
Fast and Tight Response-Times for Tasks with Offsets

Jukka Mäki-Turja Mikael Nolin
Mälardalen Real-Time Research Centre (MRTC)

Västerås, Sweden
jukka.maki-turja@mdh.se

Abstract
In previous work, we presented a tight approximate

response-time analysis for tasks with offsets. While pro-
viding a tight bound on response times, the tight analysis
exhibits similarly long execution times as does the tradi-
tional methods for calculating response-times for tasks with
offsets. The existing method for fast analysis of tasks with
offsets is not applicable to the tight analysis.

In this paper we extend the fast analysis to handle the
distinguishing trait of the tight analysis; continuously in-
creasing interference functions. Furthermore, we provide
another speedup; by introducing pessimism in the mod-
elling of interference at certain points, we speed up the
convergence of the numerical solving for response-times
without increasing the pessimism of the resulting response-
times.

The presented fast-and-tight analysis is guaranteed to
calculate the same response-times as the tight analysis, and
in a simulation study we obtain speedups of more than two
orders of magnitude for realistically sized tasks sets com-
pared to the tight analysis. We also demonstrate that the
fast-and-tight analysis has comparable execution time to
that of the fast analysis. Hence, we conclude that the fast-
and-tight analysis is the preferred analysis technique when
tight estimates of response-times are needed, and that we do
not need to sacrifice tightness for analysis speed; both are
obtained with the fast-and-tight analysis.

1 Introduction
Response-Time Analysis (RTA) [1] is a powerful and

well established schedulability analysis technique. RTA is
a method to calculate upper bounds on response-times for
tasks in hard real-time systems. In essence RTA is used to
perform a schedulability test, i.e., checking whether or not
tasks in the system will satisfy their deadlines. RTA is ap-
plicable for, e.g., systems where tasks are scheduled in pri-
ority order which is the predominant scheduling technique
used in real-time operating systems today.

Fast RTA has several practical implications, e.g., facili-

tating the use of response time calculations in an iterative
workflow including automatic priority assignment and/or
task allocation, or for admission control in on-line schedul-
ing algorithms. Tighter response time allow for more ef-
ficient hardware utilization. Consequently, analysis speed
and tight response time are desirable features in engineer-
ing resource constrained real-time systems.

To be able to calculate less pessimistic response times
in systems where tasks may have dependencies in their re-
lease times, Tindell introduced RTA for a task model with
offsets [11]. Palencia and Harbour formalized and extended
the work of Tindell in [7]. In [5] we have shown that the
RTA for task with offset presented in their work calculates
unnecessarily pessimistic response-times. As a remedy, we
presented our tight analysis. The main source for this im-
provement comes from more accurate modelling of inter-
task interference. In [7, 11] the interference only increases
at discrete points in time, whereas in our tight analysis the
interference can increase continuously over time. There is,
however, a slight price to pay for this accuracy, slower fix-
point convergence which can result in longer analysis time.

In this paper we extend our previous fast analysis for
tasks with offsets [4] to enable its application to the tight
analysis, providing a new method that calculates tight re-
sponse times at fast analysis speed. The fast analysis has
been shown to achieve two orders of magnitude speedup
for realistically sized task sets [4]. The essence of this ap-
proach is to statically store the discrete points in time during
the first period where the interference increases, and during
equation solving use a simple and fast table lookup.

However, the approach taken in [4] is not directly ap-
plicable to the tight analysis since it uses a more accurate
interference model where interference does not increase at
discrete points in time. As a consequence, this introduces
an additional problem; the interference does no longer ex-
hibit a simple periodic pattern. Hence, the basic assumption
of the fast analysis does not hold for the interference model
of the tight analysis. One of the main contributions of this
paper is to extend the fast analysis to cope with these traits
of the tight analysis, enabling a fast-and-tight analysis.

Another main contribution is that we introduce, for the
tight analysis, a method to speed up the numerical conver-
gence during equation solving when calculating response-
times. The method is based upon the insight that response-
time equations cannot have solutions at arbitrary points in
time (which we formally prove). At such points we modify
the interference functions in such a way that numerical con-
vergence is accelerated. Since the modifications are done
only at times where no response-time solutions exist, they
do not affect the final calculated response-time. Hence, the
resulting analysis will calculate exactly the same response-
times as does the tight analysis. This method is incorporated
into the fast-and-tight analysis method.

Our third main contribution is a simulation study where
we show that applying above methods to our tight method,
the execution times of the resulting fast-and-tight analysis
are comparable to those of the fast analysis. That is, we
conclude that one does not have to sacrifice analysis speed
to achieve accuracy, or vice versa, when using fast-and-tight
analysis.

Paper Outline: Sec. 2 revisits our tight offset RTA [5].
In Sec. 3 we present our tight and fast RTA. Sec. 4 presents
an evaluation study, followed by conclusions in Sec. 5.

2 Tight offset RTA

This section revisits our existing tight response-time
analysis for tasks with offsets [5] and illustrates the intu-
ition behind the analysis and the formulae.

2.1 System model

The system model used is as follows: The system, Γ,
consists of a set of k transactions Γ1, . . . , Γk. Each trans-
action Γi is activated by a periodic sequence of events with
period Ti (For non-periodic events Ti denotes the minimum
inter-arrival time between two consecutive events). The ac-
tivating events are considered mutually independent, i.e.,
phasing between them are arbitrary. A transaction Γi con-
tains |Γi| number of tasks, and each task is activated (re-
leased for execution) when a relative time, offset, elapses
after the arrival of the external event.

