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Abstract – The suggested model is developed for the purpose of 
investigating the relationship between test coverage and its 
effect on a given fault distribution in large complex safety- 
critical n-parameter software systems. The faults are 
represented by subspaces of the entire volume which represents 
the entire input space of the system. The behavior of the system 
is considered to be either correct or incorrect. Inside the 
subspaces the system behaves erroneously. The shape of the 
subspaces have no meaning only the size of its volume. A 
uniform distribution of test points leads to predictable and 
quantifiable fault detection.     
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I. INTRODUCTION 

 Modelling and visualizing the input space and the faults 
of a complex system, with many parameters, is quite a 
challenge. A solution to the multi-dimensional problem not 
only needs to be theoretically accurate, it also needs to 
visualize the information in a way that is comprehensive and 
understandable. Attempts to go beyond three dimensions 
typically struggle with either having to adjust the data or the 
visualization in some clever way.  
A model in 3D is suggested, where the (multi-dimensional) 
input space of the system is represented by the volume of a 
cube 1x1x1. In this cube, the faults are represented by 
rectangular prisms, see Fig. X. These smaller volumes or 
subspaces are randomly distributed, both in size and in their 
placement. The volumes of the prisms correspond to their 
respective probability of occurrence, provided that the input 
space is randomly sampled with a uniform distribution. 
Meaning that a prism volume of 0.01 corresponds to a 1% 
probability of occurrence if any random point from the full 
volume is selected. The fault occurs for all points that lie 
within or on the limits of the subspace. The approach to view 
probabilities as fault sizes has been suggested before [7].  
This paper elaborates on the research question;  
Is such a 3D-model a viable representation of a fault 
distribution in a multi-dimensional system? 
The proposed model aims at aiding visualization and further 
analysis of the prediction of the effect of a given test effort, 
in terms of fault detection.  
Questions of interest in this context; Is it worthwhile to 
increase the number of performed tests? What can be 
expected in terms of fault detection for a given test effort? 

 
 
 

II. COMPLEX SAFETY-CRITICAL SYSTEMS  

 Large complex software systems are considered to be 
hard to test as the number of system states prohibits 
exhaustive testing [2][3]. This is problematic especially for 
safety-critical applications where a failure of the system can 
result in severe consequences, e.g. loss of lives.  
The assumptions made in this paper are;  

1. The SUT (System Under Test) behaves 
deterministically.  

2. All parts of the code is reachable (during test). 
3. All parameters are defined.  
4. The size of the system makes it virtually 

impossible to test exhaustively.  
This well describes many safety-critical systems. 
Assumptions 1, 2 and 3 are consequences of how this type 
of software is developed. Strict development standards, e.g. 
DO-178C [4] and ISO 26262 [5], regulate the development 
process. Emphasis is placed on determinism (of the code) 
and removal of unreachable code. If the code, executable or 
not, cannot be tested it must be removed. 
In this safety-critical context, faults are not tolerated. The 
faults are therefore not classified in to categories of severity. 
All detected faults must be dealt with. 
 

III. PROBABILITIES AS FAULT SIZES/VOLUMES AND TESTS AS 

POINTS?  

If a system is assumed to contain faults with certain 
probabilities, they can be modelled as volumes or subspaces 
of the larger input space, see Fig. 3. Subsequently, the testing 
process, which samples the input space, can be represented 
by a number of (test) points in a 3D-plot. Consequently, if 
the entire input space volume was filled with such points, all 
the subspaces would contain test points as well – meaning 
that all faults have been detected. This model can describe 
the relationship between the faults detected and the number 
of test points.   
An unbiased uniform distribution is implemented as the 
default test point generation, in the model. A uniform 
distribution that gradually saturates the input space, with test 
points, gives predictability. Smaller and smaller volumes can 
go undetected (remain hidden) in the swarm of points, as its 
density increases. The model allows for quantification of this 
relationship.  
Other test point distributions can be implemented as well. 
However, in the context of safety-critical software, the goal 
is to identify and remove all faults (regardless of severity). 
Alternative distributions of test points would require further 
discussions on the feasibility, of the now random, placement 
of the faults. When an independent and uniform fault 
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distribution is used together with an independent and 
uniform test point distribution, the question of where the 
faults are located is bypassed. If all fault subspaces were to 
be placed in one half of the input space volume the number 
of remaining and detected faults would not change. This 
provided that the level of overlap does not change. For 
(realistic) smaller fault volumes this effect is negligible. All 
inserted points have the same probability of encountering a 
fault.  
If for instance a normal distribution of test points were to be 
used (for the purpose of simulating a test focus on a more 
executed part of the code), then the question of whether the 
faults are “in the middle” or near the edges must be dealt 
with.          

