
Model Synthesis for Real-Time Systems

Joel Huselius and Johan Andersson
Mälardalen Real-Time Research Centre,
Mälardalen University, V̈aster̊as, Sweden
{joel.huselius, johan.x.andersson}@mdh.se

Abstract

In this paper, we present a method for model synthesis.
Based on observations of running system, a model that can
describe the observed behavior is automatically generated.
This allows faster and more accurate modeling of existing
systems. The models can be used for impact analysis, ver-
ification, documentation etc. The method has been imple-
mented; we describe that implementation and present an
evaluation of its performance, the conclusion of the eval-
uation is in favor of the proposed method.

1. Motivation

From observations of an implemented real-time system,
we show how to synthesize a probabilistic state-machine
model expressed in the ART-ML [15] language. We require
only a few simple inputs and a recorded execution trace of
the running system – the fact that the inputs are few, sim-
ple, and general contributes to the generality, portability and
ease of use of our proposed method.

Often, models are created manually from the specifica-
tion before the implementation in order to prove that an ar-
chitectural solution can provide desired properties. There
are, however, situations where models of existing systems
can be interesting:

• When planning to add new functionality to a system,
model synthesis can provide an up-to-date model of
the existing system which can then be manually al-
tered to reflect the planned alteration – the modified
model can then be analyzed to quantify the effects of
the alteration. This is often referred to asimpact anal-
ysis.

• Synthesized models provide an abstraction of the real
implementation, this abstraction can be used in debug-
ging and documentation of the system as well as be-
ing a tool for understanding, i.e. by engineers new to
the project.

• COTS-technology allows for insertion of third-party
code into the system. However, purchased components
and models accompanying these must be verified to
comply to the specification – by bi-simulating the syn-
thesized model with the provided model, model syn-
thesis allows verification of accuracy of the accompa-
nying model in relation to the implementation.

• Using computers to synthesize models is expected to
be faster and less error prone than manually created
models which requires specialists.

1.1. Outline

The remainder of this paper is organized as follows: Sec-
tion 2 describes two approaches for model synthesis, the
modeling language of our choice, and our relation to other
work.

Section 3 describes our methodology and its implemen-
tation, after which Section 4 presents an evaluation of that
implementation. Section 5 presents ideas for future work,
and the paper is concluded in Section 6.

2. Background

We can envision implementation of model synthe-
sis through either astaticor adynamicmethod:

Static methods work by analyzing the specification or the
source code of the implementation offline - the process is
similar to translating the implementation to a different lan-
guage. Dynamic counterparts (e.g. Jensen 1998 [8]) func-
tion by watching the running system and estimating a model
that can deliver the observed behavior.

Due to the dependence on specification or source code
as input, it seems reasonable to assume that static methods
are dependent of the language used for the implementation
of the run-time system, and may thus encounter difficulties
when languages are mixed in the same system. We suspect
that fundamental differences between languages (pointers
vs. no pointers, object oriented vs. imperative, etc.) may
prevent the generality of such methods.

On the other hand, dynamic methods can only model the
behavior that has actually been observed, which is likely
to be only a subset of the valid system behavior (compare
to the completeness problem [7]). Further, the synthesized
model is dependent on the observations on the run-time sys-
tem – if no observations can be made, no model can be cre-
ated (compare to the observability problem [7]). Finally, dy-
namic methods depends more heavily than their static coun-
terparts on the interpretations of the observations made and
the deductions made from these interpretations.

As a consequence of our background in debugging using
record/replay [7], we choose to pursue dynamic methods of
model synthesis.

2.1. ART-ML

We have chosen ART-ML (Architecture and Real Time
behavior Modelling Language) [15] as modeling language.
The major reason for our choice is the probabilistic prop-
erties of the language that seems to rhyme well with the
fact that observations may not be able to provide all details
about the implementation.

ART-ML has been introduced to allow modeling of com-
plex real-time systems. Provided is an FPS (fixed priority
scheduling) simulator where ART-ML models can be tested
and evaluated. The intention is to facilitate a model of the
system that can be altered in order to reflect the intrusion by
future changes to the implementation. It is assumed that it is
easier to modify the model than to modify the actual imple-
mentation. Thus, if the altered model is successfully eval-
uated with respect to resource availability and temporal re-
quirements specifications, the confidence in the proposed
implementation can be increased. We believe that this will
lead to less dead-ends and less ad-hoc alterations in order to
make the implementation answer to its requirements.