We use τij to denote a task. The first subscript denotes
which transaction the task belongs to, and the second sub-
script denotes the number of the task within the transaction.
A task, τij , is defined by a worst case execution time (Cij),
an offset (Oij), a deadline (Dij), maximum jitter (Jij),
maximum blocking from lower priority tasks (Bij), and a
priority (Pij). The system model is formally expressed as:

Γ :={Γ1, . . . , Γk}
Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or
jitter, e.g., they can each be either smaller or greater than
the period. In [7] dynamic offsets are introduced, however
they are modelled with the static offset and jitter parame-
ters, and therefore the analysis technique presented here
also straightforwardly applies to tasks with dynamic off-
sets. We assume that the load of the system, and each of
the transactions, is less than 100%.1

Parameters for an example transaction (Γi) with two
tasks (τi1, τi2) are depicted in Fig. 1. The offset denotes the
earliest release time of a task relative to the start of its trans-
action and jitter (illustrated by the shaded region) denotes
the variability in the release of the task. The upward arrows
denote earliest possible release of a task and the size of the
arrow corresponds to the released tasks execution time.

0

O i1=2

Oi2=5

C i2=1 Time

1 2 3 4 5 6 7 8 9 10

Ti=10
C i1=2

J i1=8

J i2=1

Figure 1. Example transaction

2.2 Response-time analysis
The goal of RTA is to facilitate a schedulability test for

each task in the system by calculating an upper bound on its
worst case response-time. We use τua (task a, belonging to
transaction Γu) to denote the task under analysis, i.e., the
task whose response time we are currently calculating.

In the classical RTA (without offsets) the critical instant
for τua is when it is released at the same time as all higher
(or equal) priority tasks [2, 3]. In a task model with off-
sets this assumption yields pessimistic response-times since
some tasks can not be released simultaneously due to off-
set relations. Therefore, Tindell [11] relaxed the notion of
critical instant to be:

At least one task in every transaction is to be re-
leased at the critical instant. (Only tasks with pri-
ority higher or equal to τua are considered.)

Since it is not known which task coincides with (is released
at) the critical instant, every task in a transaction must be
treated as a candidate to coincide with the critical instant.

Tindell’s exact RTA tries every possible combination of
candidates among all transactions in the system. This, how-
ever, becomes computationally intractable for anything but
small task sets. Therefore Tindell provided an approximate
RTA that still gives good results but uses a single approxi-
mation function for each transaction. Palencia Gutierrez et
al. [7] formalized and generalized Tindell’s work.

1This can easily be tested, and if not fulfilled, response-times may be
infinite; rendering the system unschedulable.

2.3 Interference function
Central to RTA is to capture the interference a higher

or equal priority task (τij) causes the task under analysis
(τua) during an interval of time t (where t = 0 at the crit-
ical instant). Since a task can interfere with τua multiple
times during t we have to consider interference from pos-
sibly several instances. The interfering instances of τij can
be classified into two sets:

Set1 Activations that occur before or at the critical instant
and that can be delayed by jitter so that they coincide
with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transac-
tion Γi, we will consider each task, τic ∈ Γi, as a candidate
for coinciding with the critical instant.

RTA for tasks with offsets is based on two fundamental
theorems:

1. The worst case interference a task τij causes τua is
when Set1 activations are delayed by an amount of
jitter such that they all occur at the critical instant and
the activations in Set2 have zero jitter.

2. The task of Γi that coincide with the critical instant
(denoted τic), will do so after experiencing its worst
case jitter delay.

The phasing between a task, τij , and a critical instant can-
didate, τic, becomes:

Φijc = (Oij − (Oic + Jic)) mod Ti

This definition implies that the first instance of a task τij

in Set2 will be released at time t = Φijc, and subsequent
releases will occur periodically every Ti.

Fig. 2 illustrates the four different Φijc-s that are possible
for our example transaction of Fig. 1. The upward arrows
denote task releases (the height of the corresponding arrow
denotes amount of execution released, i.e., Ci1 or Ci2 re-
spectively). Fig. 2(a) the case that τi1 coincides with the
critical instant, where the phasing to τi1 is 2 and to τi2 is 5.
Fig. 2(b) shows the corresponding situation when τi2 is the
candidate to coincide with the critical instant.

Given the two sets of task instances (Set1 and Set2)
and the corresponding phase relative to the critical instant
(Φijc), the worst-case interference during a time-interval t
caused by task τij can be divided into two parts:

1. The part caused by instances in Set1 (which is inde-
pendent of the time interval t), ISet1

ijc .

2. The part caused by instances in Set2 (which is a func-
tion of the time interval t), ISet2

ijc (t).

