AS). Schedule and routing in NesTiNg can be done
through insertion of XML files, with a strict syntax. This feature allows NesTiNg to
be seamlessly integrated to the proposed framework. Hence, the network simulations
with NesTiNg can be facilitated by automatic generation of XML configuration files for
flow schedules, flow attributes and gate states. Both Core4INET and NeSTiNg require
significant amount of manual configurations at the pre-simulation phase as well as for
interpretation of the simulation results. The framework proposed in this paper augments
automation in these frameworks by means of an automated configuration framework for
TSN.

2https://omnetpp.org/
3https://inet.omnetpp.org/

72 6.3 Automated Configuration Framework

6.3 Automated Configuration Framework

Figure 6.1. Various sources of the configuration complexity.

6.3.1 Configuration Complexity in TSN
This subsection demonstrates the level of complexity in the configuration of TSN
networks, in particular, the configuration that is required to simulate TSN networks
using the NeSTiNg framework. We demonstrate various configuration parameters by
an example shown in Figure 6.1. The example illustrates a TSN network consisting of
two transmitter end stations, ST1 and ST2, and two receiver end stations, ST3 and ST4.
The end stations are connected via two TSN switches, SW1 and SW2. ST1 transmits a
periodic flow to ST3. Whereas, ST2 sends a periodic flow to ST4. The period of ST2’s
flow is double the period of ST1’s flow.

The network configuration is performed in three steps: (i) configuration of offline
schedules for the scheduled traffic on each link, (ii) configuration of gate states in egress

Paper A 73

queues of each TSN switch port, and (iii) configuration of switch routing tables.

Configuration of the Source Link Schedules

In the example shown in Figure 6.1, source link schedules are specified by the text in
the box (a). In general, there are 27 lines in the flow configuration file. Subsequently,
14 and 7 lines of code are needed to indicate the traffic characteristics of the data flows
transmitted from ST1 and ST2. One drawback of the current configuration method
is that the traffic settings should be assigned based on the flow generating source end
stations. This method becomes challenging when a source end station needs to transmit
scheduled traffic with different periods, different data size of flows and via different
queues to different destination end stations.

The NeSTiNg configuration approach does not support convenient modelling for
TSN flows. In the current modelling perspective, traffic flows must be specified based
on the flow generating source end station. Hence, the flow schedules from each source
end station should be specified based on the flow offsets in chronological order in an
XML file. The bottleneck in this method is the extra effort for the network designers at
the traffic configuration stage. Because in case of having different flow profiles from
a source end station, it is necessary to add each periodic instance of every flow4 until
hyper period of the flows as a new schedule entry to the XML configuration file. The
hyper period of the flows is the least common multiple of periods of all flows. It is
extremely laborious, time-consuming and error-prone to perform manual configuration
of a large number of activation times of the flow instances, even in the case of small
networks.

Network Gate State Configuration

In order to guarantee timely transmission of the ST flows in the network, the gate
opening and closing times in the egress ports of each TSN switch must be assigned,
while taking the timing requirements on the flows into account. The TAS provides a
mechanism of opening and closing gates of the egress queues, which creates reserved
time slots on the egress link. These time slots assign the link capacity to the flows,
which are scheduled to pass through the egress link. There are 8 traffic classes that
correspond to a gate in the TAS. In order to calculate the reserved time slots on the
link, the trace of all the frames passing through the link must be arranged and defined
as gate states at the egress port of the TSN switch connected to that link. To specify
the ST frame transmission slots on the link, it is necessary to calculate the offset of the
frames until the hyper period of the crossing flows from the link. Assigning the gate

4A flow instance is represented by a frame

74 6.3 Automated Configuration Framework

states can become very complex due to increase in the number of slots that need to
be reserved on the link. Conventionally, the gate states can be assigned by manually
drawing the network trace and inspecting the arrival times of the ST flows on each link.
The box (b) in Figure 6.1 shows a sample trace of the two flows on egress link 1 from
SW1 and egress links 2 and 3 from SW2. The gate states in the example shown in
Figure 6.1 can be manually configured by drawing the traces of the network. However,
manually performing the gate-states configurations for large-sized networks that include
a large number of flows of different traffic classes is impractical, time-consuming and
error prone. Even if the schedules for the flows are calculated using optimized schedule
generation engines, manual translation of the generated schedules to comply with the
input configuration syntax for the simulation frameworks (like NeSTiNg) requires a
massive pre-simulation effort.

Switch Routing Table Configuration

A routing table statically defines the paths to forward traffic from the source end station
to the destination end station’s address. The box (c) in Figure 6.1 shows the routing
table configurations. In case of larger networks, there might be multiple paths to a
destination end station, which calls for configuring the routing table of each switch.
This requires the designer to acquire knowledge of all the connections between switches
and switch port numbers connected to each end station.

It can be seen from the above discussion that simulation of TSN networks requires
complex pre-simulation configurations of various parameters. In the case of large TSN
networks, manually setting up these configurations becomes time consuming, error
prone and impractical. Therefore, an automatic configuration framework is essential, in
particular for designing, simulating and evaluating large industrial network.

6.3.2 Modular Architecture of the Proposed Framework

This subsection presents the modular architecture of the proposed automatic configu-
ration framework as depicted in Figure 6.2. The proposed framework consists of four
modules: (i) traffic generator, (ii) schedule synthesizer, (iii) automated configurator, and
(iv) output and results interpreter.

Traffic Generator

The traffic generator module generates attributes of the TSN flows that are required
for traffic configuration in the simulator. This module provides flow-based traffic
configuration input to the simulator. In this module, periodic flows (a.k.a. streams) are

Paper A 75

4. Output and Results Interpreter

Configuration
Parser

Network
Parser

Node Editor
GUI

Gate States
Editor GUI

Flow Editor
GUI

Schedule
Saver

Offsets
Parser

Flow Parser

Automatic
Flow

Generator

Automatic
Gate States
Assignment

Load Graphical User
Interface (GUI)

Save

Automated configuration generator

Offsets
1. Traffic Generator

3. Automated Configurator

.CSV files

.CSV files
Traffic Flows

Results

NeSTiNg
Simulation
Framework

Auto-Generated

empty
.xml files

Routing

Schedules

Network.ned
Config.ini

filled
.xml files

Routing

Schedules

Raw Files

.CSV files
1. End-to-end Delays
2. Deadline Misses

Results Extraction
Python Script

.vec files .elog files

Automa�c Configura�on Framework for TSN

4. Result Interpretation

2. Schedule Synthesizer

Figure 6.2. Modular Design of the proposed automated configuration framework.

represented by a tuple, S. Each flow si, in the set of flows, is represented by Eq. (6.1):

S := ⟨{s1, . . . , s|S|},∀[Va, Vb] ∈ L : hp[Va,Vb]⟩ (6.1)

where, Va and Vb specify a pair of end stations/switches connected via a link denoted
by [Va, Vb], which is a member of the network link set, denoted by L. The parameter,
hp[Va,Vb], represents the hyper period of the set of flows, which is the least common
multiple of periods of flows crossing the link [Va, Vb]. Furthermore, the flow profiles
are characterized by Eq. (6.2):

si := ⟨srci, ti, di, li, pi, ri, desti⟩ (6.2)

where, i is the unique ID of each flow. The transmitter end station’s ID is represented
by srci. The source end station transmits flows of data to the destination end station
with the ID desti. The period and deadline of the flow are represented by ti and di,
respectively. The parameter li stores the transmission duration of the flow. The flow
priority is denoted by pi. Finally, ri holds the list of switches in the path from the source
end station to the destination end station.

In addition to setting the flow attributes, this module enables editing of the link
attributes, which affect the transmission duration of frames and synchronization of the
transmitter and receiver end stations. Eq. (6.3) specifies the link attributes.

∀[Va, Vb] ∈ L := ⟨speed, delay, tick, queue⟩ (6.3)

76 6.3 Automated Configuration Framework

The parameter, speed, indicates the maximum allowed bandwidth on the link in bit/s.
The propagation delay on the link is denoted by delay. tick is the synchronization factor
of the physical layer, according to IEEE 802.1AS. Finally, the maximum number of
queues is represented by queue. The traffic generator module receives a graph topology
of the network. The outputs of this module are flow profiles that are stored in a Comma
Separated Vector (CSV) file to be used by the other framework modules.

Schedule Synthesizer

The schedule synthesizer is a constraint-based solver that is intended to find solution
of a scheduling optimization objective function and a set of real-time constraints on
the ST flows. The schedule synthesis module produces offsets that ensure the timing
requirements of the time-triggered ST traffic at each hop in the flow’s path are satisfied.
We specifically employ an open-source S/OMT solver, namely Z35 that features both
satisfiability and optimization solvers. These solvers are automated theorem provers that
search for solutions by examining the satisfiability of possible combination of solutions
in a search tree. This module receives a CSV file containing the standard flow set and
link set specifications presented by Eq. (6.1), Eq. (6.2) and Eq. (6.3). The schedule syn-
thesis module specifies transmission time of each ST flow on each link. In this work, we
apply the network modelling approach presented in [6]. Where, frame i in the kth flow
is indicated by fi,k. The path from a transmitter end station, Va, to a receiver end sta-
tion, Vb, is shown as the set, [[Va, V1], [V1, V2], ..., [Vi, Vj], ..., [Vn−2, Vn−1], [Vn, Vb]].
The transmission gate schedules on each link must be defined by a set of well-defined
tuples to be readable by the automatic configuration generation module. Therefore,
we consider the following attributes for each frame f

[Vi,Vj]
i,k , < ϕ, Len >. Where, ϕ

represents the transmission time, and Len indicates the allowed margin on the link
for complete transmissions of the frame. As a results, the list of gate transaction time
stamps of each TSN switch is shown in Eq. (6.4):

∀[Va, Vb] ∈ L,∀s{1,...,|S|} ∈ S, ∀f [Va,Vb]
i,k ∈ s

[Va,Vb]
i :

[f
[Va,Vb]
i,k .ϕ, f

[Va,Vb]
i,k .ϕ+ f

[Va,Vb]
i,k .Len]

(6.4)

where, the list of gate states at a switch’s egress port is defined by the set of allowed
time margins to transmit frames on the associated egress link. The start and length of
the time margins are denoted by the flow’s frame offset and a predefined window size
respectively.

5https://pypi.org/project/z3-solver/

Paper A 77

Automated Configurator

The automated configuration module is realized as a plug-in for the OMNET++ TSN
simulation framework. Hence, it is easliy integrable with the NeSTiNg simulation
framework. The plug-in consists of two main sub-modules.

• Graphical User Interface (GUI): Through the GUI sub-module, the flows, schedules,
routing settings and gate states can be created and modified manually.

• Automated Configuration Generator: This sub-module receives the simulation setting
files from the traffic generation and schedule synthesis modules. The settings are then
translated into the NeSTiNg configuration files.

The NeSTiNg XML schedule and routing configuration files can be edited both
by the GUI and Automated Configuration Generator. If the XML files contain flow
entries, they can be parsed by the load sub-module, which can be further edited and
visualized in the GUI. Also, new entries can be written on the files through the GUI or
the Automated Configuration Generator. The save sub-module translates the received
configurations into the NeSTiNg compliant configurations.

Output and Results Interpreter

While it is possible to collect certain useful statistics (e.g., end-to-end delays) in the
NeSTiNg framework, the manual inspection of numerous recorded parameters for each
component in large networks is impractical. The end-to-end delay is a time interval
from the transmission of a frame from its source end station until it has arrived at
the destination end station. Besides, OMNeT++ and NeSTiNg simulation records are
frame-based as they use source-based traffic configuration. Therefore, these simulation
frameworks lack a built-in functionality for extraction of the TSN flow metrics. Python
scripts are suggested by OMNeT++ official technical guide in [12] to retrieve insights
from the simulator’s vector (VEC) files. In order to acquire end-to-end delays of
the frames, a python script is devised, which constitutes the final sub-module of the
framework as shown in Figure 6.2. The script traces the vector files, records the
transmission and reception times of each flow, and calculates the flow’s end-to-end
delay. In addition to the aforementioned python script, the final module in the proposed
framework also features an OMNeT++ integrated sub-module to extract the maximum
end-to-end delays of the flows. The flow extraction component of the plug-in also
takes the VEC files containing the transmission and reception times of the flow as input.
Thereafter, a CSV file is created with the maximum end-to-end delays corresponding to
each TSN flow.

78 6.4 Implementation

6.4 Implementation

This section presents a proof-of-concept implementation of the proposed framework.
As shown in Figure 6.3, the automated configuration module performs configurations
both in manual and automatic mode. There are several configuration algorithms that can
be utilized to obtain an optimum network timing behaviour. The proposed framework
is implemented as a TSN plugin, which is integrated to the NeSTiNg simulator using
the OMNeT++ Java application programming interface and the plug-in development
environment in OMNeT++.

Figure 6.3. Automated flow and gate configurator flowchart.

Paper A 79

6.4.1 Framework Configuration Files
Pre-simulation Configuration

There is a set of files to be configured before starting the simulation process. The
automatic configuration of the pre-simulation process is performed by configuring the
following model files.

• Simulation initialization (INI) file: this file contains simulator specific configuration
options. This file can be either edited directly or modified in a wizard that is embedded
in the OMNeT++ IDE [13]. Our framework uses this file to obtain the Media Access
Control (MAC) addresses of the end stations and processing delays in TSN switches.

• Network Topology Description (NED) file: the component modules, sub-modules,
channels and overloaded component types can be defined in this file. The OMNeT++
IDE allows setting this file in visual or non-visual modes [13]. Our framework reads
the NED files and obtains information such as network topology and available paths
from the source end station to the destination end station.

• XML schedule file: transmission schedules for ST flows must be defined and inserted
in the NeSTiNg simulator using XML files. Our proposed framework enables auto-
mated schedule generation, editing of schedules by a GUI and visualization of each
frame in a flow by accessing this file.

• XML routing file: this file statically defines the paths to forward traffic according to
the destination end station’s address. The XML routing file defines the forwarding
database for each switch. By using information from the NED file, such as topology
and available paths from the source end station to the destination end station, the
framework specifies fixed routes, thereby generating the XML routing file.

• CSV flow file: the set of data received from the traffic generator module is saved
in this file. The file contains flows’ profiles such as queue index, frame size and
destination end station, which are used in the automated mode to further configure
the ST flows in the XML schedule file.

• CSV gate synthesis file: this file contains the set of data received from the schedule
synthesizer, including offset of frames on each egress link. Accordingly, this file can
be used in the automated mode to set the switch gate states in the XML schedule file.

Post-simulation Files

The NeSTiNg simulator generates vector outputs of the network event parameters and
their occurrence times after the simulation. These files include:

80 6.4 Implementation

• Results’ vectors (VEC): after the simulation, the events and time stamps are recorded
in the vector files. The proposed framework’s post-simulation analysis module uses
these files to obtain end-to-end delay and deadline miss metrics.

• Event logs file (elog): This file stores the frame transmission traces that can be
visualized in OMNeT++ by the GUI. We refer the reader to [5] for further details
about the elog files.

• End-to-end delay and deadline miss log (CSV): this file contains interpreted results
using the simulator’s VEC files. This file includes the end-to-end delays and the
number of deadline misses experienced by the flows.

6.4.2 Configuration of Inputs and GUI Layout
The automatic configuration process supports two modes: (i) manual; and (ii) automatic.
Figure 6.3 demonstrates the flowchart of the manual and automated configuration input
methods. In the manual mode, the GUI allows the user to select input files from the
work space. The manual mode requires the NeSTiNg’s INI and NED files, as well as
two empty XML files to be loaded in the fields; ”INI file”, ”NED file”, ”XML schedule
file” and ”XML routing file”. Manual entries for schedule configurations are saved in
the associated XML file. The routing database is saved in the XML routing file based
on existing physical channels, as described in the NED file. The GUI allows to append
the flow path entries through the ”TSN flows insertion” function, which enables to
select the source and destination end stations, as well as the specification of static route
among the switches within the path from the source end station to the destination end
station. After specifying the flow path, other flow attributes can be viewed and adjusted
in the ”TSN flows overview” function. These attributes include offset, flow size and
a dedicated switch queue for the flow. Furthermore, physical characteristics of end
stations and switches can be adjusted by calling the ”Node Editor GUI” and ”Switch
Editor GUI” functions. The ”TSN switch gate state GUI” function enables inserting
the gate states for each port in a TSN switch. Besides, it assists to adjust and modify
the gate configurations by visualizing the gate states specified for a frame scheduled
on each link. The results of the manual GUI are finally saved in the XML files that are
used by the simulation framework.

In the automated configuration mode, insertion of the flow and gate-state configura-
tions can be performed automatically by loading well-defined flow entry and gate-state
data files, which must be provided by ”.CSV flows” and ”.CSV Synthesis” fields in the
main GUI along with the rest of the configuration files. We note here that the automated
configuration data are prepared by preceding automated sub-modules: traffic generator
and schedule synthesizer. Therefore, the automated mode removes the risk of human

Paper A 81

errors that can be introduced with manual configurations. After the automatic generation
of the schedules and routing configurations, the output can be visualized, inspected
and adjusted by the manual GUI. The save sub-module translates configurations to
the NeSTiNg compatible syntax. We refer the reader to [14] for further details about
the implementation and user manual of the GUI. If the proposed framework is to be
integrated to a simulation platform other than NeSTiNg, the save sub-module can be
adapted to comply with the syntax of the simulation platform.

6.5 Evaluation

To evaluate the proposed framework we designed and configured a TSN network as
illustrated in Figure 6.4, which is a hybrid ring-mesh topology connecting 12 end
stations through 5 TSN switches. The network speed on each link is set to 1 Gbit/s.
We assume that there are no processing delays in the TSN switches. Furthermore, the
delays on the links themselves are considered negligible. We generated 40 flows of the
scheduled traffic class in TSN. The periods of the flows are chosen from the set [1000 µs,
2000 µs, 5000 µs], which complies with the set of recommended periods in industrial
automotive systems, as presented in the real-world automotive benchmarks [15]. We
assume implicit deadlines for the flows, i.e., the deadline of each flow is equal to its
period. The length of each frame in all the flows is considered to be equal to the
maximum size of the Ethernet frame, i.e., 1542 Bytes. The use case topology is input to
the schedule synthesis module that implements a schedule synthesis algorithm presented
in [6]. This module is executed for approximately 20 hours on an HP Elite Book 820
running Ubuntu OS 18.04.4 LTS with CPU Core i5, 4 * 2.20 GHz Cores and 16 GB
RAM.

We can take advantage of the GUI’s visualization feature to view these large con-
figuration files, as demonstrated in Figure 6.5. The results of the schedule synthesis
module provide offsets to start the transmission of the flows. Hence, there are 40
offset values to set for each ST flow. In case there are multiple flows from a source
end station to multiple destination end stations, we need to calculate the transmission
offsets of frames transmitted from the same source end station up to the hyper period of
the flows. Therefore, there are going to be 118 frame entries to configure all ST flow
instances. Figure 6.5a shows the first instance of each flow from ES1. There are four
flows from ES1 to the destination end stations ES7, ES8, ES9 and ES10 with periods
2000 µs, 1000 µs, 2000 µs and 5000 µs, respectively. On the link from ES1 to SW0,
[ES1, SW0], the offsets of frames are calculated for the duration of the hyper period,
i.e., 10000 µs. In other words, it is required to calculate 10 offsets for a flow that has a
period of 1000 µs within a hyper period of 10000 µs. Moreover, the switch gate states

82 6.5 Evaluation

Figure 6.4. The use-case topology.

are specified by the scheduled time stamps to enable deterministic transmission of the
ST flows from egress ports of the network switches. Table 6.1 shows the total number
of gate entries to be configured in the switches for duration of the hyper period of each
link. Since different ST flows with different profiles might be scheduled on the same
link, the lengths, periods, and egress gate synthesis cycle should take hyper period of all
the periodic ST flows on the link into account.

Table 6.1. Configuration complexity.

Switches Total gate
state changes

Switch 0 135
Switch 1 21
Switch 2 80
Switch 3 123
Switch 4 74

The next step, after obtaining the configuration parameters, is to insert them to the

Paper A 83

(a) Flow and path visualization with TSN Plug-in.

(b) Switch gate visualization by the GUI.

Figure 6.5. Configuration visualizations with TSN Plug-in.

84 6.6 Conclusions

topology created in the NeSTiNg simulator using the plug-in module. Accordingly,
setting up the frame’s offsets and gate states by the plug-in GUI is quite a tedious task,
hence we use the plug-in’s automated mode sub-module and apply the configuration
data files from the traffic generator and schedule synthesis modules. Consequently,
867 lines for configuration of scheduled frames, 1964 lines of gate states configurations,
and 77 lines for the switches’ routing tables were automatically generated to setup the
NeSTiNg simulator. Figure 6.5b demonstrates the gate states of port ”1” at the switch
”SW0” connected to ES2 up to the hyper period (5000 µs) of the link from SW0 to
ES2. The Queue8 column in Figure 6.5b shows the reserved ST transmission slots on
corresponding link. The size of the frame transmission slot is set to 20 µs because
the complete transmission of an Ethernet frame on a link with 1 Gbit/s speed is 13 µs.
Hence, we assume a 7 µs safety margin for the ST frame to pass through the link and the
switch. We assume that open state is the default value of the switch gates. Furthermore,
there are five 20 µs slots on the link, [SW0, ES2], which are reserved for transmission
of the five ST frames. This is the link where the traffic from the source end stations ES3,
ES5, ES7, ES10, ES11 are transmitted, each with a period of 50000 µs.

The framework’s final module, enables extraction of end-to-end delays of all ST
flows after running the simulation for a desired amount of time. The feasibility of the
schedules is inspected by checking if the maximum end-to-end delay of each flow is
less than or equal to the flow period. Table 6.2 presents the maximum end-to-end delay
for each ST flow retrieved by the results extraction sub-module, where TX and RX
indicate the source end station and the destination end stations. The results confirm the
feasibility and determinism of the offline schedule.

6.6 Conclusions

This paper proposed an automated modular framework to facilitate automated offline
scheduling, pre-simulation configurations and interpretation of simulation results in
TSN networks. The proposed framework addresses the challenge of configuring synthe-
sized schedules to the state-of-the-art simulation framework, namely NeSTiNg. The
proposed framework automatically translates the TSN flow schedules into the simu-
lation platform’s compatible syntax without any manual intervention. The proposed
framework is implemented as an open-source TSN plugin, which is integrated to the
NeSTiNg simulation framework. The applicability of the framework is demonstrated by
automatically configuring a large TSN network and performing the simulation-based
evaluation of the network. The evaluation results show the feasibility of the proposed
framework for TSN networks. Furthermore, the results demonstrate the interoperability
of the proposed framework with the state-of-the art simulation frameworks for TSN. The

Paper A 85

Table 6.2. End-to-end delay per transmitted flow.

ID TX RX Period(µs) Delay(µs)
1 ES0 ES6 5000 52
2 ES1 ES7 2000 52
3 ES1 ES8 1000 52
4 ES1 ES9 2000 92
5 ES1 ES10 5000 37
6 ES2 ES3 1000 93
7 ES2 ES7 1000 82
8 ES3 ES1 5000 81
9 ES3 ES2 5000 64
10 ES3 ES4 2000 24
11 ES3 ES5 2000 37
12 ES4 ES3 5000 53
13 ES4 ES8 1000 65
14 ES4 ES9 1000 92
15 ES4 ES11 5000 53
16 ES5 ES0 2000 1888
17 ES5 ES2 5000 72
18 ES5 ES4 2000 37
19 ES5 ES6 5000 54
20 ES6 ES5 5000 64

ID TX RX Period(µs) Delay(µs)
21 ES6 ES7 5000 34
22 ES6 ES8 2000 24
23 ES7 ES1 5000 57
24 ES7 ES2 5000 77
25 ES7 ES4 1000 72
26 ES8 ES0 2000 158
27 ES8 ES10 1000 72
28 ES8 ES11 5000 75
29 ES9 ES0 5000 970
30 ES9 ES1 5000 53
31 ES9 ES3 5000 37
32 ES10 ES2 5000 61
33 ES10 ES5 5000 73
34 ES10 ES6 1000 112
35 ES10 ES7 5000 136
36 ES10 ES11 5000 37
37 ES11 ES2 5000 61
38 ES11 ES7 1000 97
39 ES11 ES9 5000 45
40 ES11 ES10 5000 49

benefits of the proposed automated configuration framework are magnified in the case of
large TSN networks, where manual configurations can be error prone, time-consuming
and very challenging to perform, thus rendering the existing methods impractical for in-
dustrial applications. As the future work, we aim at integrating the proposed framework
with existing industrial tools for modeling of automotive embedded systems that use
TSN for on-board network communication.

Acknowledgement
The work in this paper is supported by the Swedish Governmental Agency for Innovation
Systems (VINNOVA) through the projects DESTINE and PROVIDENT, and by the
Swedish Knowledge Foundation (KKS) through the projects DPAC, HERO & FIESTA.
The authors thank all industrial partners, especially Arcticus Systems, Volvo CE, and
HIAB Sweden.

Bibliography

[1] IEEE Time-Sensitive Networking (TSN) Task Group.

[2] L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara. Recent advances and trends
in on-board embedded and networked automotive systems. IEEE Transactions on
Industrial Informatics, 2019.

[3] L. Lo Bello and W. Steiner. A Perspective on IEEE Time-Sensitive Networking
for Industrial Communication and Automation Systems. Proceedings of the IEEE,
June 2019.

[4] Jonathan Falk, David Hellmanns, Ben Carabelli, Naresh Nayak, Frank Dürr,
Stephan Kehrer, and Kurt Rothermel. NeSTiNg: Simulating IEEE Time-sensitive
Networking (TSN) in OMNeT++. In Proceedings of the 2019 International
Conference on Networked Systems. IEEE, March 2019.

[5] David Hellmanns and Jonathan Falk. Nesting - network simulator for time-
sensitive networking, 2020.

[6] Silviu S Craciunas, R Serna Oliver, and TC AG. An overview of scheduling
mechanisms for time-sensitive networks. Proceedings of the Real-time summer
school (ETR), 2017.

[7] Hashemi Farzaneh et al. A Modeling Framework to Facilitate Schedule Synthesis
of Time-Sensitive Networking. PhD thesis, Technische Universität München, 2019.

[8] Aellison Cassimiro T dos Santos, Ben Schneider, and Vivek Nigam. TSNSCHED:
Automated schedule generation for time sensitive networking. In 2019 Formal
Methods in Computer Aided Design. IEEE, 2019.

[9] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop. AVB-aware routing and
scheduling of time-triggered traffic for TSN. IEEE Access, 2018.

86

[10] M. Pahlevan, R. Obermaisser. Genetic algorithm for scheduling time-triggered
traffic in time-sensitive networks. In 23rd International Conference on Emerging
Technologies and Factory Automation, 2018.

[11] J. Jiang, Y. Li, S. H. Hong, A. Xu, and K. Wang. A time-sensitive networking
(TSN) simulation model based on OMNET++. In 2018 IEEE International
Conference on Mechatronics and Automation, 2018.

[12] OMNeT++ technical articles - result analysis with python, 2020.

[13] A Quick Overview of the OMNeT++ Intgrated Development Environment, 2020,
https://doc.omnetpp.org/omnetpp/IDE-Overview.pdf.

[14] A. Bergström, Automatic Generation of Network Configuration in Simulated Time
Sensitive Networking (TSN) Applications, Master Thesis, School of Innovation,
Design and Engineering, Mälardalen University, Sweden, 2020.

[15] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real World Automotive
Benchmarks for Free. In 6th Int. Workshop on Analysis Tools and Methodologies
for Embedded and Real-Time Systems, 2015.

Chapter 7

Paper B:
Synthesising Schedules to
Improve QoS of Best-effort
Traffic in TSN Networks

Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen.
In the 29th International Conference on Real-Time Networks and Systems (RTNS),
2021.

88

Abstract

The IEEE Time-Sensitive Networking (TSN) standards’ amendment 802.1Qbv provides
real-time guarantees for Scheduled Traffic (ST) streams by the Time Aware Shaper (TAS)
mechanism. In this paper, we develop offline schedule optimization objective functions
to configure the TAS for ST streams, which can be effective to achieve a high Quality of
Service (QoS) of lower priority Best-Effort (BE) traffic. This becomes useful if real-time
streams from legacy protocols are configured to be carried by the BE class or if the BE
class is used for value-added (but non-critical) services. We present three alternative
objective functions, namely Maximization, Sparse and Evenly Sparse, followed by a set
of constraints on ST streams. Based on simulated stream traces in OMNeT++/INET
TSN NeSTiNg simulator, we compare our proposed schemes with a most commonly
applied objective function in terms of overall maximum end-to-end delay and deadline
misses of BE streams. The results confirm that changing the schedule synthesis objective
to our proposed schemes ensures timely delivery and lower end-to-end delays in BE
streams.

90 7.1 Introduction

7.1 Introduction
Recent functionality advancements and innovation in the applications of embedded
systems, especially in the automotive and automation domains, require high-bandwidth
and low-latency communications. To meet these communication requirements, the IEEE
802.1 TSN task group1 took an initiative to develop a set of Time-Sensitive Networking
(TSN) standards over the switched Ethernet. Notable features of TSN include: clock
synchronization (IEEE Std 802.1AS-2020) [1], Time-Aware Shaper (TAS) for offline
scheduled time-triggered traffic (IEEE 802.1Qbv), Credit-based Shaper (CBS) and
bandwidth reservation (IEEE Std 802.1Qav), frame preemption (IEEE Std 802.1Qbu),
among others, which are rolled into the IEEE 802.1Q-2018 standard [2].

The queuing and forwarding mechanism in the TSN standards distinguishes between
critical and non-critical traffic classes. The critical traffic classes are defined as Classes
A and B. Where Class A has a higher priority than Class B. Whereas, the non-critical
traffic class is defined as the best-effort (BE) traffic class with the lowest priority. In
addition, the scheduled traffic (ST) enhancement in the TSN standard defines an ST
traffic class with strict temporal isolation. The temporal isolation is achieved by a gate
mechanism following the TAS mechanism, where the traffic transmission is allowed
only when the gate for a queue is open. The gates operation follows a pre-defined gate
control list (GCL) that repeats periodically defining which gate on the queues should be
open at each time slot.

Currently the use of TSN in industrial systems is gaining a significant momentum [3,
4]. However, redesigning and replacing the existing communication systems is a
relatively costly process. For example, many industrial systems use different Ethernet
communication protocols, e.g., EtherCAT2, with very different interfaces and message
format compared to that of TSN. Therefore, one of the main challenges is to replace
the existing networks with TSN making as little as possible changes in the end stations.
Within this context, a non-trivial task is to map the existing network traffic to the TSN
traffic classes such that the previous properties, e.g., jitter and delay, still hold. One of
the straightforward solutions is to map all time-critical traffic into the ST traffic class to
ensure the low jitter and low-latency transmission for the traffic. However, there are
traffic that do not have strict deadlines to meet, yet achieving an acceptable level of
Quality of Service (QoS) for them is expected. For example, diagnostic signals, network
status checks and software update signals are among less time-critical traffic, which
usually have soft real-time requirements. Frequent violation of the timing requirements
for such traffic can hamper the corresponding functionalities. These type of traffic are
often mapped to the BE class that requires no change in the network interfaces of the

1https://1.ieee802.org/tsn/
2https://www.ethercat.org/

Paper B 91

end stations.
Many works in the literature address the problem of ST traffic scheduling, which

is known as an NP-hard problem. Most of the solutions formulate the problem as an
optimization problem (essentially a bin-packing problem) that is solved by defining a set
of constraints, e.g., [5, 6]. The main requirement for the solver in these solutions is to
provide a feasible schedule taking jitter and delay of the ST traffic into account. There
are also a few works that consider different optimization goals such as maximizing
porosity on the network links [7] to allow fast schedule updates in the case of faults in
the network. There are a few solutions based on meta-heuristic algorithms, e.g., the
solution in [8] that uses the genetic algorithm. Nevertheless, the proposed ST scheduling
solutions in the literature strictly consider the timing requirements for the ST traffic,
with an exception in [9] that considers schedulability of classes A and B while defining a
routing mechanism for the ST traffic. To the best of our knowledge, none of the existing
ST scheduling solutions take into account QoS for the BE traffic that has soft real-time
requirements, e.g., legacy diagnostic signals or network status checks. In this paper, we
propose a solution to synthesize feasible schedules for the ST traffic, while providing a
high level of QoS for the BE traffic. To the extent of our knowledge, existing analytical
schedulability analysis methods do not provide support for schedulability analysis of
low priority BE traffic in IEEE TSN standards. Therefore, we use a simulation method
to evaluate our proposed solutions.

The main contributions in this paper are as follows:

• we mathematically model and present optimization constraints to consider the QoS
for the BE traffic;

• we propose new optimization objective functions to obtain a feasible ST schedule
while improving the QoS of the BE traffic;

• we show that the commonly used objective function (minimizing the ST offsets) in
the existing works leads to poor QoS for any lower priority traffic class; and

• we evaluate the proposed solutions with a set of experiments using the OMNeT++
simulation platform. We use Z3 SMT/OMT solver to implement the proposed con-
straints and objective functions. Then, we compare the proposed solutions with the
existing solutions to show their effectiveness in providing a high level of QoS for the
BE traffic.

92 7.2 Background and Related Work

7.2 Background and Related Work

7.2.1 The gate mechanism in TSN

The IEEE 802.1Qbv standard (rolled into IEEE 802.1Q-2018) defines a gate mechanism
following the TAS mechanism to allow the ST traffic being transmitted without any
interference. According to this mechanism, the class types are recognized by a 3-bit
Priority Code Point (PCP) value in the IEEE TSN 802.1Q compatible frame headers.
The example in Figure 7.1 illustrates a simplified gate mechanism, in which Q0, Q1,
Q2 and Q3 correspond to classes ST, A, B and BE, respectively. A Gate Control List
(GCL) contains an array of time-stamped vectors to control the output of each queue.
The list is repeating periodically. At the specified times in the time-stamped vector, the
data in the vector is sent to the gate drivers, which enable or disable the transmission
of the associated class. In this example, the value 1 represents open state to enable
transmission, while 0 closes the gate to disable the transmission in certain queues.
Note that only classes A and B undergo the CBS shaper.

7.2.2 Schedule Synthesis

The schedule synthesis approaches can be grouped into two branches as shown in
Figure 7.2: (i) Satisfiability Modulo Theorems (SMT) and Optimization Modulo Theo-
rem (OMT), and (ii) heuristics and meta-heuristic approaches. Most of the works in
schedule synthesis were using SMT solvers to search all the possibilities for optimal
schedule. SMT solvers are automated theorem provers to prove satisfiability and validity
of first-order logical statements by examining each possible combination of variables
in the search space. The output of the SMT solvers is a random value for the SMT
variable that satisfies the specified constraints. To improve scalability, some works
have either used a new type of optimized SMT solver called OMT or Mixed-Integer
Programming (MIP). The OMT Solvers have become popular as they enable optimizing
SMT Solver variables based on user-defined objective functions and allow to solve
linear optimization problems over satisfiable SMT formulas [10].

The majority of the previous works were concentrated on the synthesis of feasible
schedules for the high priority critical traffic based on a work by Steiner et al. [11]. In
the series of works by Craciunas et al. [12, 5, 13, 14, 15, 16] the network was modelled
by directed graphs that indicate relations between end stations and switches via links.
In [5], schedule optimization constraints were derived from TTEthernet scheduling
constraints to address the specifications of IEEE 802.1Qbv. The generic constraints
of the solution include: frame, link, stream and end-to-end delay timing constraints.
Schneider et al. [17, 18, 19] introduced an SMT-based ST schedule synthesizer tool,

Paper B 93

Figure 7.1. Gate mechanism block diagram.

named TSNSched, which modeled TSN network via data structures.
Steiner et al.[20] introduced five strategies to enable porous (or blank) schedule syn-

thesis. These strategies include: a) a priori schedule variation to force blank schedules,
b) a posteriori schedule variation with less computational time-complexity, c) combined
schedule variation in order to assure the least overhead, d) interpretation approach
to change the timeline into equal time slots defining minimum size for blanks, and
e) combined schedule variation with the above steps [20].

In the same line of research, the work by Pozo et al. [7] investigated the generation
of porous link schedules, which can help in achieving extra time spans to react to
possible link failures. The proposed method takes advantage of a link reparation post-
processing procedure to find alternative paths that do not pass through the failed links.
In addition, the work by Gavrilut et al. [9] proposed a two-stage approach for scheduling
ST traffic considering an optimum routing for the ST traffic, while taking into account
the schedulability of the AVB traffic (i.e., A and B).

A series of works considered different approaches than only fitting the ST traffic
into time-slots. For example, the work by Reusch et al. [6] proposed a window-
based schedule synthesis approach that maximizes the bandwidth allocated for lower
priorities. Their solutions require exclusion of deadline miss constraints for the ST
schedule. Therefore, a post-processing iterative optimization heuristic was presented
to shift slack windows in a manner to save deadline misses due to schedules made
by a gap synthesis. Thereafter, the proposed method is evaluated by the worst-case

94 7.2 Background and Related Work

Figure 7.2. Overview of the schedule synthesis approaches.

delay analysis proposed in [21]. Another similar work by Mi et al. [22] considered two-
stage gap synthesis. The purpose of the work is to create porous schedules to reduce
the transmission delay and jitter of other real-time traffic. Moreover, the works by
Hashemi et al. [23, 24, 25, 26, 27] adopted an ontology-based approach, utilizing logic
programming in Prolog programming language, to show properties and the relations
between network entities and components.

