

Concretizing the Vision of a Future Integrated System

– Experiences from Industry

Rikard Land, Ivica Crnkovic, Stig Larsson
Mälardalen University, Department of Computer Science and Electronics

PO Box 883, SE-721 23 Västerås, Sweden

{rikard.land, ivica.crnkovic, stig.larsson}@mdh.se, http://www.idt.mdh.se/{~rld, ~icc }

Abstract. When an organization faces new
types of collaboration, for example after a
company merger, there is a need to integrate
the existing software. Important challenges are
how to create a realistic vision of a future
integrated system, how to make the vision
concrete enough to be able to work towards the
vision, and of course to carry out the actual
integration process. This paper focuses on how
to concretize the vision.

We have carried out a multiple case study,
consisting of 9 cases. This paper presents the
observations made in the form of recurring
patterns that can be used as recommendations
for other organizations facing the same
challenge.

Keywords. Software Evolution, Software
Integration.

1. Introduction
From time to time within an organization, two
or more in-house developed software systems
address similar needs, and there is an overlap in
functionality. This typically happens when the
organization changes through new types of
collaborations and mergers. The organization
would ideally want to take the best out of the
existing systems and integrate them with as
little effort as possible. This could for example
mean reusing components of the systems in a
new system, integrate them more loosely,
discontinuing one system and extending the
other, or even discontinuing both and start
development of a new generation. See Figure 1.

We assume there is a vision of a future,
integrated system. It is typically not difficult to
outline a vision at a very high (“PowerPoint”)
level, but this vision must be concretized –
otherwise it will only have the
(non-)shape of a mirage. This is not to say that

the vision must be completely defined before
starting actual integration (the cases indicate
rather the opposite).

System
1

System
2

Future
System

??

Figure 1: Two challenges – the future system
and the path there.

Based on a previous case study [2,4] we have
assumed three main influencing factors:
processes, architecture, and requirements/
features. We intend to analyze each of these
factors thoroughly in other publications, while
the present paper outlines the relationship
between them.

The relationship between the vision and
these three influencing factors can be simplified
described as follows: input to the vision are 1)
the architectures of the existing systems, 2) the
features of the existing systems, and 3) the
available resources and desired timeline for the
integration. Of these, the first two are fixed
(they describe the actual existing systems) while
the third is re-negotiable. The vision must then
be concretized into the corresponding
descriptions of the future system: architecture,
features (or requirements), and a project plan.
See Figure 2.

The challenge is then to follow the
integration process plan and iteratively adjust
the vision and concretize it into (slightly
modified) architectural descriptions, feature
descriptions of the future system, and an
integration process plan. Reality soon becomes
too complex for this simple model to be useful
for anything else than an initial description of

the concepts. The actual analysis in the present
paper will therefore be in the form of
“patterns”, i.e. activities that will aid in this
iterative process of making the vision more
concrete.

VisionVision

is concretized into

influences

Existing
Architectures

Existing
Features

Desirable Integration
Process Characteristics

Future
Architecture

Future
Features

Integration
Process Plan

Figure 2: Interaction between decision and
integration process

The specific questions addressed by this paper
are:

Q1. Which are common experiences (good and
bad) concerning vision concretization?

Q2. To what extent are the lessons learned from
these experiences possible to generalize into
recommendations for other organizations?

Section 2 describes related work, section 3
describes the methodology used in the research,
and section 4 introduces the cases. Section 5
answers Q1 and Q2 by presenting experiences
from the cases in the form of patterns, and
section 6 concludes the paper by summarizing
the most important observations and outlining
future work.

2. Related Work
Three major fields of software integration are
component-based software [8], open systems
[6], and Enterprise Application Integration, EAI
[1,7]. In a previous survey of existing
approaches to software integration [3], we
found that there is basically no existing
literature that directly addresses the context of
the present research: integration of software
completely controlled and owned within an
organization. To save space in the present

paper, we refer to our previous survey of
software integration for further references [3].