1 2 3 4 5 6 7 8 90 10

2iτ1iτ1iτ
211 =Φ i

521 =Φi

t

(a) τic = τi1

1 2 3 4 5 6 7 8 90 10

612 =Φi

922 =Φi

1iτ
2iτ 1iτ

2iτ t

(b) τic = τi2

Figure 2. Φ-s for the two c.i. candidates

These are defined as follows:

ISet1
ijc =

⌊
Jij + Φijc

Ti

⌋
Cij ISet2

ijc (t) =
⌈

t∗

Ti

⌉
Cij − x

t∗ =t− Φijc

x =

0 t∗ ≤ 0
0 t∗ mod Ti = 0
0 t∗ mod Ti ≥ Cij

Cij − (t∗ mod Ti) otherwise

Note that, ISet2
ijc (t) is redefined compared to [7], resulting in

lower (but still safe) response times. For more details and
correctness proofs see [5].

The total interference transaction Γi imposes on τua,
during a time interval t, when candidate τic coincides with
the critical instant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

(1)

Where hpi(τua) denotes tasks belonging to transaction Γi,
with priority higher or equal to the priority of τua.

2.4 Approximation function
Since we beforehand cannot know which task in each

transaction coincides with the critical instant, the exact
analysis tries every possible combination [11, 7]. However,
since this is computationally intractable for anything but
very small task sets the approximate analysis defines one
single, upward approximated, function for the interference
caused by transaction Γi:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t) (2)

W ∗
i (τua, t) simply takes the maximum of each interference

function (one for each candidate τic). As an example con-
sider again transaction Γi depicted in Fig. 1. Fig. 3 shows
the interference function for the two candidates (Wi1 and

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

*
iWicW

tt

2iW
1iW

Figure 3. Wic(τua, t) and W ∗
i (τua, t) functions

Wi2), and it shows how W ∗
i is derived from them by taking

the maximum of the two functions at every t.
Given the interference (W ∗

i) each transaction causes the
task under analysis (τua), during a time interval of length
t, its response time (Rua) can be calculated. The complete
response time formulas provided by [7] can also be found
in a comprehensive technical report [6].

3 Fast and Tight Analysis
When calculating response times, the function

W ∗
i (τua, t) in eq. 2 will be evaluated repeatedly. For

each task and transaction pair (τua and Γi) many different
time-values, t, will be used during the fix-point calcu-
lations. For the traditional response-times analysis for
tasks with offsets, a repetitive and periodic pattern for
W ∗

i (τua, t) can easily be found, and a lot of computational
effort is saved by representing the interference function
statically, and during response-time calculations using a
simple lookup function to obtain its value [4].

However, since the tight analysis has continuously in-
creasing interference functions and does not exhibit a sim-
ple periodicity, the framework in [4] is not directly applica-
ble to the tight analysis. This section shows how to find,
calculate and store the periodic interference information for
the tight RTA method. We also present how the function
W ∗

i (τua, t) changes using such pre-computed information.
Furthermore, the continuous nature of interference in the

tight analysis gives the tight analysis a computational dis-
advantage compared to the original analysis [7, 11]. In
this section we will show how to remove this computational
disadvantage by replacing the continuous interference func-
tions with discretely increasing functions without introduc-
ing any pessimism in resulting response times.

3.1 The Periodicity of the Interference
The fundamental pre-requisite to statically represent the

interference for a transaction, is that a repetitive pattern can
be found (such that it suffices to store that pattern and use
it to calculate the amount of interference for any time inter-
val t). In our previous fast analysis [4], the full interference
of each task within the transaction occurs within the first pe-
riod (each task is released exactly once during each period).

Hence, we could straight-forwardly represent the interfer-
ence during the first period and reuse it for later periods.

However, in the tight analysis, the imposed interference
of a task released towards the end of the period may not be
fully included within the period. Even though the task is
released within the period, the slanted interference function
causes some of the interference to occur in the subsequent
period. Fig. 4 shows an example critical instant candidate
where the interference from task z spills into next period.

2 4 6 8 10 12
t

20 2214 16 24

T i=10

3226 28 3018

2

4

Task C ij Φ ijc

x 1 2
y 1 5
z 2 9

∑)(2 tI Set
ijc

10

8

6

Figure 4. Interference spilling over periods

As seen in Fig. 4, the interference for the first period
differs from that of later periods. Obviously, there can be no
spill during the first period, since tasks arriving before the
critical instant (i.e. when t < 0) are accounted for in ISet1

ijc .
For subsequent periods, however, the effect of a task spilling
over period boundaries will be identical. This means that for
t > Ti the interference is repetitive (with period = Ti) and
allows for a static representation. The consequence of this
is that we have to represent the interference for the first and
subsequent periods separately.

3.2 Preliminaries
To prepare for subsequent calculations, we define three

operations (order, merge, and split) that will be performed
for each critical instant candidate before we proceed with
calculation of a transactions’ interference pattern. These
transformations will not change the load or the timing-
behavior of the interference, they only help us to restructure
the information within a transaction.