As the ART-ML model provides a very high-level view
of the system, the logic for selecting different behaviors
might not be available in the model. ART-ML solves this
by providing a probability model where runtime selections
can be resolved by chance. Relieving the model from much
of the implementation details moves the focus from low-
grained functional issues to architectural issues and tempo-
ral behavior.

2.1.1. Example In Figure 1, we provide a small example
of a task modeled in ART-ML. Among the set of reserved
words in ART-ML, the following subset is important to the
contents of this paper (for a more detailed description, we
refer to [15]):

if, else : works intuitively, as in e.g. C or Java. Vari-
ables can be defined and modified to provide input for
the selection.

task AAA
trigger period 1300
priority 254
deadline 1300

behaviour {
chance(60) {

execute((20,100),(30,130),(50,200));
}
else {

execute((50,200),(50,210));
snd(MBOX0,0);
chance(50) {

snd(MBOX0,1);
}

}
}

Figure 1. ART-ML example.

chance, else : a selection that takes a probability as in-
put and makes a selection based on that value during
run-time.

execute : taking a series of tuples (probability, execu-
tion time) as input, the execute-statement can repre-
sent computation with varying execution times.

snd, recv : provides means to perform inter pro-
cess communication.

2.2. Related work

Jensen [8] presents dynamic model synthesis of real-time
systems in UPPAAL [3]. However, UPPAAL has no notion
of probability, and is therefore not capable of presenting
such a nuanced model as can be achieved using ART-ML.
Also, the models presented, and the environment where they
are used are simple and put high predictability requirements
on the implementation (the use of loops and selections is re-
stricted, and the environment only supports preemptions at
designated points). More recently, Grinchtein et al. [6] pro-
posed learning for dynamic synthesis of UPPAAL models.

Sifakis et al. [13] propose a static method that uses tag-
ging of the real-time software with time constraints to facili-
tate model synthesis. It seems that quantifying the time con-
straints is a difficult sub-problem that requires much care
and planning in order for the method to yield a useful re-
sult.

Bastos and Sanches [2] propose a static method that,
based on UML (Unified Modeling Language) models, pro-
duces SDL (Specification and Description Language) mod-
els. The method is inherently object oriented, and does re-
quire some additional input from humans.

Yan et al. [17] present a dynamic method for synthesiz-
ing high-level architecture models from non-real-time sys-
tem implemented in Java. Their models describe only the
architectural structure of the system (without behavioral

descriptions), which has less information content than the
ART-ML models described here.

Moe and Carr [10] present a dynamic method that use the
CORBA notion ofinterceptorsto introduce probes transpar-
ently to the application. Recordings are later used to analyze
RPC call-patterns that present a high-level view of the in-
teractions in a distributed non-real-time system. No actual
model is produced from the recordings, but the tool Spot-
fire.net is used to visualize these interactions - the tool is
similar to the Tracealyzer used in the validation part of this
paper. A real system is used in an experiment to verify the
method.

Briand et al. [4] propose a dynamic method to synthe-
size UML sequence diagrams. Even though sequence dia-
grams can be helpful in the effort to understand the system
and verify that a known functionality is performing as in-
tended, it is uncertain if the overhead is justified. For ex-
ample, the representation, while able to describe the act of
making a selection, can only describe the one path of the
selection that was actually performed (e.g. only one path
of the selection can be modeled in a given sequence dia-
gram). Further, the model cannot represent state, and can
therefore not be used in simulations etc. In order to justify
the overhead, it should be shown that the amount of record-
ing performed is sufficient to produce also other types of
UML models of the system.

Richner and Ducasse [12] present a hybrid solution that
use both statically and dynamically obtained data to synthe-
size models of object oriented non-real-time systems imple-
mented in Smalltalk. This will provide for a more compre-
hensive picture than a strictly dynamic or static approach.
However, their modeling language of choice cannot de-
scribe the nature of choices made in the execution of the
system (e.g. variables and values that determine selections),
which limits the applicability of the model.

