Malardalen University Licentiate Thesis
No.47

Transformation of component
models to real-time models

Optimizing resource usage

Johan Fredriksson

April 2005

V A
\ ¥ 4
MALARDALEN UNIVERSITY

Department of Computer Science and Electronics
Malardalen University
Vasteras, Sweden



Copyright© Johan Fredriksson, 2005
ISSN 1651-9256

ISBN 91-88834-55-7

Printed by Arkitektkopia, Vasterds, Sweden
Distribution: Malardalen University Press



Abstract

Industry is constantly looking for new developments inws@afte for use in in-
creasingly complex computer applications. Today, the ldgveent of compo-
nent-based systems is an attractive area for both IndusthyAaademia. The
systems we focus on in this thesis are embedded comput@astioular those
in automotive systems. A modern car incorporates severakedded com-
puters that control different functions of the car, e.gtj-apin and anti-lock
breaks.

The main purpose of this thesis is to investigate how compioieehnolo-
gies for use in embedded systems can reduce resource ushgeatwiompro-
mising non-functional requirements, such as timeliness.

The component-technologies available have not yet beahexensively
in the vehicular domain. To understand why this is the caskave conducted
a survey and performed evaluations of the requirementseof/éhicular in-
dustry with respect to software and software developmeme. gurpose of the
evaluation was to provide a foundation for defining modelksthrads and tools
for component-based software engineering.

The main contribution of this work is the implementation avdluation of
a framework for resource-efficient mappings between coraptsmodels and
real-time systems. Few component technologies today dentlie mapping
between components and run-time tasks. We show how eféentappings
can reduce memory usage and CPU-overhead. The implemeatadviork
utilizes genetic algorithms to find feasible, resource igffitmappings.

We show how component models designed for resource caomstraafety-
critical embedded real-time systems can use powerful dentiphe techniques
to realize the component-based approach and ensure @tadibehaviour.

Further, we propose a resource reclaiming strategy for compt-based
real-time systems, to decrease the impact of pessimisticugion time predic-
tions. In our approach, components run in different quaéitsels as unused
processor time is accumulated.
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Chapter 1

Introduction

During recent decades processors have become more poaeduhore cost
efficient. They are now of interest in areas where not usedrbgpermitting
the development of ever more complex system applicatiomsmadnage the
increasing complexity of applications, Industry is conglifalooking for new
software development strategies. One paradigm found td beeoin desktop
computing systems is Component-Based Software Engire@iBSE). CBSE
has been under development since at least 1968 and is bashd mea of
reusing existing components, in much the same way as sthcdarponents
are used in other engineering disciplines [1, 2, 3].

Processors are used in what is known as embedded systemsntoolc
all kinds of devices and technical systems used in sociatging from mp3-
players to nuclear plants. The fastest growing demand forapirocessors is
for use in embedded systems and in recent years, over 99]8%dH proces-
sors produced are incorporated in embedded systems. IgEBERgProvided a
common definition of embedded systems as follows:

A computer system that is a part of a larger system and pegorm
some of the requirements of that system; for example a cemput
system used in an aircraft or rapid transit system.

Embedded systems have requirements that are not regardegktop ap-
plications, such as low memory utilization, low processegrbead and pre-
dictability. Many embedded systems are safety-criticalapse they control
applications in our society. If these applications maltiorcthey can have
disastrous consequences. Hence, non-functional chesgicte (such as reli-
ability) are very important in these types of applicatiohson-functional re-



4 Chapter 1. Introduction

quirements are attributes indicating in some way the qualitthe system.
One important class of such requirements are real-timeineagents. These
requirements define within what time a task must be perforivie specifi-

cally in [6] Stankovic states:

Real-time systems are computer systems in which the coesst
of the system depends not only on the logical correctnedseof t
computations performed, but also on which point in time #e r
sults are provided.

In the real-time and embedded systems domains there are timamryes,
methods and tools. These methods use a number of real-topenies, such
as worst-case execution time (WCET), execution perioddiiess, etc., and
terms such as tasks and scheduling, in reasoning abouttiamd other re-
quirements.

The notion of components is rarely used in real-time systédmsthe other
hand, current component technologies usually do not irchuwh-functional
properties typical of real-time systems. To be able to useraponent ap-
proach, which makes the system development process mareetfiand at
the same time guarantees system behaviour, both how theocmmgtechnol-
ogy uses non-functional properties, and how componentalkreated to the
run-time systems are important.