3. Research Methodology
To investigate these issues, we have carried out
a multiple case study [9] with 9 cases from 6
organizations that have gone through such an
integration process. Our main data source has
been interviews, but in some cases we also had
access to some documentation. In one case (F1)
one of the authors (R.L.) also participated as an
active member. Due to space limitations, we
refer to a report accompanying the present paper
were we have collected all raw data (primarily
the copied out interview notes) [5]; the report
also contains all details about how the research
was carried out, including details about the
cases and how research threats were addressed.

4. The Cases
Table 1 presents the cases very briefly; the
report accompanying the present paper contains
more details [5]. The cases are labeled A, B, etc.
Cases E1, E2, F1, F2, and F3 occurred within
the same organizations E and F. For the data
sources, the acronyms used are IX for interviews,
DX for documents, and PX for participation,
where X is the case name (as e.g. in IA, the

interview of case A), plus an optional lower
case letter when several sources exist for a case
(as e.g. for interview IDa, one of the interviews
for case D). IX:n refers to the answer to question
n in interview IX. We have provided explicit
pointers from the text into the report containing
the data [5].

5. Analysis
By examining the data of the cases from the
viewpoint of question Q1 asked initially, about
common experiences, nine recurring patterns
have been found. All of these patterns are based
on several cases, which give confidence about
the generality of the patterns, thus addressing
Q2. The patterns are:

Small evaluation group. Statement: After
higher management has identified some
potential benefits with integration, a small
group of experts should be assigned to evaluate
the existing systems from many points of view
and describe alternative high-level strategies for
the integration. In cases C and F1 a small group
evaluated the existing systems with the specific
goal to identify how integration should or could
be carried out, at the technical level (ICa:6, ICb:6,

Table 1: Summary of the cases.

 Organization System Domain Goal Information Resources
A Newly merged

international
company

Safety-critical
systems with
embedded software

New HMI* platform to
be used for many
products

Interview: project leader for “next
generation” development project (IA)

B Organization
within large
international
enterprise

Administration of
stock keeping

Rationalizing two
systems within
corporation with
similar purpose

Interview: experienced manager and
developer (IB)

C Newly merged
international
company

Safety-critical
systems with
embedded software

Rationalizing two core
products into one

Interviews: leader for a small group
evaluating integration alternatives (ICa); main
architect of one of the systems (ICb)

D Newly merged
international
company

Off-line management
of power distribution
systems

Reusing HMI* for
Data-Intensive Server

Interviews: architects/developers (IDa, IDb).

E1 Cooperation
defense research
institute and
industry

Off-line physics
simulation

Creating next
generation simulation
models from today’s

Interview: project leader and main interface
developer (IE1)
Document: protocol from startup meeting
(DE1)

E2 Different parts of
Swedish defense

Off-line physics
simulation

Possible rationali-
zation of three
simulation systems
with similar purpose

Interview: project leader and developer (IE2)
Documents: evaluation of existing
simulation systems (DE2a); other
documentation (DE2b, DE2c, DE2d, DE2e, DE2f)

F1 Newly merged
international
company

Managing off-line
physics simulations

Possible rationali-
zation by using one
single system

Participation: 2002 (R.L.) (PF1a); currently
(R.L.) (PF1b).
Interviews: architects/developers (IF1a, IF1b);
QA responsible (IF1c)
Documentation: research papers (DF1a);
project documentation (DF1b)

F2 Newly merged
international
company

Off-line physics
simulation

Improving the current
state at two sites

Interviews: software engineers (IF2a, IF2b,
IF2f); project manager (IF2c); physics experts
(IF2d, IF2e)

F3 Newly merged
international
company

Software issue
reporting

Possible rationali-
zation by using one
single system

Interview: project leader and main
implementer (IF3)
Documentation: miscellaneous related (DF3a,
DF3b)

* HMI=Human-Machine Interface

IF1c:6, PF1a, PF1b, DE1a). In case F1, users were
also involved in this process, in order for them
to grade different features of the existing
systems (PF1a, DF1a). Important with this scheme
is to involve both sides, as no single individual
has overview of all systems (both cases concern
newly merged companies). Also, everyone
involved is partial and there is a clear risk that
everyone “defends” their own system (ICb:6),
there must be an open mind for other solutions
than “ours” (IF3:11). In the cases it appears that
there has indeed been a good working climate
with a “good will” from everyone (ICb:6, PF1a).
In both cases this was considered a good

scheme; in case C the architects immediately
saw that there were no major technical
advantages of either system, and wanted to
immediately discontinue one of the two
systems, indifferent which, rather than trying
the (ICb:6). The late decision (indeed, to
discontinue one of the systems) was due to
other reasons (see “timely decisions” below. A
similar scheme was used in case E2, an external
investigation was made, however with less
technical expertise (I E2:6, DE2a).