IV. WHY FAULT MODELLING IN 3D?  

In general, a main advantage of a 3D-model is that it is 
easy to visualize and understand. However, there are other 
aspects to using a three dimensional representation. 
Empirical data shows that 89-99% of all faults are caused by 
three parameters or less [1]. The remaining part is triggered 
by no more than six parameters. This means that a 3D-model 
can be seen as a feasible and in many cases realistic 
representation of a fault’s expanse in the input space, where 
three parameters cause a fault.    
The suggested model assumes that faults are not (primarily) 
present in the input space as isolated points but rather as 
small volumes, subspaces.  
This concept can be exemplified by an Automatic Braking 
System, for cars, that fails under certain conditions. Assume 
that such a system, for some reason, is malfunctioning when 
the speed of the car is 50 km/h and traffic in front of the car  
is 20 m ahead and moving at a slower speed of 15 km/h. 
Under these circumstances the Automatic Braking System 
should engage. If this problem also occurs when the 
parameters are changed a little, e.g. 49.2 km/h, 20.6 m and 
16.3 km/h, a subspace emerges, where the problem happens. 

Assume that this problem occurs when the parameters are 
within the ranges listed in Table 1. 
In a 3D-visualization of the entire input space where these 
three parameters constitute the axes, the fault can be 
represented by subspace, as shown in Fig. 2.   
 

 
Fig. 1  Automatic Braking System, failure scenario. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 2 Three parameters forming a subspace. 
 
The model represents fault probabilities as corresponding 
volumes. As long as the proportions are correct the shape of 
the fault volume is not important. The model does not aim 
on giving a realistic representation of such aspects.   

TABLE I.  PARAMETER RANGES FOR FAULT 

Parameter Range where the fault 
occur 

Speed of the vehicle 45 – 55 km/h 

Speed of the vehicle ahead 10 – 20 km/h 

Distance between the vehicles 15 – 25 km/h 
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Fig. 3 An input space of a system with three parameters. There are 99 errors comprising 0.5% of the input space. The points represent 5000 tests that have 
been performed. The red prisms contain points and are detected. 

V. HOW CAN A 3D-MODEL REPRESENT N-PARAMETER 

SYSTEMS? 

The 3D-model can represent complex systems with many 
parameters. Considering that empirical data show that 89-
99% of all errors are caused by three parameters or less [1]. 
The remaining part is triggered by no more than six 
parameters. 
In a combinatorial view, each test point represents that all 
possible combinations are tested. This holds true for a 
system with many parameters as well. If a system has a 
higher number of parameters the number of tested 
combinations, in each test point, is increased even more.  
It does not matter which combination of parameters or which 
of their values that cause the system to crash or perform 
incorrectly. For a given relative proportion (percentage) and 
number of faults the model will yield a statistically correct 
result, in terms of test coverage vs fault detection. 
 
 
 
 
 
 

A. EXAMPLE: FAULTS IN A FOUR PARAMETER SYSTEM  

Assume a system with four parameters: A, B, C and D. 
Here the test points, see Fig. 4, represents that all four 
possible three-way combinations have been tested, i.e. ABC, 
ABD, ACD and BCD.     
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Fig. 4 The four possible three-way combinations of A, B, C and D. Random unique faults have been placed in each subspace. ABD is fault free. 

 

 
Fig. 5 The aggregate input space of the subplots in Fig. 4. 

In Fig. 4, the four different combinations are shown. For 
each subplot the full volume represents the entire input space 
of the system projected on the three axes. Each point in the 
volumes of the subplots in Fig. 4, belongs to the input space 
of the entire system.  
For a point p in the ABC space, ∀pABC∈ℝ3

ABC, there are 
corresponding points in the other combinations, i.e. 
∀pABC∃pABD (pABD∈ℝ3

ABD) 

∀pABC∃pACD (pACD∈ℝ3
ACD) 

∀pABC∃pBCD (pBCD∈ℝ3
BCD). 

 
This means that the subspace of each combination overlaps 
the other, i.e. ℝ3

ABC∪ℝ3
ABD∪ℝ3

ACD∪ℝ3
BCD. 

 
The faults shown in each of the subplots, in Fig. 5, are 

unique and only appears for one specific combination of 
parameters. Since all subspaces overlap the fault volumes 
from different combinations can be aggregated. 