The purpose of this work is to demonstrate how component faa
use non-functional properties to support real-time anslyend in particular
to provide methods for resource-efficient allocation of poments to run-time
tasks, optimized for, e.g., memory and performance. Fustleedemonstrate
how a light weight component framework can use more advafseedres such
as multiple versions, with no negative effect on the raaktproperties.

1.1 Research Motivation

The research leading to this thesis was motivated by thedsing complex-
ity of modern embedded systems, such as, e.g., advanceateerwitrols and
anti-skid systems. The significance of the research is coafirby the vehic-
ular industry performing research in the same area, e.grajects such as
AUTOSAR [7]. Today issues relevant to embedded componasédsystems
such as real-time and resource efficiency are often addresgside CBSE.
There are many methods and theories for, e.g., real-timgsasgut very few

in relation to CBSE. To handle real-time and resource effimjeén CBSE for

embedded systems we consider several aspects, including:
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e Optimization with respect to speed and memory for compcebased
systems.

e Support for non-functional properties.
e Prediction of system properties, e.g., timeliness, etc.

¢ Light-weight component frameworks for more advanced fesstu

The significance of these issues is confirmed by researchiedft in [8],
in which the authors have identified needs and prioritiesdeearch related to
CBSE for embedded systems.

1.2 Embedded Real-Time Systems

We do not need to search far to find an example of an embeddetiinessys-

tem in a modern everyday appliance. This thesis focuseshuowar systems,
using a modern vehicle as an example. The engine is cortrajleé complex
real-time system, measuring the airflow to the engine, pagipi just the right
amount of fuel and igniting this in each cylinder at the exagtt moment. The
anti-lock breaks are controlled by a real-time system,icoously monitoring
and controlling the breaks to ensure the maximum breakifegtefin the un-

likely case of a collision, an embedded real-time systerhdeilect the impact
and deploy the airbag at exactly the right point in time. Whabmmon to all

these systems is that they are parts of a bigger system and¢tiens have to
be delivered at a specified interval in the time. If they faitieliver their ser-
vices at the right time, the consequences can lead to lowmeaice, material
damage or in the worst scenario, loss of human life.

Though this thesis focuses on vehicular systems, the @séaapplica-
ble in a wider range of application domains. Thus, in thidiea¢cwe briefly
describe three application areas of embedded real-timerags/ehicular sys-
tems, consumer electroniesdindustrial embedded applicationsComplex
embedded systems with requirements on timeliness are nsaltithese do-
mains, which are characterized by large production voluanelsproduct lines.
Other domains in which component-based engineering foreeloid systems
can be used are, e.gnedicalandtelecom systems

Vehicular systems The complexity of the computerized vehicular systems has
increased over the last decade, and component based deesibis en-
visioned as a promising future approach to increasing pridty. The
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cost reduction impact from, e.g., lowering the memory regraent by

enabling efficient mappings between components and taséshareby
saving a number of bytes of memory can be substantial. Martg p&

a vehicle, e.g., the breaking and the airbag systems hacersiguire-

ments with respect to reliability, safety, and predictipilt is therefore

vital that the real-time properties are maintained evemghoresource
usage is minimized.

Consumer electronicsThe consumer electronics domain embraces, among
many other products television receivers, DVD-player$ ptenes. Many
consumer products have real-time properties which mustibeagteed,
e.g., a smooth playback, or synchronization of picture anthd. It is
often important to maintain timeliness, especially forttignd products,
to maintain a competitive edge. The component-based apipraes suc-
cessfully been used for several years by, e.g., Philips [9].

Industrial embedded applications In the domain of industrial applications,
such as industrial robots and automation systems, themsgsaee of-
ten more extensive and complex than those in vehicular anduconer
electronics. A single node in an industrial application camsist of
hundreds or thousands of software modules. Industriaicgjns of-
ten have strict requirements on timing and reliabilityesafand perfor-
mance, but must also be flexible, portable and scalable. Byawing
performance and reducing the memory requirement, it mayolssiple
to add more sophisticated or more advanced features to astinal ap-
plication without adding to its costs which may give a conitpetedge.

Before continuing we will provide some basic terminologyR#al-Time
Systems.

1.2.1 Real-Time Systems Terminology

In hard real-time systems program delivering a result after its latest accept-
able time, i.e., itgleadling may lead to catastrophic consequences; vehicle
control systems are examples of such systems. On the otnelr ihasoft
real-time systema number of deadlines can be missed without serious con-
sequences. Examples of such systems are, e.g., multinyestinss.