Operation: Order Tasks are enumerated according to
their first activation after the critical instant, i.e., according
to increasing Φijc values.
Operation: Merge Each task j′ that is released before
a previous task j has a chance to finish its execution, i.e.
(Φijc +Cij) mod Ti ≥ Φij′c, are merged into one task with
execution time Cij +Cij′ and offset of Φijc. This operation
is performed until all possible tasks have been merged (and
since the load of a transaction is less than 100% the process
is guaranteed to converge).
Operation: Split When splitting a task, we define spill of
a task j, belonging to transaction Γi for the critical instant

candidate task c (c ∈ Γi), denoted Sijc, as the amount of
execution time that “spills over” into the next period. Since
task j is released at time Φijc, the amount of spill is:

Sijc =

{
0 if Φijc + Cij ≤ Ti

Φijc + Cij − Ti otherwise

To make the spill explicit, we split each task j with a
positive spill into 2 new tasks, denoted j′ and j′′. j′ repre-
sents the amount of interference of task j that occurs within
and at the end of the current period. j′′ is called a spill task
and represents the amount of interference that occurs at the
beginning of the subsequent period. The definitions are:

Cij′ = Cij − Sijc Cij′′ = Sijc

Φij′c = Φijc Φij′′c = 0

3.3 Jitter and time induced interference
The key to make a static representation of W ∗

i (τua, t) is
to recognisee that it contains two parts:
• A jitter induced part, denoted J ind

i (τua). This part corre-
sponds to task instances belonging to Set1. Note that this
interference is not dependant on t.

• A time induced part, denoted T ind
i (τua, t). This corre-

sponds to task instances of Set2. With exception for the
first period, the time induced part has a cyclic pattern that
repeats itself every Ti (as proved below).

We redefine eq. 2 using our new notation as:

W ∗
i (τua, t) = J ind

i (τua) + T ind
i (τua, t) (3)

This partitioning of W ∗
i (τua, t) is visualized in Fig. 5.

J ind
i (τua) is the maximum starting value of each of the

Wic(τua, t) functions (i.e. max of Wic(τua, 0), see eq. 1)
which is calculated by:

J ind
i (τua) = max

∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc

1 2 3 4 5 6 7 8 90

2

4

6

10

*
iW

tt

ind
iTind

iJ

Figure 5. W ∗
i (τua, t), J ind

i (τua), and T ind
i (τua, t)

The time induced part, T ind
i (τua, t), represents the max-

imum interference, during t, from tasks activated after the
critical instant. Algebraically T ind

i (τua, t) is defined as:

T ind
i (τua, t) = max

∀c∈hpi(τua)
W+

ic (τua, t) (4)

where

W+
ic (τua, t) =

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)− J ind

i (τua)

(5)
The correctness of our method requires that our new de-

finition of W ∗
i (τua, t) in eq. 3 is functionally equivalent to

the definition in eq. 2.

Theorem 1 W ∗
i (τua, t) as defined in eq. 2 and W ∗

i (τua, t)
as defined in eq. 3 are equivalent.

Proof reference By syntactic equivalence to Theorem 1
and corresponding proof in [4].

Further, in order to be able to make a static representa-
tion of W ∗

i (τua, t), we need to ensure that we store enough
information to correctly reproduce W ∗

i (τua, t) for arbitrary
large values of t. Since T ind

i (τua, t) is the only part of
W ∗

i (τua, t) that is dependent on t, the following theorem
gives that a periodicity of Ti exists in the interference:

Theorem 2 Assume spill tasks are accounted for, and t =
k ∗ Ti + t′ (where k ∈ N and 0 ≤ t′ < Ti), then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t′)

Proof reference The theorem is proved by algebraic
equivalence in [6]

3.4 Representing time induced interference
In this section we show how the interference pattern of

T ind
i (τua, t) can be calculated and represented statically.

Since the first period should not account for any spill task,
but subsequent periods should, we divide the presentation
into two cases, one where spill task are not accounted for
and one case where they are.

3.4.1 Spill task not accounted for
For each critical instant candidate, τic, tasks are ordered,
merged, and split according to Sec. 3.2. Spill tasks are re-
moved. We define a set of points pic, where each point
pic[k] has an x (representing time) and a y (representing
interference) coordinate, describing how the time induced
interference grows over time when τic acts as the critical in-
stant candidate. The points in pic correspond to the convex
corners of W+

ic (τua, t) of eq. 5. The following equations
define the array pic:

pic[1].x = 0

pic[1].y =
∑

∀j∈hpi(τua)

ISet1
ijc − J ind

i (τua)

pic[k].x =Φikc + Cik k ∈ 2 . . . |Γi|
pic[k].y =pic[k − 1].y + Cik k ∈ 2 . . . |Γi|

(6)

pic[1].y gives the initial relation (i.e. vertical distance at
time 0) between different critical instant candidates, and
is given by the difference in jitter-induced interference.
Furthermore, the time-induced interference should be zero
at time zero (illustrated in Fig. 5) which is achieved by
subtracting the maximum of all jitter-induced interference
(stored in J ind

i (τua)) when initializing pic[1].y in eq. 6.

2

4

10

+
2iW

t
5

+
1iW

Figure 6. Visual representation of pic sets

The W+
i1 and W+

i2 , for our example transaction, are de-
picted in Fig. 6 and the corresponding pi1 and pi2 sets are
illustrated by black and white circles respectively. For this
example transaction we get the following two pic-s:

pi1 = [〈0,−1〉, 〈4, 1〉, 〈6, 2〉] black circles
pi2 = [〈0, 0〉, 〈8, 2〉, 〈10, 3〉] white circles