Reusing experience from existing
systems. Statement: To be able to describe the
envisioned system, one needs to understand the

state of the current systems (IA:6, PF1a, DF1a,
IF2e:6, IF2f:6, IF3:11). Ideally, one would like to
define the new system as consisting of the best
parts of the existing systems; however, this is in
practice not as simple as it first may seem. The
requirements on the future system is clearly
dependent on the experience of the previous
systems, and can be stated in terms of existing
systems (IA:6, PF1a, DF1a, IF3:6). However, this
means that the requirements need not (some of
the sources even say should not) be too detailed
(IA:5,6,11, IC1a:6, PF1a, DF1a). In case A, the
development organization explicitly asked sales
people for “killing arguments” only, not a
detailed list of requirements (IA:5). This,
combined with the experience and
understanding of the existing systems, makes a
detailed list of requirements superfluous (i.e.
during these early activities; later a formal
requirements specification may be required).
The people developing the vision of the future
system (e.g. a small evaluation group) need to
study the other systems, preferably live (ICa:6,
DE2a, IF3:6). Case F2 involves complex scientific
physics calculations, and the study of the
existing systems’ documentation of the
implemented models was an important activity
(IF2e:6, IF2f:6). When looking at the state of the
existing systems, an open mind for other
solutions than the current way of doing things is
essential (IF3:11).

Improve the current state. Statement: To
gain acceptance, the efforts invested in the
integrated system must not only present the
same features as the existing system, but also
improve the current state. The existing systems
must be taken into account (see pattern “reusing
experience from existing systems”), but one
should not be restricted of the current state
(IF2f:6); in case F2, it was indeed considered a
mistake was to keep the old data format and
adapt new development to it (IF2a:9, IF2d:7,9,11).
The actual needs must be more important than
to preserve the features of the existing systems
(IF3:11). One interviewee stated that a new
system would take ~10 years to implement, and
a merged (and improved) system must be
allowed to take some years as well (IF2f:6). In
case E1, integrating several small, separate
pieces as was envisioned required a more
structured language (Ada), even though it would
in principle be possible to reuse many existing
parts as they were written in Fortran (IE1:6); the

organization was interested in Ada as such,
which also contributed to this choice (IE1:7).

Sufficient analysis. Statement: Before
committing to a vision, sufficient analysis must
be made. Obvious as that may seem, the
difficulty is the tradeoff between the need of
understanding the existing systems well enough
without spending too much time. In case F2,
insufficient analysis caused large problems:
what was believed to involve only minor
modifications resulted in complete re-design
and implementation (IF2a:9, IF2b:9, IF2c:3, IF2d:6,
11). One method of ensuring sufficient analysis
could be to use the “small evaluation group”
pattern. Of course, pre-decision analysis
somewhat contradicts the pattern “timely
decisions”; a stricter separation from the actual
integration process is also introduced, implying
a more waterfall-like model which might not be
suitable (IF1b:5,6).

Strong project management. Statement:
To run integration efforts in parallel with other
development efforts, a strong project
management is needed (e.g. IF1c:9,11, IF2b:5,11,
IF2e:9,11). To be able to control development,
higher management and project management
must have economical means of control (ICa:11,
IF1b:11). In case C, not until economical means
of control were put into place did development
of the system-to-be-discontinued stop (ICa:6).
Case E1, a cooperation led by a research
institute, can serve as a counter-example. Here,
enthusiasm apparently was the driving force,
and the lack of strict management was even
pointed out as contributing to success (IE1:9,11).
Although we agree it is important to create a
good and creative team spirit, we believe it
would be a bad advice to recommend weak or
informal project management, at least for larger
projects.