Considering the solutions based on heuristics and meta-heuristic we can find several
works in the research community. For instance, the work by Pahlevan et al. [8, 28,
29] investigated heuristic/GA-based solutions to overcome time consuming constraint
solving processes. However, the proposed solution was not compared with the SMT-
based solutions. Moreover, Dürr et al. [30] proposed a Tabu search-based approach to
find feasible schedules of the ST traffic. The authors proposed a bandwidth utilization
by means of scheduling the ST frames close to each other.

Although there are several solutions to schedule ST traffic in TSN networks, as
reviewed above, most of them considered only the timing properties of the ST traffic in
their scheduling solutions. The exception is the work in [9] and [7], where in the former
the schedulability of AVB traffic was considered and in the latter repairability of the
links after failures was the main aim. In our work, we propose a set of constraints and
three objective functions to schedule the ST traffic while improving the QoS of the BE
traffic in the network considering that they have soft real-time properties due to legacy

Paper B 95

network support. We base our solution on the work presented in [5].

7.3 System Model

The system model considered in this paper is inspired by the system model in [5].
Note that the paper focuses only on the ST and BE traffic classes. The network model,
as shown in Figure 7.3, is represented by a directed graph, G(V,L). The vertices V
represent end stations and switches in the network. The links, represented by L, are
modeled as two-directional edges connecting a set of vertices. A two-directional link
between the end stations va ∈ V and vb ∈ V is represented by [va, vb] ∈ L. The link
attributes are denoted by the tuple ⟨speed, d,mt⟩, where the parameters speed, d and
mt indicate the link’s speed, link propagation delay and macrotick, respectively. The
model is flexible such that each link can accept different speed and propagation delay.
The macrotick serves for the scalar granularity of the schedule time-line. For example,
macrotick of 1µs indicates that the schedule time unit is in the order of microseconds.

Figure 7.3. System model parameters.

The set of streams in the network are represented by S. A uni-cast stream with ID
i belonging to S is represented by si, i.e., si ∈ S. The path taken by a stream from
the source end station, vs, to the destination end station, vd, through a set of switches
is shown by si.path = [[vs, vs+1], . . . , [vd−1, vd]], where [vs, vs+1] and [vd−1, vd]
indicate the first and last links along the path of the stream. The stream’s attributes
are defined by the tuple, ⟨e2e, Size, T, p⟩. Where, e2e is the timing constraint on the
end-to-end delay of the stream, i.e., the maximum end-to-end delay shall not exceed
the value assigned to the e2e attribute. Size is transmission time of the stream on
the link, which is the time it takes to transmit a full stream on the link in the scale of
macroticks. The parameters, T and p, are stream’s period and priority, respectively.

96 7.4 Network Constraints

The parameter, p, obtains a value from the set p = {BE,ST}, where BE shows the
best-effort class and ST shows the ST class. Note that in case of BE class, T is the
minimum inter-arrival time and e2e is the deadline for the BE stream.

A stream may contain n number of frames, i.e., si = {fi,1, . . . , fi,n}. A frame at the
hop between the end station or switch va and the end station or switch vb is represented
by f

[va,vb]
i,j , where the first subscript i represents the stream ID and the second subscript

j represents the frame ID. Because a stream may contain large data, according to the
Ethernet protocols, the data has to be fragmented into frames. The maximum allowed
Ethernet frame is limited by the Maximum Transmission Unit (MTU). In this model,
each stream can be fragmented into several frames. Note that if the stream size does
not exceed the MTU size, then all data is fitted in one frame. Each frame has the
attributes ⟨T, Len, ϕ⟩, where T is the frame’s period inherited from the parent stream.
The transmission time of the frame over the link [va, vb] is represented by f

[va,vb]
i,j .Len.

If a stream belongs to the class ST , f [va,vb]
i,j .ϕ represents the offset of jth frame of

the ith stream on the link [va, vb]. There are no offsets for BE frames, hence ϕ is not
applicable for the BE frames. Moreover, each BE frame is assumed to arrive at the start
of its period, which in turn generates the worst-case situation for the BE frames. The
parameters for the frames belonging to a ST stream and their attributes are shown in
Figure 7.3 for one period of the stream si over one link [va, vb].

7.4 Network Constraints
In this section, we first give an overview of the existing optimization to schedule ST
traffic in TSN networks, then we present the proposed additional constraints to improve
the QoS of the BE traffic in TSN networks.

7.4.1 Existing Constraints
We base our work on the ST schedule synthesis constraints in [5] that defines six
different constraints to find a feasible schedule. These constraints include: (i) frame
constraint, (ii) link constraint, (iii) stream constraint, (iv) end-to-end constraint, (v)
stream isolation constraint, and (vi) frame isolation constraint. Below, we present these
constraints in detail.

Frame Constraint

This constraint ensures that the offset of each ST frame is at or after time zero. Also,
the transmission of the frame must be finished at or before the start of its next period.

Paper B 97

∀si ∈ S, si.p = ST,∀[Va, Vb] ∈ L,∀f [Va,Vb]
i,j ∈ s

[Va,Vb]
i :

(f
[Va,Vb]
i,j .ϕ >= 0) ∧ (f

[Va,Vb]
i,j .ϕ <= f

[Va,Vb]
i,j .T − f

[Va,Vb]
i,j .Len)

(7.1)

Link Constraint

The constraint on links guarantees that only one frame at a time can be transmitted on a
link within the path taken by the stream;

∀si, sj ∈ S, si.p = ST, sj .p = ST, i ̸= j,∀[Va, Vb] ∈ L,

∀f [Va,Vb]
i,k ∈ s

[Va,Vb]
i ,∀f [Va,Vb]

j,l ∈ s
[Va,Vb]
j ,

∀α ∈ [0,
lcm(si.T,sj .T)

si.T
− 1],∀β ∈ [0,

lcm(si.T,sj .T)
sj .T

− 1] :

(f
[Va,Vb]
j,l .ϕ+ (β × f

[Va,Vb]
j,l .T) + f

[Va,Vb]
j,l .Len ≤

f
[Va,Vb]
i,k .ϕ+ (α× f

[Va,Vb]
i,k .T))∨

(f
[Va,Vb]
i,k .ϕ+ (α× f

[Va,Vb]
i,k .T) + f

[Va,Vb]
i,k .Len ≤

f
[Va,Vb]
j,l .ϕ+ (β × f

[Va,Vb]
j,l .T))

(7.2)

where, α and β are indices to calculate the offsets of multiple frames within the hyper
periods of the streams. The hyper period is calculated by the function lcm() that
receives the streams pair by pair as inputs and gives the least common multiple of the
frames’ periods.

Stream Constraint

In order to constrain the orderly transmission and reception of frames within a stream
through the path, the sequence of the frames should be considered according to Eq. (7.3);

∀si ∈ S, si.p = ST,∀[Va, Vx], [Vx, Vb] ∈ L,

f
[Va,Vx]
i,j ∈ s

[Va,Vx]
i , f

[Vx,Vb]
i,j ∈ s

[Vx,Vb]
i :

((f
[Vx,Vb]
i,j .ϕ× [Vx, Vb].mt)− [Vx, Vb].d− δ) ≥

((f
[Va,Vx]
i,j .ϕ+ f

[Va,Vx]
i,j .Len)× [Va, Vx].mt)

(7.3)

The stream constraint is dependent on synchronization of clocks in the source and
destination end stations. Where, δ is the synchronization factor, denoting the worst-case
drift between the clocks. We assume identical clocks in the source and destination end
stations.

98 7.4 Network Constraints

End-to-end Constraint

In order to meet the timing requirements of ST streams, the ST streams must not be
delivered after their deadlines. Therefore, we need to ensure that the stream’s last frame
is delivered to the destination end station before the end-to-end deadline. Additionally,
the constraint in Eq. (7.4) takes into account the delay of the links in the path to the
destination end station and the worst-case difference between macro ticks of the local
clocks of the source and destination end stations. Note that fi,1 and fi,|si| denote the
first and last frames in the stream, si. Moreover, [vs, vs+1] defines the first link in the
stream from the source while [vd−1, vd] represents the last link in the stream to the
destination end stations. Hence, f [vd−1,vd]

i,|si| represents the last frame in the stream si at
the destination end station.

∀si ∈ S, si.p = ST, fi,j ∈ si :

(f
[vs,vs+1]
i,1 .ϕ× [vs, vs+1].mt) + si.e2e ≥

(f
[vd−1,vd]
i,|si| .ϕ+ f

[vd−1,vd]
i,|si| .Len)× [vd−1, vd].mt

(7.4)

Stream Isolation Constraint

The transmission of multiple streams via the same queue can cause variations in the
arrival times of the frames belonging to different streams. To ensure deterministic
arrival of the streams, the offsets of all frames in a stream must be constrained to be less
than the offset of the first frame in every other stream. Figure 7.4 shows an example of
the case where stream isolation constraint is applicable. In this example, two streams
si and sj are transmitted to the end station va forwarding to the same end station vb.
The stream isolation constraint ensures that when the first frame of a stream, sj in
this example, is scheduled for transmission no other frames of other streams, si in this
example, is scheduled until all frames of sj are dispatched. In Figure 7.4, for simplicity
of illustration we assumed that the periods of si and sj are the same, hence the hyper
period of them are the same as their periods. This constraint is presented in Eq. (7.5).

Paper B 99

∀[Va, Vb] ∈ L,∀s[Va,Vb]
i ∈ S, s

[Va,Vb]
j ∈ S, si.p = ST, sj .p = ST, i ̸= j,

f
[Va,Vb]
i,k ∈ s

[Va,Vb]
i , f

[Va,Vb]
j,l ∈ s

[Va,Vb]
j ,

∀α ∈ [0,
lcm(si.T,sj .T)

si.T
− 1],∀β ∈ [0,

lcm(si.T,sj .T)
sj .T

− 1] :

((f
[Va,Vb]
j,|sj | .ϕ× [Va, Vb].mt) + f

[Va,Vb]
j,|sj | .Len+ (β × sj .T) + δ ≤

(f
[Vx,Va]
i,1 .ϕ× [Vx, Va].mt) + (α× si.T) + [Vx, Va].d)∨

((f
[Va,Vb]
i,|si| .ϕ× [Va, Vb].mt) + f

[Va,Vb]
i,|si| .Len+ (α× si.T) + δ ≤

(f
[Vy,Va]
j,1 .ϕ× [Vy, Va].mt) + (β × sj .T) + [Vy, Va].d)

(7.5)

Figure 7.4. Stream isolation constraint.

Frame Isolation Constraint

In order to relax the stream isolation constraint by allowing frame interleaving between
different streams an alternative constraint can be defined. The frame isolation constraint
allows interleaving of frames from different streams considering that there are only
frames of one stream in the queue at a time. When two source end stations Vx and Vy

transmit streams via one or more shared switches within their path, the interleaving of
frames in the same queue of the shared switch can cause non-deterministic delays of
frames. For example, a stream with a higher period can cause long delays to a shorter
period stream in case interleaving of frames occurs between these two streams. The

100 7.4 Network Constraints

frame isolation constraint, shown in Eq. (7.6), isolates the transmission of every frame
of different streams in the queue. In other words, it guarantees that the offset plus
the transmission time of each frame belonging to a stream (si transmitted from node
Vx) is smaller than or equal to the offset of each frame belonging to another stream
(sj transmitted from node Vy) or vice versa. This scenario is depicted in Figure 7.5
assuming that both si and sj have the same periods, hence the same hyper period on
link [va, vb] with two possible schedules where one of them shows an interleaving of
frames from the two streams.

∀[Va, Vb] ∈ L,∀s[Va,Vb]
i ∈ S, s

[Va,Vb]
j ∈ S, si.p = ST, sj .p = ST, i ̸= j,

f
[Va,Vb]
i,k ∈ s

[Va,Vb]
i , f

[Va,Vb]
j,l ∈ s

[Va,Vb]
j ,

∀α ∈ [0,
lcm(si.T,sj .T)

si.T
− 1],∀β ∈ [0,

lcm(si.T,sj .T)
sj .T

− 1] :

((f
[Va,Vb]
j,l .ϕ× [Va, Vb].mt) + f

[Va,Vb]
j,l .Len+ (β × sj .T) + δ ≤

(f
[Vx,Va]
i,k .ϕ× [Vx, Va].mt) + (α× si.T) + [Vx, Va].d)∨

((f
[Va,Vb]
i,k .ϕ× [Va, Vb].mt) + f

[Va,Vb]
i,k .Len+ (α× si.T) + δ ≤

(f
[Vy,Va]
j,l .ϕ× [Vy, Va].mt) + (β × sj .T) + [Vy, Va].d)

(7.6)

Figure 7.5. Frame isolation constraint.

Paper B 101

7.4.2 Proposed Constraints
In this section, the problem that motivates the contributions of this paper is presented
by an example, shown in Figure 7.6. In Figure 7.6(a) time stamps [0, T0], [T1, T2]
and [T3, T4] are reserved for ST frames. The time slots represented by white boxes in
Figure 7.6(a) indicate the times when the gates are open for transmission of BE frames.
Based on this schedule, ST frames that are packed subsequently within the time slot
[T1, T2], cause deadline miss for the BE frame, BE3. On the other hand, Figure 7.6(b)
shows the sparsification of ST frames within time stamp [T1, T2] from the previous
example into new scheduled time stamps [T1, T2], [T3, T4] and [T5, T6]. Consequently,
with a few more gate state changes, the BE frame meets its deadline.

Figure 7.6. Example of schedule bin-packing and the effect on schedulability of BE traffic.

In order to obtain sparsity in the ST schedules in favor of BE frames, we propose
a notion of slack after each ST frame transmission. Slack is a time interval after
transmission of a ST frame, during which no ST frame can occupy the link’s bandwidth.
This prevents back-to-back transmission of ST frames [20]. We denote the slack per
frame per link by f

[va,vb]
i,j .slack. Figure 7.7 illustrates the proposed slack property of a

frame per link. The goal is to find a feasible ST schedule such that a desired slack per
frame per link is obtained. The realization of slacks for all frames leads to implementing
spaces between ST frames. The size of slack is defined by the proposed constraints.

Porous Link Constraint

In order to incorporate the slack, the existing link constraints should be modified. The
link constraint presented in Eq. (7.2) only restricted the timing overlap and placement of

102 7.4 Network Constraints

Figure 7.7. Illustration of the proposed slack property of a frame per link.

subsequent frames on the link. The constraint presented in Eq. (7.2) should be adapted
into Eq. (7.7); the reason for this modification is that the original link constraint only
restricted the timing overlap and subsequent placement of frames on the link.

∀si, sj ∈ S, si.p = ST, sj .p = ST,∀[Va, Vb] ∈ L,

∀s[Va,Vb]
i , s

[Va,Vb]
j , i ̸= j, f

[Va,Vb]
i,k ∈ s

[Va,Vb]
i , f

[Va,Vb]
j,l ∈ s

[Va,Vb]
j ,

∀α ∈ [0,
lcm(si.T,sj .T)

si.T
− 1],∀β ∈ [0,

lcm(si.T,sj .T)
sj .T

− 1] :

(f
[Va,Vb]
j,l .ϕ+ (β × f

[Va,Vb]
j,l .T) + f

[Va,Vb]
j,l .Len+ f

[Va,Vb]
j,l .slack ≤

f
[Va,Vb]
i,k .ϕ+ (α× f

[Va,Vb]
i,k .T))∨

(f
[Va,Vb]
i,k .ϕ+ (α× f

[Va,Vb]
i,k .T) + f

[Va,Vb]
i,k .Len+ f

[Va,Vb]
i,k .slack ≤

f
[Va,Vb]
j,l .ϕ+ (β × f

[Va,Vb]
j,l .T))

(7.7)

Slack Size Constraint

The slack size constraint asserts the allowed slacks size for each frame scheduled on
the link. The slack must be greater than or equal to zero but less than or equal to the
difference between the frame period and its transmission time as follows:

∀si ∈ S, si.p = ST,∀[Va, Vb] ∈ L,∀f [Va,Vb]
i,j ∈ s

[Va,Vb]
i :

(f
[va,vb]
i,j .slack ≥ 0)∧

(f
[va,vb]
i,j .slack ≤ f

[va,vb]
i,j .T − f

[va,vb]
i,j .Len)

(7.8)

The size of slacks on a link must be correlated with the number of ST frames
scheduled on the link. Eq. (7.9) is the summation formulation of the frame slacks on

Paper B 103

each link. Figure 7.8 presents an example of the slack spaces after two frames from
different streams scheduled on the link [Va, Vb].

∀si ∈ S, si.p = ST,∀[Va, Vb] ∈ L,∀f [Va,Vb]
i,j ∈ s

[Va,Vb]
i :

hopSum[va,vb] =
∑

f
[va,vb]
i,j .slack (7.9)

Figure 7.8. The allowed range for slacks on a link.

Hop Slacks Constraint

In order to bound the total amount of slacks allowed on the link, the constraints in
Eq. (7.10) and Eq. (7.12) enforce the valid ranges of hopSum. The minPorosity
parameter is considered as the lower bound for hopSum summation formulation, as
shown in Eq. (7.10).

∀si ∈ S, si.p = ST,∀[Va, Vb] ∈ L,∀f [Va,Vb]
i,j ∈ s

[Va,Vb]
i :

hopSum[va,vb] ≥ minPorosity
(7.10)

where, minPorosity can be any value from 0, however, if the value is selected between
0 and the frame size, assuming that the preemption is disabled, the slack after each
frame is not enough for transmission of any BE frames.

Moreover, the sparse spaces on each link need to be specified per link, since the
load of BE streams, converged with ST frames, varies on different links. The ST load
on the link [va, vb] is specified by [va, vb].utilST and is calculated by the equation:

104 7.4 Network Constraints

∀[Va, Vb] ∈ L,∀si ∈ S, si.p = ST :

[Va, Vb].utilST =
∑ s

[va,vb]

i .Size

s
[va,vb]

i .T

(7.11)

Furthermore, the upper bound of the hopSum is presented in another constraint
to ensure that slacks do not cause the porous link schedule to exceed the hyper period.
Eq. (7.12) ensures that hopSum is less than or equal to the total load that is left after
the scheduled time for the ST frames on the link.

∀si ∈ S, si.p = ST,∀[Va, Vb] ∈ L,∀f [Va,Vb]
i,j ∈ s

[Va,Vb]
i :

hopSum[va,vb] ≤ lcm(S)× (1− [va, vb].utilST)
(7.12)

Equal Slack Constraint

Equal slack is an optional constraint to evenly distribute slacks on a link by adjusting
equal slack sizes, as defined by Eq. (7.13). Note that the optimization time can be
shortened by constraining equal-sized slacks due to limiting the options for the ST
schedules. As a result, this constraint enables a selection trade-off between the freedom
to choose ST schedules, enhancing arrival of periodic BE and optimization time.

∀si, sj ∈ S, si.p = ST, sj .p = ST,∀[Va, Vb] ∈ L,

∀f [Va,Vb]
j,l ∈ s

[Va,Vb]
j ,∀f [Va,Vb]

i,k ∈ s
[Va,Vb]
i , i ̸= j :

f
[va,vb]
i,k .slack = f

[va,vb]
j,l .slack

(7.13)

7.4.3 Objective Functions
Minimizing the offsets of the ST frames’ offsets is the objective function that is con-
sidered in all the previous works concerning the schedule synthesis, such as the work
in [30]. The minimization objective function, given in Eq. (7.14), generates offsets that
pack the ST frames to the beginning of the schedule subject to the generic constraints
presented in Section 7.4.1.

minimize
∑

∀[va,vb]∈L

∑
∀si∈S

∑
∀fi,j∈si

f
[va,vb]
i,j .ϕ

subject to : {(7.1), (7.2), (7.3), (7.4), (7.5)OR(7.6)}
(7.14)

The minimization approach can be convenient to secure both schedulability and
timeliness of ST traffic. Some of the lower priority streams, including the BE, may
be constrained by timing requirements. In order to address these requirements, three

Paper B 105

new objective functions are proposed as alternatives to the widely used minimization
optimization objective function.

Maximization

This optimization objective function still packs ST frames together, but in contrast to the
minimization objective function, it schedules the transmission of the ST frames as close
as possible to their deadlines. As the number of ST frames increases, the ST reserved
time slots on the link also increases. This can increase the maximum end-to-end delay
of the BE frames, which in turn, may cause deadline misses. If we maximize the ST
schedules, we allow the majority of open bandwidth for BE frames in the beginning
of the schedule, increasing the likelihood of transmission of the BE frames before the
scheduled transmission of the ST frames. This can improve the schedulability of the
BE frames that may have deadlines shorter than those of the ST frames. Eq. (7.15)
defines the maximization objective function subject to the generic constraints presented
in Section 7.4.1.

maximize
∑

∀[va,vb]∈L

∑
∀si∈S

∑
∀fi,j∈si

f
[va,vb]
i,j .ϕ

subject to : {(7.1), (7.2), (7.3), (7.4), (7.5)OR(7.6)}
(7.15)

Sparse Schedule

In order to increase the porosity of the ST schedules on each link, we propose sparse
objective function by Eq. (7.16). The sparse objective function adjusts the ST offsets im-
plicitly by maximizing the sum of slacks between subsequent frames, that are scheduled
on the same link. As a result, the ST frames are scheduled in a sparse manner to create
unequal slacks for the transmission of the lower priority frames. The sparse objective
function is subject to the generic constraints as well as the newly proposed constraints.

maximize
∑

[va,vb]∈L

hopSum[va,vb]

subject to : {(7.1), (7.3), (7.4), (7.5)OR(7.6), (7.7), (7.8), (7.10), (7.12)}
(7.16)

Evenly Sparse Schedule

The proposed sparse schedule objective function can be manipulated by an additional
constraint, in Eq. (7.17), to create evenly distributed ST frames, or in other words
equally-sized slacks on the links.

106 7.5 Experimental Evaluation

maximize
∑

[va,vb]∈L

hopSum[va,vb]

subject to : {(7.1), (7.3), (7.4), (7.5)OR(7.6), (7.7), (7.8), (7.10), (7.12), (7.13)}
(7.17)

In crux, the minimization and maximization objective functions send ST frames
with less number of gate state change, by packing the frames in shared transmission
slots. On the other hand, these constraints do not consider slacks between ST frames,
thus they cause long queuing times for BE frames either in the beginning or at the end
of the hyper period. The sparse and evenly sparse objective functions take advantage
of new optimization variables that define slacks after each ST frame on a link. This
causes porosity in bandwidth used by the ST frames on each link. Consequently, the BE
frames can be fitted in adequate slacks created along the scheduled times for ST frames.
The sparse and even sparse objective functions also provide the freedom to squeeze the
ST schedule search space by constraining the size of slacks, which is simultaneously
beneficial to reduce the optimization time and control the distribution pattern of the
slacks.

7.5 Experimental Evaluation

In this section, we present the evaluation setup followed by a simulation-based experi-
mental evaluation to show the effects of proposed objective functions on the QoS of the
BE frames.

7.5.1 Evaluation Setup

In order to perform the evaluation, we consider a multi-hop network topology that
consists of six end stations. The end stations are connected via two TSN switches as
shown in Figure 7.9.

To evaluate the QoS of BE frames we use the NeSTiNg TSN simulation tool [31],
which is based on the OMNeT++/INET framework. NeSTiNg facilitates the simulation
of networks that are based on the TSN standards. It supports all traffic classes and the
TAS mechanism. We developed a plug-in3 for the NeSTiNg simulation tool that facili-
tates the insertion of streams, configurations of the gates’ states setting and extraction
of the simulation results.

3https://gitlab.com/Scipsybee/automated-tsn-configuration-plugin

Paper B 107

Figure 7.9. Evaluation setup.

In this experiment, we generate random sets of streams, where each stream contains
one frame with the maximum size of 1542 Bytes (including the frame header). The
source and destination end stations of the streams are selected randomly among the
stations shown in the network topology (Figure 7.9). The streams’ periods are selected
randomly from the set [200, 500, 1000, 2000, 5000] µs to generate a realistic data set
according to the real-world automotive benchmarks [32]. We assume that the network
speed is 1 Gbit/s in this example. Using the network speed, the transmission time of
each frame with 1542 Bytes of frame size is equal to 12.336 µs. The link macrotick for
all links is assumed to be 1 µs and we neglect the link propagation delay. The generated
streams are selected among ST and BE classes. Three different scenarios are considered
in this experiment, where 10 sets of streams are randomly generated in each scenario.
Each set contains a mix of BE and ST streams. The three scenarios are as follows:

• Scenario (1) : 10 random streams with 0.5 probability of ST streams and 0.5 probabil-
ity of BE streams.

• Scenario (2) : 10 random streams with 0.6 probability of ST streams and 0.4 probabil-
ity of BE streams.

• Scenario (3) : 10 random streams with 0.8 probability of ST streams and 0.2 probabil-
ity of BE streams.

To schedule the ST streams we consider the four proposed optimization objectives
including: (i) minimization; (ii) maximization; (iii) sparse; and (iv) evenly sparse
schedule; In the case of sparse and evenly sparse objective functions, minPorosity is
assumed to be zero to make the schedules as flexible as possible. Note that increasing the
minPorosity value can reduce the number of feasible schedules, while at the same time
it can produce larger slacks for transmission of BE frames. The network is simulated

108 7.5 Experimental Evaluation

according to the schedules generated by the four different objective functions. The two
main metrics, measured during the simulations, include the maximum end-to-end delays
and deadline misses of the BE frames.

The objective functions and constraints are implemented in Python and solved by
Z3’s [33] OMT optimization module. The optimizations and simulations were run on an
HP Elite Book 820 running Ubuntu OS 18.04.4 LTS with CPU Core i5, 4 × 2.20 GHz
Cores and of 16 GB RAM.

7.5.2 Results discussion
The maximum end-to-end delay of the generated BE streams are measured during the
simulation given that the ST streams are scheduled according to the schedules generated
by the proposed objective functions. Figure 7.10 illustrates the measured maximum end-
to-end delays of the BE streams for the three scenarios, i.e, Scenario (1) in Figure 7.10a,
Scenario (2) in Figure 7.10b, and Scenario (3) in Figure 7.10c.

Each bar in the graph shows the measured maximum end-to-end delays of all BE
streams in the 10 generated sets by highlighting the minimum, average and maximum of
these values. For instance, in Scenario (1) 10 sets of streams were generated randomly
where each set consists of 10 streams. The chance of the streams becoming ST or BE
were 50% in this scenario. Therefore, we have 10 sets with possibly 5 streams per set
belong to the BE class. Consequently, the Sparse bar in Figure 7.10a, for example,
shows the maximum end-to-end delays of possibly 50 BE streams, where the average,
maximum and minimum values of the measured maximum end-to-end delays among
these 50 BE streams are 50.6µs, 98.3µs and 24.5µs, respectively.

As it can be seen in the figure, the minimization objective function gives the worst
results compared to the other objective functions with maximum value of 101.2µs in
Scenario (1), 102.5µs in Scenario (2) and 90.2µs in Scenario (3). Note that all previous
works on the ST scheduling commonly apply the minimization objective function. In
the first glance, it can be seen that the maximization objective function outperforms
the other objective functions. The main reason is that when the ST schedules are using
the time-slots close to their deadlines, more spaces will be available for transmission
of possible BE frames. This is in contrast to the minimization objective function that
fills the time-slots in the beginning of the ST schedules, leaving spaces for the BE
streams after the transmission of ST streams that can potentially result in larger end-
to-end delays for the BE frames. However, there are also few extreme cases in which
the measured maximum end-to-end delays of BE streams are very high when using
the maximization objective function. This is specifically the case in Scenario (2) and
Scenario (3). According to the results, the maximization objective function in Scenario
(2) resulted in a maximum delay for one BE stream up to 112.2µs and in Scenario (3)

Paper B 109

Table 7.1. Number of deadline misses.

Objective functions Total deadline misses
Scenario (1) Maximization 0

Minimization 2
Evenly sparse 1
Sparse 1

Scenario (2) Maximization 99
Minimization 102
Evenly sparse 2
Sparse 1

Scenario (3) Maximization 0
Minimization 0
Evenly sparse 0
Sparse 0

up to 212.2µs. These large end-to-end delays are not seen in the sparse and evenly
sparse objective functions. The main reason to have these cases with the maximization
objective function is that, similar to the minimization objective function, it can pack the
ST frames together and prevent transmission of any BE frame for a long duration of
time depending on the number of ST frames with close periods. However, the sparse
and evenly sparse objective functions can generate porosity in the ST schedules that can
be sufficiently used for the BE frames’ transmission preventing the long blocking time
by the ST frames. Therefore, although on average, the maximization objective function
performs better than the rest, the sparse and evenly sparse objective functions have their
own benefits in various scenarios, e.g., the one discussed above.

We also measured the deadline misses of BE streams in the generated scenarios. We
consider implicit deadlines, i.e., the deadline for each BE stream is assumed to be equal
to its period. Table 7.1 shows the total deadline misses among all generated BE streams
within each scenario and with each objective function. It can be clearly observed that
the minimization objective function can produce more deadline misses compared to
the other objective functions, while the sparse and evenly sparse objective functions
resulted in fewer deadline misses for the BE streams. For instance, in Scenario (2) the
number of deadline misses with minimization and maximization objective functions are
102 and 99, respectively, whereas it is 1 and 2 for sparse and evenly sparse objective
functions, respectively. Scenario (3) shows no deadline misses, which can be because
of less number of generated BE streams, i.e., 20% chance for the generated streams to
be in BE class.

110 7.6 Conclusion and Future Works

Although the time that it takes to find a feasible and optimized schedule depends on
the implementation and the utilized solver, we measured this time in all the experiments.
As mentioned before, we used Z3 SMT/OMT solver for this purpose. The average
times for each scenario and objective function are shown in Figure 7.11. An interesting
observation is that both sparse and evenly sparse objective functions are much faster
to give an optimized ST schedule compared to both minimization and maximization
objective functions. For instance, in Scenario (3) the amount of time that it takes to
deliver an ST schedule using the sparse objective function in average was 4.75 seconds.
For the same scenario, the amount of time that it takes to deliver an ST schedule
using the minimization and maximization objective functions were 314.34 seconds and
1153.52 seconds, respectively.

7.6 Conclusion and Future Works

In this paper, we proposed a set of constraints and objective functions to schedule ST
traffic in TSN networks considering the QoS of the BE traffic. We argued that in many
industrial applications one of the main challenges is to map the legacy traffic into the
TSN traffic classes and often the soft real-time traffic are mapped into the BE class.
Therefore, a required level of QoS for the BE traffic should be obtained while ensuring
a feasible schedule for the hard real-time ST traffic. The solutions proposed in this
paper generate feasible schedules for the ST traffic and at the same time significantly
reduce the end-to-end delays and the number of deadline misses for the BE traffic.
Using a set of experiments, based on the NeSTiNg TSN simulation tool, we showed
that the proposed objective functions outperform the state-of-the-art ST scheduling
solutions that focus on minimizing the offsets of the ST traffic. We also showed that
the feasible ST schedules can be obtained much faster with the proposed solution
compared to the state-of-the-art solutions. Although the main focus of the solutions
proposed in this paper was on the QoS of BE traffic, we believe that it can also affect
positively on the performance of classes A and B. However, a deeper investigation
remains for the future as the NeSTiNg simulation tool currently does not support the
TAS and CBS mechanisms at the same time. We also plan to investigate the effect of
enabling preemption on the quality of service of the BE traffic. Another future research
direction is to develop schedulability analysis for the BE traffic to analytically show the
performance of the proposed solutions.

The work in this paper is supported by the Swedish Governmental Agency for
Innovation Systems (VINNOVA) through the projects DESTINE and PROVIDENT,
and by the Swedish Knowledge Foundation (KKS) through the projects DPAC, HERO
& FIESTA. The authors thank all industrial partners, especially Arcticus Systems, Volvo

Paper B 111

CE, and HIAB Sweden.

112 7.6 Conclusion and Future Works

(a) Scenario (1).

(b) Scenario (2).

(c) Scenario (3).

Figure 7.10. Maximum end-to-end delays of the BE streams under various objective functions
per traffic distribution case.

Paper B 113

(a) Scenario (1).

(b) Scenario (2).

(c) Scenario (3).

Figure 7.11. Duration of schedule synthesis for each distribution pattern per objective function.

Bibliography

[1] IEEE. IEEE Std. 802.1AS, IEEE standard for local and metropolitan area networks-
timing and synchronization for time-sensitive applications. 2020.

[2] IEEE. IEEE Std. 802.1Q, IEEE standard for local and metropolitan area networks,
bridges and bridged networks. 2018.

[3] L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara. Recent advances and trends
in on-board embedded and networked automotive systems. IEEE Transactions on
Industrial Informatics, 15(2), 2019.

[4] L. Lo Bello and W. Steiner. A perspective on ieee time-sensitive networking
for industrial communication and automation systems. Proceedings of the IEEE,
2019.

[5] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner. Scheduling real-time
communication in ieee 802.1qbv time sensitive networks. In Proceedings of the
24th Intl. Conference on Real-Time Networks and Systems, 2016.

[6] N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop. Window-based schedule synthesis
for industrial ieee 802.1qbv tsn networks. In 2020 16th IEEE Intl. Conference on
Factory Communication Systems, 2020.

[7] F. Pozo, G. Rodriguez-Navas, and H. Hansson. Schedule reparability: Enhancing
time-triggered network recovery upon link failures. In 2018 IEEE 24th Intl.
Conference on Embedded and Real-Time Computing Systems and Applications,
2018.

[8] M. Pahlevan and R. Obermaisser. Genetic algorithm for scheduling time-triggered
traffic in time-sensitive networks. In 2018 IEEE 23rd Intl. Conference on Emerging
Technologies and Factory Automation, Sep. 2018.

114

Bibliography 115

[9] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop. Avb-aware routing and schedul-
ing of time-triggered traffic for tsn. IEEE Access, 2018.

[10] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz - an optimizing smt
solver. In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems. Springer Berlin Heidelberg, 2015.

[11] Wilfried Steiner. An evaluation of smt-based schedule synthesis for time-triggered
multi-hop networks. In 31st IEEE Real-Time Systems Symposium, 2010.

[12] S. S. Craciunas and R. S. Oliver. Combined task-and network-level scheduling for
distributed time-triggered systems. Springer, 2016.

[13] S. S Craciunas, R. S. Oliver, and Wilfried Steiner. Formal scheduling constraints
for time-sensitive networks. arXiv preprint arXiv:1712.02246, 2017.

[14] S. S. Craciunas and R. S. Oliver. An Overview of Scheduling Mechanisms for
Time-sensitive Networks. 2017.

[15] S. S. Craciunas, R. S. Oliver, and W. Steiner. Demo abstract: Slate xns–an online
management tool for deterministic tsn networks. In 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium, 2018.

[16] R. S. Oliver, S. S. Craciunas, and W. Steiner. Ieee 802.1qbv gate control list
synthesis using array theory encoding. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium, 2018.

[17] TSNSched. Automated schedule generation for TSN networks, 2020.

[18] A. C. T. dos Santos, B. Schneider, and V. Nigam. Tsnsched: Automated schedule
generation for time sensitive networking. In 2019 Formal Methods in Computer
Aided Design. IEEE, 2019.

[19] B. Schneider. Automatic network configuration for real-time, distributed industrial
automation systems. In 2019 ACM/IEEE 22nd Intl. Conference on Model Driven
Engineering Languages and Systems Companion, Sep. 2019.

[20] W. Steiner. Synthesis of static communication schedules for mixed-criticality
systems. In 2011 14th IEEE Intl. Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, 2011.

[21] L. Zhao, P. Pop, and S. S. Craciunas. Worst-case latency analysis for ieee 802.1qbv
time sensitive networks using network calculus. IEEE Access, 2018.

116 Bibliography

[22] Y. Mi, J. Qu, J. Zhang, and M. Yao. A scheduling algorithm of maximize the
number of porosity for the time-triggered dima system. In 2020 IEEE 3rd Intl.
Conference on Electronics Technology, May 2020.

[23] M. H. Farzaneh and A. C. Knoll. An ontology-based plug-and-play approach
for in-vehicle time-sensitive networking (tsn). In 7th IEEE Annual Information
Technology, Electronics and Mobile Communication Conference, Oct 2016.

[24] M. H. Farzaneh, S. Shafaei, and A. C. Knoll. Formally verifiable modeling of
in-vehicle time-sensitive networks (tsn) based on logic programming. In 2016
IEEE Vehicular Networking Conference, 2016.

[25] M. H. Farzaneh and A. C. Knoll. Time-sensitive networking (tsn): An experimental
setup. In IEEE Vehicular Networking Conference, Nov 2017.

[26] M. H. Farzaneh, S. Kugele, and A. C. Knoll. A graphical modeling tool supporting
automated schedule synthesis for time-sensitive networking. In 2017 22nd IEEE
Intl. Conference on Emerging Technologies and Factory Automation, 2017.