In [9], Marburger and Westfechtel reported on set of
reengineering tools, developed in cooperation with Er-
icsson Eurolab Deutchland, including support for both
structural analysis and behavioral analysis. The behav-
ioral analysis includes state machine extraction from PLEX
source code (an asynchronous real-time language). Traces
recorded from a system emulator can be used to ani-
mate the state machines in order to illustrate the system
behavior.

Another interesting work is that by Systä and Koskimies
[14] where state diagrams are synthesized from traces. The
source code of the system in focus is instrumented in order
to generate a trace. The trace is then fed into the SCED tool,
which generates a (minimal) state diagram corresponding to
the observed behavior. The work does however not address
real-time systems, no timing information is recorded.

3. Implementation

In this section, we explain our dynamic method for
model synthesis, and provide details of our implementation
of the same.

3.1. System model

For the remainder of the paper, we will assume the fol-
lowing system model:

The system is a real-time system oftasksthat each exe-
cutejobs(a.k.a. instances) with approximate frequency. Be-
tween two jobs, the task is in idle. Jobs can communicate
only via a queue-based protocol for inter process communi-
cation (ipc) using system calls.

Each task can have at most one job at a given time, and
each job is triggered by an event of known type; these are ei-
ther: the elapsing of a relative timer, i.e. a periodical task, or
the arrival of a new message on a known IPC queue. Trig-
gering of a new job for a given task is performed on one and
only one designated event (i.e., a task cannot listen to more
than one queue simultaneously or have more than one timer
simultaneously).

Further, we assume that the operating system provides an
interface to execute code at both context-switches and sys-
tem calls. This functionality is available in commercial op-
erating systems such as VxWorks.

We assume that a set of properties are known for each
task that should be modeled: the priority of the task, the
identification of the task, and the method of triggering a new
job of the task. Of these, the triggering property deserves
some detail as it is used to identify the end of each job: The
triggering method can either beperiodic (with a time fre-
quency), orevent driven(with a queue to which new mes-
sages activates a new job). If the triggering method is pe-
riodic, the logs of the recording are analyzed to determine
the frequency based on the task-state at preemptions. In the
case of event driven triggering, the end of each job can be
backtracked from each completed receive.

3.2. Recording

We abide by the following terminology: By inserting
probesinto the system, we canmonitortheeventsthat occur
during execution. The output of monitoring can beloggedto
facilitate offline analysis of the execution. Monitoring and
logging are grouped into the activityrecording. Our method
for model synthesis is dependent on recording to produce
inputs to the modeling process.

Generally, probes can be implemented in hardware, soft-
ware or some hybrid – for portability and simplicity we have
used software probes in our implementation. The probes are
tailored to extract some information from the system, this

Event Parameters
Context switch (A for B) time, state of A,

id of A, id of B.
Send to ipc-queue time, queue id.
Read from ipc-queue time, queue id,

timeout.
State assignment time, value,

variable name.

Table 1. Events and their parameters.

extraction comes at the price of perturbation to the origi-
nal system. Probes that are highly perturbing (i.e. software
implementations) should remain resident in the system (see
[7] for further elaboration on this and other issues related to
recording).

Our method requires generic probes to hook on tocon-
text switchesandsystem calls. There is also an option to use
state-probesthat record the values of selected variables to
represent the state in the system. For each event, a set of pa-
rameters are logged as described by Table 1.

The drawback with the optional state-probes is that the
use normally requires access to the implementation code
and the possibility to modify it – the mandatory probes on
context-switches and system calls can be added in an oper-
ating system abstraction layer. Modifying the source, how-
ever, requires a white-box rather than a black-box view of
the implementation.

That situation may be possible to work around if the ap-
plication uses a data-base such as that described in [11]. In
such a system, the data-base can be accessed by an observ-
ing probe transparently from the system and without treat-
ing the system as a white-box.

3.2.1. From recorded job-sequences to task-treesFor
the moment, let us assume that we use only the manda-
tory probes on context-switches and system calls, we will
discuss the use of the optional state-probes later in the pa-
per.