Commitment. Statement: It is not possible
to succeed with integration if the efforts are
half-hearted. Commitment is needed from all
stakeholders (IF1b:11, IF1c:11), which must also
be accompanied with enough resources (IF1c:11).
In case F2 it was pointed out (based on negative
experience) that for strategic work as
integration is, one cannot assign just anyone
with some of the required skills; the right (i.e.
the best) people must be assigned, which is a
task for project management (IA:11, IF2b:11,
IF2d:9,11, IF2e:9,11). Realistic plans must be
prepared, and resources assigned in line with

those plans (IF1c:11). When directives and
visions are not accompanied with resources,
integration will be fundamentally questioned
(IF1b:3, IF1c:6,9). When there is a lack of
resources, short-term goals tend to occupy the
mind of the people involved. Without a
minimum effort in integration, the environment
and the vision will change more rapidly than the
integration makes progress, which means only a
waste of resources. Integration will be doubted,
which takes even more energy from the people
involved. A long period of integration is
problematic, since you need to maintain the
existing system meanwhile (and for a while
after they are retired as well) (IF2f:6).

Make agreements and keep them.
Statement: To be able to manage and control a
distributed organization formal agreements
must be made and honored. In case F2, it was
pointed out as a big problem that requirements
and design evolved driven by implementation
(IF2b:6, IF2c:9, IF2d:6, 11). Even in the informally
managed case E1, the importance of agreeing on
interface specifications and keeping them stable
was emphasized (IE1:7,9). More formalism than
usual is required, you must have agreements
written down and then stick to them (IF1c:9,11).

Achieving momentum. Statement:
Achieving “momentum”, i.e. an inner driving
force is desirable. (IF2f:9) The external
converging forces cannot be too strong for too
long, which would take a lot of energy from the
staff and the organization, will create stress and
tension, and may also lead to a recurring
questioning about the purpose of integration
(IF1b:3,11, IF1c:6,9). One of the interviewees in
case F1 (which has not made significant
measurable progress during the 4 years that
have passed since the company merger) asked
“from where comes the driving force?” (IF1c:9),
pointing at the fact that integration is not a goal
in itself. (These terms: converge, diverge,
driving force, momentum, were terms used by
many of the interviewees themselves).

Stepwise delivery. Typically, the vision
lies far into the future, and integration processes
are less predictable than other development
projects (IF2c:10,12). Maintaining the long-term
focus without some way to monitor and measure
progress is impossible (IA:6,9, IB:1, IDa:12, IDb:6,
IF1b:6, IF2c:6,11, IF2f:6). In contrast to
development of new products, or new product
versions, these activities are performed in

parallel and often not considered the most
important. For these reason the decisions
regarding to the integration process do not only
depend on the process itself, but also on many
unrelated and unpredictable reasons. Stepwise
deliveries and prototyping have been used for
new development to increase process flexibility
and this was also a recurring opinion among the
interviewees. This could be one way of
achieving the desirable momentum. There were
some variations on this theme:
• Some of the interviewees maintained that

there must be a focus on deliveries that
gives user value, and a clearly identified
customer (IB:1,7,11,13, IF1b:6,11). If it is
possible to utilize a customer delivery to
perform some of the integration activities,
this will be the spark needed to raise the
priority, mobilize resources, gaining
commitment etc. (IF2c:6,11). However, it
should also be noted that customer delivery
projects typically have higher priority than
long-term goals such as integration, and
may steal resources and commitment from
the integration process. The extreme would
be to focus only on immediate needs,
questioning the need of integration at all
(IF1b:3,11, IF1c:6,9).

• Case A used prototyping as a way to show
an early proof of concept (IA:1,6,9,11).

• In some cases where it has been difficult to
formulate, or agree on, or commit to a
vision, the opinion has been raised that you
rather need to move on and do something
more concrete. There might be too many
unknowns, and the best way to carve out a
more concrete vision is to do something that
is useful in the shorter term, and use it as a
learning experience (IF2c:11, IF2f:6). In case
F2 requirements and design evolved
uncontrolled, driven by implementation
(IF2b:6, IF2c:9, IF2d:6,11); better had been to
either freeze the requirements or to include
constant change into the development
model.