[27] M. H. Farzaneh. A Modeling Framework to Facilitate Schedule Synthesis of
Time-Sensitive Networking. PhD thesis, Technische Universität München, 2019.

[28] M. Pahlevan, N. Tabassam, and R. Obermaisser. Heuristic list scheduler for time
triggered traffic in time sensitive networks. SIGBED Rev., February 2019.

[29] M. Pahlevan, J. Schmeck, and R. Obermaisser. Evaluation of tsn dynamic configu-
ration model for safety-critical applications. In 2019 IEEE Intl Conf on Parallel
Distributed Processing with Applications, Big Data Cloud Computing, Sustainable
Computing Communications, Social Computing Networking (ISPA/BDCloud/So-
cialCom/SustainCom), pages 566–571, 2019.

[30] F. Dürr and N. Nayak. No-wait packet scheduling for ieee time-sensitive networks
(tsn). In Proceedings of the 24th Intl. Conference on Real-Time Networks and
Systems, 2016.

[31] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and K. Rother-
mel. NeSTiNg: Simulating IEEE Time-sensitive Networking (TSN) in OMNeT++.
In Proceedings of the 2019 Intl. Conference on Networked Systems. IEEE, March
2019.

[32] S. Kramer, D. Ziegenbein, and A. Hamann. Real World Automotive Benchmarks
for Free. In 6th Intl. Workshop on Analysis Tools and Methodologies for Embedded
and Real-Time Systems, 2015.

[33] Z3Py. Z3 is a theorem prover from microsoft research, 2020.

Chapter 8

Paper C:
Schedulability Analysis of
Best-effort Traffic in TSN
Networks

Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Sara Afshar,
Saad Mubeen.
In the 26th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2021.

118

Abstract

This paper presents a schedulability analysis for the Best-Effort (BE) traffic class
within Time Sensitive Networking (TSN) networks. The presented analysis considers
several features in the TSN standards, including the Credit-Based Shaper (CBS), the
Time-Aware Shaper (TAS) and the frame preemption. Although the BE class in TSN
is primarily used for the traffic with no strict timing requirements, some industrial
applications prefer to utilize this class for the non-hard real-time traffic instead of
classes that use the CBS. The reason mainly lies in the fact that the complexity of TSN
configuration becomes significantly high when the time-triggered traffic via the TAS and
other classes via the CBS are used altogether. We demonstrate the applicability of the
presented analysis on a vehicular application use case. We show that a network designer
can get information on the schedulability of the BE traffic, based on which the network
configuration can be further refined with respect to the application requirements.

120 8.1 Introduction

8.1 Introduction

Today’s vehicular embedded systems deal with many challenges, such as scalability
in data communication, computational complexity and guaranteeing determinism for
hard real-time traffic. These challenges are due to increased functionality of automotive
systems, which demands coexistence of diverse applications within the same network.
Diversity of applications can be in terms of priority, timing constraints or bandwidth
constraints. Therefore in recent years, IEEE Time-Sensitive Networking (TSN) task
group has been formed to provide features that can support such diversity in communi-
cation and act as a backbone communication-network for some industrial domains; in
particular for the vehicular on-board communication-systems [1, 2].

TSN standards are toolboxes where various features depending on the application
can be used to improve the performance of the communication in the application. In
particular, TSN standards allow temporal isolation of the Scheduled Traffic (ST), which
is sent according to a static schedule created offline. The temporal isolation is realized
by the Time-Aware Shaper (TAS) mechanism using gates operation on ports of a TSN
switch. This guarantees timing determinism for ST. In addition to the TAS mechanism,
TSN standards define the Credit-Based Shaper (CBS) mechanism that allows reservation
of the bandwidth by reserving links’ capacity based on credits associated to each class.
The shapers define different traffic classes in TSN networks, being classes A, B and
Best-Effort (BE). Classes A and B use the CBS mechanism, while class BE does not
use the CBS mechanism. Class A has a higher priority than class B, and class BE has
the lowest priority in the network. Hence, BE traffic will only be sent when no higher
priority traffic is contending for the link.

One of the main industrial domains, where using TSN is gaining significant mo-
mentum is the vehicular domain due to their advancements in functionalities, smart
devices, and high-bandwidth sensors. However, redesigning and replacing the existing
communication systems is not reasonable, mainly because of extra costs imposed by
the new design. Therefore, the vehicular applications consider the TSN network as a
backbone network supporting high-bandwidth between several Electronic Control Units
(ECU). One of the challenging and non-trivial tasks is to support the legacy traffic and
map them into the TSN traffic classes. Due to the complexity of applying a combination
of TSN features, there is a high tendency in vehicular industry to use only the ST class
for hard real-time strictly periodic traffic. For example, using a combination of the TAS
and CBS mechanisms in practice is not realized easily, due to the complexity of the
CBS configuration. Also, it is common to use the BE class for the legacy traffic, that
has no strict deadlines but a minimum quality-of-service (QoS) demand. Since, the BE
class is simple to use and configure, obtaining a level of QoS via schedulability analysis
is useful for a large class of BE traffic.

Paper C 121

Figure 8.1. Timeline of schedulability analysis techniques for TSN since 2014.

To this end, none of the existing works support the schedulability analysis of the
BE class, when the TAS, CBS and frame preemption are used in the network. The
main contribution in this paper is to develop a schedulability analysis that can verify
the worst-case response time of each individual BE message in the network when CBS,
TAS and frame preemption are used. Furthermore, the paper shows the applicability of
the analysis on a use case from the vehicular domain.

8.2 Background and Related Work

In general, there are four main analysis techniques for TSN networks: (1) RTA, (2)
network calculus, (3) use of eligible intervals, and (4) use of machine learning. Figure 8.1
shows a timeline of the existing schedulability analysis approaches for TSN. According
to [2], the focus of the first works in the existing schedulability analysis has evolved
from only supporting CBS to more sophisticated models, which include the combination
of CBS with time-triggered traffic and frame preemption support. There are several
recent works that provide schedulability analysis of TSN networks considering the
frame preemption [3], [4, 5]. Among the above mentioned techniques, this paper
focuses on the worst-case RTA. More specifically, we extend the work in [3] to provide
schedulability analysis for BE class in TSN networks. The following sections present a
summary of the most significant research in the area of schedulability analysis for TSN.

122 8.2 Background and Related Work

8.2.1 Response Time Analysis (RTA) for TSN

The work in [6] is one of the first works aiming at the utilization of AVB for in-vehicle
communication. The proposed RTA only supports CBS and the class A traffic is
assumed to be the highest-priority traffic. Hence, the work in [6] does not consider any
interference by the ST class. The RTA was further developed in several works [7] to
support the hard real-time time-triggered traffic in TSN, which needs to be shaped by
deterministic traffic shaper mechanisms, such as the TAS or the peristaltic shaper. A
comparative evaluation of these two shapers discussed in [7] shows that shaping the
hard real-time traffic based on the peristaltic shaper can cause larger blocking times
to the message under analysis. Hence, the work in [8] extended the previous work
to provide the worst-case RTA for TSN supporting the TAS and preemption. The
work in [9] considered the CBS and TAS mechanisms in combination, where the TAS
mechanism was a variation of the TSN standard. Furthermore, the work in [3] proposed
the worst-case RTA that considers the TAS, CBS and different variations of frame
preemption support (i.e., with and without Hold and Release mechanisms according to
the standard). Finally, the work in [10] introduced a worst-case traversal analysis for
TSN, which is based on a system model that allows multiple preemption levels [4].

8.2.2 Analysis for TSN based on Network Calculus

Network calculus is a well-known technique to calculate the worst-case delays in
networks. A network calculus analysis for AVB was introduced in [11]. Later, the
work in [12] provided an approach to integrate the timing analysis for the periodic
time-triggered traffic and the rate-constrained sporadic traffic in TTEthernet. Though
TTEthernet has several similarities to TSN, it does not feature the CBS mechanism.

Within the context of TSN, the works in [13] and [14] considered the influence of
the scheduled traffic on the AVB traffic in preemption mode. The main focus of this
work is to employ network calculus to find tighter worst-case delay bounds for classes
A and B. The work was further developed in [5] to support multiple AVB classes in the
system model and to include the effects of traffic classes such as ST, A and B. Finally,
the work in [15] presents the state of the art in network calculus-based TSN methods.

8.2.3 Analysis for TSN based on Machine Learning

An interesting approach for verification of TSN networks and their schedulability analy-
sis using machine learning techniques was followed in the works presented in [16] and
[17]. This approach mainly focuses on verifying the feasibility of TSN configurations by
combining a schedulability analysis and a machine learning technique. The work in [18]

Paper C 123

further improved the approach by applying deep learning-based techniques. However,
these techniques are not primarily proposed to provide predictability guarantees for
TSN networks, yet are interesting for verifying the TSN network configurations.

8.2.4 Analysis for TSN based on Eligible Intervals
Besides the aforementioned works, a technique based on the concept of eligible intervals
was proposed in the context of AVB network considering solely the CBS mechanism
in [19]. Further, the work in [20] used the same concept to analyze the delays of classes
A and B in the presence of the ST class.

To sum up, the previous schedulability analysis techniques have addressed several
features in TSN, but are still limited to the analysis of classes A and B. This seems
intuitive as the BE class was not supposed to be used for traffic with timing requirements.
However, in order to avoid the complexity of the CBS traffic, the designers of TSN
applications often prefer to assign the legacy traffic with timing requirements to the BE
class instead of the CBS traffic (classes A and B). Hence, schedulability analysis of
the BE traffic class is needed. Provisioning of the RTA for the BE traffic class in TSN
networks is the main focus of this paper.

8.3 System Model
The system model consists of two parts. First, the network model defines the physical
attributes of the network. Second, the traffic model describes the message attributes that
are communicated between the source and destination end stations.

8.3.1 Network Model
In the network model, we assume TSN switches that support CBS, TAS, and clock
synchronization. The network topology is modelled through a set of links shown by
L that contains all network links. A typical link in the network is indicated by l,
where l ∈ L. Links are two-directional connections linking an end station to a switch
and one switch to another switch. R specifies the network bandwidth per link, i.e.,
the maximum allowed load on the links. We assume that all the links have the same
bandwidth. Moreover, the parameters α+

z,l and α−
z,l are the idleSlope and sendSlope

values associated with the link l, which are only applicable when traffic from credit-
based class z uses the link. The idleSlope is the rate of increasing the credit for a class
of traffic when there is a pending message for transmission in the class. The sendSlope
is the rate of credit consumption when the message is being transmitted. The sum of

124 8.3 System Model

idleSlope and sendSlope is equal to R. Finally, the delay due to hardware design of the
switch is assumed to be bounded by γ.

8.3.2 Traffic Model

The traffic is modelled by a message, mi. A message contains a stream of data to
be transmitted from the source end station to the destination end station. An instance
of a message is called a frame. We assume that traffic preemption is enabled. The
traffic class ST is configured as an express class, while other classes are preemptable
(not express). Therefore, ST messages can preempt messages from the other classes,
but messages from the other classes cannot preempt the lower-priority messages. The
fragments of a preempted message obtain an individual header; therefore, preemptions
cause extra overhead due to the extra transmission time required for the headers of the
fragments. The parameter v is the transmission time of an Ethernet frame header. The
attributes of the message are represented by the tuple

〈
Ci, Ti, Di, Pi,O

l
i,Li

〉
. Where

Ci is the transmission time of mi. The transmission time is calculated based on R and
the size of the message. A guard band is a reserved slot added before the ST schedule
slots in case the preemption by the ST class is enabled to prevent any interference by
the lower-priority messages that cannot be preempted. The duration of the guard band
is represented by λ. According to the IEEE 802.3br standard, a message fragment less
than 123 Bytes cannot be preempted. Ti is the message mi’s period and Di specifies
the end-to-end deadline of mi. We consider implicit deadlines, i.e., the deadline of each
message is assumed to be equal to its period. The message priority is represented by
Pi. We assume that the possible values of Pi can be assigned from the set of class IDs
in the set {ST,A,B,BE}, and each TSN class is associated with a queue. Moreover
we consider only two AVB classes, but it’s worth noting that up to 8 AVB classes
can be supported by the shaper mechanism. In case the message is from the ST class,
deterministic schedules on each of the links need to be specified at the Gate Control List
(GCL) of the TSN switches. Therefore, the parameter Ol

i represents the set of offsets
of the ST message mi on link l within Li, where Li is the set of links in the route of
mi from the source end station to the destination end station, and Li ∈ L. We assume
that the ST schedules (i.e., the offsets for the ST messages) are given using a scheduling
technique, e.g., [21]. J l

i is the jitter on the link l, which is the delay variations (bound)
in the transmission of the message mi on the link l.

Paper C 125

8.4 Revisiting RTA for TSN without the BE Traffic
The worst-case response time of a message consists of three components: (1) interference
from the messages belonging to the higher-priority traffic (hp), (2) interference from the
messages belonging to the same priority traffic (sp), and (3) blocking from the messages
belonging to the lower-priority traffic (lp). The RTA for BE traffic in TSN, presented
in this paper, is built upon the existing RTA [3], which is revisited in this section. The
following subsections present the worst-case RTA for the messages belonging to classes
A and B.

8.4.1 RTA for Class A Messages

In order to explain various factors contributing to the response time of a class A message,
the transmission trace of an example is presented in Figure 8.2. A message could be
routed through several links and switches; hence the worst-case RTA must be performed
per link. The trace in Figure 8.2 shows a shared link between messages from three
different priority classes in TSN, namely classes ST, A, and B. For example, there are
four periodic frames of an ST message that are activated at every 5 time units. The
transmission time of the ST message is 1 time unit. Class A contains a message A1

with the period of 20 time units and transmission time of 3 time units. The period
and transmission time of the class B message are 20 and 3 time units respectively.
Figure 8.2 shows the transmission trace until the hyperperiod (20 time units) of all the
messages. Moreover, the upward arrows indicate the activation times of the messages in
the hyperpeiod.

We are interested in the response time of message A1, where we need to find a
critical instant candidate which can lead to the worst-case scenario. The worst-case
scenario for A1 occurs when the higher and the same priority messages are activated
at the same time as the activation of A1, i.e., at time 0 in Figure 8.2. For simplicity
of the trace, we excluded the same priority interference, and the credits of classes A
and B are not shown. However, we assumed that the credits are 0 at the time of the
message’s activation. Moreover, the worst-case scenario also considers that there is an
ongoing transmission of a lower-priority message (B1) on the port when the message
under analysis is activated. Since the higher priority class with respect to class A is
set to express, these express messages are handled by the TAS allowing the express
messages to preempt the lower-priority messages. In this case, preemption overhead due
to adding an Ethernet frame header to each preempted fragment of the messages needs
to be taken into account. This interference on A1 can be seen at time 5 in Figure 8.2.

Another component of the worst-case scenario is when the lower-priority message
from class B is activated at a slightly earlier time than the message under analysis from

126 8.4 Revisiting RTA for TSN without the BE Traffic

Figure 8.2. Trace of a message set: class A message under analysis.

class A, at time −β in Figure 8.2. The message B1 starts its transmission at −β as
there are no higher priority messages that are queued for transmission at the same time.
Although at time 0 the frame A1 is activated, it cannot be preempted by B1 because it
is set to preemptable. However, the ST frames can preempt both B1 and A1, as can
be seen in Figure 8.2. After full transmission of B1, the frame A1 can be transmitted,
although it may still be preempted by the ST frames.

In summary, the worst-case response time for the class A message consists of: (i)
interference from the messages belonging to the ST class; (ii) ST preemption overhead;
(iii) blocking due to lower-priority messages belonging to the B and BE classes; and (iv)
interference from other same priority messages from class A. The following subsections
explain each of the elements contributing to the worst-case response time of a class A
message.

Interference from higher-priority messages

Since the ST class is scheduled offline, an offset per link is assigned to each ST message.
In order to consider the offsets of the ST messages in the analysis, the offset-based
analysis in [22] is adapted in which a transaction is defined to contain several tasks.
The adaptation of the transactional model into the ST messages is as follows. Since in
the system model, we assumed one ST class using one queue of each port, then all ST
messages form one transaction and its period is the least common multiple (LCM) of
all ST periods. Figure 8.3 represents an example of two ST messages in a transaction,
namely message x and message w, with the periods Tx and Tw, respectively. The
transaction period is indicated by T , which is the LCM of Tx and Tw. The parameter k
represents an instance of a message within the transaction’s period. That is, k = [1, n],
where n is equal to the total number of instances of the message within the transaction’s
period. For example, n for the message w within T is 2 as there are two frames of

Paper C 127

message w during T . Similarly, n for x within T equals to 1.

Figure 8.3. An example of a transaction.

Since the activation time of the message under analysis from class A is unknown,
each activation of an ST frame within the hyperperiod can be a critical-instant candidate
for the class A message. The largest response time caused by the ST class interference
to the message under analysis can be found by generating critical-instant candidate
combinations from the ST messages. Therefore, it is assumed that the message under
analysis is activated at time 0. Then, the phase of the ST transaction is shifted such that
the activation of one of the ST messages coincides with the activation of the message
under analysis at each critical-instant combination. Since multiple frames of a message
can appear in the hyperperiod, i.e., multiple frames in the ST transaction (Figure 8.3),
the phase should be derived for all frames within the transaction. In order to derive the
offsets for all frames in the transaction, we use Eq. (8.1), where I lj is an array containing
the offsets of all frames of ST message mj on link l during the transaction period Tlcm

(hyperperiod of all ST messages).

I lj = {(k − 1)Tj +Ol
j − λ : k = 1..n, n =

Tlcm

Tj
} (8.1)

The phase between ST message mj and the kth frame of the critical-instant candi-
date ST message mc on link l is denoted by Φl

jc[k], that is calculated by Eq. (8.2).

Φl
jc[k] = (Ol

j − I lc[k]) mod Tlcm (8.2)

Ol
j is the offset of ST message mj on link l, whereas I lc[k] is the offset of kth frame of

mc on l. The worst-case interference by ST messages is calculated by Eq. (8.3), when
candidate ST message mc coincides with the critical instant [3].

W l
c[k](t) =

∑
∀j∈ST ∧l∈Lj

(⌊
Φl

jc[k]

Tlcm

⌋
+

⌈
t− Φl

jc[k]

Tlcm

⌉)
Cj (8.3)

128 8.4 Revisiting RTA for TSN without the BE Traffic

As it is mentioned earlier, in case of any preemption, the fragmented frame will
again obtain a frame header. Therefore, the frame becomes larger in size with each
preemption. The impact of this preemption overhead is calculated by Eq. (8.4).

V l
c[k](t) =

∑
∀j∈ST ∧l∈Lj

(⌊
Φl

jc[k]

Tlcm

⌋
+

⌈
t− Φl

jc[k]

Tlcm

⌉)
v (8.4)

Blocking by lower priority messages

Since the CBS controls the transmission of class A traffic, the blocking of class A
message under analysis can occur under two circumstances. Firstly, when the lower-
priority messages are activated slightly earlier than the activation of the class A message.
Secondly, a lower-priority message takes the port for transmission while the class A
message is activated but the credit for class A is negative. It has been shown in [6]
that several lower-priority messages can block the class A message. However, if the
same priority interference is inflated as in Eq. (8.6) then it is safe to consider only one
blocking message from the lower-priority traffic as shown in Eq. (8.5).

BBl
i = max

∀mj∈lp(mi)
∧ l∈Lj

{Cj} (8.5)

Interference from same priority messages

To cover the need for accounting the blocking due to the mentioned circumstances,

the same priority interference should be inflated by
(
1 +

α−
A,l

α+
A,l

)
. Therefore, Eq. (8.6)

calculates the same priority interference for class A message under analysis mi. For
more information and the proofs please refer to [6] (and subsequently in [3]).

ISAl
i =

∑
∀mj∈sp(mi),i̸=j

∧ l∈Lj

(
1 +

α−
A,l

α+
A,l

)
Cj (8.6)

In the above equation, α+
A,l and α−

A,l are the idleSlope and sendSlope values of class
A on the link l, respectively.

Response-time calculations

The response-time analysis iteratively considers the blocking and interference on the
message under analysis (mi) on the link l in time intervals (t). The iterative process is

Paper C 129

continued until the values of the computed response times are equal in two consecutive
iterations or the value of the response time exceeds the corresponding deadline. Conse-
quently, in a deadline-constrained model, we call a message schedulable if the response
time of the message is less than or equal to the message’s deadline. The response time
of a message in class A is calculated by Eq. (8.7).

RT
l,(x)
ic[k] = W l

c[k](RT
l,(x−1)
ic[k]) + V l

c[k](RT
l,(x−1)
ic[k]) +BBl

i + ISAl
i + Ci (8.7)

Where the index of the current and the previous iterations are specified by (x) and (x−1),
respectively. The worst-case response time on link l is the maximum value among all
calculated response times based on all critical instant candidates’ combinations of mc,
as shown in Eq. (8.8).

RT l
i = max

∀mc&∀k
{RT l

ic[k]} (8.8)

8.4.2 RTA for Class B Messages
Class B is non-express similar to class A. Hence, the four elements that influence
the worst-case response time of a class B message include: (i) interference from the
higher-priority ST class and class A messages; (ii) class ST preemption overhead; (iii)
blocking by class BE messages; (iv) interference from other same priority messages
from class B. Figure 8.4 shows an example with four classes of ST, A, B and BE. In
this example, we are interested in one of the critical instant candidates of the class B
message, i.e., B1. Similar to the previous example in Figure 8.2, the worst-case scenario
considers that a lower-priority message BE1 has started slightly before the activation of
B1. Since class B is not express, B1 cannot preempt the transmission of BE1. When the
transmission of BE1 is completed, a higher-priority class A message, A1, is activated.
Assuming that the credit for class A is zero or positive, A1 will be transmitted first.
Afterwards, B1 can be transmitted. As shown in Figure 8.2, the ST messages can
preempt all lower-priority messages, including B1. An interesting observation in this
example is that the higher-priority interference on class B messages can be preemptive
(via class ST messages) or non-preemptive (via class A messages) at the same time.

Interference from higher-priority messages

Interference from the ST messages as well as the preemption overhead due to the ST
messages is calculated using Eq. (8.3) and Eq. (8.4), respectively. The class A traffic is
not express in contrast to the ST class. Therefore, class A messages cannot preempt
any of the lower-priority messages. As a result, the interference of class A follows a

130 8.4 Revisiting RTA for TSN without the BE Traffic

Figure 8.4. Trace of a message set: class B message under analysis.

non-preemptive high-priority interference model. When the link is already occupied by
other messages, the current frame of the message under analysis must be queued until
the link is idle. Eq. (8.9) calculates the high-priority interference of class A messages
on the class B message, where the queuing delay is denoted by ωl

ic[k](q).

IAl
i(ω

l
ic[k](q)) =

∑
∀mj∈classA,i̸=j

∧ l∈Lj

⌊
ωl
ic[k](q) + J l

j

Tj
+ 1

⌋
Cj (8.9)

Above, ωl
ic[k](q) is the queuing delay on the link l when the kth frame of the critical

instant candidate (mc) coincides with the critical instant. Moreover, it has been shown
in [3] that any frame of a message under analysis (mi) may lead to the worst-case
situation (not necessarily the first frame of the message). Thus, q frames should be
evaluated for the worst-case analysis. J l

j is the jitter of each frame of class A message
mj on link l.

Blocking by the lower-priority messages

BE class is the only lower priority traffic than the message under analysis (mi) from
class B. The blocking by this class is presented as BBEl

i , which is calculated the same
as BBl

i in Eq. (8.5).

Paper C 131

Interference from same priority messages

The same priority interference of class B messages on the message under analysis (mi)
is calculated by Eq. (8.10), which takes into account the inflation factor of class B.
Besides, the equation considers that the worst-case scenario can be caused by any of the
q instances from the message under analysis (mi). For more information and the proofs
please refer to [6] (and subsequently in [3])

ISBl
i =

∑
∀mj∈sp(mi),i̸=j

∧l∈Lj

(
1 +

α−
B,l

α+
B,l

)
Cj

⌊
(q − 1)Ti

Tj
+ 1

⌋
(8.10)

Response-time calculations

The response time calculations of class B are performed in two phases. In the first
phase, the queuing delay from all sources of interference and blocking that have an
influence on the qth frame of the message under analysis (mi) is iteratively calculated
using Eq. (8.11).

ωl
ic[k](q) = W l

c[k](ω
l
ic[k](q)) + V l

c[k](ω
l
ic[k](q))+

IAl
i(ω

l
ic[k](q)) +BBEl

i + ISBl
i + (q − 1)Ci

(8.11)

In the second phase, the message mi can only be interfered by ST messages preemptively
and not by other classes as their interference is already accounted in the first phase.
Therefore, the response time of mi when mc from ST class coincides the critical instant
for the qth frame is calculated by Eq. (8.12). Note that the second phase starts at time
ωl
ic[k](q), i.e., after the calculation of the busy period.

RT
l,(x)
ic[k] (q) = ωl

ic[k](q) +W l
c[k](RT

l,(x−1)
ic[k] (q))+

V l
c[k](RT

l,(x−1)
ic[k] (q)) + Ci − (q − 1)Ti

(8.12)

Finally, Eq. (8.13) calculates the maximum value of response time, which is the max-
imum value of RT l

ic[k] calculated for the qth frame of the message under analysis
(mi).

RT l
ic[k] = max

q=1..qmax

{RT l
ic[k](q)} (8.13)

8.5 Proposed RTA for the BE traffic in TSN
This section extends the existing RTA for TSN to support the class BE messages. Class
BE does not utilize the express mode. Moreover, the traffic passing from the class BE

132 8.5 Proposed RTA for the BE traffic in TSN

queue is subjected to interference by the CBS and ST classes. Since the system model
does not contain any lower-priority classes than the class BE, unlike other classes, the
class BE messages do not experience any blocking delay. Figure 8.5 shows an example
of a BE frame’s transmission trace and the interference by the higher-priority messages.
There is a message belonging to each of these classes. There are four periodic frames of
an ST message that are activated every 5 time units. The transmission time of the ST
message is 1 time unit. Each message in classes A, B and BE has a period of 20 time
units and a transmission time of 3 time units.

A critical instant of the class BE message occurs when it is activated at the same
time with the higher-priority messages. Firstly, the class ST message that is in the
express mode, preempts the class BE message and its higher-priority messages from
classes A and B. The message belonging to class A has subsequently higher priority
than the messages of classes B and BE. Therefore, the class A message (in case of
positive credit) is transmitted as soon as the link is freed by the class ST message.
Similarly, the class B message is transmitted after the transmission of class A message
is completed. The class BE message is also fragmented due to the preemption caused by
the ST frames. Note that the class BE message is interfered by the class ST messages
preemptively and by classes A and B messages non-preemptively. The elements that
influence the RTA of class BE frames, include: (i) interference from class ST , classes
A and B as the higher-priority classes; (ii) ST preemption overhead; (iii) interference
from other same priority messages from class BE.

Figure 8.5. Trace of a message set: class BE message under analysis.

Paper C 133

8.5.1 Interference from Higher-priority Messages

The set of higher-priority messages with respect to the class BE message includes
messages from classes ST, A and B. The class ST messages interfere with the BE
message according to the TAS schedules. Whereas, the classes A and B are shaped
based on the corresponding class’ credit. Consequently, we can expect the same effect
of interference and preemption overhead due to the ST schedules as presented for RTA
of class A and class B in Section 8.4.1. Eq. (8.14) calculates the interference by classes
A and B based on the queuing delays in a similar way to the existing non-preemptive
interference.

IABl
i(ω

l
ic[k](q)) =

∑
∀mj∈classA∪classB,i ̸=j

∧ l∈Lj

⌊
ωl
ic[k](q) + J l

j

Tj
+ 1

⌋
Cj (8.14)

where, J l
j is the jitter of higher-priority messages from classes A and B that cause the

queuing delay to the qth frame of the message under analysis (mi). The calculation of
J l
j for both classes A and B will be presented at the end of this section.

8.5.2 Interference from the Same Priority Messages

In a deadline-constrained model, only one frame of the same priority message can be
queued before the queuing of the message under analysis. Eq. (8.15) calculates the
same priority interference for mi in class BE.

ISBEl
i =

∑
∀mj∈sp(mi),i̸=j

∧l∈Lj

Cj

⌊
(q − 1)Ti

Tj
+ 1

⌋
(8.15)

Note that unlike the same priority interference for classes A and B, the same priority
interference for class BE is not inflated. The reason is that the inflation factor is needed
to cover the case of multiple blocking by lower-priority messages. As in this model, the
BE class is the lowest-priority class, the concept of inflation factor becomes irrelevant.

8.5.3 Response-time Calculations

The RTA for class BE messages is performed in two phases similar to the analysis for
class B (in Section 8.4.2). Therefore, in the first phase of the analysis, the queuing delay

134 8.5 Proposed RTA for the BE traffic in TSN

from all sources of interference that have an influence on the qth frame of the message
under analysis (mi) from class BE is calculated by Eq. (8.16).

ωl
ic[k](q) = W l

c[k](ω
l
ic[k](q)) + V l

c[k](ω
l
ic[k](q))+

IABl
i(ω

l
ic[k](q)) + ISBEl

i + (q − 1)Ci
(8.16)

where, the queuing delay ωl
ic[k](q) includes: (i) preemptions by the ST class W l

c[k](ω
l
ic[k](q));

(ii) ST preemption overhead V l
c[k](ω

l
ic[k](q)); (iii) credit-shaped high-priority traffic

interference by classes A and B (IABl
i(ω

l
ic[k](q))); and (iv) the transmission time of all

the q frames of the message under analysis that are waiting in the queue.
In the second phase, the queuing delay of the BE message under analysis which is

derived in the previous stage is utilized to compute the response time of the message
under analysis (mi). In this phase, mi can only be interfered by the ST messages
preemptively. The response-time calculations in the second phase are presented by
Eq. (8.17).

RT
l,(x)
ic[k] (q) = ωl

ic[k](q) +W l
c[k](RT

l,(x−1)
ic[k] (q))+

V l
c[k](RT

l,(x−1)
ic[k] (q)) + Ci − (q − 1)Ti

(8.17)

The worst-case response time of mi from class BE is the maximum RT l
ic[k] of the kth

critical instant candidate combination (mc) as shown in Eq. (8.18).

RT l
ic[k] = max

q=1..qmax

{RT l
ic[k](q)} (8.18)

Where qmax represents the maximum number of frames of the message under analysis
that are queued for transmission during its maximum busy period. The value of qmax is
derived as the smallest positive integer value that satisfies the inequality (8.19).

W l
c[k](ω

l
ic[k](q)) + V l

c[k](ω
l
ic[k](q)) + IABl

i + qCi+

∑
∀mj∈classA∪classB,i ̸=j

∧ l∈Lj

⌈
ωl
ic[k](q) + J l

j

Tj

⌉
Cj ≤ q.Ti

(8.19)

The worst-case response time of the class BE message (mi) on link l is equal to the
maximum value of the response times with respect to all critical-instant candidates as
shown in Eq. (8.20).

RT l
i = max

∀mc&∀k
{RT l

ic[k]} (8.20)

Paper C 135

8.5.4 Calculations for Queuing Jitter of Classes A and B

The arrival of a message from class A or B on a link that is shared with the class BE
message (mi) can vary due to traversal of the class A and B messages through multiple
links in the network. This variation results in the queuing jitter of the A and B messages.
This jitter may have a significant effect on the response time of mi as shown in the
calculations for higher-priority interference in Eq. (8.14) and Eq. (8.19). To calculate
the jitter on link l, we should find the worst-case and best-case delays from the sender
end station to the link l where it is shared by mi. The worst-case RTA of classes A and
B messages are already presented in Section 8.4. The best-case response time of classes
A and B can occur by assuming that the corresponding credits are always available
for the messages upon their arrival for transmission. Thus their best-case response
times will be equal to their corresponding transmission times. Eq. (8.21) shows the
calculations for release jitter of class A and B messages (mj) on link l.

J l
j =

∑
L=1..l

RTL
j −

∑
L=1..l

BTL
j

∑
L=1..l

BTL
j = l.Cj

(8.21)

8.5.5 Response Time over Multiple Links

As messages across multiple links are buffered in the queues of each switch, the worst-
case response time of a message crossing multiple links is the sum of the per-link
worst-case response times. Eq. (8.22) shows the worst-case response time of mi in class
BE crossing multiple links from its source till its destination end station. Note that the
switch hardware latency γ is added for each link.

RTi =
∑

l=1..|Li|

(RT l
i) + (|Li| − 1).γ (8.22)

8.6 Evaluation
This section presents the evaluation of the presented response time analysis on a vehicu-
lar application use case. The main intention of the evaluation is to show that a network
designer can evaluate the number of deadline misses in the BE traffic using the proposed
analysis. Based on this information, the overall network configuration can be adjusted
and refined.

136 8.6 Evaluation

Figure 8.6. Vehicular application use case topology.

8.6.1 Vehicular Application Use Case

The use case is inspired from a most-commonly used industrial case study on a modern
car developed in [23]. Based on the presented use case, we define a TSN network
that consists of 14 end stations connected through two TSN switches, as shown in
Figure 8.6. In this use case, we assume that the total network bandwidth is 10Mbps and
the fabrication delay in all switches is assumed to be 5µs.

In this use case, there are three cameras: CAM1, CAM2, and CAM3. These cameras
are mounted on different sides of the car and send video streams using classes A and B.
The receiver of the video streams is the Head Unit, which is the main (central) ECU in
the use case. Moreover, FCAM is the main front camera of the car that sends the video
streams to the PU_FCAM for further processing. Similarly, the Aud/Vid node transmits
infotainment streams to the AVSink node. Both FCAM and Aud/Vid use classes A and
B for the data transmission. In addition, we consider three control nodes (e.g., engine
control) that send control signals to the Head Unit. The control end stations are denoted
by CTRL1-CTRL3. The control signals are allocated to the ST class as we want to
obtain full deterministic behaviour for them. Finally, we considered three end stations,
being Diagnosis, Logging and Backup that transmit diagnostics information, stored data
from other ECUs, and software update information. The data from these end stations
are sent to the Head Unit. Table 8.1 shows the traffic characteristics.

As there are several class A and B messages, the values of the idleSlope for these

Paper C 137

Table 8.1. Various traffic in the vehicular application use case.

ID Sender Receiver T = D (µs) Payload (Bytes) C(µs) Class
M-0 Head unit CTRL1 20000 20 49.6 ST
M-1 Head unit CTRL2 20000 20 49.6 ST
M-2 Head unit CTRL3 20000 20 49.6 ST
M-3 Head unit CAM1 10000 786 662.4 A
M-4 Head unit CAM2 10000 786 662.4 A
M-5 Head unit CAM3 10000 786 662.4 A
M-6 PUFCAM FCAM 5000 786 662.4 A
M-7 Head unit CAM1 10000 786 662.4 B
M-8 Head unit CAM2 10000 786 662.4 B
M-9 Head unit CAM3 10000 786 662.4 B

M-10 AVSink Aud./Vid. 5000 1472 1211.1 B
M-11 Head unit Backup 10000 500 433.6 BE
M-12 Head unit Logging 10000 1500 833.5 BE
M-13 Head unit Diagnosis 10000 2000 1233.5 BE

Table 8.2. idleSlope of class A and class B per link.

idleSlope (Mbps) l1 l2 l5 l6 l7 l8 l9 l10 l15

Class A 1.32 1.32 2.64 3.97 2.64 1.32 1.32 0 0
Class B 1.32 1.32 3.97 3.97 0 1.32 1.32 4.84 4.84

two classes need to be allocated on every link through which these messages traverse.
In order to calculate the idleSlope values, we use recommendation from the IEEE
802.1Q-2018 standard. Therefore, the idleSlope is equal to the utilization of the traffic
with scaling up by considering the ST traffic. Table 8.2 shows the idleSlope values
assigned to each link, where the link IDs are shown in Figure 8.6. Note that zero credit
means there are no messages from the associated CBS class on the link.

8.6.2 Analysis Results

We implemented the proposed analysis as an in-house analysis engine. The configu-
ration and message set in the vehicular application use case were fed as input to the
implemented analysis. The analysis took 15 milliseconds to run on an HP Elitebook
with an Intel Core i5 processor and a 16-Gigabyte RAM. Table 8.3 shows the worst-case
response times of all messages calculated by the implemented analysis. As it can be

138 8.7 Conclusion and future work

seen, the messages from classes ST, A and B meet their deadlines. However, two
of the BE messages (M-12 and M-13) miss their deadlines as their response times
(10674µs and 11074µs) exceed their deadlines (10000µs). Note that the presented
analysis calculates the response times of messages per link. Hence, the analysis can
identify the most congested links that may become bottleneck in the TSN network. The
network designer can use this information to check whether it is acceptable for the class
BE messages to miss their deadlines with a small margin, otherwise a new configuration
should be setup to refine the application by considering the bottlenecks indicated by the
proposed analysis.

Table 8.3. Calculated response times (RT) in the use case.