We make recordings of the system to model and analyze
these on a task-basis (using recordings of context switches
to differentiate between tasks). For each job of a task, we get
sequences of actions such as:execute 20 time unit
(tu) → receive from queue 1 → execute 10
tu → end job . Each such sequence is referred to as a
job-sequence.

Please note that each action is represented by atype(e.g.
send, receive etc.) and a set of type-specificproperties(e.g.
queue identifier, execution time etc.). The properties of each
action are the values of the parameters logged with that ac-
tion as described by Table 1.

In job-sequences, we let execution-actions be associated
with the next up-coming event, but no further effort is made
to distinguish between different execution-actions. Remain-

ing actions are distinguished by their type and some prop-
erty of that type:

Thus, when comparing areceive from queue
1-action with a receive from queue 2 -action, we
come to the conclusion that they are not equal, while a
execute 20 tu -action is equal to aexecute 30
tu -action provided that they are followed by identical ac-
tions.

We then proceed to construct the simplest tree of actions
that can represent the set of job-sequences. This is labeled
the task-tree. In the task-tree, leafs are actions describing
execution and system calls (execute, send, or receive, etc.),
and properties of these leafs describe the detail of the par-
ticular action (e.g. time, queue, etc.).

Note that, as the execute-statements are associated
with the up-coming event, two job-sequences:execute
20 tu → receive from queue 1 → end and
execute 20 tu → receive from queue 2 →
end will lead to a tree where the two branches have no
common leaf.

Similarly, the job-sequences:execute 20 tu →
receive from queue 1 → end and execute 30
tu → receive from queue 1 → end will lead to a
tree with a single path, but the execute-leaf of that tree will
hold information about one occurrence of20 tu , and one
occurrence of30 tu .

3.2.2. From extracted task-trees to ART-ML code
From the task-tree, we can then construct the ART-ML
model. Figure 2 describes this process graphically.

The property of the execute-action is the time spent to
execute. As data is collected and many versions of the same
tree-leaf are discovered, these will be represented as a se-
quence of execution times. When the code is generated, the
quartiles of this sequence are used to describe the interval.
The quartiles are: the minimum value, the25th percentile,
the median, the75th percentile, and the maximum value.
Probabilities for these are used to describe the distribution
over the sequence.

If the leafs of one action in the tree are more than one,
this will be represented by a chance-selection when the
model is constructed from the task-tree.

3.2.3. An exampleTo clarify, we will briefly describe the
example displayed in Figure 2.

First, the trace collected from the running implementa-
tion is collected and analyzed. Known are the name of all
tasks in the taskset and their individual priorities (this in-
formation can also be collected from the running system).
Also known, for every task, is the method of triggering new
job of the task (periodic or on event from a known queue).

The trace is analyzed to separate the different jobs (the
job-sequences) of individual tasks. These are shown in
the left-most part of Figure 2, for example, the first job-

E
?

S
?

S
?

X

E
?

S
?

X

E
?

S
?

S
?

X

E
?

R
?

S
?

E
?

X

E
?

X

E
?

R
?

S
?

E
?

X

E
?

S
?

S
?

E
?

X

E
?

S
?

S
?

E
?

X

E
?

S
?

X

E
?

S
?

S
?

E
?

X

. . .

. . .

. . .

E
?

S
?

S
?

X

A
A

�
�

31d
@@18 6�� 7iE

18

iE
6

iE
7iS

AA11�� 7

iX iR
7iS

AA8�� 3

iX iS
7iE

8

iX iE
7iX iX

A
A

�
�

chance(6/31) {
execute(...);

}
else chance(18/31) {

execute(...);
snd(...);
chance(11/18) {

snd(...);
chance(8/11) {

execute(...);
}

}
}
else {

execute(...);
recv(...);
snd(...);
execute(...);

}

S=send
R=recv
E=execute
X=end job

Figure 2. Modeling with chance-statements assuming system-level recording only.

sequence readsexecute → send → send → end (for
simplicity, properties of the action-types, such as queue
identifiers, are ignored).

For each task, all job-sequences are then joined into a
task-tree that describes observed actions and their proper-
ties. This is shown in the middle of Figure 2.