Now, the information generated by all W+
ic (τua, t)-

functions is stored in the pic-sets. To obtain the convex
corners of T ind

i (τua, t), we need to extract the points that
represent the maximum of all W+

ic (τua, t)-s. To this end,
we calculate the set of points, pi, as the union of all pic-s:

pi =
⋃

τic∈Γi

pic

In order to determine the points in pi corresponding to
the convex corners of T ind

i (τua, t), we define a subsumes
relation: A point pi[a] subsumes a point pi[b] (denoted
pi[a] Â pi[b]) if the presence of pi[a] implies that pi[b] is
not a convex corner. Fig. 7 illustrates this relation graphi-
cally with a shaded region, and the formal definition is:

pi[a] Â pi[b] iff

pi[a].y ≥ pi[b].y ∧
(
pi[a].x− pi[a].y ≤ pi[b].x− pi[b].y

)

x

y pi[a]

Subsumed

Not subsumed

Figure 7. The subsumes relation

Given the subsumes relation, the convex corners are
found by removing all subsumed points:

From pi remove pi[b] if ∃a 6= b : pi[a] Â pi[b]

For our example transaction of Fig. 1 we have:

pi = [〈0, 0〉, 〈4, 1〉, 〈6, 2〉, 〈10, 3〉]

3.4.2 Spill task accounted for

Computing the set of points when accounting for spill tasks,
denoted p′i, is analogous to computing pi, with the follow-
ing differences:
• Spill tasks from the split operation are not removed. Note

that including a spill task might require an additional
merge and order operation.

• In Eq. 6 on the preceding page pic[1].y defines the initial
relation (difference in ISet1

ijc) between different critical in-
stant candidates. Since p′i represents the time induced in-
terference, T ind

i (τua, t), for t ≥ Ti, p′ic[1].y should reflect
this relation at the end of the first period. The interference
for a critical instant c at the end of the first period is rep-
resented by pic[|Γi|].y, consequently we get the following
modification to eq. 6:2

p′ic[1].y = pic[|Γi|].y −max
x∈Γi

pix[|Γi|].y

3.5 Increasing performance by removing slants
Assume that a set of points pi (with or without spill

tasks) has been calculated, representing the convex corners
of the time induced interference function T ind

i (τua, t) dur-
ing one period Ti. The points for our example transaction is
illustrated in Fig. 8. Note that in the absence of spill tasks,
the sets pi and p′i are identical.

2

4

10
t

5

Figure 8. Removing the slants

It can be proven that the fix-point iterative solution to
Eq. 28’ in Appendix A, which is the equation where the in-
terference function is used, cannot have any solution during
the slants.

Theorem 3 Equation 28’ cannot have a solution at a time
t where any approximate interference function has a deriv-
ative greater than or equal to one.

Proof reference The theorem is proved in Appendix A.

No solutions to the response-time equation can exist dur-
ing the slant of any interference function. Furthermore, the
closest possible solution will be when the derivative of the
interference function becomes zero. Hence, we can remove
the slants and replace them with a stepped stair function,

2Analogous to eq. 6, we normalize the points to start at 0, hence we
subtract the maximum of all pix[|Γi|].y.

as illustrated by the grey areas of Fig. 8, without introduc-
ing any pessimism in the resulting response times. How-
ever, progress in the fix-point iteration is proportionally in-
creased with any overestimation of the interference. Hence,
by adding overestimation in the grey areas of Fig. 8 we will
speed up the fix-point convergence without modifying the
calculated response-times.

We will remove the slants by transforming the convex
corners to concave corners (illustrated by crosses in Fig. 83).
The rules for finding the concave corners, vi, from a set of
convex corners, pi, is as follows:

vi[k].y = pi[1].y

vi[k].x =

{
pi[k + 1].x− diff if k < |pi|
pi[k].x if k = |pi|

where k ∈ 1 . . . |pi|, diff = pi[k + 1].y − pi[k].y

The interpretation of vi is as follows: For t ≤ Ti, vi[k].y
represents the maximum amount of time induced interfer-
ence Γi will impose on a lower priority task during interval
lengths up to vi[k].x (k ∈ 1 . . . |vi|). For our example trans-
action of Fig. 1, vi becomes (indicated by crosses in Fig. 8
on the previous page):

vi = [〈3, 0〉, 〈5, 1〉, 〈9, 2〉, 〈10, 3〉]

Note, especially that the final point (denoted vi[|vi|]) con-
tains the sum of all interference during the period Ti.

In the special case that some task τij has Φijc = 0 (e.g. in
the case for spill tasks), vi[1].x will not be zero. However,
since T ind

i (0) = 0 (follows from eq. 4), the first element
of vi needs to have x-value that is zero. In such cases we
add the point 〈0, 0〉 to vi (stating that there will be 0 time
induced interference for any time interval of length up to 0).

Discussion: Removal of slants
By removing the slants, we essentially revert to the stepped-
stair interference functions used in the original analysis
[7, 11]. This could seem surprising, since the tight analysis
is based on the insight that stepped-stair interference func-
tions are overly pessimistic. However, as theorem 3 states,
there could be no response-time solutions during a slant.
Hence, using slants during fix-point equation solving does
not increase the precision of the analysis.4

However, when deriving the interference function it is
imperative to use a faithful model (using slants) for the dif-
ferent sources of interference. Hence, once we have derived

3While the last point in the set does not strictly represent a concave cor-
ner, it is still necessary for us to keep track of the amount of interference at
the end of the period, hence that point will be included among the concave
corners and is thus marked with a cross in the figure.

4This is why the original response-time analysis [2] and exact analysis
for tasks with offsets [7, 11] does not overestimate response times.

the interference function (as done when creating the point
set pi), we no longer need to represent the slants and can
revert to a stepped-stair interference function.