ID T = D(µs) RT (µs) Schedulable
M-0 20000 104.2 Yes
M-1 20000 104.2 Yes
M-2 20000 158.8 Yes
M-3 10000 3808.7 Yes
M-4 10000 3808.7 Yes
M-5 10000 5792.9 Yes
M-6 5000 1329.8 Yes
M-7 5000 2427.4 Yes
M-8 10000 5843.9 Yes
M-9 10000 5843.9 Yes

M-10 10000 8506.5 Yes
M-11 10000 9474.0 Yes
M-12 10000 10674.0 No
M-13 10000 11074.0 No

8.7 Conclusion and future work
In this paper, we argued that it is simpler to use BE class in TSN networks within
a vehicle instead of classes A and B for the traffic with no hard real-time timing
requirements. This is due to the complexity of the CBS configuration when it is
combined with the TAS and frame preemption mechanisms in TSN. However, this
requires us to provide a level of QoS for the BE traffic, thus a schedulability analysis
for the BE class becomes essential. This paper presented the worst-case response-time
analysis for the BE traffic in TSN while considering the effects of classes ST, A and B

Paper C 139

via the TAS and CBS, and the frame preemption support. To the best of our knowledge,
this is the first schedulability analysis for the BE class in TSN networks. We used the
presented analysis on a vehicular application use case to show how the analysis can
provide essential information to the network designer. The future work entails using
the analysis for BE traffic to improve the offline schedules for the ST traffic in TSN
networks.

Acknowledgements
The work presented in this paper was supported by the Swedish Governmental Agency
for Innovation Systems (VINNOVA) via the DESTINE, PROVIDENT and INTER-
CONNECT projects and the Swedish Knowledge Foundation via the DPAC and HERO
projects.

Bibliography

[1] L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara. Recent Advances and Trends
in On-Board Embedded and Networked Automotive Systems. IEEE Transactions
on Industrial Informatics, 2019.

[2] M. Ashjaei, L. Lo Bello, M. Daneshtalab, G. Patti, S. Saponara, and S. Mubeen.
Time-Sensitive Networking in Automotive Embedded Systems: State-of-the-Art
and Research Opportunities. Journal of Systems Architecture, 2021.

[3] L. Lo Bello, M. Ashjaei, G. Patti, and M. Behnam. Schedulability Analysis of
Time-Sensitive Networks with Scheduled Traffic and Preemption Support. Journal
of Parallel and Distributed Computing, 2020.

[4] M. A. Ojewale, P. M. Yomsi, and B. Nikolić. Multi-level Preemption in TSN:
Feasibility and Requirements Analysis. In IEEE International Symposium on
Real-Time Distributed Computing, 2020.

[5] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, and M. Boyer. Latency Analysis of
Multiple Classes of AVB Traffic in TSN with Standard Credit Behavior using
Network Calculus. IEEE Transactions on Industrial Electronics, 2020.

[6] U. D. Bordoloi, A. Aminifar, P. Eles, and Z. Peng. Schedulability Analysis of
Ethernet AVB Switches. In International Conference on Embedded and Real-Time
Computing Systems and Applications, 2014.

[7] D. Thiele, R. Ernst, and J. Diemer. Formal Worst-Case Timing Analysis of
Ethernet TSN’s Time-Aware and Peristaltic shapers. In IEEE Vehicular Networking
Conference, 2015.

[8] D. Thiele and R. Ernst. Formal Worst-Case Performance Analysis of Time-
Sensitive Ethernet with Frame Preemption. In IEEE International Conference on
Emerging Technologies and Factory Automation, 2016.

140

Bibliography 141

[9] M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi, and L. Lo Bello. Schedu-
lability Analysis of Ethernet Audio Video Bridging Networks with Scheduled
Traffic Support. Real-Time Systems, 2017.

[10] M. A. Ojewale, P. M. Yomsi, and B. Nikolić. Worst-Case Traversal Time Analysis
of TSN with Multi-level Preemption. Journal of Systems Architecture, 2021.

[11] J. A. R. De Azua and M. Boyer. Complete Modelling of AVB in Network
Calculus Framework. In Proceedings of the International Conference on Real-
Time Networks and Systems, 2014.

[12] M. Boyer, H. Daigmorte, N. Navet, and J. Migge. Performance Impact of the In-
teractions between Time-triggered and Rate-constrained Transmissions in TTEth-
ernet. In European Congress on Embedded Real Time Software and Systems ,
2016.

[13] L. Zhao, P. Pop, Z. Zheng, and Q. Li. Timing Analysis of AVB Traffic in TSN
Networks using Network Calculus. In IEEE Real-Time and Embedded Technology
and Applications Symposium, 2018.

[14] L. Zhao, P. Pop, and S. S. Craciunas. Worst-Case Latency Analysis for IEEE 802.1
Qbv Time Sensitive Networks using Network Calculus. IEEE Access, 2018.

[15] L. Maile, K. Hielscher, and R. German. Network Calculus Results for TSN: An
Introduction. In Information Communication Technologies Conference, 2020.

[16] T. L. Mai, N. Navet, J. Migge. A Hybrid Machine Learning and Schedulability
Analysis Method for the Verification of TSN Networks. In International Workshop
on Factory Communication Systems, 2019.

[17] T. L. Mai, N. Navet, J. Migge. On the Use of Supervised Machine Learning for
Assessing Schedulability: Application to Ethernet TSN. In Proceedings of the
International Conference on Real-Time Networks and Systems, 2019.

[18] T. L. Mai and N. Navet. Improvements to Deep-learning-based Feasibility Predic-
tion of Switched Ethernet Network Configurations. In International Conference
on Real-Time Networks and Systems, 2021.

[19] J. Cao, P. J. L. Cuijpers, R. J. Bril, and J. J. Lukkien. Tight Worst-case Response-
time Analysis for Ethernet AVB using Eligible Intervals. In IEEE World Confer-
ence on Factory Communication Systems, 2016.

[20] D. Maxim and Y-Q Song. Delay Analysis of AVB Traffic in Time-Sensitive
Networks (TSN). In Proceedings of the International Conference on Real-Time
Networks and Systems, 2017.

[21] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen. Synthesising
Schedules to Improve QoS of Best-effort Traffic in TSN Networks. In International
Conference on Real-Time Networks and Systems, 2021.

[22] J. Maki-Turja and M. Nolin. Fast and Tight Response-Times for Tasks with Offsets.
In Euromicro Conference on Real-Time Systems, 2005.

[23] H. Lim, K. Weckemann, and D. Herrscher. Performance Study of an In-car
Switched Ethernet Network without Prioritization. In Communication Technolo-
gies for Vehicles, 2011.

Chapter 9

Paper D:
Supporting End-to-end Data
Propagation Delay Analysis for
TSN-based Distributed
Vehicular Embedded Systems

Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen.
In the Journal of Systems Architecture (JSA), 2023.

143

Abstract

In this paper, we identify that the existing end-to-end data propagation delay analysis
for distributed embedded systems can calculate pessimistic (over-estimated) analysis
results when the nodes are synchronized. This is particularly the case of the Scheduled
Traffic (ST) class in Time-sensitive Networking (TSN), which is scheduled offline
according to the IEEE 802.1Qbv standard and the nodes are synchronized according to
the IEEE 802.1AS standard. We present a comprehensive system model for distributed
embedded systems that incorporates all of the above mentioned aspect as well as all
traffic classes in TSN. We extend the analysis to support both synchronization and
non-synchronization among the ECUs as well as offline schedules on the networks. The
extended analysis can now be used to analyze all traffic classes in TSN when the nodes
are synchronized without introducing any pessimism in the analysis results. We evaluate
the proposed model and the extended analysis on a vehicular industrial use case.

Paper C 145

9.1 Introduction

Vehicular distributed embedded systems are often modeled with chains of tasks and
messages that can be distributed over two or more Electronic Control Unit (ECUs)1

connected by a real-time network [1]. Traditionally, the in-vehicle communication
was based on low-bandwidth and low-latency networks like Controller Area Net-
work (CAN) [2]. Since CAN is an event-triggered communication protocol, the ECUs
connected to the network are not synchronized. The traditional in-vehicle networks are
unable to support high-bandwidth requirements in many complex vehicular distributed
systems, in which realization of a higher level of autonomy of driving is envisioned.
Realizing these vehicular systems is conditioned to incorporating a spectrum of function-
alities, that range from handling high data-rate sensor readings, to gathering information
of the vehicle’s environment, and providing predictable responses to the corresponding
inputs [3]. The communication standards utilized in future vehicular systems need
to be flexible to allow accommodation of the new functions to the system over time.
Recently, the IEEE Time-sensitive Networking (TSN) task group2 developed a set of
TSN standards that have emerged as a promising solution to support high-bandwidth
and low-latency in-vehicle communication [4].

In vehicular distributed embedded systems, the data in a chain of tasks and messages
propagates from the input to the output of the chain. The input corresponds to the first
task in the chain, e.g., the task reading a sensor signal. Whereas, the output corresponds
to the last task in the chain, e.g., the task producing an actuation signal. Note that
any two neighbouring tasks within the chain communicate using over-writable and
non-consuming buffers, also called registers. This means, the writer task can over-write
the previous data in the buffer, whereas the data stays in the buffer after it is read by the
reader task. If tasks in such a chain are activated by independent activation sources with
different periodicity (e.g., different periodic clocks), the data can propagate through
more than one path from the input to the output of the chain. This leads to different
types of delays that the data can experience while traversing through the chain. These
delays are called data-propagation delays or end-to-end delays. The developers of the
systems are required to verify, at the design time, that the specified timing constraints
are satisfied. This can be achieved by performing the end-to-end data-propagation delay
analysis of these systems [5, 6, 7, 8].

A joint effort from the automotive3 industry and academia identified the significance
of these delays in vehicular systems and provided their formal semantics [5, 6, 9].

1We use the terms ECU, end-station and node interchangeably to refer to a single-core compute unit.
2https://1.ieee802.org/tsn
3Automotive systems are a subset of vehicular systems that include cars, trucks, construction vehicles,

loading vehicles, moving cranes, to mention a few.

146 9.1 Introduction

Eventually, the timing constraints corresponding to these delays were included in the
automotive domain-specific modelling language EAST-ADL [10] and the AUTomotive
Open System ARchitecture (AUTOSAR) standard [9]. In order to verify these timing
constraints, the research community in collaboration with the R&D of the automotive
industry developed the end-to-end data-propagation delay analysis [5, 6, 7, 8]. This
analysis is already implemented in several tools that are used in the vehicle industry,
e.g., SymTA/S4[11] and Rubus [12]. Since CAN is the most widely used onboard real-
time network in the vehicular domain, the existing analysis incorporated the response-
time analysis for CAN [13, 14] within the end-to-end data-propagation delay analysis.
Furthermore, as CAN is an event-triggered network communication protocol and it
does not support synchronization of the connected ECUs, the data-path computation
algorithm within the existing end-to-end data-propagation delay analysis did not account
for synchronization of ECUs.

The existing end-to-end data-propagation delay analysis and its data-path compu-
tation algorithm also support the precursor of TSN, called the Ethernet Audio-Video
Bridging (AVB), which includes some classes of TSN. This is because AVB also sup-
ports event-triggered traffic and does not consider synchronization of ECUs. In that
case, the response-time analysis of AVB [15] was incorporated within the end-to-end
data-propagation delay analysis [16]. However, the TSN standards support synchroniza-
tion of ECUs according to the IEEE 802.1AS standard. In particular, the ECUs should
be synchronized when the Scheduled Traffic (ST) class in TSN is used, according to the
IEEE 802.1Qbv standard. The real-time traffic mapped to the ST class is transmitted
according to a schedule that is created offline. In general, when the IEEE 802.1AS
standard is used then the ECUs in the TSN network should be considered synchro-
nized regardless of which TSN traffic class, ST, AVB and Best-Effort (BE), is used.
We identify that when the data-path calculation algorithm in the existing end-to-end
data-propagation delay analysis, i.e. [5], is applied to the case of synchronized ECUs,
the analysis results can be pessimistic (over-estimated) because the algorithm does not
consider synchronization among the ECUs.

9.1.1 Paper Contributions

In this paper, we extend the data-path computation algorithm within the existing
end-to-end data-propagation delay analysis to support both synchronization and non-
synchronization among the ECUs. The extended algorithm supports all traffic classes
in TSN. Using the extended algorithm, the existing end-to-end data-propagation delay
analysis can now be used to analyze all traffic classes in TSN networks, where the ECUs

4SymTA/S tool has been acquired by Luxoft (https://www.luxoft.com)

Paper C 147

may or may not be synchronized, without introducing any pessimism (over-estimation)
in the the analysis results.

The main contributions in the paper are as follows:

• We extend the data-path computation algorithm within the existing end-to-end
data-propagation delay analysis to support all traffic classes in TSN networks
when the ECUs are synchronized using the IEEE 802.1AS standard. Unlike
the existing algorithm, the analysis results with the extended algorithm do not
include any pessimism when the ECUs in the TSN networks are synchronized.
The extended algorithm is backwards compatible to support the analysis of all
non-scheduled traffic (non-ST) classes5 (AVB or BE) when the ECUs are not
synchronized in the TSN networks.

• We present a comprehensive system model for distributed embedded systems to
support the extended algorithm, which incorporates all traffic classes in TSN. The
model can express distributed task chains that can contain various types of traffic
supported by TSN, including the ST, AVB, and BE traffic.

• We demonstrate the applicability of the presented model and analysis to a vehicu-
lar industrial use case. We also perform comparative evaluation of the extended
analysis with the existing analysis by analyzing the use case with the two analyses.
Furthermore, the presented model and analysis are evaluated by experiments to
show the effect of various configurations of ST class, receiver periods, and syn-
chronization of the sender and receiver ECUs on the end-to-end data propagation
delays.

9.1.2 Paper Layout
The rest of the paper is organized as follows. In Section 9.2, we provide background on
TSN and related works on timing analysis of TSN networks. Section 9.3 describes the
end-to-end data propagation delays and elaborates on the over-estimation of delays if
the existing analysis is applied to the ST class in TSN. Section 9.4 presents the proposed
system model for distributed embedded systems, and furthermore Section 10.3 presents
the extension to the existing end-to-end data propagation delay analysis. Section 9.6
presents a vehicular application case study. We compare the results of the existing
analysis with our proposed extended end-to-end data propagation delay analysis. Fur-
thermore, we present the use-case results and an experimental study to show the effect
of various parameters on the end-to-end data propagation delays. Finally, we discuss
the results in Section 9.6.4, and in Section 9.7 we conclude the paper.

5It is required to use synchronization when the ST traffic class in TSN is used.

148 9.2 Background and Related Work

9.2 Background and Related Work

9.2.1 Time-Sensitive Networking (TSN)

TSN standards are recently developed by the TSN task group in IEEE standardization.
This set of standards can be seen as a toolbox containing various features to improve the
performance of communication in several applications, e.g., automation and automotive
applications [1, 17, 18]. According to the IEEE 802.1Q-2022 standards, the traffic
classes are categorized into three categories of ST, AVB, and BE traffic. Among several
features, the TSN standards allow temporal isolation of the ST traffic that is transmitted
according to an offline schedule via the Gate Control List (GCL) as shown in Figure 9.1.
GCL is part of the Time-aware Shaper (TAS) that can realize the temporal isolation
using a set of gates that control the transmission of traffic on a port of a TSN interface
or switch. The gates can stop the transmission of lower priority traffic in favor of the
urgent ST traffic class which in turn guarantees low-jitter transmission for the ST traffic
(also known as preemption). In addition, the TSN standards define a Credit-Based
Shaper (CBS) mechanism that allows reservation of bandwidth over the network for a
set of traffic classes, known as the AVB classes. AVB traffic includes several classes
starting from A (high priority) and can be up to eight as the number of queues per
port is eight. It is very common to use only classes A and B in analysis and examples,
while it is possible to have eight AVB traffic classes in the standard. Queues assigned
to AVB class undergo the CBS mechanism for transmission. According to the CBS
mechanism, a credit is configured per class of traffic on each TSN port and the traffic
associated to the class can only be transmitted when the credit for that class is zero or
positive. If the credit is negative, the transmission is on hold until the credit replenishes
with a constant rate, known as the idleSlope, to zero or positive. The credit decreases
when the transmission is happening with a constant rate, known as the sendSlope, and
the summation of both values is equal to the port rate. Moreover, TSN can support
legacy traffic transmission that do not need any timing guarantees, which is known as
the BE traffic class. As shown in the example in Figure 9.1, the eight traffic priorities
in the Priority Code Point (PCP) table are mapped to the eight configurable queues
at the egress port of the TSN switch. A queue can be configured to use each of the
aforementioned mechanisms for passing the traffic with the associated PCP to the port.
In this example, the PCP ”111” is configured to use the ST class, PCP ”101” and PCP
”100” are assigned to AVB class with the priorities A and B subsequently. The PCP
”001” is considered as BE traffic.

Paper C 149

Figure 9.1. TSN interface.

9.2.2 Related Work
Several schedulability analysis techniques have been proposed in the literature to
calculate the worst-case delays of traffic crossing through a TSN network. Among the
techniques, many of them focused on the worst-case delays of the classes A and B
frames under the CBS only, e.g., the work in [19] and the improved technique given
in [20]. In addition, the work in [21] proposed a technique based on the trajectory
approach to compute the delays of classes A and B. The technique obtains tighter bound
of delays compared to the previous techniques, e.g., compared to the delays calculated
by the approach in [19]. Later, the work in [22] proposed the notion of eligible interval
that could provide a bound for delays per frame that leads to tighter analysis compared
to the previous analysis techniques. The above-mentioned works solely consider the
CBS in TSN networks. However, the TSN standards give various number of shapers
and mechanisms that a network designer can select from. For instance, the proposal
in [23] and [24] presented an analysis based on network calculus where it considers a
TSN shaper called the Burst-Limiting Shaper (BLS).

Various schedulability analysis techniques focused on mechanisms other than the
CBS, such as the gate mechanism. The analysis that is proposed in [25] computes the
worst-case response times of classes A and B messages in TSN considering both CBS
and the gate mechanism. However, the analysis considers a single-switch network,
while industrial networks can consist of multiple switches. The work in [26] presented
an analysis for calculating the accumulation of delays per link, whereas the works
in [27] and [28] used network calculus to check the schedulability of TSN messages. In
addition, the technique in [29] presented a response-time analysis for classes A and B
messages considering the CBS and support for the ST that was earlier proposed in [30].

150 9.2 Background and Related Work

Furthermore, the work in [31] extends the technique in [29] for supporting the BE traffic
in the response-time analysis. The traffic forwarding and shaping model in the latter
work was different than the TSN standard models, as it was proposed before finalization
of the first TSN draft.

A TSN network may also benefit from the preemption support along with the CBS
and gate mechanisms according to the IEEE Time-sensitive Networking (TSN) task
group6. Therefore, the work in [32] proposed an analysis considering frame preemption
under the IEEE 802.3br standard. Further, the work in [33] presented a technique
that calculates the worst-case response times of frames for classes A and B when the
CBS, gate mechanism and frame preemption are used in a TSN network. Similarly, the
work in [34] proposed a response-time analysis with the mentioned TSN features in
combination with various modes, such as enabling and disabling the hold and release
mechanism. The hold and release mechanism is defined in the TSN standards to prevent
any possible jitter for the ST traffic due to transmission of lower-priority classes A and
B.

To verify the timing behavior of TSN-based distributed embedded systems, not only
the response times of tasks in the nodes and messages in the TSN network should be
taken into account, but also the end-to-end data propagation delays in the chains of
tasks that include TSN messages should be considered.

According to the classification in reference [35], there are three approaches for
calculating the worst-case end-to-end delays: 1) simulation-based method that obtains
the maximum end-to-end delays from a set of selected scenarios. The simulation
approach does not necessarily show the maximum end-to-end delay, because it might
not cover all the possible assumptions for the worst-case scenario; 2) model-checking
based on an exhaustive search can provide exact worst-case end-to-end delays even
on large-scale networks. However, these methods have high time complexity; and 3)
analytical approach that provides upper bounds on end-to-end delays with a certain
pessimism. Our work lies in the group of analytical approaches in the above mentioned
classification.

From a different perspective, the reference [36] mentions active and passive ap-
proaches for the end-to-end data propagation delay analysis. Active approaches optimize
the pattern of task releases in a chain to achieve optimal delays. Whereas, passive ap-
proaches study the worst-case assumptions for the end-to-end delays in distributed
embedded systems to find upper bounds on the delays. This paper and the works in
[5, 36, 37, 38, 7, 39, 40, 8] are among works in the passive category. In the following
paragraphs of this section, we present some of the recent works on the end-to-end data
propagation delay analysis.

6https://1.ieee802.org/tsn

Paper C 151

The existing end-to-end data propagation delay analysis that computes the end-to-
end delays incorporates the response-time analysis of various legacy real-time networks,
such as CAN [7] and legacy Ethernet [41].

The work in [42] targets data age delay in cause-effect chains within one execution
node. The tasks are synchronized inside an end-station, and they are scheduled with
offsets. The aim of the paper is to find priorities, offsets and to optimize the design
mapping for tasks to minimize the data age delays in a chain of tasks. Similarly, the
work in [43] aims at finding offsets for the chain of tasks to optimize the end-to-end
delays. The works in [42, 43] belong to the active end-to-end data propagation analysis.
Moreover, the paper [44] studies the dependencies between the task instances. Such
dependencies can be specified at early development stages to guarantee data age delay
constraint.

The work in [36] performs end-to-end timing analysis for the systems with locally
synchronized periodic tasks in one end-stations. The end-stations only support non-
synchronized communication, i.e., via CAN, or FlexRay. Similarly, the work in [45]
considers globally non-synchronized communication among the end-stations, while the
tasks within the end-stations are considered synchronized. The authors in [45] propose
a computationally-efficient analysis compared to the analysis in [36]. Besides, the work
in [45] achieves a higher upper-bound on the data age delay than the work in [36].

The focus of the aforementioned works are only on data age delay, whereas our
analysis also includes the analysis of the reaction delay. The reference [5] is a seminal
work in the literature that introduces a formal framework for defining end-to-end delays
in the periodic and register-based systems. The task model in [5] is based on Bounded
Execution Time (BET) task model. In BET task model, the communication between the
tasks is implicit where a task reads data from the register at its beginning and writes
to the register at its end of execution. Furthermore, the work in the reference [46]
proposes an end-to-end data propagation delay analysis that includes sporadic tasks
based on BET task model. The work in paper [37] builds on the Logical Execution
Time (LET) paradigm by proposing a system-level LET-based communication model
for distributed embedded systems. LET is an inter-task communication model that
augments the read/write access times (input and output of the task) to the task’s physical
execution time model. System-level LET models the communication between tasks
of different end-stations. In the work presented in [37], the end-stations have their
own local clocks (timeline). The global timeline is approximated based on the local
timeline of the sender and receiver end-stations with a bounded error. In our end-to-end
data propagation delay analysis, we rely on the determinism promised for ST traffic,
and exclude the global synchronization error for analyzing transactions that utilize ST
traffic. The work in [47] considers globally non-synchronized and locally synchronized

152 9.2 Background and Related Work

task chains and propose a method to calculate a limited number of timed-paths7 that
lead to the maximum end-to-end delays. We extend the timed-path approach based
on the works in [8, 41, 7, 5], which calculate all possible timed-paths but within a
bounded window equal to twice the hyperperiod or the Least Common Multiple (LCM)
of the periods of all involved tasks in the chain. Consequently, our algorithm finds the
timed-path that leads to the worst-case end-to-end delays after considering all possible
cases.

While the majority of the works focus on providing methods for calculating the
maximum end-to-end delays in the chains, the work in [48] discusses robustness margins
around the end-to-end timing constraints. The work in [48] employs BET and system-
level LET communication model, and further studies the variations in the tasks’ response
times and the influence on the robustness of the system (i.e, variations in the end-to-end
delays). In our evaluations, we also take into consideration the changes in the end-to-end
timing delays by making variations in the configuration of ST traffic and the periods
of the receiver tasks. We focus only on the BET and consider pre-defined end-to-end
timing constraints for the system under evaluation.

The work in [38] proposes an end-to-end data propagation delay analysis for the
chains of tasks in the context of Robot Operating Systems (ROS). The analysis prior
to [38] mainly focused on analyzing periodic and sporadic tasks. The work in [38]
extends the end-to-end timing analysis to support ROS2 task chains that deal with a mix
of time-triggered and event-triggered functions. Besides, the network model in [38]
is based on publisher-subscriber communication model. The communication model
is therefor inherently non-synchronized. The proposed analysis in our work is only
applicable to periodic tasks.

In comparison to the aforementioned works, this paper aims at extending the data-
path calculation algorithm within the existing end-to-end data propagation delay anal-
ysis [5, 7, 8, 41, 47, 49] to support analysis of all traffic classes in TSN where nodes
can be synchronized or non-synchronized. These works have also been implemented
in tools to support model- and component-based software development of vehicular
embedded systems, e.g., [7, 39, 40], all of which are considering the BET task modeling
paradigm.

The existing timed-path calculation used in the end-to-end data propagation delay
analysis algorithms, such as [5, 47], applies to traffic classes that do not require offline
schedules, i.e., AVB and BE. For example, the work in [47] provides end-to-end analysis
for the synchronized communication between sender and receiver end-stations, but it
only considers the case when non-ST are transmitted between synchronized end-stations,
i.e. AVB or BE.

7We use the terms timed-paths and data-paths interchangeably to refer to the path that the data traverses
from one task to another within the task chain.

Paper C 153

To the extent of our knowledge, there are a few works that aim at realizing end-to-end
data propagation delay analysis for interconnected end-stations in distributed embedded
systems that are based on the system-level LET model, such as [37, 36, 38, 48]. Unlike
the previous works, this paper considers that the ST messages are scheduled with offsets
(with globally synchronized end-stations).

These two models can be mapped to each other according to [48]. We chose to use
the BET model because it is already integrated to several tools (including industrial
tools) that support model- and component-based software development of vehicular
embedded systems, e.g., in [39, 40].

9.3 End-to-end Data Propagation Delays
Embedded real-time systems are often modeled with chains of tasks and messages. To
verify the timing behavior of these chains, not only their end-to-end response times
need to be calculated and compared against the corresponding deadlines, but also the
end-to-end data propagation delays (data age and reaction time) should be calculated
and compared with the corresponding data age and reaction time constraints. The timing
constraints on the data age and reaction delays are often specified on these distributed
chains. The constraint on the data age delay is important, in particular, for control
applications where freshness of the data is of value. Whereas, the reaction constraint
is important in applications where the time of the first reaction to the input event is of
value. These constraints are included in the timing model of the AUTOSAR standard
[9] and are translated to several modeling languages in the vehicular domain [50].

9.3.1 Data Propagation Delays in Single-Node Embedded Systems

In order to explain the data age and reaction time delays, consider a task chain consisting
of three tasks τ1, τ2 and τ3, as shown in Figure 9.2. All tasks belong to a single-core
node and are activated independently. The periods of activation for tasks τ1, τ2 and
τ3 are 8 ms, 8 ms and 4 ms, respectively. The Worst-Case Execution-Time (WCET)
of each task is assumed to be 1 ms. For simplicity, we assume that the priority of
τ1 is higher than the priority of τ2 and the priority of τ2 is higher than the priority of
τ3. By this priority assignment policy, we ensure that the precedent elements in the
chain should be executed before their subsequent elements in the chain. The tasks use
register-based communication, i.e., they communicate with each other and with their
environment by means of writing data to/ and reading data from the registers. The
registers are of non-consuming type. This means that data stays in the register after
the reader has read the data. Furthermore, the registers are over-writable, i.e., if the

154 9.3 End-to-end Data Propagation Delays

writer is faster than the reader then the previous data in the register can be overwritten
by the new data before the reader can read the previous data. The data read by τ1 from
Reg-1 corresponds to the input of the chain. Similarly, the data written to Reg-4 by τ3
corresponds to the output of the chain.

Figure 9.2. An example of a task chain that uses register-based communication.

As the tasks are activated independently and some tasks have different periods, the
data traverses through the chain via multiple paths from the input to the output of the
chain as shown in Figure 9.3. These paths are called timed-paths (also referred to as
data-paths). Due to multiple timed-paths, there can be various delays to deliver the data
from the input to the output of the chain.

The data age delay is the time elapsed between the arrival of data at the input and
the latest availability of the corresponding data at the output. In the data age delay
analysis, we are interested in identifying the longest time difference between the input
data and the last sample of corresponding output data. On the other hand, the reaction
delay corresponds to the earliest availability of the data at the first instance of the
output corresponding to the data that just missed the read access at the input. An event
(corresponding to availability of data) is considered as readable by an instance of a task,
if it occurs at or before the activation of the task. If the event happens just after the
activation of the task instance, the data is not readable to this instance, i.e., the data
is just missed by the current instance of the task. The missed data is read by the next
instance of the task. This is illustrated by the white thunderbolt in Figure 9.3, where
the first instance of τ1 at time 0 misses the data but the same data is read by the next
instance of τ1 at time 8.

Possible data age and reaction delays in the chain in Figure 9.2 are shown in
Figure 9.3. On the one hand, the data from the event happening a bit before time 16
is accessible to the third instance of τ1 (activated at time 16). In such a case, the latest
impact of this event is available at the output of the chain until 5 ms after the occurrence
of the event (data age delay). On the other hand, the sampling of the data coming from
the event happening a bit after the time 0 is delayed until the time 8, where the data
can be read by the second instance of τ1. Accordingly, the earliest time the impact of

Paper C 155

the data appears at the output of the chain is 11 ms after the occurrence of the event
(reaction time delay).

Figure 9.3. Data age and reaction time delays in the task chain depicted in Figure 9.2.

9.3.2 Data propagation Delays in Distributed Embedded Systems
The data propagation delays are equally valid in distributed embedded systems. Let us
consider a distributed task chain in a distributed embedded system depicted in Figure 9.4,
where two nodes are connected via a network. In this example, the tasks are activated
periodically with periods of 6 ms and 3 ms, respectively. Task τ1 in Node 1 sends a
message to task τ2 in Node 2 through the network.

1W
0 20105 15 25

0 20105 15 25

Reaction delay = 10

2W
0 20105 251m

Reg‐1 Reg‐2 Reg‐3

Period = 6ms

WCET = 1ms

Reg‐41W 1m 2W
WCET = 1ms

Period = 3ms

Node 1 Node 2Network

15

Age delay = 7

1W
0 20105 15 25

0 20105 15 25

Reaction delay = 16

2W
0 20105 251m 15

Age delay = 13

1W
0 20105 15 25

0 20105 15 25

Reaction delay = 16

2W
0 20105 251m 15

Age delay = 16

(a)

(b)

(c)

Figure 9.4. A multi-rate chain in a distributed embedded system.

Depending on the type of network, we may have different possible timed-paths
through which the data can propagate from the sender task to the receiver task. For
example, when the network is not capable of initiating communication independent of
the sending tasks, a message can only be queued for transmission at the network interface

156 9.3 End-to-end Data Propagation Delays

by the sending task. This is the case of many event-triggered network protocols, like
CAN [2]. In this case, the message inherits its period from the sender task. Furthermore,
the timed-paths in a distributed task chain also depends upon whether the network
supports synchronization of nodes. For example, TSN supports synchronization among
the end stations via the IEEE 802.1AS standard, whereas the CAN protocol does not
support synchronization. Figure 9.5 shows an execution trace when the nodes are
synchronized in the system that is shown in Figure 9.4. The data age and reaction time
delays in this distributed chain are identified as 7 ms and 10 ms, respectively.

Figure 9.5. A possible execution trace for the distributed embedded system example shown in
Figure 9.4 when source and destination end-stations are synchronized.

A possible execution trace of the distributed task chain in Figure 9.4 when the nodes
are not synchronized is shown in Figure 9.6(a). To create worst-case conditions when
the nodes are not synchronized, we assume that the receiver task τ2 is activated ”just
before” the arrival of the message at the receiver node. Hence, the current instance of τ2
(the first period activation) will miss the read access of the message. The message will
be read by the next instance of τ2 (second period activation) as shown in Figure 9.6(a).
The corresponding data age delay is identified as 9 ms as shown in Figure 9.6(a).

To increase readability, we draw the same execution trace separately for the case of
reaction time delay in the distributed task chain (as shown in Figure 9.4) when the nodes
are not synchronized as depicted in Figure 9.6(b). In Figure 9.6(b), the first instance
of τ1 is activating the first instance of the message m1. According to the assumption
for the reaction delay, the first instance of τ1 has missed the sampling of the chain’s
input event, thus the first instance of m1 does not deliver valid data from the input event
to the receiver task. However, as the second instance of τ1 reads the input event, the
second instance of the message m1 also holds fresh data. Since τ2 is not synchronized

Paper C 157

with τ1, the worst-case assumption is that τ2 is activated a small amount of time earlier
than arrival of the message that holds the sampled data. Consequently, the first instance
of τ2 misses to read data of the event, which is being written by the second instance
of m1. But, at the next instance of τ2 (second period activation), τ2 is able to read the
incoming data from m1. Accordingly, the reaction delay is 12 ms.

(a) Data age delay.

(b) Reaction time delay.

Figure 9.6. A possible execution trace for the distributed embedded system example shown in
Figure 9.4 when source and destination end-stations are not synchronized.

158 9.4 System Model

9.3.3 Need for Extending the Timed-path Calculation Algorithm

The timed-path computation algorithm in the existing end-to-end data propagation delay
analysis implicitly assumes that the nodes are not synchronized. Hence, the worst-case
assumption for the message receiving task is that the task is released for execution ”just
before” the arrival of the message. This implies that the current instance of the task
cannot read the message and hence the next instance of the task will read the message.
This may not be true in the case of TSN when the nodes are synchronized using the
IEEE 802.1AS standard. If the existing algorithm is applied to synchronized nodes, as
is the case of TSN, then the calculated delays can be pessimistic (i.e., over-estimated).
This can be seen in the figures Figure 9.5, Figure 9.6(a), and Figure 9.6(b), where
data age and reaction time delays of 7 ms and 10 ms are calculated for synchronized
end-stations (Figure 9.5). In comparison to the case of non-synchronized end-stations
respectively (Figure 9.6(a), and Figure 9.6(b)), data age and reaction delays of 9 ms
and 12 ms are calculated respectively.

Another example can be seen in Figure 9.7, where the existing end-to-end data
propagation delay analysis is performed on a transaction between two end-stations that
use ST class for transmission of message m1 via link l1

8. In the sender end-station,
the periods of each of tasks τ1 and τ2 are 10 ms. The message m1 is sent by τ2 in
the sender end-station. The period of the receiver task (τ3) is 10 ms, and it reads the
data coming from the message m1 from the link l1. The offset of the message is set
to 1.052 ms, and the message is expected to finish its transmission at 0.025 ms later
than the offset of the message at l1. The WCET of each task is 0.5 ms. In the ideal
condition for ST traffic when the sender and receiver end-stations are synchronized as
shown in Figure 9.7(a), the data age and reaction time delays are subsequently 10.5 ms,
and 20.5 ms. As seen in Figure 9.7(b), the data age and reaction time delays for this
transaction in the case of non-synchronized nodes are pessimistic (over-estimated),
i.e., 11.577 ms and 21.577 ms respectively. This is not desirable, since ST traffic is
most commonly applied in critical applications that require precise calculation of the
delays. Therefore, the data-path computation algorithm in the existing analysis requires
extension to support synchronized nodes without introducing any pessimism in the
analysis results.

9.4 System Model
In this section, we formally present the system model of a distributed embedded system
that consists of two or more end-stations (single-core nodes, compute units, or ECUs)

8A detailed system model with all notations will be described in Section 9.4.

Paper C 159

(a) τ1 and τ2 are synchronized. (b) τ1 and τ2 are not synchronized.

Figure 9.7. End-to-end delays for an ST message.

that are connected by a TSN network. The system S consists of a set of transactions,
denoted by Γ, a set of end-stations, denoted by E, and a network, denoted by N. The
system is formally expressed by the following tuple.

S := ⟨Γ,N,E⟩ (9.1)

A transaction (denoted by Γ) represents the model of a distributed task chain that
consists of two or more tasks. The chain of tasks either can be executed within one
end-station; or tasks of different end-stations can communicate with each other via one
or more messages in the network (N). Multiple transactions can exist in the system
model. The set of transactions are formally expressed subsequently by Eq. (9.2):

Γ := {Γ1, ...,Γ|Γ|} (9.2)

The set of end-stations in the system are represented by Eq. (9.3).

E := {E1, ...,E|E|} (9.3)

9.4.1 End-station Model
An end-station Ei may consist of one or more tasks as shown in Eq. (9.4):

Ei := {τij1, ..., τijk} (9.4)

where i is the index of the end-station to which the task belongs. Note that a task
in an end-station may be a part of one or more transactions. Hence, j represents the

160 9.4 System Model

transaction index. Finally, k represents the unique identifier of the task within the scope
of the end-station.

9.4.2 Task Model
The properties of a task are specified by the tuple in Eq. (9.5).

τijk := ⟨Pijk, Cijk, Tijk, Jijk, Oijk⟩ (9.5)

where, Cijk is the task’s WCET, Tijk is the task’s period, Pijk is the task’s priority, and
Jijk is the task’s release jitter. Moreover, Oijk represents the offset of the task.

Some other properties of the task are calculated using the aforementioned infor-
mation in the task’s tuple. Firstly, the activation time of the nth instance of the task
τijk (denoted by αijk(n)) can be obtained using the task’s period and offset based on
Eq. (9.6). Moreover the worst-case response time of the task is indicated by Rijk. Also,
the nth instance of the task τijk is denoted by τijk(n).