 
The sum of the fault volume for a subplot: 
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ne is the number of faults. 
εℝ3 is the volume of an individual fault. 
 
Hence, the sum of all fault volumes in the system: 
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nc is the number of three-way combinations. 
  

B. REPRESENTATION OF N-PARAMETER FAULTS  

When a fault is caused by other than three parameters they 
can still be represented by in 3D. All faults have a likelihood 
of occurring. As long as the probability corresponds to a 
volume of the same relative proportion, the representation is 
correct.     
Assume a system X with n parameters. One of the 
parameters is a boolean b that is either TRUE or FALSE. 
The boolean b is defined for all inputs of X. When b is TRUE 
the system X fails. If b is just as likely to be TRUE as 
FALSE, X will fail in 50% of the cases, regardless of the 
number of other parameters (n). The input space for b 
completely overlaps the input space of X.    
Fig. 6, shows the input space for a boolean that causes a fault 
whenever it is TRUE. Provided that no other faults exist the 
input space of the complete system would look the same, i.e. 
a fault volume covering 50% (failing in 50% of the possible 
inputs).  
 

VI. TEST COVERAGE MODEL 

The model is written as a function in MATLAB, version 
R2016b, see appendix A. The inputs are percentage of the 
input space that are erroneous, number of tests and a 
parameter used to control the granularity of the fault 
distribution.  

A typical function call: 
 
randomTestingFaultDetection3d (0.5,10000,0.9) 
 
which means 
 
0.5% of the input space is erroneous 
10000 test points 
0.9 as the “granularity factor”  

1) The input space of the system:  
The volume 1x1x1 represents the entire input space 
of the system or the input space being tested.   

2) The colored blocks:  
The faults are represented by blocks. Only the 
volume of the block have a meaning representing the 
size of the fault. The shape is not representing a 
realistic expansion of a fault. All blocks are 
independent of each other and can overlap. If a test 

point lies within a block, the block is colored red, 
meaning the fault has been detected.  

3) The axes:  
Above system has three parameters A, B and C. The 
range of the parameters have been normalized to 
values between 0 and 1. 

4) The points:  
The points represent performed tests, test points. If a point 
lies inside a block the fault has been detected, i.e. a perfect 
test oracle is assumed. The generation of test points are 
uniformly distributed. 

 

A. GENERATION OF FAULT DISTRIBUTION 

The generation of the random fault distribution is 
done by a while loop. The user input are the granularity 
factor and the total fault probability. The while loop can 
(somewhat simplified) be written as; 
 
while generated fault probability < total fault probability 
   

rep = remaining fault probability; 
rnd  = random number; % 0-1, (uniform)  
newFault = rep * rnd * granularity factor; 

 allFaults = allFaults + newFault; 
 generated fault probability = sum(allFaults) 

 
end 

 
A granularity factor of 1 gives approximately 50 faults and 
0.1 about 56.000. 
This allows for flexible generation of faults, see Fig. 7 and 
Fig. 8. When many faults are generated (by a low granularity 
factor) the distribution turn into a geometric distribution. 
This can describe a number of phenomena [6]. Moreover, it 
can be seen as a conservative alternative, as it has a long 
“tail”. This long tail represent smaller faults with a low 
probability of occurring. 
After each simulation the fault distribution is presented in a 
plot as well as summary of which faults have been detected.    
 
The model is available as executable MATLAB m-files. 
Please contact the author of this paper.  
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Fig. 6 A system that fails when boolean b is TRUE. Here the fault comprise 50% of the total volume

  

VII. CONCLUSIONS 

The suggested 3D-model can provide a simplified 
representation of a fault distribution in a complex safety-
critical system. Such a system can be assumed to behave 
deterministically and to have no unreachable code [4],[5]. 
The model uses a uniformly distributed random placement 
of the fault volumes/subspaces. Together with a uniformly 
distributed random selection of test points the placement and 
shape of the faults become unimportant. This permits 
quantification of the effect, in terms of fault detection, of a 
given test effort. If the shape of the faults, or their placement 
were to be changed, the result would be the same. The same 
amount of fault probability would be detected and same 
amount would remain undetected. 
The purpose of the model is to gain a better understanding 
of the relationship between the number of tests and fault 
detection.  



  

 

 

 
 
 
 

 
Fig. 7. A low number of faults generated. Y-axis represent the probability of each fault. X-axis shows the number of each fault.    
 
 
 
 
 
 
 
 
 

 
Fig. 8. A high number of faults generated. Y-axis represent the probability of each fault. X-axis shows the number of each fault. 
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