An analogy could be made to calculations using floating-
point values. If rounding values up before each calculation
step, the resulting error will be greater than if the calculation
is done using floating-point values, and only the final result
is rounded up.

3.6 T ind
i (τua, t) using lookup

Since we need to represent the interference for the two
first periods separately we will calculate the two point
sets pi (first period) and p′i (second period) according to
Sec. 3.4. Next we will remove the slants for both these point
sets as described in Sec. 3.5 and store the new points in vi

and v′i respectively.
Using the point sets vi and v′i we can calculate the in-

terference from Γi for an arbitrary time t. For the first pe-
riod the interference in vi is used, and when t > Ti we
will start using the interference in v′i. Using these point sets
T ind

i (τua, t) can be reduced to a fast lookup function:

T ind
i (τua, t) =

{
v[n].y if k < 1
V if k ≥ 1

V = vi[|vi|].y + (k − 1) ∗ v′i[|v′i|].y + v′i[n
′].y

k = t div Ti

t∗ = t rem Ti

n = min{m : t∗ ≤ vi[m].x}
n′ = min{m : t∗ ≤ v′i[m].x}

(7)

where k represents the number of whole periods (Ti) in t,
and t∗ is the part of t that extends into the final period. It
could be noted that vi[|vi|].y contains the sum of all inter-
ference during the first period, and v′i[|v′i|].y contains the
sum of all interference during the length of one period for
subsequent periods.

3.7 Space and Time Complexity
The number of points to calculate (pi) is quadratic with

respect to the number of tasks in the transaction Γi (2|Γi|
points for each of the |Γi| candidate tasks). Thus, storing vi

and v′i results in a quadratic space complexity since, theo-
retically, no points from the pic sets will be removed when
calculating pi.

The method presented in this paper divides the calcula-
tion of W ∗

i into a pre-calculation and a fix-point iteration
phase. A naive implementation of the removal procedure
in eq. 7 requires comparison of each pair of points; result-
ing in cubic time-complexity (O(|Γi|3)) for pre-calculating
vi and v′i.

5 During the fix-point iteration phase, a binary
5In Sec. 4 we use an O(|Γi|2log|Γi|) implementation based on sorting

the points and making a single pass through the sorted set.

search through a quadratically sized array is performed (ei-
ther vi or v′i in eq. 7), resulting in O(log |Γi|2) time com-
plexity for calculating W ∗

i according to eq. 3. The orig-
inal complexity for calculating W ∗

i according to eq. 2 is
O(|Γi|2).

In a complete comparison of complexity, the calculation
of W ∗

i (τua, t) must be placed in its proper context (see the
response time formulas in [6, 7]). Assume X denotes num-
ber of fix-point iterations needed, then the overall complex-
ity for the original approach (eq. 2) is (O(X|Γi|2)), whereas
our method (eq. 3 & eq. 7) yields (O(|Γi|3 + X log |Γi|2)).
Typically the size of a transaction (|Γi|) is small (less than
100) and the number of fix-point iterations (X) is large (tens
or hundreds of thousands), hence our method results in a
significant reduction in complexity.

4 Evaluation
In order to evaluate and quantify the efficiency (with re-

spect to execution time of RTA) of our proposed method,
we have implemented a set of approximate response-time
techniques, using the complete set of response-times equa-
tions in [6, 7]. We use these implementations to perform an
extensive simulation study. We compare five RTA methods:
• fast-tight, presented in this paper and is the method that is

optimized the farthest with respect to both analysis speed
and tightness. The goal of this simulation study is to quan-
tify its efficiency with respect to execution time of the
analysis.

• fast-slanted, presented in this paper but without removing
the slants (see Sec. 3.5). The reason for including it in the
analysis is to investigate the impact of reverting back to
a stepped stair interference function during response time
calculations.

• tight, presented in Sec. 2 and [5]. It is only optimized
towards tightness. These three methods all produce the
exact same tight response times.

• orig, presented by Palencia Gutierrez et al. [7], which is
not optimized either for tightness nor for analysis speed.
It is included in the evaluation to see if the relative perfor-
mance degradation of tight, compared to orig, remains in
fast-tight when compared to fast-orig.

• fast-orig, our speed-up method of orig presented in [4]. It
is the fastest known RTA for tasks with offsets. It yields
the same response times as orig. It is included to see if
the performance gain of fast-tight is comparable to those
of fast-orig

4.1 Description of Simulation Setup
In our simulator, we generate task sets that are used as

input to the different RTA implementations. The generated
task-sets have the following characteristics:

• Total system load is 90%.
• The number of transactions is 10.
• Jitter (Jij) for each task is 20% of its transaction period.
• Blocking (Bij) is zero.
• The number of tasks/transaction is a variable parameter.
• The priorities are assigned in rate monotonic order.
• Transaction periods (Ti) are randomly distributed in the

range 1,000 to 1,000,000 time units (uniform distr.).
• Each offset (Oij) is randomly distributed within the trans-

action period (uniform distribution).
• The execution times (Cij) are chosen as a fraction of the

time between two consecutive offsets in the transaction.
The fraction is the same throughout one transaction. The
fraction is selected so that the transaction load of 9% is
obtained.