αijk(n) = n ∗ Tijk +Oijk (9.6)

9.4.3 Network Model
The network attributes are indicated by a set of parameters in Eq. (9.7):

N := ⟨s,L, I⟩ (9.7)

where s is the overall network speed. We assume the network operates with the same
speed on all of the links. L holds the set of links in the network. We consider that
each link creates a bi-directional connection between an end-station and a switch or
between two switches. All switches in the network are TSN switches, hence there can
be different traffic classes in the network. We indicate the traffic classes by the set I
in Eq. (9.8), where AVB can be classes A, B or other classes that undergo the CBS.
Moreover, ST and BE represent the scheduled traffic and best-effort traffic classes
respectively.

I = {AV B, ST,BE} (9.8)

A message in the network is indicated by mjk, where the subscript j identifies the
transaction to which the message belongs. Furthermore, the subscript k is the unique
identifier of a message within the scope of the network. Eq. (9.9) shows the set of
attributes defining the properties of a message.

Paper C 161

mjk := ⟨Pjk, Sizejk, Tjk, Jjk,Ljk,Ojk⟩ (9.9)

where the priority of the message is denoted by Pjk that specifies the TSN class from
which the message is transmitted, e.g., class ST, AVB (A, B, or etc.) and BE. In this
model, the ST class has the highest priority, while AVB has a lower priority than ST.
Moreover, the BE class has the lowest priority among all the other classes. The size of
data (payload size in bytes) is indicated by Sizejk. We assume that all messages are
periodic, therefore Tjk is the period of the message. The release jitter of the message is
indicated by Jjk. The set of links assigned as the route of the message from the source
end-station to the destination end-station is stored in the set Ljk. Furthermore, the set
of offsets of the message at each of the links specified in the set Ljk is stored in the
set Ojk. We assume that we only know the offset of the ST traffic as it is scheduled
offline. Therefore, the set Ojk for non-ST traffic (AVB or BE) is assumed to be empty,
i.e., Ojk = {}.

Based on the aforementioned properties, we can calculate other properties of the
message mjk, such as the transmission time (Cjk) as well as the worst-case response
time (Rjk) by utilizing the response-time analysis of various classes in TSN [31].
Moreover, the activation time of the nth instance of the message mjk at link l is
calculated by Eq. (9.10), where, Ol

jk is the offset of mjk on link l.

αl
jk(n) = n ∗ Tijk +Ol

jk (9.10)

We assume that both ST and non-ST traffic inherit the period from the correspond-
ing sending task. Therefore, Tijk indicates the period of the kth task (sending task)
belonging to the ith end-station and being part of the jth transaction. Moreover, we
denote the nth instance of the message mjk by mjk(n).

9.4.4 Transaction Model

A transaction Γj represents the model of a distributed task chain that consists of two or
more tasks that communicate with each other via one or more messages. The data read
by the first task of the transaction is considered as the input of the transaction, and the
data written by the last task of the chain corresponds to output of the transaction. The
period of the transaction is denoted by Tj . Note that this model limits the number of
message to one per transaction.

Figure 9.8 shows an example of a TSN-based distributed embedded system with the
presented model. There are two end-stations that are connected to one TSN network.
More specifically, end-station E1 and E2 are connected via links l1 and l2 to switch

162 9.4 System Model

1 (SW1). There are two transactions in the system, namely Γ1 and Γ2, as shown in
Figure 9.8. These transactions are further elaborated in Figure 9.9.

Figure 9.8. Example of a distributed vehicular embedded system based on TSN.

According to the example in Figure 9.8, Γ1 is a transaction that is within a single
end-station (E2) and only includes tasks from E2. Hence, E2 is both initiator and
terminator end-station of Γ1. As shown in Figure 9.9, transaction Γ1 initiates and
terminates inside the end-station E1. On the other hand, transaction Γ2 is distributed
over two end-stations. Γ2 initiates from E1 and terminates in E2. The message m2,1

travels from link l1 and l2 between the transaction initiator and terminator. It should
be noted that, the transaction model does not consider forking and joining of tasks in a
transaction.

Figure 9.9. Example of transactions.

Paper C 163

Trigger modes:

According to [51], the assumptions on the activation times of the tasks and messages in
a distributed transaction affect the delays of the transaction. In this paper, we assume
that each entity in a transaction, regardless of being a task or message, can be triggered
in two modes, i.e. ”Dependent” or ”Independent”. The trigger mode is selected by
the parameter triggerMode, as shown in Eq. (9.11).

triggerMode := {Dependent, Independent} (9.11)

A task can be independently triggered by an event source, e.g., a periodic clock.
Additionally, a task can be triggered based on (i) an activation signal from a predecessor
task, (ii) receiving data from a predecessor task, or (iii) a combination of both.

Message Activation Time:

If the message is ST, it is triggered independently. This means that the message is
triggered based on static offsets defined for it at each of the links specified in its route
to the destination end-station. In case of the dependent trigger mode, the message
is triggered at the end of the execution of its sender task. For example, the message
assigned to non-ST classes in TSN networks (AVB or BE) can use the link as soon as
the message’s sender task completes its execution as well as the bandwidth on the link
is available, and there are no higher priority messages that need to be transmitted.

Receiver Task’s Activation Time:

Activation time of the message receiving task can be calculated based on different
assumptions. For instance, if the sender and receiver end-stations are synchronized,
the first instances of their tasks are assumed to be activated simultaneously. In such
a case, the receiver task polls for the TSN network to read data from the messages.
Accordingly, the activation time of the receiving task within a synchronized network is
calculated by the generic equation in Eq. (9.6). Where each instance n of the task within
the receiving end-station is released periodically (Tijk) and can have offset specified by
the parameter Oijk. In the non-synchronized network, the existing analysis assumes
that the receiver task gets read access as soon as a message is available on the network.
Hence, the activation time of the message receiving task is represented by Eq. (9.12).

αijk(n) = n ∗ Tijk +Oijk +Rjk (9.12)

164 9.5 End-to-end data-propagation delay analysis

Transaction Constraints:

A timing constraint on transaction, denoted by Crj , defines the maximum allowed value
of the delays, such as data age (Agej) and reaction time (Reacj). Moreover, a deadline
constraint (Dj) can be specified on a transaction. Deadline constraint corresponds to
the end-to-end response time, i.e., response time of the transaction from its input to its
output. These constraints are shown in Eq. (9.13) for transaction Γj :

Crj := {Agej , Reacj , Dj} (9.13)

9.5 End-to-end data-propagation delay analysis
This section presents the end-to-end data propagation delays analysis of task chains that
are distributed over TSN network. The analysis is based on the existing analysis [5,
7] that considers legacy networks like CAN. The end-to-end data propagation delay
analysis requires computation of all relevant data-paths (also called reachable timed-
paths) within the distributed task chains. In TSN unlike CAN, different traffic classes are
to be analyzed in the same network, which would require incorporating synchronized
and non-synchronized end-stations. The data-path computation algorithm in the existing
end-to-end data propagation delay analysis [5, 7] only support non-synchronized end-
stations. In this section, we propose an extended algorithm for TSN networks which
covers all the TSN traffic characteristics while supporting both synchronized and non-
synchronized end-stations.

9.5.1 Reachable Timed-paths
The order of read and write by each instance of the tasks from the input to the output
of the transaction is represented by a set of timed-paths. These timed-paths track the
propagation of data from the input to the output of the transaction. Therefore, each
transaction can have a set of timed-paths. A timed-path belonging to the transaction
Γj is denoted by tpij , where i is the ID of the timed-path. A valid timed-path between
a writer and reader task instance (the term ”instance” is equivalent to the term ”task
job”) is selected according to a set of conditions as presented in [5]. In the following
paragraphs of this section, we briefly explain the Boolean functions for checking the
reachability of the timed-paths as presented in [5].

The first condition in identifying a valid timed-path checks whether the reader
task (say τdbe) is activated after the activation of the current instance of the writer
task (say τabc). Violating this condition is also known as activation time-travel (att()),
therefore Eq. (9.14) defines this condition in negated form. Because, the activation

Paper C 165

time-travel should not happen in valid timed-paths. Note that α(w) shows the activation
time of the wth instance of the task computed according to Eq. (9.6).

att(τabc(w) −→ τdbe(r)) = αdbe(r) < αabc(w) (9.14)

Eq. (9.14) is true in case the activation time-travel happens between the writer and
reader tasks. Otherwise, for valid timed-paths it is desirable when the condition in
Eq. (9.14) is false.

Moreover, the completion of the writer and reader tasks should not overlap in a valid
timed-path. Therefore, the next reachability condition checks whether the activation
time of the reader task is after the completion of the current instance of the writer
task (according to Rabc, the worst-case response time of the writer task, referring to
the system model presented in Section 9.4). Violating this condition is also known
as critical condition and is represented by the critical function (crit()), as shown in
Eq. (9.15). crit() function returns true if the reader task τabc is activated before the
writer task is completed. In such a case, the reader task misses the data from the writer
task. Otherwise, the function in Eq. (9.15) returns false, which is desirable for valid
timed-paths.

crit(τabc(w) −→ τdbe(r)) = αdbe(r) < αabc(w) +Rabc (9.15)

(a) Different activation times. (b) Activation at the same time.

Figure 9.10. Reachability conditions for tasks in the same end-station.

The instance number of each instance of writer and reader tasks are indicated in
Figure 9.10(a) and Figure 9.10(b). Figure 9.10(a) shows an example of the case where
the reader task is activated just after the the writer task is completed. In this case, we
have a reachable timed-path from the first instance of the writer task to the first instance
of the reader task. Note that the timed-path from the second instance of the writer task
to the reader task’s first instance is not reachable, and it will be excluded by Eq. (9.14)
and Eq. (9.15).

Moreover, the reader and writer task instances can only overlap when they are
activated at the same time in the same single-core end-station. In such a case, the reader

166 9.5 End-to-end data-propagation delay analysis

task does not miss the writer task’s data, if the priority of the reader task (Pdbe) is lower
than the priority of the writer task (Pabc) as shown in Eq. (9.16). If the reader task
executes before the writer task, then the reader task needs to wait until its next period
activation in order to read the fresh data from the writer task. This is taken into account
according to the wait function (wait()) in Eq. (9.16), where P indicates the priority of
the task according to the system model in Section 9.4.1.

wait(τabc(w) −→ τdbe(r)) = Pdbe < Pabc (9.16)

Figure 9.10(b) shows an example of a timed-path between two tasks inside an end-
station. If both writer and the reader tasks are activated at the same time, there is a
reachable timed-path between the writer and the reader task, provided that the writer
task has executed before the reader task.

Accordingly, if the writer and reader task instances are from two different end-
stations, the reachability of the timed-path through the network is obtained referring
the worst-case response time of the message communicated between the writer and
reader tasks, and the activation time of the writer task instance, as shown in Figure 9.11.
For instance, if there is a writer task τw and a reader task τr which communicate by a
message Msg, there are three different timed-paths as shown in Figure 9.11. However,
only one of those timed-paths is a reachable timed-path from the input to the output of
the transaction.

Figure 9.11. Timed-paths.

The forward reachability of two tasks in the timed-path, according to the aforemen-
tioned functions (att(),crit() and wait()), is examined based on the forward reachabil-
ity function forw() as presented in Eq. (9.17).

Paper C 167

forw(τabc(w) −→ τdbe(r)) =
¬att(τabc(w) −→ τdbe(r))∧
(¬crit(τabc(w) −→ τdbe(r)) ∨ wait(τabc(w) −→ τdbe(r)))

(9.17)

Further, it is important to note that Eq. (9.17) does not cover all the cases to check
the reachability of the timed-paths, because it can happen that two instances of a writer
task reach to an instance of a reader task, e.g., when the period of the writer task is
shorter than the reader task. In this case, the data that is accessible to the reader task
will be overwritten by subsequent writer task instances. We make sure that only the last
writer task instance reaches the reader task instance, i.e., there is no next writer task
instance that reaches this reader task instance. This can be detected when the function
in Eq. (9.18) returns true, where τabc(w + 1) represents the next instance of the task
instance τabc(w).

reach(τabc(w) −→ τdbe(r)) = forw(τabc(w) −→ τdbe(r))
∧¬forw(τabc(w + 1) −→ τdbe(r))

(9.18)

After checking the reachability between two task instances, we check for the whole
timed-path by evaluating every two consecutive task instances in the timed-path from
the first task until the last task. We show this by Eq. (9.19) where a timed-path tpij
belongs to the transaction Γj . For simplicity of the equation, two consecutive task
instances in the timed-path are shown by τw and τr.

reach(tpij) =
∏

reach(τw −→ τr) (9.19)

We finally evaluate all possible timed-paths in the transaction Γj to obtain all
reachable (valid) timed-paths in a set TP reach

j , according to Eq. (9.20) assuming that
there are z timed-paths in the transaction.

TP reach
j = {reach(tpij); i = 1..z} (9.20)

9.5.2 Accounting for the ST Messages
Each ST message has a deterministic schedule at each link within its route from the
sender (writer) task to the receiver (reader) task. The activation time of an ST message on
its last link (the time it is available to the reader task instance) is not directly dependent
on the response time of the sender task or the response time of the message itself on the
previous links. Although, some parameters such as the response time of the sender task,
the transmission time of the ST message per link and/or other optimization objectives
can be accounted for when defining the offset of the ST message per link. This is

168 9.5 End-to-end data-propagation delay analysis

opposed to the case of a non-ST message, where the activation time of the message on
the last link between the sender and receiver tasks is dependent upon both the response
time of the sender task and its own response time on the previous links. Whereas, the
ST messages are isolated by the time slots, which are configured offline on each link in
their route to the receiver tasks.

ST offsets at the subsequent links in the route of the message are defined in a way
to satisfy a set of scheduling constraints as presented in our previous work [52]. The
scheduling constraints differ from the timing constraints which were mentioned earlier
in this paper. The scheduling constraints are a set of logical rules set on the message’s
set of offsets per link to find satisfiable values of offsets which lead to a feasible offline
schedule. The TSN schedules are configured offline, and before performing the data
propagation delay analysis.

The most important set of scheduling constraints are as follows: 1) constraint on
the frame size; 2) constraint on overlapping of messages on a link; 3) constraint on
the order of traversed links; and 4) constraint on deadline satisfaction. Firstly, the
constraint on the frame ensures that the value of the offset on one link does not force
the arrival of the message after its next period activation. Secondly, the overlapping
constraint checks whether the offset of two different messages on the same link will not
cause overlapping time slots for these two messages. Thirdly, the order of the offset for
the same message on subsequent links must consider the propagation of the message
from the source end-station’s link to the sink end-station’s link (avoiding time-travel).
Fourthly, the offsets per links in the route of the message must enforce the message to
arrive to the destination end-station before the message’s deadline (implicitly the next
period activation of the sending task).

According to the feasible TSN schedule, the reachability of an instance of an ST
message to the instances of the reader task is determined considering the offsets per link
along the route of the message. In this case, the existing constraint to find reachable
timed-path requires to trace through all the hops in the route of the ST message and take
into account the activation times of the ST message per link.

An example of a transaction is shown in Figure 9.12, in which the ST class is utilized
for the communication between two end-stations. The two end-stations are connected
via the links l1 and l2, therefore the instance of the ST message at link l1 is scheduled by
the offset Ol1

1,1 and it is notated by ml1
1,1. Likewise, the instance of the ST message on

the link l2 is indicated by the notation ml2
1,1 and its offset on the link is defined by Ol2

1,1.
Moreover, the reachable timed-paths in the transaction (Γ1) shown in this example are
subsequently, tp11, tp21, tp31 and tp41. For instance, tp11 starts with the first instances of
the first task (τ1,1,1) and the second task (τ1,1,2) of the source end-station. Then the
message uses the bandwidth of the links in its path according to its offset at each of the
links.

Paper C 169

Figure 9.12. Timed-path with ST messages.

As it can be seen in Figure 9.12, the analysis has to be extended to support multiple
activations of the message on several links as the ST messages have deterministic
activation times per link. In the following, we show that in the end-to-end data propaga-
tion delay analysis of the ST messages, we can omit the activation times of the links
in the path of the message except for the last link. This reduction in the timed-path
significantly decreases the number of timed-paths to evaluate and in turn reduces the
computation time of the analysis. We show this with the following lemma.

It is enough to consider the activation time of an ST message on its last link between
its sender and receiver end-stations when extracting the reachable timed-paths through
the TSN network.

Proof. Response-time analysis for ST traffic is not required as the ST traffic is scheduled
offline. Feasible TSN schedules for ST class guarantee by construction the schedula-
bility of the ST traffic. In addition, a feasible TSN schedule ensures that during the
transmission of the ST message until its arrival to the destination end-station, there will
be no new activation of the subsequent instances of the ST message. The activations
and arrivals of ST frames within the network are known prior to the end-to-end analysis,
thus there is always a deterministic reachable timed-path for an ST message over several
links, which is already calculated and is configured offline, at the time of scheduling

170 9.5 End-to-end data-propagation delay analysis

the ST traffic. Because the reachability of this deterministic path is already approved
with the offline scheduling algorithm, it is only required to check the reachability of this
path to the receiver node. Therefore, it is enough to consider the activation of the ST
message on the last link (the end of the network’s reachable path) when extracting the
reachable timed-paths.

Based on Lemma 9.5.2 in case of the scenario depicted in Figure 9.12, the message
at its last hop (ml2

1,1) is enough to consider in the identification of reachable timed-paths
for the end-to-end data propagation delay analysis, which is shown in Figure 9.13.
Hence, the existing analysis needs to be extended in order to support the TSN classes.

Figure 9.13. modeling the ST message at the last hop.

According to Lemma 9.5.2, only considering the ST message activation on its last
link is sufficient for deriving the timed-path. However to consider the ST message on
the last link, we propose to model the whole path of the ST message as a separate task
which simplifies the incorporation of the ST message in the existing analysis. Eq. (9.21)
shows the model of such a task. We regard this task as the network task and denote it
by τNet,j . This task corresponds to the message mr

jk. The parameter r is the ID of the
link delivering the message to the receiving end-station (last hop). Therefore, each ST
message is modeled with a τNet,j task.

Paper C 171

τNet,j :=
〈
PNet,j = Pjk, CNet,j = TT (Sizejk), TNet,j = Tjk, JNet,j = Jjk, ONet,j = Or

jk

〉
(9.21)

where, TT () calculates the transmission time of the message based on the size of the
message and the network speed (s). TT () is calculated by ((Sizejk +OH) ∗ 8)/(s).
Where, OH is the TSN frame’s overhead in Bytes.

Modeling of the ST message with a task allows us to use Eq. (9.20) to evaluate the
reachability of timed-paths corresponding to a transaction, where τNet,j can be a reader
or writer task in the transaction j, while its activation time is computed according to
Eq. (9.10).

9.5.3 Accounting for the Non-ST Messages

A non-ST message is assumed to be scheduled for transmission as soon as the sender
task completes its execution. The arrival time of the message instance to the reader
task instance is calculated based on the activation time and the period of the writer
task instance and the response time of the message. As depicted in Figure 9.14, the
non-ST message m1,1 has no offset in the set of two links in its route to the reader
task, namely τ2,1,1. As a result, the activation time of the message is assumed to
be the same as its predecessor writer task. In Figure 9.14, each instance of m1,1 is
not transmitted immediately after the completion of the sender task τ1,1,2 because we
assume the message received interference from other higher priority messages (and/or it
was blocked by the lower priority messages). By knowing the worst-case response time
of the message (R1,1) the reachable instance of the reader task can be determined. For
example, consider tp11 and tp21 in Figure 9.14. In these timed-paths, the first instance of
the message is reachable to the third and fourth instance of the reader task. Therefore,
Eq. (9.17) is used to evaluate the reachability of timed-paths in a transaction.

9.5.4 Calculation of Worst-case Data Age and Reaction Time Delays

The data age and reaction time delays are derived based on timed-paths (introduced in
Section 9.5.1). In this section, we further explain the calculation of the worst-case data
age and reaction time delays according to [5]. The data age delay for a timed-path tpnj
belonging to the transaction Γj is calculated by Eq. (9.22), which calculates the time
difference between the input data and the last sample of the corresponding output data.

∆age(tp
n
j) = αlast(tp

n
j) +RTlast(tp

n
j)− αfirst(tp

n
j) (9.22)

172 9.5 End-to-end data-propagation delay analysis

Figure 9.14. Timed-path with non-ST messages.

where, αfirst() returns the activation time of the task instance that is the first task
receiving the fresh input data. This task is an instance of the transaction’s initiator task
inside the initiator end-station. Also, αlast() and RTlast() return the activation time and
the worst-case response time of the instance of the terminator task from the terminator
end-station, after which the data is overwritten.

The reaction time delay is calculated by Eq. (9.23), where Pred() represents the
first instance of the timed-path before the timed-path under analysis tpnj . Note that the
effect of just missing an event at the input of the task chain is covered by Pred().

∆reac(tp
n
j) = αlast(tp

n
j) +RTlast(tp

n
j)− αfirst(Pred(tpnj)) (9.23)

The data age and reaction time delays for all timed-paths for every transaction
should be extracted and the longest corresponding values represent the worst-case data
age and reaction delays, which are calculated according to Eq. (9.24).

∆age(Γj) = {max(∆age(tp
n
j));n = 1...z}

∆reac(Γj) = {max(∆reac(tp
n
j));n = 1...z}

(9.24)

The instances of the task set in a periodic system repeat in a given bounded pattern
specified by the LCM of the periods of the tasks in the task set. Moreover, to find the
worst-case data age and reaction time delays, it is sufficient to enumerate and compare

Paper C 173

all timed-paths within a finite bound of twice the hyperperiod (LCM of all the involved
periods in the transaction) [5].

It is conventionally desired that the data age and reaction time delays are less than
or equal to their corresponding constraints according to Eq. (9.25).

∆age(Γj) <= Agej
∆reac(Γj) <= Reacj

(9.25)

After the analysis the values of the data age and reaction time delays can be examined
to check if they satisfy the specific needs of the targeted system according to the user-
defined end-to-end timing constraints, i.e., based on different criteria as explained in the
works [16, 48].

9.6 Vehicular Application Case Study
In this section, we discuss a vehicular industrial use case that is used to evaluate the
presented end-to-end data propagation delay analysis. The use case consists of 14 end-
stations that are connected by a two-switch TSN network as illustrated in Figure 9.15.
Each end-station is assumed to include multiple tasks. Figure 9.15 is inspired by a use
case developed in [53] and the traffic is specified accordingly. We implemented the
proposed analysis as an in-house tool. The configuration and message set in the use
case were given as input to the implemented analysis.

9.6.1 Experimental Setup
We perform the extended as well as the existing end-to-end data propagation delay
analysis of the use case in Figure 9.15. The evaluation of the analyses is performed
under different traffic scenarios given to the use case. In this experiment, we assume
there are 14 transactions starting from end-stations 1 to 7 that use different TSN traffic
classes to communicate with three sink end-stations with the IDs 8 to 10. Table 9.1
shows the transaction settings. Moreover, Figure 9.16 illustrates the relation between
the elements of the transactions shown in Table 9.1. Note that in Figure 9.16, we do
not show registers between any two messages within a node or two end-stations for the
sake of enhancing readability of the figure. Each transaction initiates and terminates
by a task within different end-stations. Each transaction includes four tasks in total.
Besides, each transaction includes two tasks per end-station which constitute the chain.
In the source end-station, the first task is a computation task and the subsequent task is a
communication task, which receives data input from the predecessor task, then prepares
and injects messages to the network. In the destination end-station of these transactions,

174 9.6 Vehicular Application Case Study

Figure 9.15. Vehicular application use case.

the first task is a communication task that receives and processes the message from the
network. The communication task sends the message for further processing to the last
task in the transaction. The periods of the tasks are chosen based on the automotive data
set in [54], i.e., {1, 2, 5, 10, 20, 50, 100} in milliseconds (ms). The size of all messages
are fixed to 1500 Bytes as the maximum payload size and the worst-case execution
time of each task (WCET) is considered to be 0.5 ms. The end-stations run their tasks
according to the fixed-priority preemptive scheduling algorithm. In each transaction,
we assume that the priority of a task is higher than the priority of its subsequent task
within the same end-station. Because, we want to keep the execution of two subsequent
tasks inside the same end-station in such an order to avoid creating delay in writing
of data. This ensures that each precedent task (writer task) in the transaction must be
executed before the subsequent task in the chain (reader task) in the case if the two tasks
are activated for execution at the same time.

Five out of fourteen transactions use ST traffic class; three transactions use class A;
three transactions use class B; and three transactions use class BE. The CBS mechanism
is set according to Table 9.2, where the credit for classes A and B are chosen according
to the utilization of these classes on the network links. The overall network speed is set
to 1 Gbps. We set the idle slope (idleSlope) according to the utilization of the traffic on
classes A and B, as shown in Table 9.2. The transactions 6, 7 and 8 use class A on the
links 10 and 15, therefore the credit of the links l10 and l15 are set to 0.78. Furthermore,

Paper C 175

Table 9.1. Evaluation settings for the use case based on distributed chains.

Γ
j

E
i

So
ur

ce
ta

sk
s

(τ
ij
k
):

[i
d,
P
ij
k
,C

ij
k
,T

ij
k
]

M
es

sa
ge

(m
j
k
):

[i
d,

P
j
k
,S
iz
e j

k
,T

j
k
,O

r j
k
]

E
i

D
es

tin
at

io
n

ta
sk

s
(τ

ij
k
):

[i
d,
P
ij
k
,C

ij
k
,T

ij
k
]

C
om

pu
ta

tio
n

C
om

m
un

ic
at

io
n

C
om

m
un

ic
at

io
n

C
om

pu
ta

tio
n

1
E
1

[τ
1
,1
,1

,4
,0

.5
,2

0]
[τ

1
,1
,2

,3
,0

.5
,2

0]
[m

1
,1

,S
T,

15
00

,2
0,

1.
03

9]
E
8

[τ
8
,1
,1

,1
0,

0.
5,

10
]

[τ
8
,1
,2

,9
,0

.5
,1

0]
2

E
3

[τ
3
,2
,1

,4
,0

.5
,2

0]
[τ

3
,2
,2

,3
,0

.5
,2

0]
[m

2
,2

,S
T,

15
00

,2
0,

1.
02

6]
E
8

[τ
8
,2
,3

,8
,0

.5
,1

0]
[τ

8
,2
,4

,7
,0

.5
,1

0]
3

E
4

[τ
4
,3
,1

,4
,0

.5
,1

0]
[τ

4
,3
,2

,3
,0

.5
,1

0]
[m

3
,3

,S
T,

15
00

,1
0,

1.
06

5]
E
8

[τ
8
,3
,5

,6
,0

.5
,1

0]
[τ

8
,3
,6

,5
,0

.5
,1

0]
4

E
6

[τ
6
,4
,1

,4
,0

.5
,1

0]
[τ

6
,4
,2

,3
,0

.5
,1

0]
[m

4
,4

,S
T,

15
00

,1
0,

1.
07

8]
E
8

[τ
8
,4
,7

,4
,0

.5
,1

0]
[τ

8
,4
,8

,3
,0

.5
,1

0]
5

E
5

[τ
5
,5
,1

,2
,0

.5
,1

0]
[τ

5
,5
,2

,1
,0

.5
,1

0]
[m

5
,5

,S
T,

15
00

,1
0,

1.
05

2]
E
9

[τ
9
,5
,1

,1
0,

0.
5,

10
]

[τ
9
,5
,2

,9
,0

.5
,1

0]
6

E
7

[τ
7
,6
,1

,6
,0

.5
,1

0]
[τ

7
,6
,2

,5
,0

.5
,1

0]
[m

6
,6

,A
,1

50
0,

10
,0

]
E
9

[τ
9
,6
,3

,8
,0

.5
,1

0]
[τ

9
,6
,4

,7
,0

.5
,1

0]
7

E
7

[τ
7
,7
,3

,4
,0

.5
,1

0]
[τ

7
,7
,4

,3
,0

.5
,1

0]
[m

7
,7

,A
,1

50
0,

10
,0

]
E
9

[τ
9
,7
,5

,6
,0

.5
,1

0]
[τ

9
,7
,6

,5
,0

.5
,1

0]
8

E
7

[τ
7
,8
,5

,2
,0

.5
,1

0]
[τ

7
,8
,6

,1
,0

.5
,1

0]
[m

8
,8

,A
,1

50
0,

10
,0

]
E
9

[τ
9
,8
,7

,4
,0

.5
,1

0]
[τ

9
,8
,8

,3
,0

.5
,1

0]
9

E
1

[τ
1
,9
,3

,2
,0

.5
,2

0]
[τ

1
,9
,4

,1
,0

.5
,2

0]
[m

9
,9

,B
,1

50
0,

20
,0

]
E
1
0

[τ
1
0
,9
,1

,8
,0

.5
,1

0]
[τ

1
0
,9
,2

,7
,0

.5
,1

0]
10

E
2

[τ
2
,1
0
,1

,4
,0

.5
,2

0]
[τ

2
,1
0
,2

,3
,0

.5
,2

0]
[m

1
0
,1
0
,B

,1
50

0,
20

,0
]

E
1
0

[τ
1
0
,1
0
,3

,6
,0

.5
,1

0]
[τ

1
0
,1
0
,4

,5
,0

.5
,1

0]
11

E
2

[τ
2
,1
1
,3

,2
,0

.5
,2

0]
[τ

2
,1
1
,4

,1
,0

.5
,2

0]
[m

1
1
,1
1
,B

,1
50

0,
20

,0
]

E
1
0

[τ
1
0
,1
1
,5

,4
,0

.5
,1

0]
[τ

1
0
,1
1
,6

,3
,0

.5
,1

0]
12

E
3

[τ
3
,1
2
,3

,2
,0

.5
,2

0]
[τ

3
,1
2
,4

,1
,0

.5
,2

0]
[m

1
2
,1
2
,B

E
,1

50
0,

20
,0

]
E
8

[τ
8
,1
2
,9

,2
,0

.5
,1

0]
[τ

8
,1
2
,1
0
,1

,0
.5

,1
0]

13
E
4

[τ
4
,1
3
,3

,2
,0

.5
,1

0]
[τ

4
,1
3
,4

,1
,0

.5
,1

0]
[m

1
3
,1
3
,B

E
,1

50
0,

10
,0

]
E
1
0

[τ
1
0
,1
3
,7

,2
,0

.5
,1

0]
[τ

1
0
,1
3
,8

,1
,0

.5
,1

0]
14

E
6

[τ
6
,1
4
,3

,2
,0

.5
,1

0]
[τ

6
,1
4
,4

,1
,0

.5
,1

0]
[m

1
4
,1
4
,B

E
,1

50
0,

10
,0

]
E
9

[τ
9
,1
4
,9

,2
,0

.5
,1

0]
[τ

9
,1
4
,1
0
,1

,0
.5

,1
0]

176 9.6 Vehicular Application Case Study

Figure 9.16. Evaluation settings (chains of tasks).

the transactions 9, 10 and 11 use the class B on the links 1, 2 and 7. Accordingly, the
credits for class B on the links l1, l2 and l7 are set to 0.4. We note that zero credit means
there are no messages from the associated CBS classes on the link. In Table 9.2 only
the credit for the links utilizing CBS is shown. Finally, the data age and reaction time
constraints specified on each transaction are depicted in Table 9.3.

Paper C 177

Table 9.2. idleSlope of class A and class B per link.

idleSlope (Mbps) l1 l2 l7 l10 l15

Class A - - - 0.78 0.78
Class B 0.4 0.4 0.4 - -

Table 9.3. Timing constraints for all transactions.

Reacj (ms) Agej (ms)
Crj 35 25

9.6.2 Evaluation of the Existing and Extended Analyses

In this section, we compare the analysis results acquired by performing the existing
[5] and the extended end-to-end data propagation delay analyses. Table 9.4 shows the
response times of each message (Ri,j) and its sending task (Ri,j,k) separately. Moreover,
the response time of the last task in each transaction is shown in Table 9.4.

Table 9.4. Response times of the tasks and messages in the transactions (ms).

Trans. (Γj) Rijk of sender Rij of message Rijk of last task
1 R1,1,2 = 1 R1,1 = 0.025 R8,1,2 = 1
2 R3,2,2 = 1 R2,2 = 0.038 R8,2,4 = 2
3 R4,3,2 = 1 R3,3 = 0.025 R8,3,6 = 3
4 R6,4,2 = 1 R4,4 = 0.038 R8,4,8 = 4
5 R5,5,2 = 1 R5,5 = 0.038 R9,5,2 = 1
6 R7,6,2 = 1 R6,6 = 1.081 R9,6,4 = 2
7 R7,7,4 = 2 R7,7 = 2.081 R9,7,6 = 3
8 R7,8,6 = 3 R8,8 = 3.081 R9,8,8 = 4
9 R1,9,4 = 2 R9,9 = 2.218 R10,9,2 = 1
10 R2,10,2 = 1 R10,10 = 1.262 R10,10,4 = 2
11 R2,11,4 = 2 R11,11 = 2.262 R10,11,6 = 3
12 R3,12,4 = 2 R12,12 = 2.127 R8,12,10 = 5
13 R4,13,4 = 2 R13,13 = 3.150 R10,13,8 = 4
14 R6,14,4 = 2 R14,14 = 2.398 R9,14,10 = 5

178 9.6 Vehicular Application Case Study

Table 9.5. Calculated reaction time and data age delays for each transaction.

Results with the existing analysis Results with the extended analysis
Trans. (Γj) Reaction Delay (ms) Age Delay (ms) Reaction Delay (ms) Age Delay (ms)

1 32.064 22.064 31 21
2 33.064 23.064 32 22
3 24.09 14.09 23 13
4 25.116 15.116 24 14
5 22.09 12.09 21 11
6 23.081 13.081 22 12
7 25.081 15.081 23 13
8 27.081 17.081 24 14
9 33.218 23.218 31 21

10 33.262 23.262 32 22
11 35.262 25.262 33 23
12 37.127 27.127 35 25
13 27.15 17.15 24 14
14 27.398 17.398 25 15

The data age and reaction time delays for each individual transaction depicted in
Table 9.1 are calculated with the existing and extended end-to-end data-propagation
delay analyses. The analyses results are shown in Table 9.5.

It can be observed in Table 9.5 that the reaction time and data age delays calculated
by the extended end-to-end data-propagation delay analysis are smaller than those
calculated by the existing analysis. For example, the reaction time and data age delays
of transaction Γ5 calculated with the existing analysis are 22.09 ms and 12.09 ms
respectively. Whereas, the reaction time and data age delays of transaction Γ5 calcu-
lated with the extended analysis are 21 ms and 11 ms respectively. We note that the
existing analysis calculates the reaction time and data age delays of Γ5 with 5.19% and
9.90% over-estimation (pessimism) compared to the extended analysis. We visually
demonstrate the reaction time and data age delays in Γ5 with the help of execution
traces in Figure 9.17. In Γ5, the tasks in the sender end-station (E5) and the receiver end-
station (E9) are synchronized for using the ST class. The extended analysis considers
synchronization of the nodes in Γ5, i.e., each node sees the same time 0. Figure 9.17(a)
shows the reachable timed-paths within twice the hyperperiod (LCM of the periods of
all tasks in Γ5, which is 20 ms). On the other hand, the execution trace considered by
the existing analysis is shown in Figure 9.17(b).

Similarly, consider another transaction, Γ11, in Table 9.5. The reaction time and
data age delays of transaction Γ11 calculated with the existing analysis are subsequently
35.262 ms and 25.262 ms. Whereas, these delays calculated with the extended analysis
are 33 ms and 23 ms respectively. Hence, the existing analysis calculates the reaction

Paper C 179

(a) Synchronized end-stations. (b) Non-synchronized end-stations.

Figure 9.17. Demonstration of data age and reaction time delays in Γ5 in Table 9.5 with with
execution traces.

time and data age delays of Γ11 with 6.85% and 9.83% over-estimation (pessimism)
compared to the extended analysis. The reaction time and data age delays in Γ11 are
visually demonstrated with the help of execution traces in Figure 9.18. Γ11 uses a class B
message. The extended analysis considers synchronization of the nodes in Γ11, i.e., each
node sees the same time 0 as shown in the execution trace in Figure 9.18(a). Whereas,
the execution trace considered by the existing analysis is shown in Figure 9.18(b).

(a) Synchronized end-stations. (b) Non-synchronized end-stations.

Figure 9.18. Demonstration of data age and reaction time delays in Γ11 in Table 9.5 with with
execution traces.

180 9.6 Vehicular Application Case Study

9.6.3 Impact of Various Parameters on the Data Age and Reaction
Time Delays

In this subsection, we demonstrate the impact of various parameters on the data age
and reaction time delays using the extended end-to-end data propagation delay analysis.
The parameters of interest include the offset of the ST messages, and the periods of the
tasks in the receiver end-stations (i.e., the periods of the message receiving tasks). The
evaluations are carried out in a transaction in the use case shown in Figure 9.15. The
transaction’s details are shown in Table 9.6.

Table 9.6. The transaction specifications.