Please note the way the three execute-actions at the very
root of the task-tree are separated, this is because of that
the second action of the sequences observed have differing
types: 18 had send-actions, 7 had receive-actions, and 6 se-
quences end directly after the execute action. It is assumed
likely that the distribution of the execute-actions may dif-
fer significantly based on the path about to be taken, which
is why they are separated.

Finally, the tree is traversed in preorder and the code cor-
responding to each visited action is output. If there are rea-
sons for selection,chance -statements are inserted appro-
priately; probabilities are calculated based on the observed
frequencies. This is described in the right-most part of Fig-
ure 2.

3.3. Adding a notion of state to the model

The modeling described so far does not respect the state,
or the semantics, of the system. By adding the optional
probes that record values of variables at selected points, the
model synthesis is made more accurate to the implementa-
tion. The drawback, and the reason to present this optional
recording separately, is that the application is no longer a
black-box to the recording. Thus, the source of the imple-
mentation must be available and possible to modify. Ob-
taining the source code of the implementation may present
a problem, but the gain is such that we will describe the pro-
cedure:

In the job-sequences, similar to entries for system calls,
we add actions that describe altering of the state of the sys-

tem. There is no limit set to the amount of variables that
can be used to represent this state. Different update-actions
are separated by both the variable updated and the value as-
signed to that variable (as described by Table 1).

When compiling the task-tree with update-actions
present in the job-sequences, the compilation must re-
spect the current state of the task when events are com-
pared. As a leaf is updated, the current state is therefore
added to a set of valid states for that leaf. Also the num-
ber of occurrences for different states is recorded.

Thus, we note that adding state information will not lead
to a task-tree with more leafs, but the leafs will be larger.
The reason for why we do not use state-information when
comparing actions for the compilation of the task-tree will
become evident in the next section where this design-choice
saves considerable effort.

3.3.1. Counting statesThe representation of state in the
ART-ML model can either be in the form of a general as-
signment based on unknown premises (e.g. reading of a sen-
sor) or as an operation on the previous state (e.g. increase
of a counter). To handle both these, we need ways to ex-
press them in the task-tree.

Concerning the general assignment, this is already ex-
pressed with the update-action. Subsets of the update-
actions may however be exchanged for the optional state
operation as described above – leading to smaller trees,
which in turn will lead to smaller models that are eas-
ier to understand. To implement this, we need to apply
analysis to the task-tree:

The procedure is to make a premise and to search for
a counter example on the recording available. For exam-
ple, assuming a variablev, the premise can be that the
update-action is an increment-operation on the formvn =
v0 + (n ∗ C) modulo K wherev0 is the initial value ofv.
(The values ofv0, C, andK are measured on the update-

Poor modeling: Good modeling:

if(va==1)
f();

else if(va==2)
f();

if(va==1 || va==2)
f();

Figure 3. Poor and good modeling practice.

actions that are to be compared). If the premise is not found
to be faulty, we can assume that the set of update actions
that are covered by the premise can be seen as equal ac-
tions.

The design choice described in the previous section will
result in that all the update-actions that may be concatenated
will have the same root in the task-tree. Thus, the search for
a counter example to the premise is limited to the leafs of
one root, and if no counter example can be found, all that
remains to perform is to register the finding in the update-
action and to merge the trees that have the examined update-
actions as their root.

3.3.2. State-change and path explosionAn interesting
conflict arises from the strive for “better” models:

We should strive for smaller models, which includes us-
ing good modeling practice as seen in Figure 3. If state-
variables are not respected when comparing actions during
compilation of the task-tree, this can be efficiently ensured.

However, this will result in that several disjunctive exe-
cutions share paths in the task-tree, and care must be taken
when generating the model-code. Contrary to the intention,
the condensed representation may lead to a situation where,
after an update-action, the number of possible paths seems
larger than intended.

Imagine a set of job-sequences describing a system that
can experience a state change through an update-action on a
single variable. Say that of the sequences{A,B}, sequence
A has a prefixAx followed by an update-action transferring
the state froma to b, after which the job-continues. Now, if
B has the same prefix asA, and the same update-action,
but a different continuation, we must take care. The inter-
nal state added to actions following the state transition ofA
must, for the duration ofA, remain to bea.

Failure to implement thislazy state transition, would
lead to that the model describes the behavior ofB for both
states. Further, it would be more complicated where there
more than two jobs in the same style.