• For a large system, a waterfall model is not
suitable (IF1b:5,6). It is often considered too
risky to define the complete integrated
system and implement it, as this runs the
risk of not being feasible at time of
delivery; there is a too long time to return of
investment (IB:1). Closely associated is the
approach of a loosely integrated system: an
integration point should be found and all

subsequent activities, although run as
separate delivery projects, will little by little
make integration happen (IB:6,7,
IF1b:6,7,8,11; the proposed integration point
in case F1 was a data storage format). There
is however a tradeoff to be made, there are
typically some common fundaments that
need to be built (PF1a, DF1a, IF2e:7).

• In order to develop and install a number of
customer-specific systems in parallel,
divergence can be allowed, if there are
mechanisms that will enforce
standardization and convergence from time
to time (IB:7,11,13).

Some interviewees proposed the opinion of not
integrating at all. “Why integrate at all?” (ICb:7)
is indeed a valid question, which will arise if a
decision is not accompanied with priority and
enough resources (IF1b:3, IF1c:6,9,11, PF1a).
Sometimes it might simply not be worth the
effort to integrate – will the future savings
through rationalization be larger than the
integration efforts? (IF1c:9, IF2d:3). Reasonable
project plans for reaching the vision must be
considered; in case E2 there were very few
resources available, which led to a very modest
vision, in practice meaning no integration
(IE2:6).

6. Summary and Conclusions
We have studied 9 cases of software integration,
and described recurring patterns for how to
concretize the vision of the future integrated
system. We asked two questions in the
introduction; here these are repeated together
with possible answers.

Q1. Which are common experiences (good
and bad) concerning vision concretization?
Answer: The patterns found are: small
evaluation group; reusing experience from
existing systems; improve the current state;
sufficient analysis; strong project management;
commitment; make agreements and keep them;
achieving momentum; stepwise delivery. We
also recapitulated voices from the cases
questioning integration altogether.

Q2. To what extent are the lessons learned
from these experiences possible to generalize
into recommendations for other organizations?
Answer: The fact that the same patterns
replicated themselves across the heterogeneous
systems and organizations of the cases gives
some confidence about the generality of the
results.

To conclude: only when a vision can be
concretized into architecture, requirements, and
an integration plan, and only when concrete
milestones of the integration plan have been
achieved is it possible to know that the vision is
indeed an achievable vision and not a mirage.

6.1 Future Work
We are currently analyzing the same

collected material from the three viewpoints
presented: process, features, and architecture.

7. Acknowledgements
We want to thank all interviewees and their

organizations for letting us take part of and
publish their experience.

8. References
 [1] Cummins F. A., Enterprise Integration: An

Architecture for Enterprise Application and
Systems Integration, ISBN 0471400106, John
Wiley & Sons, 2002.

 [2] Land R. and Crnkovic I., “Software Systems
Integration and Architectural Analysis – A
Case Study”, In Proceedings of International
Conference on Software Maintenance (ICSM),
IEEE, 2003.

 [3] Land R. and Crnkovic I., “Existing
Approaches to Software Integration – and a
Challenge for the Future”, In Proceedings of
Software Engineering Research and Practice
in Sweden (SERPS), Linköping University,
2004.

 [4] Land R., Crnkovic I., and Wallin C.,
“Integration of Software Systems - Process
Challenges”, In Proceedings of Euromicro
Conference, 2003.

 [5] Land R., Larsson S., and Crnkovic I.,
Interviews on Software Integration, report
MRTC report ISSN 1404-3041 ISRN MDH-
MRTC-177/2005-1-SE, Mälardalen Real-
Time Research Centre, Mälardalen University,
2005.

 [6] Meyers C. and Oberndorf P., Managing
Software Acquisition: Open Systems and
COTS Products, ISBN 0201704544, Addison-
Wesley, 2001.

 [7] Ruh W. A., Maginnis F. X., and Brown W. J.,
Enterprise Application Integration, A Wiley
Tech Brief, ISBN 0471376418, John Wiley &
Sons, 2000.

 [8] Wallnau K. C., Hissam S. A., and Seacord R.
C., Building Systems from Commercial
Components, ISBN 0-201-70064-6, Addison-
Wesley, 2001.

 [9] Yin R. K., Case Study Research : Design and
Methods (3rd edition), ISBN 0-7619-2553-8,
Sage Publications, 2003.