Γd Ei
Source tasks (τijk):
[id, Pijk,Cijk, Tijk] Message (mjk):

[id, Pjk,Sizejk, Tjk, Or
jk]

Ei
Destination tasks (τijk):
[id, Pijk,Cijk, Tijk]

Task 1 Task 2 Task 3
1 E3 [τ1,1,1,1,1,50] [m1,1, ST,1500,50,X] E8 [τ9,1,1,2,1,Y] [τ9,1,2,1,1,Y]

The transaction under analysis starts from CAM1 as the sending end-station and
finishes in AVSink as the receiving end-station. This transaction uses one task in
CAM1 with the fixed period of 50 ms and the WCET of 1 ms. CAM1 sends an
ST message that is routed to AVSink via three links, namely l2, l0 and l15 according
to the topology shown in Figure 9.15. There are two tasks in the AVSink that are
engaged in this transaction, namely τ9,1,1 and τ9,1,2. Each of these tasks has the
WCET of 1 ms. The task τ9,1,1 in AVSink that receives messages from the TSN
network has the highest priority. We vary the period of the receiver end-station’s tasks
(AVSink) shown by notation Y in Table 9.6. Y can obtain values from the range
{15, 20, 25, 30, 40, 50, 60, 70, 90, 100, 150, 200, 250} in milliseconds (ms). Both tasks
of AVSink have the same period.

As we consider an ST message in the transaction under analysis, we can assign
any value to its offset between the range of minimum offset and maximum offset on its
last link ml15

1,1 . The variable value of the offset is denoted by X notation in Table 9.6.
The minimum offset of the message on the last link (ml15

1,1) is equal to the sum of the
response time of the sender task, τ1,1,1 (1 ms), transmission time of the message on the
first link ml2

1,1 (0.0126 ms) and the transmission time of the message on the second link
ml0

1,1 (0.0126 ms) as shown in Figure 9.19. The sum of these three terms is equal to
1.0252 ms, which defines the minimum value of the offset that can be assigned to the
message under analysis on its last link towards the destination end-station. Similarly,
the maximum value of the offset that can be assigned to the message under analysis on
its last link towards the destination end-station is 49.9874 ms, which is equal to the

Paper C 181

Figure 9.19. Demonstration of the minimum and maximum values of the offsets on the last link
for the message under analysis.

difference between the message’s period (50 ms) and transmission time of the message
on the last link (0.0126 ms). There are no other TSN messages interfering with the ST
message in this transaction. According to the Worst-Case Response-Time Analysis of
TSN [34, 33, 31], the response time of the message (the time the message is received at
the receiver end-station) is 1.025 ms. The experiments are carried out by calculating
and comparing the data age and reaction time delays, under variations made on the
parameters X for ST offsets and Y for the period of the receiver end-station’s tasks
from the settings given in Table 9.6.

The data age and reaction time delays of the transaction under analysis are presented
in Figure 9.20 and Figure 9.21 respectively. The horizontal axes in Figure 9.20 and
Figure 9.21 show the variations in the receiver task’s periods. The vertical axis represents
the data age delays (in Figure 9.20) and reaction time delays (in Figure 9.21). Color-
coded line graphs present the delays calculated based on different offsets assigned to
the ST message.

Figure 9.20 shows that the data age delay remains constant at 52 ms with variation
in the period of the message receiving task in the transaction, when the offset of the
message is set to the minimum value of 1.0252 ms. The data age delay increases as
the value of the offset is increased to its maximum value of 49.9874 ms. Similarly, the

182 9.6 Vehicular Application Case Study

reaction time delays calculated for the same transaction by setting different values of
the ST message offset and by varying the period of the message receiving task within
the traction are depicted in Figure 9.21.

We note for some specific cases in Figure 9.20, where the message receiving task’s
period is a harmonic multiple (50 ms, 100 ms, ...) of the sender task’s period (50 ms)
within the transaction, the data age delay remain constant at 52 ms. Furthermore, any
variation in the ST message’s offset (selected between the minimum and maximum
values of the offset) also does not effect the data age delay in such cases. The reason
for getting the same data age delay in these specific cases is that the data age delay
considers the last input in the timed path which is not overwritten by the previous
inputs [5, 7]. We demonstrate this situation by drawing the execution traces of the
transaction in Figure 9.22 and Figure 9.23, where the period of the message receiving
task (τ9,1,1) is set to the first two harmonic multiples (50 ms and 100 ms) of the period
of the sender task (τ1,1,1, period = 50 ms). Figure 9.22(a, c, e) and Figure 9.23(a, c, e)
represent the execution traces of the transaction when periods of the sender task (τ1,1,1)
and the receiver task (τ9,1,1) are set to 50 ms while different values of the ST message
offset are considered. Whereas, Figure 9.22(b, d, f) and Figure 9.23 (b, d, f) represent
the execution traces of the transaction when periods of the sender task (τ1,1,1) is set to
50 ms while the period of the receiver task (τ9,1,1) is set to 100 ms while varying the
ST message’s offset.

For instance, the data age delay in Figure 9.22(a) is 52 ms. Although the period
of (τ9,1,1) is doubled in Figure 9.22(b) with respect to its period in Figure 9.22(a),
the first instance of the message will be overwritten by the second instance of the
message in Figure 9.22(b). Hence, the data provided by the first instance of τ1,1,1 via
the first instance of the message cannot reach the second instance of τ9,1,1. In fact, the
second instance of τ9,1,1 will read the data produced by the second instance of τ1,1,1.
Therefore, the data age delay in Figure 9.22(b) is the same as that of the data age delay
in Figure 9.22(a). In fact, the data age delay stays the same when higher harmonic
multiples of the period of τ1,1,1 are considered for the period of τ9,1,1 including 150 ms,
200 ms and 250 ms as shown in Figure 9.20. Furthermore, by varying the values of
the ST message’s offsets, the data path for the age delay remains the same because the
message offset cannot exceed the period of its sender task (τ1,1,1) and the period of the
receiver task (τ9,1,1) is a harmonic multiple of the period of τ1,1,1.

On the other hand, the reaction time delay is significantly impacted by the increase
in the period of the task that is receiving the message, as shown in Figure 9.21. We
note that the reaction time delay is the same for the periods of τ9,1,1 that are the first
two harmonic multiples of the period of τ1,1,1. However, the reaction delay keeps
on increasing with the increase in the period of τ9,1,1 that is equal to the subsequent
harmonic multiples (150 ms, 200 ms and 250 ms) of the period of τ1,1,1 as shown in

Paper C 183

Figure 9.21.

Figure 9.20. Impact of variations on the message offsets and the receiver task’s period on the data
age delay.

9.6.4 Discussions

The end-to-end data propagation delays such as data age and reaction time delays
calculated by the existing timing analysis can be pessimistic (over-estimated) based on
different network implementations, i.e., when the sender and receiver end-stations are
synchronized. Also, variations in the network configuration such as offset configuration
or period of the sender and receiver tasks affect the propagation of data from the input
to the output of the transaction. Hence the end-to-end data propagation delays may also
vary significantly for different settings. Transactions that utilize ST class need more
configuration and optimization effort due to the need for offline schedules. Though, ST
classes enable flexible adjustment of the end-to-end data-propagation delays.

184 9.7 Conclusions and Future Works

Figure 9.21. Impact of variations on the message offsets and the receiver task’s period on the
reaction time delay.

9.7 Conclusions and Future Works

In this paper, we presented a detailed end-to-end timing model of vehicular distributed
embedded systems that utilize TSN for network communication. The end-to-end timing
model enables integrating TSN features with the existing end-to-end data propagation
analysis. The proposed end-to-end timing model features distributed TSN transac-
tions over two or multiple synchronized end-stations with locally synchronized tasks.
Distributed TSN transactions define a chain of tasks which can communicate within
two different end-stations by TSN messages. TSN classes have different clock syn-
chronization requirements, that have not been accounted for in the existing end-to-end
data propagation delay analysis. In this paper, we proposed models and methods
to incorporate all TSN traffic requirements in the end-to-end data propagation delay
analysis.

The proposed end-to-end timing model and analysis were evaluated on a vehicular
use case. We performed a comparative evaluation of the existing and extended analysis
on the base of the use case. Moreover, the evaluations are in terms of the effects that the

Paper C 185

transaction periods and the message offsets can cause on the data age and reaction time
delays.

In summary, we concluded from the results that the non-ST transactions deal with
less effective parameters on the data age and reaction time delays. The data age and
reaction time delays of the ST transactions are more flexibly readjusted, though the
optimization with regards to their multiple configurable parameters is complex.

The results of this work additionally indicated some potential future work directions.
Firstly, this work enables analysis-based optimization of the end-to-end timing delays
(active approach). For example, the scheduling of the tasks within the end-stations could
also be included in order to optimize the end-to-end data propagation delays. Secondly,
system-level optimization of the end-to-end data propagation delays by co-scheduling
of tasks and messages could be considered as extension of the work presented in this
paper. Finally, a potential future work is to integrate the proposed end-to-end data
propagation delay analysis with model-based software development frameworks for
distributed embedded systems, e.g., Rubus-ICE [12].

Acknowledgements
The work in this paper is supported by the Swedish Governmental Agency for Innovation
Systems (VINNOVA) via the DESTINE, PROVIDENT and INTERCONNECT projects,
and the Swedish Knowledge Foundation via the FIESTA, HERO and DPAC projects. We
would like to thank our all industrial partners, especially Volvo Construction Equipment,
Arcticus Systems, and HIAB.

186 9.7 Conclusions and Future Works

(a) Ol15
1,1 = 1.0252 ms; T9,1,1 = T9,1,2 = 50 ms.

(b) Ol15
1,1 = 1.0252 ms;

T9,1,1 = T9,1,2 = 100 ms.

(c) Ol15
11 = 10 ms; T9,1,1 = T9,1,2 = 50 ms. (d) Ol15

11 = 10 ms; T9,1,1 = T9,1,2 = 100 ms.

(e) Ol15
11 = 25 ms; T9,1,1 = T9,1,2 = 50 ms. (f) Ol15

11 = 25 ms; T9,1,1 = T9,1,2 = 100 ms.

Figure 9.22. The effect of offset variations and harmonically set periods on the data age and
reaction time delays of the transaction (offsets 1,012 ms, 10 ms and 25 ms).

Paper C 187

(a) Ol15
1,1 = 30 ms; T9,1,1 = T9,1,2 = 50 ms. (b) Ol15

1,1 = 30 ms; T9,1,1 = T9,1,2 = 100 ms.

(c) Ol15
11 = 40 ms; T9,1,1 = T9,1,2 = 50 ms. (d) Ol15

11 = 40 ms; T9,1,1 = T9,1,2 = 100 ms.

(e) Ol15
11 = 49.9874 ms;

T9,1,1 = T9,1,2 = 50 ms.
(f) Ol15

11 = 49.9874 ms;
T9,1,1 = T9,1,2 = 100 ms.

Figure 9.23. The effect of offset variations and harmonically set periods on the data age and
reaction time delays of the transaction (offsets 30 ms, 40 ms and 49.987 ms).

Bibliography

[1] L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara. Recent Advances and Trends
in On-Board Embedded and Networked Automotive Systems. IEEE Transactions
on Industrial Informatics, 2019.

[2] ISO 11898-1. Road Vehicles – Interchange of Digital Information – Controller
Area Network (CAN) for High-speed Communication, ISO Standard-11898, 1993.

[3] Christina Rödel, Susanne Stadler, Alexander Meschtscherjakov, and Manfred
Tscheligi. Towards Autonomous Cars: The Effect of Autonomy Levels on Accep-
tance and User Experience. ACM, 2014.

[4] 802.1Q-2022 - IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks. IEEE, 2022.

[5] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional Framework
for End-to-End Path Delay Calculation of Automotive Systems under Different
Path Semantics. In Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems, 2008.

[6] A. C. Rajeev, Swarup Mohalik, Manoj G. Dixit, Devesh B. Chokshi, and
S. Ramesh. Schedulability and End-to-End Latency in Distributed ECU Net-
works: Formal Modeling and Precise Estimation. In Proceedings of the Tenth
ACM International Conference on Embedded Software, EMSOFT ’10, 2010.

[7] S. Mubeen, J. Mäki-Turja, and M. Sjödin. Support for End-to-End Response-Time
and Delay Analysis in the Industrial Tool Suite: Issues, Experiences and a Case
Study. Computer Science and Information Systems, 2013.

[8] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas
Nolte. End-to-end Timing Analysis of Cause-effect Chains in Automotive Embed-
ded Systems. Journal of Systems Architecture, 2017.

188

Bibliography 189

[9] AUTOSAR Consortium, AUTOSAR Techincal Overview [online], Release 4.1,
Rev.2, Ver.1.1.0., http://autosar.org.

[10] EAST-ADL Domain Model Specification, V2.1.12,. http://www.east-adl.-
info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf.

[11] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System-
level Performance Analysis - the SymTA/S Approach. Computers and Digital
Techniques, 2005.

[12] S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander, and K. Lundbäck. Provi-
sioning of Predictable Embedded Software in the Vehicle Industry: The Rubus
Approach. In 4th International Workshop on Software Engineering Research
and Industry Practice, located at the 39th International Conference on Software
Engineering. ACM, 2017.

[13] Robert Davis, Alan Burns, Reinder Bril, and Johan Lukkien. Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised. Real-
Time Systems, 2007.

[14] S. Mubeen, J. Mäki-Turja, and M. Sjödin. MPS-CAN Analyzer: Integrated
Implementation of Response-time Analyses for Controller Area Network. Journal
of Systems Architecture, 2014.

[15] Mohammad Ashjaei, Gaetano Patti, Moris Behnam, Thomas Nolte, Giuliana
Alderisi, and Lucia Lo Bello. Schedulability Analysis of Ethernet Audio Video
Bridging Networks with Scheduled Traffic Support. Real-Time Systems, 2017.

[16] Saad Mubeen, Mohammad Ashjaei, and Mikael Sjödin. Holistic Modeling of Time
Sensitive Networking in Component-based Vehicular Embedded Systems. In 2019
45th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2019.

[17] L. Lo Bello and W. Steiner. A Perspective on IEEE Time-sensitive Networking
for Industrial Communication and Automation Systems. Proceedings of the IEEE,
2019.

[18] M. Ashjaei, L. Lo Bello, M. Daneshtalab, G. Patti, S. Saponara, and S. Mubeen.
Time-sensitive Networking in Automotive Embedded Systems: State-of-the-Art
and Research Opportunities. Journal of Systems Architecture, 2021.

190 Bibliography

[19] J. Diemer, D. Thiele, and R. Ernst. Formal Worst-case Timing Analysis of Ethernet
Topologies with Strict-priority and AVB Switching. In International Symposium
on Industrial Embedded Systems, 2012.

[20] U. D. Bordoloi, A. Aminifar, P. Eles, and Z. Peng. Schedulability Analysis of
Ethernet AVB Switches. In International Conference on Embedded and Real-Time
Computing Systems and Applications, 2014.

[21] X. Li and L. George. Deterministic Delay Analysis of AVB Switched Ethernet
Networks Using an Extended Trajectory Approach. Real-Time Systems, 2017.

[22] J. Cao, P. J. L. Cuijpers, R. J. Bril, and J. J. Lukkien. Independent yet Tight
WCRT Analysis for Individual Priority Classes in Ethernet AVB. In International
Conference on Real-Time Networks and Systems, 2016.

[23] A. Finzi, A. Mifdaoui, F. Frances, and E. Lochin. Network Calculus-based Timing
Analysis of AFDX Networks with Strict Priority and TSN/BLS Shapers. In IEEE
13th International Symposium on Industrial Embedded Systems, 2018.

[24] A. Finzi and A. Mifdaoui. Worst-case Timing Analysis of AFDX Networks with
Multiple TSN/BLS Shapers. IEEE Access, 2020.

[25] D. Maxim and Y.-Q. Song. Delay Analysis of AVB traffic in Time-sensitive
Networks (TSN). In International Conference on Real-time Networks and Systems,
2017.

[26] D. Thiele, R. Ernst, and J. Diemer. Formal Worst-case Timing Analysis of Ethernet
TSN’s Time-aware and Peristaltic Shaperss. In Vehicular Networking Conference,
2015.

[27] L. Zhao, P. Pop, Z. Zheng, and Q. Li. Timing Analysis of AVB Traffic in TSN
Networks using Network Calculus. In Real-Time and Embedded Technology and
Applications Symposium, 2018.

[28] L. Zhao, P. Pop, and S. Craciunas. Worst-case Latency Analysis for IEEE
802.1Qbv Time-sensitive Networks using Network Calculus. IEEE Access, 2018.

[29] M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi, and L. Lo Bello. Schedu-
lability Analysis of Ethernet Audio Video Bridging Networks with Scheduled
Traffic Support. Real-Time Systems, 2017.

[30] G. Alderisi, G. Patti, and L. Lo Bello. Introducing Support for Scheduled Traffic
over IEEE Audio Video Bridging Networks. In IEEE International Conference on
Emerging Technologies and Factory Automation, 2013.

Bibliography 191

[31] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, S. Afshar, and S. Mubeen.
Schedulability Analysis of Best-effort Traffic in TSN Networks. In 26th IEEE
International Conference on Emerging Technologies and Factory Automation,
2021.

[32] D. Thiele and R. Ernst. Formal Worst-case Performance Analysis of Time-sensitive
Ethernet with Frame Preemption. In 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation, 2016.

[33] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, and M. Boyer. Latency Analysis of
Multiple Classes of AVB Traffic in TSN with Standard Credit Behavior using
Network Calculus. IEEE Transactions on Industrial Electronics, 2020.

[34] L. Lo Bello, M. Ashjaei, G. Patti, and M. Behnam. Schedulability Analysis of
Time-Sensitive Networks with Scheduled Traffic and Preemption Support. Journal
of Parallel and Distributed Computing, 2020.

[35] L. Zhao, F. He, E. Li, and J. Lu. Comparison of Time-sensitive Networking (TSN)
and TTEthernet. In 2018 IEEE/AIAA 37th Digital Avionics Systems Conference
(DASC). IEEE, 2018.

[36] M. Günzel, K. Chen, N. Ueter, G. von der Brüggen, M. Dürr, and J. Chen. Timing
Analysis of Asynchronized Distributed Cause-Effect Chains. In 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2021.

[37] K. Gemlau, L. Köhler, R. Ernst, and S. Quinton. System-level Logical Execution
Time: Augmenting the Logical Execution Time Paradigm for Distributed Real-
Time Automotive Software. ACM Transactions on Cyber-Physical Systems, 2021.

[38] H. Teper, M. Günzel, N. Ueter, G. von der Brüggen, and J. Chen. End-to-end
Timing Analysis in ROS2. In 2022 IEEE Real-Time Systems Symposium (RTSS),
2022.

[39] M. Ashjaei, S. Mubeen, J. Lundbäck, M. Gålnander, K. Lundbäck, and T. Nolte.
Modeling and Timing Analysis of Vehicle Functions Distributed over Switched
Ethernet. In 43rd Annual Conference of the IEEE Industrial Electronics Society,
2017.

[40] S. Mubeen, M. Gålnander, J. Lundbäck, and K. Lundbäck. Extracting Timing
Models from Component-based Multi-criticality Vehicular Embedded Systems.
In 15th International Conference on Information Technology : New Generations,
2018.

192 Bibliography

[41] M. Ashjaei, N. Khalilzad, S. Mubeen, M. Behnam, I. Sander, L. Almeida, and
T. Nolte. Designing End-to-end Resource Reservations in Predictable Distributed
Embedded Systems. Real-time Systems, 2017.

[42] J. Schlatow, M. Mostl, S. Tobuschat, T. Ishigooka, and R. Ernst. Data-age Analysis
and Optimisation for Cause-Effect Chains in Automotive Control Systems. In
2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES),
2018.

[43] Jorge Martinez, Ignacio Sañudo, and Marko Bertogna. Analytical Characteriza-
tion of End-to-end Communication Delays with Logical Execution Time. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[44] Tobias Klaus, Florian Franzmann, Matthias Becker, and Peter Ulbrich. Data
propagation delay constraints in multi-rate systems: Deadlines vs. job-level de-
pendencies. In Proceedings of the 26th International Conference on Real-Time
Networks and Systems, RTNS ’18. ACM, 2018.

[45] R. Bi, X. Liu, J. Ren, P. Wang, H. Lv, and G. Tan. Efficient Maximum Data Age
Analysis for Cause-effect Chains in Automotive Systems. In Proceedings of the
59th ACM/IEEE Design Automation Conference, 2022.

[46] Marco Dürr, Georg Von Der Brüggen, Kuan-Hsun Chen, and Jian-Jia Chen. End-
to-end Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems.
ACM Transactions on Embedded Computed Systems, 2019.

[47] Tomasz Kloda, Antoine Bertout, and Yves Sorel. Latency Analysis for Data
Chains of Real-time Periodic Tasks. In 2018 IEEE 23rd international conference
on emerging technologies and factory automation (ETFA). IEEE, 2018.

[48] L. Köhler, P. Hertha, M. Beckert, A. Bendrick, and R. Ernst. Robust Cause-Effect
Chains with Bounded Execution Time and System-Level Logical Execution Time.
ACM Transactions on Embedded Computing Systems, 2022.

[49] S. Mubeen, J. Mäki-Turja, and M. Sjödin. Communications-oriented Development
of Component-based Vehicular Distributed Real-time Embedded Systems. Journal
of Systems Architecture, 2014.

[50] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, and K. Lundbäck. Supporting
Timing Analysis of Vehicular Embedded Systems through the Refinement of
Timing Constraints. International Journal on Software and Systems Modeling,
2017.

[51] S. Mubeen, M. Gålnander, A. Bucaioni, J. Lundbäck, and K. Lundbäck. Timing
Verification of Component-based Vehicle Software with Rubus-ICE: End-user’s
Experience. In 2018 IEEE/ACM 1st International Workshop on Software Qualities
and their Dependencies. IEEE, 2018.

[52] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen. Synthesising
Schedules to Improve QoS of Best-effort Traffic in TSN Networks. In 29th
International Conference on Real-time Networks and Systems, 2021.

[53] H. Lim, K. Weckemann, and D. Herrscher. Performance Study of an In-car
Switched Ethernet Network without Prioritization. In Communication Technolo-
gies for Vehicles, 2011.

[54] S. Kramer, D. Ziegenbein, and A. Hamann. Real World Automotive Benchmarks
for Free. In 6th Intl. Workshop on Analysis Tools and Methodologies for Embedded
and Real-Time Systems, 2015.

Chapter 10

Paper E:
End-to-end Timing Modeling
and Analysis of TSN in
Component-Based Vehicular
Software

Bahar Houtan, Mehmet Onur Aybek, Mohammad Ashjaei, Masoud Daneshtalab, Mikael
Sjödin, John Lundbäck, Saad Mubeen.
In the 25th IEEE International Symposium on Real-Time Distributed Computing, 2023.

194

Abstract

In this paper, we present an end-to-end timing model to capture timing informa-
tion from software architectures of distributed embedded systems that use network
communication based on the Time-Sensitive Networking (TSN) standards. Such a
model is required as an input to perform end-to-end timing analysis of these systems.
Furthermore, we present a methodology that aims at automated extraction of instances
of the end-to-end timing model from component-based software architectures of the
systems and the TSN network configurations. As a proof of concept, we implement
the proposed end-to-end timing model and the extraction methodology in the Rubus
Component Model (RCM) and its tool chain Rubus-ICE that are used in the vehicle
industry. We demonstrate the usability of the proposed model and methodology by
modeling a vehicular industrial use case and performing its timing analysis.

196 10.1 Introduction

10.1 Introduction
Designing highly software-intensive vehicular embedded systems is challenging due to
the enormous size and complexity of the software [1]. In addition, the complexity in
modern vehicular software is continuously growing by integration of network communi-
cation mechanisms introduced by Time-Sensitive Networking (TSN) standards [2, 3, 4].
TSN standards are attractive solutions to address the high-bandwidth and real-time com-
munication requirements in vehicular applications. These standards enhance switched
Ethernet with deterministic traffic shaping mechanisms. More specifically, TSN sup-
ports hard real-time, high bandwidth with low-latency and low-jitter traffic transmission.
These features are supported by offline scheduled time-triggered traffic enabled by the
Time-Aware Shaper (TAS), resource reservation for different classes of traffic by a
Credit-Based Shaper (CBS), and clock synchronization [5]. Although TSN standards
provide flexible design of complex and deterministic network communication, this flexi-
bility comes with the cost of further complicating the design process due to including
several configurable factors for network devices and traffic.

Model-based Engineering (MBE) and Component-based Software Engineering
(CBSE) approaches [6, 7] are widely being used to manage the software complexity
and for cost-effective development of vehicular software systems. There are sev-
eral domain-specific languages and component models that can be used to model
software architectures of vehicular systems, e.g., AUTomotive Open System ARchi-
tecture (AUTOSAR) [8], Rubus Component Model (RCM) [9], AMALTHEA1[10],
EAST-ADL [11], and Architecture Analysis & Design Language (AADL) [12], to
name a few. All the models and languages assist the embedded software developers by
structuring necessary information to develop and design complex distributed embedded
software systems.

In addition to managing the design complexity of vehicular distributed software
systems, the developers of these systems are required to verify real-time requirements
that are specified on their software architectures. The timing requirements can be
verified by performing the end-to-end data-propagation delay analysis of the software
architectures of these systems [13, 14]. The analysis results can also guide in the
refinement of the software architectures [15]. This analysis is already implemented
in several tools in the vehicle industry that support model- and component-based
development of these systems, e.g., SymTA/S2[16] and Rubus [17]. The analysis
requires the end-to-end timing model as a crucial input. The end-to-end timing model
includes comprehensive timing information of the vehicular distributed software system.
The instances of this timing model must be extracted from the software architectures of

1https://itea4.org/project/amalthea.html
2SymTA/S tool has been acquired by Luxoft (https://www.luxoft.com)

Paper E 197

these systems and provided as an input to the model-based analysis tools.
In this paper, we present an end-to-end timing model to represent a distributed

embedded system with TSN support. Moreover, we present an automated methodology
to systematically extract instances of the end-to-end timing model from the software
architectures of these systems. The end-to-end timing model can be used for end-to-end
data-propagation delay analysis of the systems. We evaluate the proposed methodology
on an industrial use-case from the vehicular domain based on RCM developed in
Rubus-ICE tool suite [18]. As a proof of concept, we chose RCM because it is the
first commercially available model that supports comprehensive modeling and end-
to-end data-propagation delay analysis of TSN-based vehicular distributed embedded
systems [19].
The main contributions in this paper are as follows.

• We propose an end-to-end timing model to describe TSN networks with all configura-
tion parameters in the distributed vehicular embedded software systems.

• We provide an automated methodology to extract instances of the end-to-end timing
model from component-based software architectures of vehicular systems.

• We provide a proof of concept for the proposed timing model and extraction methodol-
ogy by integrating them with the component-based software engineering environment
of an industrial tool suite, namely Rubus-ICE.

• We evaluate the proposed model and methodology as well as their integration with
the Rubus-ICE tool suite on a vehicular industrial use-case.

10.2 Background and Related Works
As described in [5], model-based software development of vehicular embedded systems
generically consists of four steps: (1) modeling the software architecture; (2) extracting
timing properties and requirements from the software architecture; (3) validate the
timing requirements and constraints using end-to-end data-propagation delay analysis;
and (4) refining the software architecture according to the timing analysis results.

10.2.1 Modeling the Software Architecture
There are several software architecture modeling languages and component models,
such as AUTOSAR, RCM, AMALTHEA, EAST-ADL, AADL, to mention a few.

AUTOSAR is widely used for developing software architecture for automotive
systems. SymTA/S is a commercial timing analysis and optimization framework that

198 10.2 Background and Related Works

complies with AUTOSAR. A recent work in [20] integrates AUTOSAR adaptive with
applicable standards to develop more sophisticated systems. The proposed three-layer
architecture coordinates a binding between AUTOSAR Adaptive, OPC UA standards3,
and TSN standards. The paper argues that the proposed architecture lacks maturity
since all the involved technologies in the architecture layers are still under development.

RCM comprises of hierarchical entities which are necessary to model a distributed
embedded system that supports TSN. At the highest level, the system contains at least
two nodes and a network element that interconnects the nodes. A node (end-station)
is a processing element that provides run-time environment for one or more Software
Applications (SA). The SA provides spacial and temporal isolation to the part of overall
software architecture within the system. In RCM, a software architecture is modeled by
interconnecting a set of Software Components (SWCs). An SWC is a design-time entity
that corresponds to a task at run-time or in the timing model. The SWCs communicate
with each other by their interfaces (a set of data and trigger ports).

To the best of our knowledge, RCM is the first and only component model that
supports comprehensive modeling of TSN [19]. Recently, there have been some efforts
in increasing the performance and applicability of the other modeling approaches to
RCM by model transformation [21]. The work in [22] proposes a mapping technique
between AMALTHEA and RCM to enable timing analysis of AMALTHEA-based
component models in RCM. In addition, the work in [23] presents a mapping from
EAST-ADL models to RCM with the aim of enabling the timing analysis of a non-RCM
model.

10.2.2 Timing Information Extraction from Software Architectures

Modeling and extraction of timing models from the software architectures of component-
based vehicular embedded systems that are developed with RCM are presented in [24].
The work in [24] considers several onboard communication protocols like Controller
Area Network (CAN) [25], CANopen [26], AUTOSAR COMM [27] and switched
Ethernet. However, it does not consider TSN, which is the main focus of our work.

The work in [19] complements [24] by integrating several aspects of modeling
TSN standards in a component model with timing analysis perspective. However, the
presented TSN timing model in [19] and the timing model extraction in [24] are not
expressive enough to include all the timing aspects of TSN. Nevertheless, the complexity
of TSN requires significant automation and optimization in the timing information
extraction and configuration process prior to the end-to-end data-propagation delay
analysis.

3https://opcfoundation.org/about/opc-technologies/opc-ua/

Paper E 199

A recent work [28] discusses preliminary ideas and work-in-progress on extraction
of timing models from TSN-based software architectures. In comparison, we propose
a comprehensive end-to-end timing model and an automated methodology for the
extraction of end-to-end timing models from the software architectures of vehicular
distributed embedded systems, which is complemented by an automotive application
case study. Moreover, our work takes into account the integration and configuration
aspects of the TSN timing models.

10.2.3 End-to-end Timing Models, Timing Analysis and Verifica-
tion

In order to verify the timing requirements of the chains of tasks (SWC at the design
time) and network messages in the distributed embedded systems, end-to-end data-
propagation delays (data age and reaction time delays) are calculated and compared
with the corresponding data age and reaction time constraints. The timing constraints
corresponding to the data age and reaction time delays are part of the timing model
of AUTOSAR standard. The data age delay is the time elapsed between the arrival of
data at the input of the chain and the latest availability of the corresponding data at the
output. Whereas, the reaction time delay corresponds to the earliest availability of the
data at the output of the chain corresponding to the data that just missed the read access
(of the event) at the input of the chain [29, 13].

The data age and reaction time delays in a two-node distributed embedded system
which is modeled based on the conventional task model and with one TSN message are
demonstrated in Figure 10.1. The data flows between the task instances and messages
are indicated by dashed orange arrows in Figure 10.1 to indicate the read and write of
data in the chain.

There are several works that have also presented end-to-end data-propagation delay
analysis based on the conventional task model [14, 30]. The work in [17, 15] considered
the analysis for distributed embedded systems that are based on CAN network. The work
in [31] considers the systems that use Ethernet networks. The works in [14] and [32]
presented the end-to-end data-propagation delay analysis for vehicular applications,
where some of the techniques have been implemented in tools to support component-
based software development, e.g., [17] and [33]. The works in [34, 18] present open
research challenges and their solutions when integrating the timing analysis with model-
based development tools. However, these works only focus on traditional onboard
networks such as CAN without considering TSN.

In the case of TSN, there are several additional features that need to be considered
such as synchronization of the end-stations, and the presence of different shaping
mechanisms for different TSN classes. A recent work in [35] shows that the existing

200 10.3 End-to-end Timing Model

end-to-end data-propagation delay analysis supports the non-scheduled TSN classes,
but it does not support the scheduled traffic in TSN.

The end-to-end data-propagation delay analysis results are typically presented in the
form of tables showing individual response time of each task (SWC) or message and the
data age and reaction time delays. Such information can be used by the system designer
and integrator to refine the software architecture [15]. Automated refinement of the
software architecture according to the analysis results is an open research challenge [5]
that could be beneficial for improving the scalability and efficiency of the model-based
software development for more sophisticated vehicular embedded systems.

Figure 10.1. Demonstration of data age and reaction time delays.

10.3 End-to-end Timing Model

In this paper, we consider the end-to-end timing model that captures the timing infor-
mation from the software architecture of TSN in the distributed embedded systems.
Such a model is a necessary input for the analysis techniques and tools to verify the
timing behavior of the software architecture. The system model consists of two or more
end-stations (or nodes), denoted by E, and at least one TSN network, denoted by N as
shown in Eq. (10.1):

S := ⟨E,N⟩ (10.1)

The set of networks in the system model is defined by Eq. (10.2) as follows:

Paper E 201

N := {N1, ...,N|N|} (10.2)

The networks connect end-stations to each other. The overall set of end-stations in
the system model is denoted by E, as shown in Eq. (10.3):

E := {E1, ...,E|E|} (10.3)

Various components of the end-to-end timing are discussed in the following subsections.

10.3.1 End-station Timing Model
The system model considers single-core end-stations similar to the model in [19]. In
such a system, the computation and storage resources need to be shared between the
SWCs in an isolated manner. A set of SWCs contributing to a software functionality
are isolated in an application within the end-station.

The end-station consists of one or more applications as shown in Eq. (10.4). The
application provides spacial and temporal isolation of the software functionality. In
other words, the applications are isolated in terms of allocated time for execution, and
also allocated memory.

Ei := {Ai1, ..., Ai|Ei|} (10.4)

Above, i indicates the end-station ID that the application belongs to. |Ei| is the
total number of applications in the end-station. Aij specifies the application j of the
end-station i. Besides, the criticality level of each application is denoted by Cij . Each
application includes one or more tasks as shown in Eq. (10.5).

Aij :=
〈
{τij1, ..., τij|Aij |}, Cij

〉
(10.5)

A task, denoted by τijk, has the attributes as shown in Eq. (10.6):

τijk := ⟨Cijk, Tijk, Oijk, Pijk, Jijk, Bijk, Rijk, Dijk⟩ (10.6)

where k is the ID of the task. The attributes of a task are specified as follows. Cijk

presents the worst-case execution time of the task, Tijk denotes the period, and Oijk

represents the offset. Moreover, Pijk is the priority, Jijk is the release jitter, and Bijk is
the blocking time experienced by the task. Finally, Rijk denotes the worst-case response
time and Dijk presents the deadline of the task. Note that we consider a one-to-one
mapping between a SWC (a design-time entity) in the component model and a task
(run-time entity) in an end-station in the end-to-end timing model.

202 10.3 End-to-end Timing Model

10.3.2 TSN Network Timing Model
The properties of the network Ni are as follows.

Ni := ⟨si,Li, Ii,Mi, Slope, Preemption⟩ (10.7)

where, si is the network speed. Li is the set of links connecting the end-stations to TSN
switches and the TSN switches to each other. Ii indicates TSN classes through which
the messages are communicated. The set Mi holds the TSN network’s messages. The
available TSN classes are shown in Eq. (10.8).

Ii = {ST,AV B,BE} (10.8)

where, ST is the highest priority traffic (Scheduled Traffic) which is scheduled offline
with offsets. The class AVB (Audio-Video Bridging) associates multiple priorities (up
to maximum 8 priorities) to the TSN port’s queues which undergo the CBS mechanism.
In AVB class, priorities are specified in alphabetical order and can be assigned to all the
egress queues. For example, class A has a higher priority than class B. Class BE is the
lowest priority class (Best-effort) which often does not have any timing requirements.
Each queue in TSN port can be set to operate under only one of these classes.

A message belonging to the set of messages Mi is denoted by mij , where i shows
the ID of the network the message belongs to and j is the ID of the message within that
network. The definition of the message in the end-to-end timing model maps to the
same entity in the component model.

mij := ⟨Xij , Cij , Pij , Sizeij , Tij ,Lij , Jij , Bij , Rij ,Oij , Dij⟩ (10.9)

where, Xij is the transmission mode which can be periodic or sporadic. Cij is the worst-
case transmission time, Pij is the priority, and Sizeij is the payload size. The period
is shown by Tij . In the case of sporadic transmission, Tij represents the minimum
inter-arrival time between any two instances of the message. The set of links in the route
of the message is shown by Lij . The release jitter is shown by Jij and Bij denotes
the blocking time which contributes to calculating the response time shown by Rij .
Moreover, Oij is the offset of the message in case the priority of the message is ST ,
and finally, Dij represents the deadline of the message.

The set of slopes denoted by Slope holds the set of idle slopes for each AVB
port queue connected to a link in the network (Li). Slope values are used to allocate
bandwidth for each queue assigned to AVB class. Moreover, the Preemption set holds
the set of flags per link in the network (Li). This list specifies whether the corresponding
link to each member of the set allows pausing transmission of an ongoing frame in favor
of a higher priority frame.