A Real-Time System (RTS) consists of a numberesburcege.g. proces-
sors), a number ofasks(executing programs), designed to fulfil a number
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of timing constraintsand aschedulerthat assigns each task a fraction of the
processor(s) time according teseheduling policy Tasks argoeriodicor non-
periodic Periodic tasks are an infinite sequencewbcationgtask instances),
while non-periodic tasks are invoked by external events droice of schedul-
ing policy is made to satisfy the constraints imposed on {fstesn. A task
has timing constraints and timing properties. The timingstints are im-
posed on the task and are, edpadlingD) andperiod / minimum interarrival
time (T / MINT). A task has timing properties, e.gvorst-case execution time
(WCET) and in some casdmest-case execution tin{fBCET). The WCET is
the longest time it can take for a task to execute, and coeletise BCET
is the shortest possible execution time. The Deadline idahgest allowed
latency from the tasks nominal starting point of the taskl utistcompletion.
This latency is dependent on when the task starts, and,heg. much it is
interrupted by tasks with higher priorities. T is the nonhithi@e between two
task instances, and the MINT is the shortest time betweemtwoperiodic
task invocations. A transaction is defined as an orderedeseguof tasks to
be executed in a specified order. A transactions has a pé&yiodnd is often
constrained with an end-to-end deadline (E2ED).

Consider figure 1.1, in which tagk has aW C ETy, a BCET;, a deadline
DL, and a period’;. A transactiontr, is defined over the tasks ¢, to, t3 >
and has an end-to-end deadlifg £ D,. The period of the transaction is de-
cided by the first task in the transaction)(

1.3 Component Based Development for Embed-
ded Real-Time Systems

Component-Based Development, in general, is widely adoptenost mature
engineering disciplines such as mechanics, electronidsanstruction. The
component-based approach has also been used in competeresavithin the
development of desktop and internet applications, e.gM{ID] and CORBA
[11]. However, the component based strategy has not yet &esnccessful
within embedded system software engineering as in the quelyi mentioned
domains. The many reasons for this includes the varying ddmaf different
domains in software engineering, unsatisfactory tool supj8] and lack of
support for non-functional properties.

Further, desktop applications usually run on modern dgsktonputers
with highly advanced processors, and huge amounts of mesevgral hun-
dreds of mega-bytes. Embedded systems on the other hantywusnan very
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Figure 1.1: Real-Time Properties

small low-power processors, and often with no more memaay thfew kilo-
bytes. The difference in system characteristics callsiféerént approaches to
fulfil the system requirements. For instance, desktop egftins often do not
require memory usage to be kept at a low level.

1.3.1 Component-Based Software Engineering Terminology

The basis of component-based systems is naturallgahgonentA software
component is a software entity that conforms tocenponent modelnd can
be composedvithout modification [2]. The terncomponent modedimbraces
the specification of components, how components are assdnard the com-
ponent framework. With other words, the component modelssteof rules
governing how the components may or may not be used.c@hgositiorof
components is the process of assembling components to fopglication.
Components are composed by constitute systems by congéutiininterfaces
according to the rules defined in the component model. Thepooent inter-
face is the entry to the component functionality. A compdremposition is
executed in the context of@mmponent framework he component framework
provides the necessary run-time support that is not provMigehe underlying
run-time system, e.g., scheduling, and finallgaamponent technologyg the
concrete implementation of a component model.
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1.3.2 Component Based Development for Embedded Real-
Time Systems

There have been many attempts to develop component modedsntmedded
systems [12, 9, 13, 14, 15]. They have often been tightly Emliw a specific
operating system or a specific domain and they seldom cansiaefunctional

properties. Thus, they have not been general enough to eteabfwr use in

other domains [16]. Even though generality has not oftemhbe goal of

these models; in order for CBSE to be widespread in the engzeddmain

one or more standards must be developed. Standards for deth&@BSE

will facilitate the integration of third party componentschhave shown to be
effective in desktop applications.

Existing component technologies for embedded systema dftenot pro-
vide support for non-functional properties. However, vathuitable resource-
efficient component-technology with effective tools angsort for non-functio-
nal properties, a more structured development can be incatgd in the em-
bedded domain. Also, since productlines [17] are commohimthe domain,
issues of commonality and reuse are central for reducingaosvell as in-
creasing reliability.