3.4. Limitations and expected problems

There are a number of issues with the current version of
the model synthesis, some are possible to amend, and some
are inherent of the approach.

Currently, we only support two system calls: send and re-
ceive over inter process communication queues. This is in-
deed a limiting factor, but we expect no problems in extend-
ing our tool to support other system calls such as semaphore
operations etc.

As the approach chosen is working with observations
of occurred behavior as only input, we can not ensure that
the model generated describes the implementation in every
respect (compare to the completeness problem [7]). This
could possibly be amended by combining the tool with a
static model synthesis, or by using a limited amount of man-
ual modeling.

Further, the probabilistic nature of ART-ML may lead
to that worst case execution times are over or under esti-
mated, and that best case execution times are under esti-
mated. Imagine a trace through the model of a task that
passes two execute-statements in the same job of the task. In
the real implementation, it may be that executing for exam-
ple a low time-count in the first execute-statement will lead
to that the second statement must execute a high time-count.
This implicit knowledge is not necessarily incorporated in
the ART-ML model, which is why the spectra of modeled
execution times may cover a larger interval than possible in
the run-time system. This can of course be amended by in-
corporating the optional state-information into the record-
ing effort.

4. Model Validation

In order to validate this method of model synthesis,
we have compared observations of a system with predic-
tions from a model, synthesized from that system using the
method presented in this paper. The validation was done us-
ing the ART-ML simulator [15] and a recently developed
set of tools called the ART Framework [1]. This framework
contains two tools, the Property Evaluation Tool, an analy-
sis tool for PPL queries [16], and the Tracealyzer, a graphi-
cal execution trace browser.

The system that was modeled was a small Real-Time
System previously developed for similar experimental pur-
poses. The system pretends to control an electric motor
based on sensor readings. However, the system does not do
any real calculations and does not interface any sensor or
motor electronics, but the tasks in this system have realis-
tic execution times distributions and communicate using a
commonly used mechanism, IPC message queues. The tem-
poral behavior of this system have many similarities with
industrial control systems we have studied, for instance the
robot control system described in [15].

The system was implemented on a platform commonly
used for real time and control applications, VxWorks from
WindRiver, a real time operating system which uses pre-
emptable fixed priority scheduling. The system basically

Task Priority (%) Frequency (%)
Sensor High High
Drive Medium Medium
Ctrl Low Low

Table 2. Task properties.

Task Predicted (%) Observed (%)
Sensor 15.15 15.04
Drive 5.03 5.03
Ctrl 38.30 37.55

Table 3. CPU utilization, predicted and ob-
served.

consisted of three tasks (see Table 2);Sensor , Ctrl and
Drive . The taskSensor executes periodically, with a
high frequency and the highest priority. The taskCtrl has
low priority and is event triggered. TheCtrl task has rather
long execution time and is therefore pre-empted several
times. TheDrive task has medium priority and executes
periodically, but with a lower frequency thanSensor .

The model was executed in the ART-ML simulator in or-
der to produce an execution trace. The resulting execution
trace was analyzed with respect to a set of system proper-
ties acting as a point of view for the validation. The proper-
ties were formulated as PPL queries and then analyzed us-
ing the Property Evaluation Tool, with respect to both the
execution trace from the simulation and the execution trace
measured on the real system.

The final step in the validation was to compare the re-
sults from each analyzed property. First we compared the
CPU utilization of the tasks. For this, we used the Trace-
alyzer tool which has a feature for presenting the tasks CPU
utilization.

As you can see in Table 3, the model predicted the CPU
utilization of the tasks with high accuracy. However, the
CPU utilization is only a weak indication of the validity of
the model, since it is only represents the average values on
execution time and inter-arrival time of the tasks.

In order to further investigate the model validity, the dis-
tributions of the execution times and response times were
compared using the Property Evaluation Tool. Five types of
properties were used for this:

• The maximum observed execution/response time of an
instance of the task (maximum).

• The average execution/response time of a task
(average).

• The highest execution/response time that at least 10 %
of the instances exceed (highest 10).

• The highest execution/response time that at least 25 %
of the instances exceed (highest 25).

• The lowest execution/response time that at least 10 %
of the instances are below (lowest 10).