Paper E 203

10.3.3 Transactional Model
For the sake of end-to-end analysis, the timing model follows the transactional model
in [36] to link the instances of the tasks and messages into one transaction. A set of
transactions is indicated by Γ, and a transaction, denoted by Γd, contains a chain of tasks
and messages that allow flow of data within the system. The superscript d indicates the
transaction ID. The chain can either contain several tasks that are within one end-station
or a set of tasks distributed over multiple end-stations that communicate through the
network. An end-station may include one or more of its tasks in the transaction. The
attributes of a transaction are shown in Eq. (10.10).

Γd :=
〈
Chaind, T d, ad, rd, Crd

〉
(10.10)

where the period of the transaction is T d. The notations rd and ad are the transaction’s
reaction time and data age delays that are calculated by the end-to-end data-propagation
delay analysis. Besides, Crd specifies the set of timing constraints on the reaction
time and data age delays of the transaction. Chaind represents the chain of tasks in
transaction Γd as shown in Eq. (10.11):

Chaind := ({τdijα, . . . , τdijΩ},md
i1, {τdnjα, . . . , τdnjΩ}, . . . ,md

ix, {τdkjα, . . . , τdkjΩ})
(10.11)

In Eq. (10.11), the order of tasks from left to right shows the direction of the data flow,
which starts from the initiator task (τdijα), and ends in the terminator task (τdkjΩ) of the
transaction.

A transaction can comprise of a set of tasks of one end-station. In such a case, this
end-station is assumed to be initiator and terminator of the transaction. Moreover, a
transaction may comprise of tasks that are located on different end-stations, then two
adjoining tasks in the transaction belonging to two different end-stations communicate
via network messages. All the tasks in the transaction that belong to the transaction’s
initiator end-station (Ei) are specified at the beginning of the transaction. Similarly, all
the tasks belonging to the transaction’s terminator end-station (Ek) are specified at the
end of the transaction. There can be one or more intermediary end-stations, such as
(En) in Eq. (10.11), that are part of the transaction. The first message in transaction is
sent from the initiator end-station. The message sent from each end-station is placed at
the right hand side of the set of end-station’s tasks in the transaction, immediately after
the source task.

In a TSN network, a message can pass through a set of links, which are specified
by the set (Lij). Since, multiple end-stations can be engaged in a transaction, multiple
messages must be communicated in a transaction. We assume that there can be a set of
x number of messages in the transaction. The terminator end-station receives the last

204 10.4 Proposed End-to-end Timing Model Extraction Methodology

message, by the left most task in its set of tasks. Since, tasks and messages can be used
by multiple transactions the superscript d shows the transaction ID that uses the task or
message. In Eq. (10.11), md

ix denotes the message x that is activated by end-station i,
and is involved in the data flow represented by chain d.

10.3.4 Timing Requirements Model
The timing constraint on the transaction, Crd, defines the maximum allowed value of
the delays, such as data age (Aged), and reaction time (Reacd). These constraints are
shown in Eq. (10.12) for the transaction Γd:

Crd := {Aged, Reacd} (10.12)

10.4 Proposed End-to-end Timing Model Extraction
Methodology

The proposed methodology aims at automated extraction of end-to-end timing informa-
tion from component-based software architectures of TSN-based distributed embedded
systems. The extracted timing information is populated in an instance of the end-to-
end timing model, which is fed as input to the end-to-end data-propagation analysis
engines. An end-user, also known as the software architecture developer/modeler, is
able to interact with the component model directly by manually modeling the software
architecture. The software architecture can be developed using any component model.
As a proof of concept, we use RCM to model the software architecture. The end-user
often has limited or no knowledge about detailed timing information in the system,
but is skilled in designing software architectures using component models. In order to
retrieve the required timing information to analyze and verify the timing requirements
on the software architectures, we propose a timing model extraction methodology that
is conceptualized in Figure 10.2.

The end-user shown in module a in Figure 10.2 develops the software architecture
with the help of the component models as shown in module b in Figure 10.2. Ac-
cordingly, the end-to-end timing model extraction shown in module c in Figure 10.2,
coordinates the extraction of an instance of the end-to-end timing model from the
software architecture. Some information can be implicitly obtained from the software
architecture, hence there is no need for detailed specification of such information by
the software architecture developer. Furthermore, some information includes variable
parameters that can be refined in the software architecture through the configuration
step, as shown by module b2 in Figure 10.2. The configuration step is performed while

Paper E 205

developing the software architecture. Besides, this step could also be iterated by the
system’s integrator/configurator or by the automated configuration tools.

Figure 10.2. Timing model extraction methodology.

The module c1 extracts the end-to-end timing information from the model of
distributed software architecture that is augmented with configuration information. The
sources of end-to-end timing information can be classified as follows:

1. User-defined (User): The properties in this category are extracted from the input
specified by the end-user while developing the software architecture. The end-user
may not have knowledge about the detailed timing aspects of the system.

206 10.4 Proposed End-to-end Timing Model Extraction Methodology

2. Software-architecture-derived (SWA-d): This timing information includes the
properties that are either inherited from other components in the software architecture,
calculated according to the user-defined properties or implicitly initialized based on
other properties set by other sources.

3. Configurable (Conf.): This category holds the properties obtained from the software
architecture, which are configured according to some logical constraints, and algo-
rithms for the sake of optimizing timing performance of the system. Such parameters
could also be defined by system experts based on their knowledge of the system
requirements, i.e., system configurators or integrators.

4. Analysis-derived (Analysis): The values of the properties in this category are ob-
tained by performing various analyses, e.g., response-time analysis of individual end-
stations, response-time analysis of TSN network, and end-to-end data-propagation
analysis.

In the end-to-end timing model extraction step, module c1 in Figure 10.2, the
properties obtained from various sources in module b, i.e., the software architecture
developer, software architecture and configurators, are mapped to the parameters in the
proposed end-to-end timing model as shown in Table 10.1. In the next subsections, we
explain the end-to-end timing model specification for each entity, as shown in modules
c2, c3, c4 and c5 of Figure 10.2.

Finally, the extracted end-to-end timing model is fed into the end-to-end timing
analysis as shown in module d in Figure 10.2. Furthermore, under the procedures in
module d1 and d2 in Figure 10.2 the response times of the tasks and messages, and
subsequently the end-to-end delays, i.e., data age and reaction time delays are calculated
under module d3 in Figure 10.2. Subsequently, the results of the end-to-end timing
analysis are propagated back to the distributed software architecture model.

10.4.1 Specification of End-station Timing Information
In this step, each extracted property from the node component is specified to the
associating entity, namely end-station in the proposed end-to-end timing model.

The software architecture developer (end-user) designs the software architecture’s
hierarchy, which includes the connections between the end-stations and the arrangement
of the SWCs within an end-station. Therefore, an application (Aij) and assignment
of the tasks to each application is done by the software architecture developer. The
criticality level (Cij) of each application is associated to the priority of the tasks included
in the application therefore the criticality level of the application is derived from the
software architecture according to the priority of the tasks included in this application.

Paper E 207

The parameters of the end-station that can be set directly by the end-user include
the worst-case execution time (Cijk) and the task priority (Pijk). These user-defined
parameters can be further used for obtaining the rest of the parameters in the classes
software-architecture-derived, configurable and analysis-derived.

In case of considering implicit deadlines in the system, the deadline of the task (Dijk)
is equal to the task’s period. As a result, deadline value is derived from the software
architecture. The deadline can also be assigned according to the system timing informa-
tion after performing the end-to-end timing analysis engines. Therefore, the deadline
parameter can be also considered as configurable parameter.

Task’s period (Tijk) assignment is dependent on whether the task is independently
or dependently triggered. If the task is independently triggered, then the task’s period
is user-defined. If the task is dependently triggered, the period of the task is inherited
from its predecessor entity (task or message), which triggers the task.

Task’s offset (Oijk) is defined according to the pseudo code in Algorithm 1. The
offset of a task is a configurable property in case the task is sending/receiving a message
through the ST class in TSN. If the task is not connected to the network, task offset
is derived from the software architecture. Task offset influences the quality of service
of the system. The offsets can be defined in a manner to reduce the end-to-end delays
(age and reaction) of the transactions. Besides, there are various other algorithms in
literature which consider different optimization criteria for setting offsets of the tasks in
distributed systems [37].

Finally, the release jitter (Jijk), blocking (Bijk) and response time (Rijk) of the
task are retrieved from timing analysis techniques and corresponding engines, such
as [38].

10.4.2 Specification of Network Timing Information
In case of the network, the network speed (si), set of links (Li) and the available TSN
classes (Ii) are properties that are dependent on the design of the network within the
software architecture.

The set of idle slopes (e.g. slopeA and slopeB) can be chosen simply by globally
assigning a value that applies to all the links in the TSN network, or it can be individually
assigned for all the links that use AVB traffic, e.g., according to the load of AVB queues
on each of the links. Consequently, the configuration of the idle slopes requires to
deal with a trade-off between the simplicity of configuring the network versus the
performance achieved by the configuration of the network.

Finally, the Preemption is the last configurable parameter set which can be en-
abled/disabled to optimize the utilization of the links by the lower priority messages [39].
The pseudo code in Algorithm 2 shows the strategy to define the idle slopes and the

208 10.4 Proposed End-to-end Timing Model Extraction Methodology

Algorithm 1 Specifying task offset.
for each Γd ∈ Γ do

for each τdijk ∈ Γd do
if τdijk ∈ initiator Ei then

if τdijk.Oijk is configurable then
τdijk.Oijk is manually set or automatically optimized.
ST class is used.

end
else if τdijk.Oijk is SWA-d then

No offset is needed for the task.
Release the task at time 0.
A non-ST class is used.

end
end
else if τdijk ∈ terminator Ei then

if τdijk receives ST messages then
τdijk.Oijk manually set or automatically optimized according to the
received message’s offset at its last link.

end
else if τdijk receives non-ST messages then

No offset is needed for the task. Release the task at time 0.
end

end
end

end

Preemption set on the TSN links.
We assume that TSN messages inherit properties such as transmission mode (Xij),

period (Tij) (for Event triggered chains) and priority (Pij) from the message’s sender
task in the transmitter end-station. The deadline of the message (Dij) is assigned
implicitly equal to its period. The deadline of the messages can be configured according
to the same assumption for the tasks’ deadline. The payload size (Sizeij) of the message
is derived from the software architecture since it is calculated based on the payload
size and the network speed. The worst-case transmission time (Cij) of the message is
derived from the software architecture based on payload size (Sizeij) of the message,
and network speed (si).

The set of links that the message passes from the transmitter end-station to reach

Paper E 209

the receiver end-station, denoted by Lij , are derived from the software architecture.
In some cases, there is only one route that delivers the message to the destination
end-station, therefore it is possible for the software architecture developer to specify
the routes manually. However, in many cases, there are more than one route from the
transmitter end-station to the destination end-station. Consequently, the set of links
that the message traverses can be configured to optimize the routing of the message.
For example, some works define routes simply based on the shortest path [40]. On the
other hand, TSN messages can also be re-routed with respect to the potential failure of
the links [41] or according to the load of each traffic class in the network, i.e, ST or
AVB [42]. Hence, the set of routes (Lij) is also specified as a configurable parameter.

As the pseudo code in Algorithm 3 indicates, the message offsets per link, denoted
by the set Oij , are defined according to the priority of the message. If the message
is assigned to class ST , there is a set of offsets per links between the source to the
destination of the message. This set can be configured based on different optimization
approaches. For instance, the optimization algorithm presented in [40] schedules the ST
traffic in a way to reduce the end-to-end delay in the non-ST traffic. The optimization
approaches for scheduling the ST traffic can be found in a recent survey [43]. If the
message is not ST , the set of offsets per link (Oij) will not be used and contains all
zeroes.

Algorithm 2 Specifying slope and preemption.
if simple link setup is desired then

Set the idle slopes and preemption GLOBALLY.
end
else if optimized link setup is desired then

Set the idle slopes and preemption PER LINK.
end

10.4.3 Specification of Transaction Timing Information
The transactions are specified by the software architecture developer in order to analyze
a chain of tasks and messages (Chaind) in the system. Tasks in a transaction can be
triggered in two modes, i.e., “independent” or “dependent”. Independently triggered
tasks are activated based on their individual clocks or trigger sources, whereas depen-
dently triggered tasks are activated by their predecessor tasks. The trigger mode for
the messages are different depending on the TSN class defined for the message. If
the message is ST , it is triggered independently based on static offsets defined for it
per link specified in its route to the destination end-station. In case of the dependent

210 10.5 Evaluation on a Vehicular Industrial Use-case

trigger mode, the message is triggered right after the execution of its predecessor task
is finished. Messages assigned to non-ST classes, such as AVB or BE, are activated
dependently.

The transaction period (T d) is calculated by finding the Least Common Multiple
(LCM) of the periods of all tasks within the transaction.

10.4.4 Specification of Timing Requirements

All the timing constraints in the transaction, denoted by Crd, and end-to-end deadline
can be either specified by the software architecture developer when defining the transac-
tion; or they can be configured according to the network/system analysis. The reaction
time (rd) and data age (ad) delays of the transaction d are calculated by the end-to-end
data-propagation delay analysis.

Algorithm 3 Specifying message offsets.
if mij .Pij is ST then

Message offset (mij .Oij) is configurable.
Optimize message offsets per link.

end
else if mij .Pij is not ST then

SWA-d mode.
Message has no offset.

end

10.5 Evaluation on a Vehicular Industrial Use-case

The end-to-end timing model extraction methodology presented in the previous section
is implemented as a proof of concept in the Rubus-ICE tool suite. In this section, we
take advantage of a real vehicular use-case to validate the applicability of the proposed
end-to-end timing model extraction methodology. For the sake of evaluations, we
first model a software architecture of a distributed embedded system, consisting of a
set of transactions, in RCM. Then we extract the end-to-end timing model from the
software architecture in Rubus-ICE. Using the extracted timing model, we perform
the end-to-end data-propagation delay analysis of the software architecture using the
implemented analysis in Rubus-ICE [35] and discuss the analysis results.

Paper E 211

10.5.1 Use-case Setup

The network topology in the use-case consists of nine end-station that are interconnected
via three TSN switches as depicted in Figure 10.3. In the topology, all the end-stations
are capable of generating TSN traffic, whereas HU and AVSink only receive TSN
traffic from the other end-stations. The set of transactions and network traffic in this
use-case are presented in Table 10.2. In summary, there are a set of 10 distributed chains
(transactions). Each transaction includes tasks from two different end-stations and one
message between the end-stations. The initiator end-station has only one task that sends
the message to the network. The transaction terminator end-station includes maximum
two tasks. On the receiver’s side, the first task receives the TSN message and activates
the second task in the receiver end-station. We assume that all tasks in an end-station
belong to the same application.

The transactions 1 to 4 are using ST class and the transactions 5 to 10 are using
BE class in the network. The offset of the sender tasks in transactions 1 to 4 are set to
the default value which is 0. Accordingly, the messages transmitted from these tasks are
assigned to ST class. Finally, the idle slopes are set to 0 for all the links since the AVB
classes are not used in the use-case. The reaction time (Reacd) and data age (Aged)
constraints on all the transactions are subsequently 70 ms and 45 ms. These constraints
are specified by expert integrators from the industry (providers of the use-case).

Figure 10.3. Use-case from the vehicular domain.

212 10.6 Conclusions

10.5.2 Modeled Use-case in Rubus-ICE
The system-level software architecture of the use-case modeled with RCM is depicted
in Figure 10.4. The system-level software architecture consists of nine node models that
correspond to the nine end-stations. All the nodes are connected to one TSN network
model, as shown in Figure 10.4. In the internal model of the TSN network as shown in
Figure 10.5, the flow from all the sender nodes are either towards HU or AVSink (the
only sink nodes within the system).

The internal software architecture of each node is depicted in Figure 10.6, where the
RCM representation of the set of SWCs within each node is shown by yellow compo-
nents. For example, the software architecture of the Camera node consists of two SWC,
where SWC1 in the Camera node that is used in transaction 3 (represented by τ39,1,1 in
the end-to-end timing model) has period of 10 ms and sends an ST message with the
priority of 2. Besides, SWC2 in the Camera node is used in transaction 5 (represented
by τ59,1,2 in the end-to-end timing model) and has a lower priority than SWC1 (priority
1). The period of SWC2 is 20 ms. Transaction 3 is initiated from the SWC1 (τ39,1,1)
in the Camera node and is terminated at the SWC2 in the HU node (τ37,1,2), which
has the priority of 4. The terminator task of the transaction (τ37,1,2) is triggered by the
SWC1 in the HU node (τ37,1,1). As a result, the terminator task inherits the period of its
predecessor task, namely SWC1 in the HU node (τ37,1,1).

10.5.3 End-to-end Response-Time Analysis Results
Table 10.3 presents the results of the end-to-end data-propagation delay analysis. The
results include reaction time and data age delays of the transactions as well as response
times of the network messages. For instance, transaction 3 contains an ST message with
the response time of 0.025 ms. The data age and reaction time delays of transaction 3
are subsequently 20.100 and 30.100 ms. Transaction 5 is also initiated at the Camera
node, though from a different SWC, namely (SWC2), and it is terminated at SWC4 in
HU. Transaction 5 uses the class BE of the TSN network. The calculated response time
of the message in Transaction 5 is 0.153 ms. Besides, the data age and reaction time
delays of transaction 5 are subsequently 40.300 and 60.300 ms. As the specified data
age and reaction time constraints on all transactions are 70 ms and 45 ms respectively,
it is evident from Table 10.3 that all transactions meet their specified timing constraints.

10.6 Conclusions
In this paper, we presented a detailed end-to-end timing model of vehicular distributed
embedded systems that utilize Time-Sensitive Networking (TSN) standards. This

Paper E 213

Figure 10.4. System-level software architecture of the use-case.

Figure 10.5. The TSN network model of the use-case.

timing model is required as a necessary input for the timing analysis engines. We
also proposed a methodology for automated extraction of timing information for the
instances of this model from the software architectures of the systems. Hence, the
proposed methodology facilitates automated end-to-end data-propagation delay analysis
of the software architectures of these systems. As a proof-of-concept, we implemented

214 10.6 Conclusions

Figure 10.6. Software architecture of the nodes along with the timing constraints specified on ten
distributed chains in RCM.

the end-to-end timing model and the model extraction methodology in an industrial tool
suite, namely Rubus-ICE. We evaluated the proposed methodology using a vehicular
industrial use-case. In this regard, we modelled the software architecture of the use
case with an industrial component model (RCM) and performed its timing analysis
using the proposed methodology in Rubus-ICE tool suite. The results demonstrate
the applicability of the proposed model and methodology. The proposed methodology
can be adapted for other component models that use the principles of model- and
component-based software development and use the pipe-and-filter communication
among software components such as AUTOSAR. One future research direction is to
consider back-propagation of the analysis results for refining the software architecture
and re-configuring the models of TSN networks.

Acknowledgment: This work is supported by the Swedish Governmental Agency

Paper E 215

for Innovation Systems (VINNOVA) via the DESTINE, INTERCONNECT and PROV-
IDENT projects and by the Swedish Knowledge Foundation via the projects DPAC
& HERO. We would like to thank all industrial partners, in particular HIAB, Arcticus
Systems and Volvo CE.

216 10.6 Conclusions

Table 10.1. Extracting the proposed timing model for TSN.

Component Proposed Tim-
ing Model (c,
Figure 10.2)

Proposed
Parameters

User SWA-d Conf. Analysis

Node End-station (c2,
Figure 10.2)

Aij ✓

Cij ✓
SWC Task (c2, Figure

10.2)
Cijk ✓

Tijk ✓ ✓
Oijk ✓ ✓
Pijk ✓
Jijk ✓
Bijk ✓
Rijk ✓
Dijk ✓ ✓

Network Network (c3,
Figure 10.2)

si ✓

Li ✓
Ii ✓
Slope ✓ ✓
Preemption ✓ ✓

Message Message (c3,
Figure 10.2)

Xij ✓

Cij ✓
Pij ✓
Sizeij ✓
Tij ✓
Lij ✓ ✓ ✓
Jij ✓
Bij ✓
Rij ✓
Oij ✓ ✓
Dijk ✓ ✓

SWC Chain Transaction (c4,
Figure 10.2)

Γd ✓

Chaind ✓
T d ✓

Requirement Requirement
(c5, Figure 10.2)

Crd ✓ ✓

ad ✓
rd ✓

Paper E 217

Table 10.2. Evaluation settings for the use-case based on the distributed chains (transactions). All
times are in milliseconds.

Γ
d

So
ur

ce
(E

i)
So

ur
ce

ta
sk

s
(τ

d ij
k
):

[i
d,
P
ij
k
,C

ij
k
,T

ij
k
]

M
es

sa
ge

(m
d j
k
):

[i
d,
P
j
k
,S
iz
e j

k
,T

j
k
,O

r j
k
]

D
es

tin
at

io
n

(E
i)

D
es

tin
at

io
n

ta
sk

s
(τ

d ij
k
):

[i
d,
P
ij
k
,C

ij
k
,T

ij
k
]

Ta
sk

1
Ta

sk
2

Ta
sk

3
1

C
lo

ud
G

at
ew

ay
(3

)
[τ

1 3
,1
,1

,1
,0

.0
5,

10
]

[m
1 1
,1

,S
T,

15
42

,1
0,

0.
03

8]
AV

Si
nk

(8
)

[τ
1 8
,1
,1

,5
,0

.0
5,

10
]

[τ
1 8
,1
,2

,4
,0

.0
5,

10
]

2
R

em
ot

e
C

on
tr

ol
(2

)
[τ

2 2
,1
,1

,3
,0

.0
5,

10
]

[m
2 1
,2

,S
T,

15
42

,1
0,

0.
03

8]
H

U
(7

)
[τ

2 7
,1
,1

,5
,0

.0
5,

10
]

[τ
2 7
,1
,2

,4
,0

.0
5,

10
]

3
C

am
er

a
(9

)
[τ

3 9
,1
,1

,2
,0

.0
5,

10
]

[m
3 1
,3

,S
T,

15
42

,1
0,

0.
01

3]
H

U
(7

)
[τ

3 7
,1
,1

,5
,0

.0
5,

10
]

[τ
3 7
,1
,2

,4
,0

.0
5,

10
]

4
G

M
SL

C
am

er
a

(6
)

[τ
4 6
,1
,1

,1
,0

.0
5,

10
]

[m
4 1
,4

,S
T,

15
42

,1
0,

0.
02

5]
AV

Si
nk

(8
)

[τ
4 8
,1
,1

,5
,0

.0
5,

10
]

[τ
4 8
,1
,2

,4
,0

.0
5,

10
]

5
C

am
er

a
(9

)
[τ

5 9
,1
,2

,1
,0

.0
5,

20
]

[m
5 1
,5

,B
E

,1
54

2,
20

,0
]

AV
Si

nk
(8

)
[τ

5 8
,1
,3

,3
,0

.0
5,

20
]

[τ
5 8
,1
,4

,2
,0

.0
5,

20
]

6
R

em
ot

e
C

on
tr

ol
(2

)
[τ

6 2
,1
,2

,2
,0

.0
5,

10
]

[m
6 1
,6

,B
E

,1
54

2,
10

,0
]

AV
Si

nk
(8

)
[τ

6 8
,1
,3

,3
,0

.0
5,

20
]

[τ
6 8
,1
,4

,2
,0

.0
5,

20
]

7
I/

O
(1

)
[τ

7 1
,1
,1

,1
,0

.0
5,

10
]

[m
7 1
,7

,B
E

,1
54

2,
10

,0
]

AV
Si

nk
(8

)
[τ

7 8
,1
,5

,1
,0

.0
5,

10
]

8
M

ac
hi

ne
C

on
tr

ol
(4

)
[τ

8 4
,1
,1

,1
,0

.0
5,

10
]

[m
8 1
,8

,B
E

,1
54

2,
10

,0
]

AV
Si

nk
(8

)
[τ

8 8
,1
,3

,3
,0

.0
5,

20
]

[τ
8 8
,1
,4

,2
,0

.0
5,

20
]

9
R

em
ot

e
C

on
tr

ol
(2

)
[τ

9 2
,1
,3

,1
,0

.0
5,

10
]

[m
9 1
,9

,B
E

,1
54

2,
10

,0
]

H
U

(7
)

[τ
9 7
,1
,3

,3
,0

.0
5,

10
]

[τ
9 7
,1
,4

,2
,0

.0
5,

10
]

10
H

ig
h-

le
ve

lC
on

tr
ol

(5
)

[τ
1
0

5
,1
,1

,1
,0

.0
5,

10
]

[m
1
0

1
,1
0
,B

E
,1

54
2,

10
,0

]
H

U
(7

)
[τ

1
0

7
,1
,3

,3
,0

.0
5,

10
]

[τ
1
0

7
,1
,5

,1
,0

.0
5,

10
]

218 10.6 Conclusions

Table 10.3. Calculated data age and reaction time delays, and message response times for each
transaction.

Trans. (Γd) Γd.rd (ms) Γd.ad (ms) mij .Rij (ms)
1 30.100 20.100 0.050
2 30.100 20.100 0.050
3 30.100 20.100 0.025
4 30.100 20.100 0.038
5 60.300 40.300 0.153
6 50.300 30.300 0.332
7 20.550 10.550 0.332
8 50.300 30.300 0.178
9 30.300 20.300 0.332

10 30.300 20.300 0.255

Bibliography

[1] L. Lo Bello, R. Mariani, S. Mubeen, S. Saponara. Recent Advances and Trends in
On-Board Embedded and Networked Automotive Systems. IEEE Transactions on
Industrial Informatics, November 2019.

[2] 802.1Q-2022 - IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks. IEEE, 2022.

[3] IEEE. IEEE Std. 802.1Qbv, IEEE Standard for Local and Metropolitan Area
Network–Bridges and Bridged Networks, Amendment 25: Enhancement for Sched-
uled Traffic, 2015.

[4] IEEE. IEEE Std. 802.1Qbu-2016: IEEE Standard for Local and Metropolitan
Area Network–Bridges and Bridged Networks, Bridges and Bridged Networks -
Amendment 26: Frame Preemption, 2016.

[5] M. Ashjaei, L. Lo Bello, M. Daneshtalab, G. Patti, S. Saponara, S. Mubeen. Time-
Sensitive Networking in Automotive Embedded Systems: State-of-the-Art and
Research Opportunities. Journal of Systems Architecture, August 2021.

[6] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da Mota Silveira Neto, Y. Cerqueira
Cavalcanti, S. R. de Lemos Meira. Twenty-Eight Years of Component-Based
Software Engineering. Journal of Systems & Software, 2016.

[7] T. A. Henzinger, J. Sifakis. The Embedded Systems Design Challenge. In 14th
International Symposium on Formal Methods, 2006.

[8] AUTOSAR Consortium, AUTOSAR Techincal Overview, Release 4.1, Rev.2,
Ver.1.1.0., http://autosar.org.

[9] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback, K. Lundback.
The Rubus Component Model for Resource Constrained Real-Time Systems. In
IEEE Symposium on Industrial Embedded Systems, 2008.

219

220 Bibliography

[10] C. Wolff , L. Krawczyk, R. Höttger, C. Brink, U. Lauschner, D. Fruhner, E.
Kamsties, B. Igel. AMALTHEA — Tailoring Tools to Projects in Automotive
Software Development. In 2015 IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), 2015.

[11] EAST-ADL Domain Model Specification, V2.1.12,. http://www.east-adl.-
info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf.

[12] P.H. Feiler, D.P. Gluch, J.J. Hudak. The Architecture Analysis & Design Language
(AADL): An introduction. Technical report, 2006.

[13] N. Feiertag, K. Richter, J. Nordlander, J. Jonsson. A Compositional Framework for
End-to-end Path Delay Calculation of Automotive Systems under Different path
Semantics. In Workshop on Compositional Theory and Technology for Real-time
Embedded Systems, 2008.

[14] M. Becker, D. Dasari, S. Mubeen, M. Behnam, T. Nolte. End-to-end Timing
Analysis of Cause-Effect Chains in Automotive Embedded Systems. Journal of
Systems Architecture, 2017.

[15] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, K. Lundbäck. Supporting Timing
Analysis of Vehicular Embedded Systems through the Refinement of Timing
Constraints. International Journal on Software and Systems Modeling, 2017.

[16] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, R. Ernst. System-level Per-
formance Analysis - the SymTA/S Approach. Computers and Digital Techniques,
2005.

[17] S. Mubeen, J. Mäki-Turja, M. Sjödin. Support for End-to-End Response-Time
and Delay Analysis in the Industrial Tool Suite: Issues, Experiences and a Case
Study. Computer Science and Information Systems, January 2013.

[18] S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander, K. Lundbäck. Provisioning
of Predictable Embedded Software in the Vehicle Industry: The Rubus Approach.
In 4th International Workshop on Software Engineering Research and Industry
Practice, 2017.

[19] S. Mubeen, M. Ashjaei, M. Sjödin. Holistic Modeling of Time Sensitive Network-
ing in Component-based Vehicular Embedded Systems. In 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). IEEE,
2019.

Bibliography 221

[20] A. Arestova, M. Martin, K-S J. Hielscher, R. German. A Service-oriented Real-
time Communication Scheme for AUTOSAR Adaptive using OPC UA and Time-
sensitive Networking. Sensors, 2021.

[21] A. Bucaioni, L. Addazi, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen, M.
Sjödin. MoVES: A Model-Driven Methodology for Vehicular Embedded Systems.
IEEE Access, 2018.

[22] A. Bucaioni, M. Becker, J. Lundbäck, H. Mackamul. From AMALTHEA to RCM
and Back: a Practical Architectural Mapping Scheme. In 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), 2020.

[23] A. Bucaioni, V. Dimic, H. Lönn, M. Gålnander, J. Lundbäck. Transferring a
Model-based Development Methodology to the Automotive Industry. In 22nd
IEEE International Conference on Industrial Technology, 2021.

[24] S. Mubeen, M. Gålnander, J. Lundbäck, K. Lundbäck. Extracting Timing Models
from Component-based Multi-criticality Vehicular Embedded Systems. In 15th
International Conference on Information Technology : New Generations, 2018.

[25] ISO 11898-1. Road Vehicles–Interchange of Digital Information–Controller Area
Network (CAN) for High-speed Communication, ISO Standard-11898, November
1993.

[26] CANopen Application Layer and Communication Profile. CiA Draft Standard 301.
Version 4.02. February 13, 2002. http://www.can-cia.org/index.php?id=440.

[27] AUTOSAR Requirements on Communication, Release 4.2.1. www.autosar.
org, accessed on March 15, 2019.

[28] B. Houtan, M-O. Aybek, M. Ashjaei, M. Daneshtalab, M. Sjödin, S. Mubeen. End-
to-end Timing Model Extraction from TSN-Aware Distributed Vehicle Software.
In 2022 48th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2022.

[29] F. Stappert, J. Å. Jönsson, J. Mottok, R. Johansson. A Design Framework for
End-To-End Timing Constrained Automotive Applications. In Embedded Real
Time Software and Systems Conference, 2010.

[30] M. Becker, Matthias, D. Dasari, S. Mubeen, M. Behnam, T. Nolte. Synthesizing
Job-level Dependencies for Automotive Multi-rate Effect Chains. In 2016 IEEE
22nd International Conference on Embedded and Real-Time Computing Systems
and Applications, 2016.

222 Bibliography

[31] M. Ashjaei, N. Khalilzad, S. Mubeen, M. Behnam, I. Sander, L. Almeida, T.
Nolte. Designing End-to-end Resource Reservations in Predictable Distributed
Embedded Systems. Real-Time Sys., 2017.

[32] S. Mubeen, J. Mäki-Turja, M. Sjödin. Communications-Oriented Development of
Component-Based Vehicular Distributed Real-Time Embedded Systems. Journal
of Systems Architecture, 2014.

[33] M. Ashjaei, S. Mubeen, J. Lundbäck, M. Gålnander, K-L. Lundbäck, T. Nolte.
Modeling and Timing Analysis of Vehicle Functions Distributed over Switched
Ethernet. In 43rd Annual Conference of the IEEE Industrial Electronics Society,
2017.

[34] S. Mubeen, M. Gålnander, A. Bucaioni, J. Lundbäck, K-L. Lundbäck. Timing
Verification of Component-based Vehicle Software with Rubus-ICE: End-user’s
Experience. In IEEE/ACM 1st International Workshop on Software Qualities and
their Dependencies, 2018.

[35] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, S. Mubeen. Supporting
End-to-end Data-propagation Delay Analysis for TSN Networks. Technical report,
2021.

[36] J.C. Palencia, M. Gonzalez Harbour. Schedulability Analysis for Tasks with Static
and Dynamic Offsets. Proceedings 19th IEEE Real-Time Systems Symposium,
1998.

[37] A. Minaeva, Z. Hanzálek. Survey on Periodic Scheduling for Time-Triggered
Hard Real-Time Systems. Association for Computing Machinery, 2022.

[38] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, S. Afshar, S. Mubeen. Schedu-
lability Analysis of Best-effort Traffic in TSN Networks. In 26th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation, 2021.

[39] J. Cao, M. Ashjaei, P. J. Cuijpers, R. J. Bril, J. Lukkien. Independent Yet Tight
WCRT Analysis for Individual Priority Classes in Ethernet AVB. In International
Workshop on Factory Communication Systems, 2018.

[40] Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad
Mubeen. Synthesising Schedules to Improve QoS of Best-effort Traffic in TSN
Networks. In 29th International Conference on Real-time Networks and Systems,
2021.

[41] F. Pozo, G. Rodriguez-Navas, H. Hansson. Schedule Reparability: Enhancing
Time-triggered Network Recovery upon Link Failures. In IEEE International
Conference on Embedded and Real-time Computing Systems and Applications,
2018.

[42] V. Gavriluţ, L. Zhao, M. L. Raagaard, P. Pop. AVB-aware Routing and Scheduling
of Time-triggered Traffic for TSN. IEEE Access, 2018.

[43] S. Lindner M. Menth T. Stüber, L. Osswald. A Survey of Scheduling in Time-
Sensitive Networking (TSN). arXiv preprint arXiv:2211.10954, 2022.

Chapter 11

Paper F:
Bandwidth Reservation Analysis
for Schedulability of AVB Traffic
in TSN

Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin, Saad Mubeen.
In the 25th IEEE International Conference on Industrial Technology.

224

Abstract

In this paper, we present a bandwidth reservation analysis for Audio-Video Bridg-
ing (AVB) traffic in the Time-Sensitive Networking (TSN) standards. The proposed
analysis is based on the existing worst-case response-time analysis and can be used
to calculate the minimum required bandwidth for guaranteeing the schedulability of
messages in AVB classes. The proposed analysis allocates per-link bandwidth to AVB
traffic that is sufficient to ensure its schedulability when a combination of the Credit-
Based Shaper and Time-Aware Shaper mechanisms are used. We evaluate the proposed
analysis using an automotive industrial use case. We evaluate the schedulability of
AVB traffic by comparing the proposed analysis with the utilization-based bandwidth
reservation as recommended by the TSN standards.

226 11.1 Introduction

11.1 Introduction

The set of Time-Sensitive Networking (TSN) [1] standards introduce various mech-
anisms, such as time synchronization, Time-Aware shaper (TAS), and Credit-Based
shaper (CBS) to switched Ethernet. The co-existence of these mechanisms facilitates
the network communication design for highly predictable distributed embedded systems.
However, combining these mechanisms may introduce complications in both design
and analysis. Besides, a significant challenge in realizing such systems is guaranteeing
the timing requirements of traffic. To resolve this, there are system and network design
recommendations for using the TSN standards. However, the recommendations are
generalized and do not specifically address all use cases of the standards. In this paper,
we focus on the recommendations of the standards for the operation of CBS [1] for
Audio-Video Bridging (AVB) classes. Particularly, the standards suggest setting up
the credit of the AVB classes according to the available bandwidth in each class [1].
Previous works, such as [2] and [3], proved that the bandwidth allocation strategy based
on the standard recommendation results in under-reservation of the bandwidth for AVB
traffic which limits AVB traffic to the extent that they miss their deadlines. Hence, this
set of works proposes techniques for calculating the minimum required bandwidth for
AVB traffic, while guaranteeing the schedulability of all traffic in these classes. The
works show that the bandwidth allocation recommended by the standard is not enough
for scheduling the AVB traffic in the network.

The existing literature addresses the aforementioned problem with different analysis
approaches. For example, worst-case Response Time Analysis (RTA) is used in [2] to
calculate the minimum required bandwidth for CBS in a non-preemptive combination
of TAS and CBS, i.e., in AVB ST[4]. AVB ST was proposed before the standard
amendments on the support for Scheduled Traffic (ST), thus the model and credit
utilization were different than the standards. In addition, there are a few works that use
eligible intervals, such as [3] and [5], to analyze the bandwidth reservation for TSN
networks. However, these works are limited to a single-switch architecture and the
effect of ST traffic is neglected.

As a result, to the best of our knowledge, there is no solution to analyze the required
bandwidth for AVB traffic classes in TSN networks considering features such as multi-
hop architecture, ST traffic effects, and preemption support of ST over lower-priority
traffic classes. Therefore, in this paper, we fill this gap by proposing a Bandwidth
Reservation Analysis (BRA) for calculating the lowest value of the bandwidth for
classes A and B such that they become schedulable. The solution is based on the
existing RTA [6] to consider the impact of ST traffic, multi-hop architecture, and
preemption of ST on the lower-priority traffic.