Itis, however, no more likely that one component-model tdlapplicable
in all of software engineering, than that bridges and houskse built from
the same building blocks.

1.3.3 CBSE for vehicular systems

Vehicular systems incorporate highly advanced distrith@abedded control
systems. Forinstance, the luxurious new BMW [18] 7-seriesiiporates more
than 65Electronic Control Unit§ECUS)

An ECU is an on-board computer system that runs software tir@o
a specific process in the vehicle, e.g., the breaking syst8och systems
are already component-based on a hardware level and theporation of
component-based software systems would appear to be ahalbstraction.

In [19] the authors indicate that the costs of developingsiketronics and
software incorporated in a motor vehicle constitute moasthalf of the total
development costs of the vehicle. Further requirementseoénd-users mean
that there is a continuous and increasing demand for bothadhdware and
software of vehicular electronics of increasing complexithe objectives of
CBSE in developing ECU's for vehicular systems are on thelharower the
production costs, in terms of both development and harde@sts, and on the
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other hand to cope with the increasing complexity of the gingrsystems.
CBSE has been shown to be an effective approach in loweringla@nent
costs and enhancing, e.g., reuse of components in otherigema

Component-based development of embedded vehicular systaumally re-
quires a system architecture different from that of othestesyps. Due to the
control nature of these systems, pipe-and-filter or blaaktbarchitectures are
usually used. In less restricted systems, such as multarsditems, client-
server architectures are used, such as the Koala componéet far television
sets [9]. Due to the difficulty of verifying the timing behawir of client-server
architecture it is not used in connection with vehicular edded systems.

Moreover, middlewares and component frameworks must lerrdétistic
in terms of timing behaviour and use a minimum of resources.

Analysis of the systems is essential to be able to prove ligaveéhicle is
safe. Non-functional properties are very important as ddstand methods to
be used by those performing analysis.

1.4 Outline of the thesis

The remainder of part | is organized as follows. Chapter Zriless the Re-
search Problems to be addressed and the questions derhate€3 describes
the research performed and the answers obtained. Relatdswescribed
in chapter 4. Finally the thesis is concluded and future wsr#tiscussed in
chapter 5. Part Il contains all the papers included in chraii¢o 10.



Chapter 2

Research Problems

In this chapter we will present the scope of our work by defjriime research
problems, introducing the research questions and preseatiswers to these
questions.

In the following section we will describe the problem we toysblve.

2.1 Problem Definitions

As mentioned in the introduction, component based devedoprior embed-
ded systems is not widespread. There are several pres@mn@ésons to this;
there are no standard component models for embedded systerm# is hard
to integrate third party functionality. The de-facto stardicomponent models
for desktop and internet applications are too resource dding and they do
not support non-functional properties. In order for a cormmgra model to be
widely used within the embedded domain it has to have powdefsign-time
models and be efficient in terms of resource usage. Withrhisind, we state
two research problem#£1 and P2.

P1 Today's component models do not consider adequately thsftsemation
of design-time models to real-time modeé¥ost component models for
embedded systems do not focus on low resource usage andaniity
and are developed for specific purposes. Any problems tlisg are
very specialized. Many qualities are implicit, or simplgdigarded (e.qg.
real-time properties). Specifically we have observed thatrhapping
between components, and run-time entities, i.e., taskstaly omitted

11
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from most existing component models, which leads to indéffeaisage
of the hardware. Moreover, it is in very few models that dttenis
given to optimization of performance and memory usage.

P2 Today's component models do not have efficient resourcecudatpen
hard real-time properties are imposed on a system, thdirealproper-
ties are generally exaggerated to guarantee a predictabé/tour with
respect to timeliness. The systems are highly complex aeckfbre
there are very few ways of defining the non-functional prépsrin an
analytically exact way. Properties such as, e.g., WCET,rareased
to ensure that a deadline is not missed. As a consequenaesiherce
utilization is lower than the optimum.

For an overview of the problems stated, consider table Zhé.t@ble is used to
identify more effectively similarities between the pratle stated. The prob-
lems are summarized in the same order as they appear in thieprdefinition.

We can see that there are several issues in common to theprebtated.
From an analysis of these issues we have derived two resgagestions, firstly
one question with respect to resources, analyzability aadpimgs between
components and tasks, the other one with respect to resosage, efficiency
and predictability.