These properties were used both for execution times and
response times, for the three tasksSensor , Ctrl and
Drive . When analyzing these 30 properties using the Prop-
erty Evaluation Tool, we got the values presented in Table 4
and Table 5. The third column in the tables, accuracy, is the
accuracy index, the quotient between the predicted and the
observed values, times 100. For the execution time proper-
ties, 13 of the 15 predictions have an accuracy index be-
tween 96.7 and 103.7, where 100 is a perfect match. How-
ever, when it comes to the response time properties, the pre-
dictions are not as good. The following discrepancies were
observed:

• In the predictions of the response times forDrive ,
the accuracy index is around 50, i.e. the predicted val-
ues are only 50 % of the measured ones.

• The accuracy index of the response times forCtrl
was between 79.17 and 96.75, i.e. significantly lower
in the predictions than in the measurements.

• In the measurements of the real system, the highest ob-
served response time ofSensor was 944 us. The cor-
responding value from the simulation was only 367 us.

Execution Times
Pred. (us) Obs. (us) Accuracy

Task ctrl
maximum 4398 4366 100.7
average 3811 3756 101.5
highest 10 4372 4215 103.7
highest 25 4359 4038 108.0
lower 10 3197 3306 96.7

Task drive
maximum 580 579 100.2
average 509 505 100.8
highest 10 562 550 102.2
highest 25 551 535 103.0
lower 10 447 459 97.4

Task sensor
maximum 367 906 40.5
average 303 302 100.3
highest 10 332 329 100.9
highest 25 320 310 103.2
lower 10 277 282 98.2

Table 4. Execution time distribution, pre-
dicted and observed.

Using the Tracealyzer tool, we could quickly identify the
causes of these three discrepancies. The first two turned out
to be caused by a sleep-operation in the taskSensor in

Response Times
Pred. (us) Obs. (us) Accuracy

Task ctrl
maximum 5161 5986 86.2
average 4488 4952 90.6
highest 10 5123 5415 94.6
highest 25 5066 5236 96.8
lower 10 3561 4498 79.2

Task drive
maximum 580 1126 51.5
average 509 1052 48.4
highest 10 562 1099 51.1
highest 25 551 1082 50.9
lower 10 447 1006 44.4

Task sensor
maximum 367 944 38.9
average 303 302 100.3
highest 10 332 329 100.9
highest 25 320 310 103.2
lower 10 277 282 98.2

Table 5. Response time distribution, pre-
dicted and observed.

the real system. The model synthesis does not yet recog-
nize that system call, so synthesized model did not include
any sleep-operation.

Because of this, the response times of theDrive task
were much higher in the real system than in the prediction
from the model. The purpose of the sleep was to make the
task execute with an offset. This however causes theDrive
task to be split in two fragments, and our analysis tool cal-
culated the response-time to include both fragments and the
sleep period in between. The sleep-operation also caused
the difference in response times for theCtrl task. The off-
set caused by the sleep makesDrive pre-emptCtrl . This
does not occur in the simulation.

Regarding the very long maximum response time of
Sensor that was observed on the real system, it turned out
that the first instance ofSensor , in the real system, had an
unusually high execution time of 906 us and was also pre-
empted by another task, which executed for 38 us. The sum
of these execution times equals the observed response time,
944 us.

This behavior did not occur in the simulation. There
are two possible reasons; either did the model not include
this behavior, or the behavior was indeed in the model, but
was never executed as it a low probability of occurrence. It
turned out that the model did not include this very high ex-
ecution time. This since the model synthesis tool deliber-
ately filters out the first instance of tasks when it constructs
the model.

The motivation for this is that the first instance of a task
tends to have a rather different behavior, as in this case, and
it only occurs once in a recording. To model a behavior that
only occurs in the first instance of a task would require an-

alyzing several measurements in order to get a sufficient
amount of data on execution times and probabilities.

5. Future work

When recording using intrusive probes such as we do
here, the implementation is normally eligible to the probe
effect [5]. However, we are in the situation that, provided
our probes do not invoke irregular behavior, the model could
very well be the same with probes and without. If our probes
do indeed invoke irregular behavior, this should be possi-
ble to sense with a moderate testing effort. Thus, it should
be possible to remove the probes from the system without
penalty once the modeling is completed. We will investi-
gate this in our future work.