Paper F 227

11.2 Background and Related Work

11.2.1 Time-Sensitive Networking (TSN) Standards
TAS as depicted in Figure 11.1 uses the time-stamped gate states defined in the Gate
Control List (GCL) for deterministic transmission of ST. The rows of GCL indicate
the time and order of enabling the gates connected to the queues in the TSN switch.
Figure 11.1 shows a simplified example of TSN egress port with four queues, however,
there can be a maximum of eight queues that can be controlled by eight-bit rows of GCL.
ST queues preempt the transmission of lower-priority traffic. CBS reserves bandwidth
for the AVB classes while it also limits the AVB traffic to interfere with traffic in the
lower-priority classes. CBS can be enabled for all of the eight available queues per port
of a TSN switch in the standards [1], thus it can include maximum eight classes. It is

Figure 11.1. TSN egress port.

very common to use only classes A and B in analysis and practice. In such examples in
the presence of TAS mechanism, the ST class represents the higher-priority preemptive
class, class A represents the higher-priority AVB class, class B represents the medium
priority AVB class, and Best-Effort (BE) traffic represents the lowest priority traffic
class. Each AVB class has a specific credit associated to it. Transmission of traffic in
these classes is determined based on the credit states explained in the following:

• Positive credit: message in an AVB class starts its transmission when it is ready

228 11.3 System Model

for transmission and the credit of the class is greater than or equal to zero. If at
the same time there are other active sources of interference and blocking using
the bandwidth, the message must wait. The credit increases while this message
waits for available bandwidth.

• Frozen credit: ST message preempts AVB traffic. During preemption, the credit
freezes until the transmission of the ST message is completed.

• Negative credit: the credit decreases while a message in this class uses the
bandwidth. If a message is activated while the credit is below zero, it will not
be transmitted. The message must wait until the credit is replenished to zero, or
goes above zero, i.e., until the bandwidth is free for its transmission. When there
are no messages ready for transmission in the class and the credit is negative, the
credit increases until reaches zero.

11.2.2 Related Works
The work in [2] derives minimum credits for schedulability of the classes A and B by
taking advantage of RTA. The system model in this work is based on the definition of
protected windows in AVB ST as given in [4]. AVB ST did not support ST preemption
on the lower-priority traffic. Furthermore, the work in [3] proposed a strategy to set a
lower bound of credits for the schedulability of AVB traffic. However, the work still
lacks support for all existing TSN mechanisms, such as preemption and ST transmission.
Also, the work considers only a single-switch architecture. Furthermore, the work in [5]
extends the aforementioned approach and proposes two new metrics as the relation
between the credits of different AVB classes in a single switch system model. In [7],
the authors discuss that the over-reservation of bandwidth does not necessarily lead to
lower end-to-end delays and/or schedulability of streams. As it can be seen from above
there are very few works addressing the problem of AVB credit allocation to guarantee
the schedulability of AVB traffic in TSN networks.

In this paper, we consider the definitions of the TAS, CBS and strict priority mecha-
nism according to the TSN standards [1] and the latest improvements of RTA in [6, 8].
We mathematically propose a solution to find the lowest value for credits of classes A
and B such that they become schedulable. Such a solution was missing in the state of
the art which can help the designers to set the credits for AVB traffic classes.

11.3 System Model
In this paper, we consider TSN classes ST, AVB (A and B), and BE. The total set of links
in the network topology is represented as L, and l denotes the ID of a link within the

Paper F 229

set. A link represents a one-directional connection between an end station to a switch or
a switch to another switch. Network utilization of each traffic class on a specific link is
shown by Uz,l, where z denotes the traffic class. The notations α+

z,l and α−
z,l are the idle

slope and send slope values associated with the link l and z points to an AVB class. The
send slope is the rate at which the credit of an AVB class is consumed, and the idle slope
is the rate at which the credit increases. R is the network capacity, which is the number
of bits transmitted in a unit of time (Mbps). The available bandwidth ratio on link l is
denoted by BWl. The sum of the idle slope and send slope of each AVB class equals
the available bandwidth ratio (α+

z,l + α−
z,l = BWl). For example, if credit of class z

is α+
z,l = 0.5, the available bandwidth ratio is BWl = 1, and the network capacity is

R = 100Mbps, then class z can use 50Mbps of the network capacity. Finally, the delay
due to the hardware design of the switch is bounded by γ. The traffic is represented by
a set of messages M, and mi denotes a message within this set.

A message models a stream of data that is transmitted between a source end-station
and a destination end-station and consists of the attributes as shown in the tuple in Eq.
(11.1):

mi :=
〈
Ti, Di, Ci, Pi, Sizei,Li,Oi, J

l
i , RT l

i

〉
. (11.1)

The message mi is periodically activated for transmission with the period Ti. The
deadline of mi is denoted by Di. We consider implicit deadlines, i.e., the deadline of
each message is equal to its period. Besides, on link l in the route of the message, we
can set a local deadline for mi denoted by Dl

i. The deadline of a message is equal to the
summation of all local deadlines of this message. The message priority is represented
by Pi that can obtain a value from the set of classes {ST,A,B,BE}. We consider only
two AVB classes (classes A and B). In this paper, we assume class ST has the highest
priority in TSN. The class ST preempts the traffic in the other lower-priority classes.
AVB and BE are preempted by the ST class (i.e., lower-priority classes are preemptable).
Moreover, express queue is not enabled for AVB and BE thus they cannot preempt their
lower-priority classes (i.e., non-preemptive transmission). The notation Oi represents
the set of offsets of an ST message mi within Li, where Li is the set of all links in the
route of mi from the source end-station to the destination end-station, and Li ⊂ L.

The transmission time of mi is represented by Ci which is calculated based on
the network capacity R and the payload size (Sizei) of the message, according to
((Sizei+OH)∗8)/R. The parameter OH is the size of a TSN (Ethernet) frame header
in Bytes added to the mi’s payload size. The transmission time of OH is denoted by v
in the system model. The fragments of a preempted message obtain an individual TSN
(Ethernet) frame header. According to the IEEE 802.3br standard, a message fragment
that is less than 123 Bytes cannot be preempted. A guard band is a reserved slot
added before the ST schedule slots to prevent any blocking by a lower-priority message.

230 11.4 Response-time Analysis for TSN

This is for the case when a lower-priority message cannot be preempted because it is
activated before a higher-priority message (i.e., ST). The duration of the guard band is
represented by λ. The delay variations in the transmission of the message mi on the
link l is denoted by the queuing jitter J l

i . The worst-case response time of mi of class A
and B on link l is calculated by analysis and represented by RT l

i .

11.4 Response-time Analysis for TSN
This section revisits the existing RTA for classes A and B in TSN, presented in [6],
which is the basis for this paper’s proposed BRA. The sources of interference and
blocking that contribute to the worst-case response time of a message under analysis
include: (1) interference from the messages of the higher-priority traffic (hp); (2) inter-
ference from the messages of the same-priority traffic (sp); and (3) blocking from the
messages of the lower-priority traffic (lp). In this section, a message under analysis is
denoted by mi. A message is schedulable if its worst-case response time (RTi) is less
than its deadline (Di).

11.4.1 Response-time analysis for class A messages
Let mi be the class A message under analysis. mi can experience interference from
higher-priority messages belonging to the ST class (hp), same-priority messages from
class A (sp), and blocking from one of the lower-priority classes B or BE [6].

Higher-priority interference

The ST traffic is scheduled offline using existing scheduling approaches (more details
in [9]). RTA in this paper adapts offset-based analysis in [10] for calculation of pre-
emption of mi by the ST traffic. The set of instances of an ST message mj on link l is
indicated by Ilj and is extracted by their offsets according to Eq. (11.2).

Ilj = {(k − 1)Tj +Ol
j − λ : k = 1..n, n =

Tlcm

Tj
} (11.2)

In the offset-based analysis, all ST messages are included in a transaction, as shown in
the example Figure 11.2. In this example, there are two ST messages, namely mx and
mw. The notation Tlcm is the hyper period of the ST transaction, i.e., the least common
multiple (LCM) of the periods of all ST messages in the transaction. In the example
in Figure 11.2, the Tlcm includes one instance of mx and two instances of mw. The
worst-case interference from the ST traffic on mi is when mi is activated at the same

Paper F 231

Figure 11.2. An example of a transaction [8].

time as an instance of one of the ST messages in the transaction. We call this point
in time a critical instant for mi. There can be several instances of ST messages in the
transaction. Thus there can be several critical instant combinations for the interference
of ST on mi. Critical instant combinations are formed with regards to the activation
pattern of instances of one ST message in the transaction (i.e. mc or critical instant
candidate). Ilc is the set of activation times of the instances of mc within the hyper
period. Eq. (11.3) calculates the phasing of the instances of the ST message mj on link
l denoted by Φl

jc[k] according to the instance k of the critical instant candidate mc.

Φl
jc[k] = (Ol

j − Ilc[k]) mod Tlcm (11.3)

The higher-priority interference received by mi, denoted by W l
c[k](t), includes preemp-

tion by the messages in class ST as shown in Eq. (11.4).

W l
c[k](t) =

∑
∀j∈ST ∧l∈Lj

(⌊
Φl

jc[k]

Tlcm

⌋
+

⌈
t− Φl

jc[k]

Tlcm

⌉)
Cj (11.4)

Similarly, the preemption overheads, denoted by V l
c[k](t), are calculated as shown in Eq.

(11.5). For more details on preemption overhead and interference calculations, we refer
the readers to [6].

V l
c[k](t) =

∑
∀j∈ST ∧l∈Lj

(⌊
Φl

jc[k]

Tlcm

⌋
+

⌈
t− Φl

jc[k]

Tlcm

⌉)
v (11.5)

232 11.4 Response-time Analysis for TSN

Same-priority interference and blocking by lower priority

To account for the same-priority interference and the blocking for mi, we follow the
lemma introduced in [6]. Accordingly, the worst-case blocking for mi is caused by
an instance of the lower-priority message that has the maximum transmission time, as
shown in Eq. (11.7), provided that the other same-priority messages interfere with mi

with the inflation factor (1 +
α−

A,l

α+
A,l

). The same-priority interference on message mi,

denoted by ISAl
i, is calculated according to Eq. (11.6).

ISAl
i =

∑
∀mj∈sp(mi),i̸=j

∧ l∈Lj

(
1 +

α−
A,l

α+
A,l

)
Cj (11.6)

where, the blocking on mi by the lower-priority messages on link l, denoted by BBl
i,

is obtained by selecting the transmission time of a lower-priority message with the
maximum frame size, as shown in Eq. (11.7).

BBl
i = max

∀mj∈lp(mi)
∧ l∈Lj

{Cj} (11.7)

Worst-case response time of class A

The worst-case response time of mi on link l according to a critical instant candidate
mc is derived by the iterative equation Eq. (11.8).

RT
l,(x+1)
ic[k] = W l

c[k](RT
l,(x)
ic[k]) + V l

c[k](RT
l,(x)
ic[k]) +BBl

i + ISAl
i + Ci (11.8)

The worst-case response time is denoted by RT l
ic[k], where the index of the current and

the next iterations are specified by (x) and (x+ 1) superscripts, respectively (iteration
starts at x = 0). The iteration stops when RT l

ic[k] converges to a single value, i.e.,

RT
l,(x)
ic[k] = RT

l,(x+1)
ic[k] . Additionally, the analysis stops when the last calculated RT l

ic[k]

is higher than the deadline of mi. Finally, the worst-case response time of mi on link l
is the maximum among all the response times calculated for this message based on all
the critical instant combinations, as shown in Eq. (11.9).

RT l
i = max

∀mc∈{classST}
∧∀k∈Ilc

{RT l
ic[k]} (11.9)

Paper F 233

11.4.2 Response-time analysis for class B messages
Now let mi be the class B message under analysis. The worst-case response time of
mi occurs when it is interfered by the higher-priority classes (hp), i.e., class ST and
class A; and the other same-priority messages in class B (sp). Moreover, mi receives
worst-case blocking from the lower-priority class BE message [6].

Higher-priority interference

There are two higher-priority classes for class B, which have different types of in-
terference on mi. Firstly, interference from the class ST on class B messages is by
preemption, which is calculated the same way as presented in Section 11.4.1 for class
A. Secondly, the interference by class A happens when mi needs to wait for the higher-
priority messages from class A to finish their transmission. The interference from class
A, denoted by IAl

i(ω
l
ic[k](q)), is calculated according to Eq. (11.10).

IAl
i(ω

l
ic[k](q)) =

∑
∀mj∈classA,i̸=j

∧ l∈Lj

⌊
ωl
ic[k](q) + J l

j

Tj
+ 1

⌋
Cj (11.10)

The interference by the class A messages on the instance q of mi is updated with the
last value of the busy period (ωl

ic[k](q)) which is calculated for this instance according
to the kth instance of mc in class ST. The worst-case response time can be for any of
the q instances of mi, therefore all the q instances must be taken into account. For more
information and the proofs, we refer readers to [6].

Same-priority interference and blocking by lower priority

The same-priority interference of other class B messages on instance q of mi, denoted
by ISBl

i(q), is calculated by Eq. (11.11).

ISBl
i(q) =

∑
∀mj∈sp(mi),i̸=j

∧l∈Lj

(
1 +

α−
B,l

α+
B,l

)⌊
(q − 1)Ti

Tj
+ 1

⌋
.Cj (11.11)

Similar to the analysis for class A (presented in Section 11.4.1), the other messages

of the same-priority interfere with mi by the inflation factor
(
1 +

α−
B,l

α+
B,l

)
, provided

that the largest message with lower priority is considered as the source of blocking.

234 11.4 Response-time Analysis for TSN

Lower-priority blocking on link l is denoted by BBEl
i , as shown in Eq. (11.12).

BBEl
i = max

∀mj∈lp(mi)
∧ l∈Lj

{Cj} (11.12)

Worst-case response time of class B

The worst-case response time of mi in class B is performed in two phases. Firstly, we
are interested in calculating the maximum length of the busy period, and for that, we
need to carry out the analysis on q number of instances of mi. The busy period for the
qth instance of mi according to a critical instant candidate mc is denoted by ωl

ic[k](q)
and is calculated using Eq. (11.13).

ω
l,(x+1)
ic[k] (q) = W l

c[k](ω
l,(x)
ic[k] (q)) + V l

c[k](ω
l,(x)
ic[k] (q))+

IAl
i(ω

l,(x)
ic[k] (q)) +BBEl

i + ISBl
i(q) + (q − 1)Ci

(11.13)

The length of the busy period is updated until Eq. (11.13) converges (i.e., the newly
computed values are equal to the previously computed value according to ω

l,(x)
ic[k] (q) =

ω
l,(x+1)
ic[k] (q)).

In the second phase, the effect of interference by the preemption of the ST class on
the response time of the instance q of mi is taken into account. This phase of analysis,
receives the worst-case busy period from the first phase of RTA, in Eq. (11.13). The
response time of the qth instance of mi according to preemptions by the critical instant
candidate based on the kth instance of mc is denoted by RT

l,(x+1)
ic[k] (q) and is calculated

using Eq. (11.14).

RT
l,(x+1)
ic[k] (q) = ωl

ic[k](q) +W l
c[k](RT

l,(x)
ic[k] (q))+

V l
c[k](RT

l,(x)
ic[k] (q)) + Ci − (q − 1)Ti

(11.14)

We calculate the maximum response time among all RT l
ic[k] of all q instances of mi.

Furthermore, the worst-case response time of mi (RT l
i) is the maximum RT l

ic[k] which
is derived after considering all the critical instant combinations, as shown in Eq. (11.15).

RT l
i = max

∀c∈{classST}∧
∀k∈Ilc

{ max
q=1..qmax

{RT l
ic[k](q)}} (11.15)

The maximum number of instances of mi to be considered in RTA, denoted by qmax, is

Paper F 235

equal to the maximum value of q that satisfies Eq. (11.16):

W l
c[k](ω

l
ic[k](q)) + V l

c[k](ω
l
ic[k](q)) +BBEl

i + ISBl
i

+
∑

∀mj∈classA,
i ̸=j∧l∈Lj

⌈
ωl

ic[k](q)+jlj
Tj

⌉
.Cj + q.Ci ≤ q.Ti (11.16)

Eqs. (11.9) and (11.15) present the worst-case response time of class A and B on
link l, respectively. The total response time for mi crossing all links in its route is the
summation of per-link response times.

11.5 Proposed bandwidth reservation analysis
In this section, we use RTA presented in Section 11.4 to propose an analysis for the
bandwidth reservation of AVB messages in TSN. The proposed analysis considers
preemption of the ST traffic on the lower-priority traffic according to the TSN standards
[1], where class ST preempts lower-priority classes. The proposed analysis computes
the lowest value of the credit (minimum idle slope, i.e., α+

z,l) which makes the system
schedulable.

11.5.1 Bandwidth reservation analysis for class A
We define the local deadline Dl

i by which we desire the completion of mi on link l.
The credit of class A on link l must be sufficient for mi to complete before Dl

i, i.e.,
RT l

i ≤ Dl
i. Reserving the bandwidth of class A according to the utilization of class

A cannot guarantee that all messages in this class meet their deadlines. Therefore,
class A requires more bandwidth than recommended by the standards [1]. Besides, the
bandwidth for class A must not exceed the remaining bandwidth after the reserved slots
for class ST, i.e., α+

A,l ≤ BWl − UST,l. The bandwidth of class A can be extracted
from the inflation factor as shown in Eq. (11.17):(

1 +
α−
A,l

α+
A,l

)
=

α+
A,l + α−

A,l

α+
A,l

=
BWl

α+
A,l

. (11.17)

The send slope is the difference between the bandwidth and the idle slope, i.e., α−
A,l =

BWl − α+
A,l. Thus for simplification, the same-priority interference (ISAl

i) in Eq.
(11.6) is reformulated to Eq. (11.18):

ISAl
i =

BWl

α+
A,l

 ∑
∀mj∈sp(mi),i̸=j

∧ l∈Lj

Cj

 . (11.18)

236 11.5 Proposed bandwidth reservation analysis

In Eq. (11.19), we rewrite Eq. (11.8) according to the term ISAl
i in the analysis

assuming that the worst-case response time is equal to the deadline, i.e., RT l
i = Dl

i.

ISAl
i = Dl

i − (W l
c[k](D

l
i) + V l

c[k](D
l
i) +BBl

i + Ci) (11.19)

Consequently, Eq. (11.18) and Eq. (11.19) are combined as Eq. (11.20):

BWl

α+
A,l

 ∑
∀mj∈sp(mi),i̸=j

∧ l∈Lj

Cj

 = Dl
i − (W l

c[k](D
l
i) + V l

c[k](D
l
i) +BBl

i + Ci).

(11.20)
As shown in Eq. (11.20), various combinations of the critical instant candidates are

involved in the analysis of the bandwidth for class A. Therefore, Eq. (11.20) leads to
various idle slopes for mi for each critical instant combination. The idle slope of mi on
link l for critical instant combination based on instance k of mc at the local deadline is
presented as α+

A,l(I
l
c[k], D

l
i) and is calculated according to Eq. (11.21).

α+
A,l(I

l
c[k], D

l
i) =

∑

∀mj∈sp(mi),i̸=j
∧ l∈Lj

Cj

Dl
i−(W l

c[k]
(Dl

i)+V l
c[k]

(Dl
i)+BBl

i+Ci)

BWl (11.21)

The maximum idle slope is given by Eq. (11.22) for all the messages in class A:

α+
A,l = max

∀i∈{classA}∧ l∈Li

∀c∈{classST}∧ ∀k∈Ilc

{α+
A,l(I

l
c[k], D

l
i)}. (11.22)

The final idle slope given by Eq. (11.22) is applicable for all messages in this class to
meet their deadlines. Hence, it can be set as the minimum credit that makes all class A
messages schedulable.

11.5.2 Bandwidth reservation analysis for class B
The minimum bandwidth for schedulability of class B can be retrieved by reversing RTA.
Since class B has lower priority than class ST and class A, calculating the minimum
credit for this class is constrained to the remaining bandwidth after transmission of
higher-priority classes, as shown in Eq. (11.23):

α+
B,l ≤ BWl − (UST,l + α+

A,l). (11.23)

Paper F 237

Moreover, the busy period of the instance q of the message mi according to the instance
k of the critical instant candidate mc is extracted from the second phase of RTA for
class B (Eq. (11.14) presented in Section 11.4.2) which is denoted by ωl

ic[k](q) and is
shown in Eq. (11.24).

ωl
ic[k](q) = RT

l,(x+1)
ic[k] (q)−W l

c[k](RT
l,(x)
ic[k] (q))−

V l
c[k](RT

l,(x)
ic[k] (q))− Ci + (q − 1)Ti

(11.24)

Eq. (11.24) is rewritten as Eq. (11.25) with the assumption that in the worst-case the
second phase of RTA for class B for analyzing instance q of mi is converged at the local
deadline of the message on the link l, i.e., RT l

ic[k](q) ≤ Dl
i.

ωl
ic[k](D

l
i, q) = Dl

i −W l
c[k](D

l
i)− V l

c[k](D
l
i)− Ci + (q − 1)Ti (11.25)

Then, the maximum busy period of mi among all busy periods is denoted by ωl
i(D

l
i, q)

and is calculated as shown in Eq. (11.26).

ωl
i(D

l
i, q) = max

∀c∈{classST}∧∀k∈Ilc

{ωl
ic[k](D

l
i, q)} (11.26)

Similar to the inflation factor of class A, as shown in Eq. (11.17), the inflation factor
for class B can be presented as BWl

α+
B,l

. The contribution of the same-priority interference

in class B into the busy period is denoted by ISBl
i(q) and is rewritten by inserting the

new form of inflation factor of class B to Eq. (11.11) as shown in Eq. (11.27).

ISBl
i(q) =

BWl

α+
B,l

 ∑
∀mj∈sp(mi),i̸=j

∧l∈Lj

⌊
(q − 1)Ti

Tj
+ 1

⌋
.Cj

 (11.27)

For readability, we denote part of Eq. (11.27) which is in brackets by Y (q) =∑
∀mj∈sp(mi),i̸=j

∧l∈Lj

⌊
(q−1)Ti

Tj
+ 1
⌋
.Cj and reformulate Eq. (11.27) to Eq. (11.28).

ISBl
i(q) =

BWl

α+
B,l

∗ Y (q) (11.28)

Furthermore, the first phase of RTA for class B is reformulated based on the term
for same-priority interference (ISBl

i(q)), as shown in Eq. (11.29).

ISBl
i(q) = ω

l,(x+1)
ic[k] (q)−W l

c[k](ω
l,(x)
ic[k] (q))− V l

c[k](ω
l,(x)
ic[k] (q))−

IAl
i(ω

l,(x)
ic[k] (q))−BBEl

i − (q − 1)Ci

(11.29)

238 11.5 Proposed bandwidth reservation analysis

The maximum busy period for instance q of mi to meet the local deadline (Dl
i)

which we obtained by Eq. (11.26) is inserted into Eq. (11.29), as follows:

ISBl
i(q) = ωl

i(D
l
i, q)−W l

c[k](ω
l
i(D

l
i, q))− V l

c[k](ω
l
i(D

l
i, q))−

IAl
i(ω

l
i(D

l
i, q))−BBEl

i − (q − 1)Ci.
(11.30)

As can be perceived, Eq. (11.30) is a function of critical instant combination, local
deadline of mi, and q. For readability, we denote the right side of Eq. (11.30) by the
function Z(Ilc[k], D

l
i, q) as shown in Eq. (11.31).

ISBl
i(q) = Z(Ilc[k], D

l
i, q) (11.31)

Then, Eq. (11.28) and Eq. (11.31) are combined as shown in Eq. (11.32).

BWl

α+
B,l

∗ Y (q) = Z(Ilc[k], D
l
i, q) (11.32)

Consequently, we can derive from Eq. (11.32) the idle slope which makes the instance q
of mi schedulable at the local deadline Dl

i based on instance k of mc, which is denoted
by α+

B,l(I
l
c[k], D

l
i, q) and is shown in Eq. (11.33).

α+
B,l(I

l
c[k], D

l
i, q) =

(
Y (q)

Z(Ilc[k],D
l
i,q)

)
BWl (11.33)

Here, we note that assigning the credit of class B according to the calculations of this
section is applicable to the cases where there are multiple class B messages present
in the system. When mi is the only message in class B, there is no same-priority
interference, and Y (q) = 0. In this case, the credit of class B for transmission of mi is
set according to the utilization of mi, i.e, Ui =

Ci

Ti
. Finally, the maximum credit out of

all calculated credits for each message mi in class B is set as the minimum credit for
the schedulability of all messages in class B, as shown in Eq. (11.34):

α+
B,l = max

∀i∈{classB}∧ l∈Li

∀c∈{classST}∧ ∀k∈Ilc

{ max
q=1..qmax

{α+
B,l(I

l
c[k], D

l
i, q)}}. (11.34)

Algorithm 1 presents the procedure for calculating the minimum credit of class B for
the schedulability of the messages on link l. This is an iterative algorithm that updates
the credit and qmax until the instance of a message in class B that requires the maximum
credit is found. Throughout the algorithm, we indicate the previous and the next value
of credit and qmax, subsequently with the superscript (x) and (x+ 1). However, the
converged values of these parameters are presented without these superscripts.

Paper F 239

240 11.5 Proposed bandwidth reservation analysis

We assume that the credit of class A is calculated via Eq. (11.22) and it is input to
the procedure in Algorithm 1. On line 2 of Algorithm 1, the starting value for credit of
class B on link l is set to the utilization of this class. Further, from line 3 to line 6, the
algorithm checks whether there is enough bandwidth available for transmission of class
B on link l.

The loop starting from line 7 to line 35 iterates through all the messages in class B
to find the instance of a message that requires the maximum credit, since this credit is
the minimum safe credit to make class B schedulable. Besides, the loop starting from
line 8 to line 34 iterates through all critical instant candidates in class ST to account
for the preemption and overhead by ST traffic in the maximum credit of a message. On
line 9, qmax is set to one because we first analyze the credit for only one instance of the
message under analysis. On line 10, the credit of class B is set according to the proposed
analysis in Eq. (11.33). Then, the maximum busy period is calculated via Eq. (11.26).
The new qmax is found using Eq. (11.16) and based on the credit and maximum busy
period which were calculated on lines 10 and line 11. Subsequently, on line 13 to line
15, we determine whether qmax needs to be updated to a value more than 1. The next
loop starting from line 16 to line 33 iterates in case qmax is more than 1 for analyzing
the maximum credit in all qmax number of instances of the message under analysis.

On line 17 the credit for instance q of mi is calculated. The procedure must stop,
in case this credit is more than the bandwidth left after transmission of the traffic in
class ST and class A. Because this instance makes class B unschedulable. We check the
availability of bandwidth based on the last update of credit for instance q of mi on lines
18 to 21.

If instance q of mi is schedulable and the credit in this iteration is more than the
credit in the previous iteration, we update the credit on line 23. Then, the procedure
continues to calculate the busy period for this instance (line 24). Accordingly, qmax is
updated on line 25 based on the current value of credit. On lines 26 to 28, we check if
qmax is not increasing. In this case, we do not need to check any larger q, thus we break
the loop. However, on lines 29 to 31, we check if qmax has increased in this iteration,
then qmax is updated for increasing the number of instances to count in the analysis
(line 30). Finally, on lines 36 to 38, the maximum credit among all messages is set as
the safe credit for making all messages in class B schedulable.

11.5.3 Local deadline assignment

The local deadline is user-defined and can be set with different considerations such as
load of traffic per link. However, there are various methods to define the local deadlines
[11, 2]. In this paper, we use the same method used in [2] to define local deadlines
per link in the route of the message mi. This method relies on calculating the relation

Paper F 241

between the load of mi on one link in its path and the total load on all the links in its
route (including all the other traffic in the system). This relation is specified for each
link by the coefficient (Kl

i) as shown in Eq. (11.35).

Kl
i =

loadl
i∑

L=1..|Li|
loadL

i
(11.35)

where, loadli is calculated using Eq. (11.36):

loadli = Ui,l + max
mj∈lp(mi)

{
Uj,l

}
+

∑
mj∈(hp(mi)∨

sp(mi))

{
Uj,l

}
+

∑
mj∈{classST}

{
Uj,l

}
.

(11.36)
The link load coefficient is used to calculate the local deadline on each link as a
proportion of the deadline of the message as shown in Eq. (11.37).

Dl
i = Kl

i .Di (11.37)

11.6 Assessment of the proposed solution
This section presents an evaluation of an industrial vehicular use case to show the impact
of using the bandwidth reservation solution compared to the recommendation by the
standards.

11.6.1 Use-case scenario
In this section, we present a use-case scenario that is used for the evaluation of the
proposed BRA. Figure 11.3 shows the vehicular application use case which is inspired
by [12]. In this use case, there are 8 end-stations and two TSN switches. The total
bandwidth is 100Mbps and the switch fabrication delay in both switches is assumed to
be 5µs. Table 11.1 shows the set of messages in the use case. There are in total fifteen
messages which include three messages from class ST, four messages from class A,
five messages from class B, and three messages from class BE. Two of the end-stations
act as only receivers, namely Head Unit, and AVSink. All the other end-stations send
messages to the Head Unit and AVSink.

11.6.2 Evaluations
In the set of evaluations, we calculate the minimum required bandwidth for the set of
AVB traffic in order to ensure the schedulability of the traffic in each AVB class. Table

242 11.6 Assessment of the proposed solution

Figure 11.3. Evaluation use case inspired from [12].

Table 11.1. Traffic in the use case (ms).

mi Sender Receiver Ti = Di Ci Pi

m0 CAM1 Head unit 200 0.00496 ST
m1 CAM1 Head unit 200 0.00496 ST
m2 CAM2 Head unit 200 0.00496 ST
m3 CAM1 Head unit 100 0.06624 A
m4 CAM1 Head unit 50 0.06624 A
m5 CAM2 Head unit 100 0.06624 A
m6 CAM2 Head unit 50 0.06624 A
m7 CAM1 Head unit 100 0.06624 B
m8 CAM1 Head unit 50 0.12112 B
m9 CAM2 Head unit 100 0.06624 B
m10 CAM2 Head unit 50 0.06624 B
m11 Aud./Vid. AVSink 100 0.06624 B
m12 Backup Head unit 100 0.04336 BE
m13 Logging Head unit 110 0.12336 BE
m14 Diagnosis Head unit 120 0.16672 BE

11.2 presents the credit allocation based on the utilization of classes A and B on the

Paper F 243

links. Furthermore, Table 11.3 presents the set of results for credit allocation by the
proposed BRA.

In this evaluation, there are various traffic on each of the links in the topology. More
specifically, l1 is connected to CAM2 which generates messages m0 and m1 from class
ST, m3 and m4 from class A, and m7 and m8 from B. l2 is connected to CAM1 which
generates messages m2 from class ST, m5 and m6 from class A, and m9 and m10 from
B. l3 is used by all the messages except for m11, i.e., all traffic classes cross the link
l3. Link l4 is used by message m11 from class B, and the messages m12, m13 and m14

from class BE.

As can be seen in Tables 11.2 and 11.3, the bandwidth reserved for class A and
B on the links l1, l2, and l3 based on the utilization-based bandwidth reservation (i.e.,
according to the standard recommendations) is significantly less than the bandwidth
calculated by the proposed analysis. In this example, the under-reservation of bandwidth
in Table 11.2 leads to unschedulable network. For instance, in order for messages in
class A to meet their local deadlines on l2, m3 it requires 0.222 Mbps bandwidth,
and m4 requires 0.450 Mbps bandwidth (i.e., the local deadline on l2 is 29.79 ms for
m3 and 14.89 ms for m4). Besides, according to the proposed analysis, message m7

requires 0.409 Mbps, and m8 requires 0.452 Mbps on l2 to meet their local deadlines
(i.e., the local deadline on l2 is 29.79 ms for m7 and 14.89 ms for m8). As calculated
by the proposed BRA in Table 11.3, the minimum reserved bandwidth on l2 for classes
A and B is set according to the required bandwidth of m4 and m8 respectively. Because
these messages demand the highest bandwidth of their classes. It is apparent that
messages m4 and m8 cannot gain sufficient bandwidth and miss their deadlines if the
bandwidth is set according to the recommended calculations by the standards, as shown
in Table 11.2.

The utilization-based bandwidth reservation is more applicable than the proposed
BRA in some special cases. For example, the required bandwidth for m11 on l4 is set
based on its utilization since there are no other same-priority messages on l4. Similarly,
message m11 from class B is the only message that uses the links l5 and l6. Therefore,
the bandwidth reserved for the links l5 and l6 are similar based on the utilization-based
and the proposed bandwidth reservation approaches.

Table 11.2. utilization-based bandwidth reservation.

Mbps l1 l2 l3 l4 l5 l6
α+
A,l ∗R 0.198 0.198 0.397 NA NA NA

α+
B,l ∗R 0.198 0.308 0.507 0.066 0.066 0.066

244 11.7 Conclusion and future work

Table 11.3. Bandwidth reserved by the proposed BRA.

Mbps l1 l2 l3 l4 l5 l6
α+
A,l ∗R 0.538 0.450 0.993 NA NA NA

α+
B,l ∗R 0.541 0.452 1.030 0.066 0.066 0.066

11.7 Conclusion and future work
In this paper, we proposed a Bandwidth Reservation Analysis (BRA) for Audio-Video
Bridging (AVB) traffic in Time-Sensitive Networking (TSN), which is based on the
worst-case Response Time Analysis (RTA). The analysis calculates the minimum
bandwidth that is required for traffic classes A and B to become schedulable. We show
that the standard recommendations for the bandwidth allocation of AVB traffic classes
are not sufficient and in many cases lead to unschedualble system. In our proposed BRA,
we consider the TSN network with AVB traffic classes and ST traffic when ST can
preempt other lower-priority classes. This solution allows the TSN network designers
to allocate credits efficiently for their AVB traffic classes ensuring the schedulability of
their system. The solution is agnostic of the ST offline schedule, which can be done
before this analysis with any scheduling solution that exists in the literature. Note
that the solution is pseudo-polynomial with respect to the number of messages and the
network size, which makes it suitable in practice. We showed the impact of the BRA on
an industrial vehicular use case.

Acknowledgments

The work presented in this paper was supported by the Swedish Governmental Agency
for Innovation Systems (VINNOVA) via the DESTINE, PROVIDENT and INTER-
CONNECT projects and the Swedish Knowledge Foundation via the DPAC and HERO
projects.

Bibliography

[1] 802.1Q-2022 - IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks. IEEE, 2022.

[2] Mohammad Ashjaei, Gaetano Patti, Moris Behnam, Thomas Nolte, Giuliana
Alderisi, and Lucia Lo Bello. Schedulability Analysis of Ethernet Audio Video
Bridging Networks with Scheduled Traffic Support. Real-Time Systems, 2017.

[3] Jingyue Cao, Mohammad Ashjaei, Pieter J. L. Cuijpers, Reinder J. Bril, and
Johan J. Lukkien. An Independent yet Efficient Analysis of Bandwidth Reservation
for Credit-based Shaping. In 2018 14th IEEE International Workshop on Factory
Communication Systems (WFCS), 2018.

[4] Giuliana Alderisi, Gaetano Patti, and Lucia Lo Bello. Introducing Support for
Scheduled Traffic over IEEE Audio Video Bridging Networks. In 18th IEEE
Conference on Emerging Technologies Factory Automation, 2013.

[5] Reinder J Bril, Hamid Hassani, Pieter JL Cuijpers, and Geoffrey Nelissen. Cost
of Robustness of Independent WCRT Analysis for CBS of Ethernet AVB Us-
ing Eligible Intervals. In 2023 IEEE 19th International Conference on Factory
Communication Systems (WFCS). IEEE, 2023.

[6] L. Lo Bello, M. Ashjaei, G. Patti, and M. Behnam. Schedulability Analysis of
Time-Sensitive Networks with Scheduled Traffic and Preemption Support. Journal
of Parallel and Distributed Computing, 2020.

[7] Ershuai Li, Feng He, Qiao Li, and Huagang Xiong. Bandwidth Allocation of
Stream-reservation Traffic in TSN. IEEE Transactions on Network and Service
Management, 2021.

[8] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, S. Afshar, and S. Mubeen.
Schedulability Analysis of Best-effort Traffic in TSN Networks. In 26th IEEE

245

International Conference on Emerging Technologies and Factory Automation,
2021.

[9] Thomas Stüber, Lukas Osswald, Steffen Lindner, and Michael Menth. A
Survey of Scheduling in Time-Sensitive Networking (TSN). arXiv preprint
arXiv:2211.10954, 2022.

[10] J. Maki-Turja and M. Nolin. Fast and Tight Response-Times for Tasks with Offsets.
In Euromicro Conference on Real-Time Systems, 2005.

[11] Juan M. Rivas, J. Javier Gutierrez, J. Carlos Palencia, and Michael Gonzalez Har-
bour. Deadline Assignment in EDF Schedulers for Real-Time Distributed Systems.
IEEE transactions on parallel and distributed systems, 2015.

[12] H. Lim, K. Weckemann, and D. Herrscher. Performance Study of an In-car
Switched Ethernet Network without Prioritization. In Communication Technolo-
gies for Vehicles, 2011.