The execution time for performing the RTA in Sec. 4.2
have been obtained by taking the mean value from 50 gen-
erated task-sets for each point in each graph. We have mea-
sured the execution time on a Pentium 4 laptop. The execu-
tion times are plotted with 95% confidence interval for the
mean values. Note that, for fast-orig, fast-slanted, and fast-
tight the execution times also include the time to perform
the pre-calculations presented in Sects. 3.4 and 3.5.

4.2 Simulation Results

Fig. 9(a) shows how the execution time of the five (al-
though the 3 fast methods are indistinguishable) RTA analy-
sis varies with varying tasks/transaction (all methods are
listed in decreasing execution time order). When the num-
ber of tasks/transaction is 20, tight takes about 86 seconds
whereas fast-tight takes around 0.63 seconds, which is a
speed up of well over two orders of magnitude. Note also
that, tight has a slight penalty to pay, compared to orig, due
to more accurate interference modelling.

Zooming in on the three fast analysis methods in
Fig. 9(b), we see that fast-tight and fast-orig are quite com-
parable in execution times. There are two, mutually oppos-
ing, factors that affect their relative timing: The fast-tight
method shortens its execution time since it sometimes cal-
culates lower response-times than the fast-orig method (and
hence terminate in fewer fix-point iterations). On the other
hand the fast-tight method has to spend more time perform-
ing pre-calculations and also perform lookup in two differ-
ent arrays during each fix-point iteration. In Fig. 9(b) we
see that fast-tight has consistently slightly longer execution
time.

In Fig. 9(b) we also see that fast-slanted pays a price of
slower fix-point convergence due to the slanted interference
function as did tight over orig. We conclude from Fig. 9(a)
and 9(b) that the main contribution of speeding up the re-
sponse times comes from static representation and lookup,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

No. of tasks/transaction

Comparing analysis time of all 5 methods

tight
orig

fast-slanted
fast-tight
fast-orig

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

No. of tasks/transaction

Zooming in on analysis time of the 3 fast methods

fast-slanted
fast-tight
fast-orig

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

No. of tasks/transaction

Comparing pre-calculations

fast-tight & fast-slanted pre
fast-orig pre

(a) (b) (c)

Figure 9. Simulation Results

but that reverting back to a stepped stair function gives an
additional speedup of over 20%.

In Fig. 9(c) we compare the pre-calculations of the three
fast methods. Here we can see that the pre-calculations
of fast-tight and fast-slanted is approximately twice that of
fast-orig. This is expected since they calculate two sets of
arrays as opposed to a single set in fast-orig. Comparing
with Fig. 9(b) one can see that the pre-calculations consti-
tute less than 1% of the total analysis time. One can also
discern the complexity of the pre-calculations, and the slope
is less steep than what would be expected of a naive imple-
mentation with worst-case complexity of O(|Γi|3), this is
partly due to our (sorting based) O(|Γi|2log|Γi|) implemen-
tation of the pre-calculations, and partly because the worst
(theoretical) case, with |Γi|2 elements in the pre-calculated
arrays, never occurs.

We have also simulated an admission control situation.
In an admission control situation, a single (low priority) task
is added to an (otherwise schedulable) set of already admit-
ted tasks, and its response-time is calculated and compared
with its deadline (to decide if the task can be admitted to the
system or not). In the admission control the pre-calculation
of the already admitted tasks is not included in the execution
time. In these simulations, for 20 tasks/transaction, the tight
method takes about 92 milliseconds whereas the fast-tight
takes 0.19 milliseconds, which is a speedup with a factor of
almost 500. When performing admission control, the speed
up in our method is isolated due to two factors: (1) pre-
calculations are already done, and (2) no interference from
other tasks in the same transaction needs to be accounted
for. As can be seen in appendix A, the exact interference-
function is used to account for interference from tasks in
the same transaction. Since fast-tight only improves the
approximate interference-function, we isolate our improve-
ment by not needing to account for interference from tasks
in the same transaction.

This evaluation shows that combining fast and tight
methods for response time analysis, one gets the best of
two worlds; a response time analysis method that is both
fast and tight, outperforming previous methods by several

orders of magnitude.

5 Conclusions
In this paper we have presented a novel method that

calculates approximate worst-case response times for tasks
with offsets. Distinguishing feature of the method is that it
calculates tight response times in a short analysis time. We
have successfully extended our framework of fast RTA [4]
to be able to apply it to our tight method [5]. Our improve-
ments are orthogonal and complementary to other proposed
extensions to the original offset analysis such as [8, 9].

The main effort in performing RTA for tasks with offsets
is to calculate how higher priority tasks interfere with a task
under analysis. The essence to calculate fast response times
is to find a repetitive pattern and store that pattern statically,
and during response time calculations (fix-point iteration),
use a simple table lookup. Our tight analysis [5] exploits the
fact that the interference imposed by higher priority tasks is
overestimated in traditional RTA. By removing this over-
estimation, significantly tighter response-times can be cal-
culated. The fast-and-tight analysis presented in this paper
successfully does both, resulting in a fast and tight RTA.