Further, we plan to use model synthesis on a larger
scale system than examined here. Ideally, we would attempt
to generate models of industrial state-of-practice systems.
This requires the capability to model more system calls than
we do today.

6. Conclusions

The method presented in this paper allows for model
synthesis of real-time systems. Motivation for the work has
been presented and includes facilitating impact analysis and
COTS-verification.

For the validation of the method, we have developed
tools to examine recorded traces originating from both the
run-time system and the synthesized model. The use of
these tools have been shown here as the model synthe-
sis was evaluated. During the successful validation, some
weaknesses of the model synthesis have been experienced
and examined. The causes of these weaknesses have been
identified and are expected to be amendable.

References

[1] J. Andersson, A. Wall, and C. Norström. Decreasing main-
tenance costs by introducing formal analysis of real-time be-
havior in industrial settings. InProceedings of the1st Inter-
national Symposium on Leveraging Applications of Formal
Methods, October 2004. Accepted for publication.

[2] S. J. S. Bastos and M. L. D. Sanchez. Modelling real-time
systems from object oriented methods. InReal-Time Embed-
ded System Workshop. IEEE, December 2001.

[3] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL – a tool suite for automatic verification of
real-time systems. InProceedings of the4th DIMACS Work-
shop on Verification and Control of Hybrid Systems III, num-
ber 1066 in Lecture Notes in Computer Science, pages 232–
243. Springer–Verlag, October 1995.

[4] L. C. Briand, Y. Labiche, and Y. Miao. Towards the reverse
engineering of uml sequence diagrams. InProceedings of

the10th Working Conference on Reverse Engineering, pages
57–66, November 2003.

[5] J. Gait. A probe effect in concurrent programs.Software -
Practice and Experience, 16(3):225–233, March 1986.

[6] O. Grinchtein, B. Jonsson, and M. Leucker. Inference of
timed transition systems. InProceedings of the6th Inter-
national Workshop on Verification of Infinite-State Systems,
September 2004. To apear in the Electronic Notes in Theo-
retical Computer Science series.

[7] J. Huselius. Preparing for replay. Licentiate Thesis,
Mälardalen University, Sweden, November 2003. ISSN
1651-9256, ISBN 91-88834-15-8.

[8] P. K. Jensen.Reliable Real-Time Applications. And How to
Use Tests to Model and Understand. PhD thesis, Aalborg
University, 2001.

[9] A. Marburger and B. Westfechtel. Tools for understanding
the behavior of telecommunication systems. InProceedings
of the25th International Conference on Software Engineer-
ing, pages 430–441, 2003.

[10] J. Moe and D. Carr. Using execution trace data to improve
distributed systems.Software - Practice and Experience,
32(9), July 2002.

[11] D. Nystr̈om, A. Tesanovic, M. Nolin, C. Norström, and
J. Hansson. COMET: A component-based real-time database
for automotive systems. InProceedings of the Workshop
on Software Engineering for Automotive Systems, pages 1–8.
IEE, May 2004.

[12] T. Richner and S. Ducasse. Recovering high-level views of
object-oriented applications from static and dynamic infor-
mation. InProceedings of the International Conference on
Software Maintenance, pages 13–22, August 1999.

[13] J. Sifakis, S. Tripakis, and S. Yovine. Building models of
real-time systems from application software.Proceedings of
the IEEE, 91(1):100–111, January 2003.

[14] T. Sysẗa and K. Koskimies. Extracting state diagrams from
legacy systems. InProceedings of ECOOP’97, 1997. LNCS
1357.

[15] A. Wall. Architectural Modeling and Analysis of Com-
plex Real-Time Systems. PhD thesis, M̈alardalen University,
September 2003.

[16] A. Wall, J. Andersson, and C. Norström. Probabilistic
simulation-based analysis of complex real-time systems. In
Proceedings of the 6th IEEE International Symposium on
Object-oriented Real-time distributed Computing, 2003.

[17] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman.
Discotect: A system for discovering architectures from run-
ning systems. InProceedings of the 2004 International Con-
ference on Software Engineering, May 2004.