Faster RTA has several positive practical implications:
(1) Engineering tools (such as those for task allocation and
priority assignment) can feasibly rely on RTA and use the
task model with offsets, and (2) on-line scheduling algo-
rithms, e.g., those performing admission control, can use
accurate on-line schedulability tests based on RTA. Tighter
RTA has the practical implications to allow more efficient
hardware utilization. Either more functions can be fit-
ted into the same amount of hardware, or less powerful
(cheaper) hardware can be used for the existing functions.
Hence, our fast-and-tight analysis is a very attractive choice
to include in engineering tools and/or admission control
software for resource constrained embedded real-time sys-
tems.

In a simulation study we see that our novel analysis has
very similar computational requirements to that of the fast
analysis. Especially we notice that the computational dis-

advantage of the tight analysis (compared to the original
analysis) is completely removed when comparing the fast-
and-tight with the fast analysis. Example benchmarks in-
clude a speedup of over 100 times for response-time analy-
sis of entire task-sets and a speedup of almost 500 times
for single tasks, e.g., corresponding to an admission control
situation.

References

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Per-
spective. Real-Time Systems, 8(2/3):173–198, 1995.

[2] M. Joseph and P. Pandya. Finding Response Times in a Real-
Time System. The Computer Journal, 29(5):390–395, 1986.

[3] C. Liu and J. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. Journal of the
ACM, 20(1):46–61, 1973.

[4] J. Mäki-Turja and M. Nolin. Faster Response Time Analysis
of Tasks With Offsets. In Proc. 10th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS), May 2004.

[5] J. Mäki-Turja and M. Nolin. Tighter Response-Times for
Tasks with Offsets. In Proc. of the 10th International con-
ference on Real-Time Computing Systems and Applications
(RTCSA’04), August 2004.

[6] J. Mäki-Turja and M. Nolin. Fast and Tight Response-Times
for Tasks with Offsets – Extended version. Technical Re-
port MRTC no. 173, Mälardalen Real-Time Research Centre
(MRTC), March 2005.

[7] J. Palencia Gutierrez and M. Gonzalez Harbour. Schedula-
bility Analysis for Tasks with Static and Dynamic Offsets.
In Proc. 19th IEEE Real-Time Systems Symposium (RTSS),
December 1998.

[8] J. Palencia Gutierrez and M. Gonzalez Harbour. Exploit-
ing Precedence Relations in the Schedulability Analysis of
Distributed Real-Time Systems. In Proc. 20th IEEE Real-
Time Systems Symposium (RTSS), pages 328–339, December
1999.

[9] O. Redell. Accounting for Precedence Constraints in the
Analysis of Tree-Shaped Transactions in Distributed Real-
Time Systems. Technical Report TRITA-MMK 2003:4,
Dept. of Machine Design, KTH, 2003.

[10] M. Sjödin and H. Hansson. Improved Response-Time Cal-
culations. In Proc. 19th IEEE Real-Time Systems Sympo-
sium (RTSS), December 1998. URL: http://www.docs.uu.-
se/~mic/papers.html.

[11] K. Tindell. Using Offset Information to Analyse Static Pri-
ority Pre-emptively Scheduled Task Sets. Technical Report
YCS-182, Dept. of Computer Science, University of York,
England, 1992.

Appendix A Proof of Theorem 3
In proving theorem 3, we will use eq. 28 in [7], definition

of wuac(p), the worst case response time of τua with τuc as
the one coinciding with the critical instant, simplified and
rewritten as a function of time, f(t):

f(t) = K1 + Wuc(τua, t) +
∑

∀i 6=u

W ∗
i (τua, t) (28’)

where K1 is some constant value. We note that a solution to
eq. 28’ exists, and fix-point convergence is reached, when
f(t) = t, for some t. Since both exact (Wuc) and ap-
proximate (W ∗

i) interference functions are monotonically
increasing, we conclude that f(t) is also monotonically in-
creasing.

Lemma 1 The smallest solution to eq. 28’, denoted s, can-
not exist where f(t) has a derivative greater than or equal
to 1 (i.e. where f ′(t) ≥ 1).

t

y

y=t

f(s)=s

p

f(p)

y=f(t)

s

Figure 10. Fix-Point Iteration when f ′(t) ≥ 1

Proof of Lemma 1 From [10] we know that:

1. For any monotonically increasing response-time equa-
tion, for any p < s, f(p) > p holds.

2. We can start fix-point iteration from any point p < s
and still find the smallest fix-point s.

3. At a point p < s where f ′(p) ≥ 1, consider Fig. 10, the
line y = f(p) cannot be converging with line y = p
(which has a derivative of 1).

Assume that s is a point where f ′(t) ≥ 1 then (by the
continuousness of f(t)) there exists a point p = s − ε (for
some small ε) where f ′(p) ≥ 1. Then by 1 f(p) > p,
and by 3 the lines will not be converging. However, by 2 it
should be possible to start fix-point iteration at p and con-
verge into s.

A contradiction has been reached and the assumption
does not hold. Hence the lemma holds. ¤

Theorem 3 Equation 28’ cannot have a solution at a time
t where any approximate interference function has a deriv-
ative greater than or equal to one.

Proof of Theorem 1 None of the terms in f(t) has a nega-
tive derivative. Hence, if for time t any of the approximate
interference functions W ∗

i (τua, t) has a derivative of one6,
then the function f(t) has a derivative greater than or equal
to one. Then, by lemma 1, the theorem holds. ¤

6The derivative of an approximation function W ∗
i (τua, t) is either one

(for a slant) or zero (for a stair).