Problem Problem Related Issues
P1 Resource usage Analyzability Mapping | Optimization
P2 Predictability | Resource usage Efficiency

Table 2.1: Summary of the core problems in the problem dafinit

2.2 Research Questions

As stated in the problem definition, resource usage and zaaility are im-
portant qualities in a component technology for embeddstegys. One way
of reducing resource usage is to map components to run-&sks in such a
way that memory usage and CPU-overhead is lowered. Compooan be
mapped to run-time tasks with respect to other propertiegedls In order to
do this, it is necessary to understand what qualities areitapt and how they
are affected. Thus, technologies for embedded and realgystems must de-
fine a set of non-functional properties. Non-functionalyguies are properties
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that define different qualities of the software, e.g., tighbehaviour, memory
consumption, safety and reliability. These propertiedaranalysis purposes
only and have no functional value. It is especially importemunderstand
which non-functional properties are regarded as impoligrihe industry, and
which can be disregarded.

Thus, from these reflections we form our first questiph

What is required by a component technology for embeddeédragsh order to
analyze mappings from design-time components to realttisies?

Q1)

This question aims at understanding which requirementsgrertant for a
componenttechnology for the vehicular domain regardinfppeing efficient
mappings from design-time to run-time in component-bagstéms.

If acomponenttechnology supports the non-functional prisgs requested
by the automotive domain, then how should they be realizelt properties
define system qualities; hence, non-functional propediesonly a measure
of qualities of components or assemblies. What is reallyartgnt is how the
properties are realized. For instance, how is a componehthigh reliability
implemented? In the case of component-based systems, leosothponents
are assembled are equally important. Two components higth reliability
individually cannot be guaranteed to provigigh reliability when assembled
[20] to form one system.

As stated earlier, most embedded systems in vehicles drémessystems,
and real-time systems are dependent on the timelinessefteaceal-time re-
lated non-functional properties must reflect the real-trekaviour. However,
some real-time properties are hard to realize in an exact Way instance
the execution time of a complex system is difficult to es&bbecause of the
varying behaviour and the many program paths.

To guarantee timeliness in all possible circumstancesigtieds in real-
time systems are based on worst-case scenarios. The aatgis often lower
than the worst-case due to safety margins, varying behayég. different
loop counts) leading to unused processor time, i.e., inefficesource usage,
and either simpler and less expensive hardware could hareused, or more
functionality could have been implemented. However, thieals@ur of soft-
ware is often inherently variable, and to satisfy safetyiregments, worst-case
estimations should not be overly optimistic. How, therefaran resource us-
age be reduced?
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Component based systems often have very simple strategiesldcat-
ing components to run-time entities. In many component rscttere is no
clear strategy for providing this mapping; thus this padfien not included in
the component technology causing a gap between high-lesédd and con-
crete implementation. For CBSE to be adopted by domaingusisource-
constrained embedded real-time systems, the mapping éeta@mponent
models and real-time models must be automated and made ffioien with
respect to resource utilization. These reflections are sanaad in question

Q2:

How can resource efficiency and predictability be combimed component
model for embedded systems?

(Q2)

The answer to this question will be an explanation of how wes® usage
can be reduced through efficient component technologiéisiesit mappings
between component models and run-time systems; while aiaing the pre-
dictability of the system.

2.3 Contributions

The main contributions of the presented research have heemarized and
are presented in the list below:

¢ A Classifications of the importance of software qualityibtites accord-
ing to companies in the vehicular domain.

e An Evaluation of the suitability of commercial componentdets with
respect to the requirements of the vehicular industry.

e A proposal for the use of component to task allocation todase per-
formance and system utilization, and a proposal for an evialn frame-
work for such allocations.

e The development of a real-time component model that usifibeMulti-
ple Versions Paradigrogether with different existing real-time schedul-
ing methods and thadaptive Threshold Algorithm

e A proposal for the use of a software component technologgéwelop-
ing embedded systems through permitting the use of rea-ti@ory by
synthesis of run-time mechanisms for predictable exenattzording to
the temporal specification of the component model.
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The research performed and contributions made are furtbeugked in
chapter 3.






Chapter 3

Research Contributions

Recent work [21, 22] has addressed the issue of reducingtteot software
developmentfor embedded systems; specifically for autmembedded sys-
tems. This thesis focuses on optimization of resourcezatithn when using
component-based development. The research is a continuattiprevious
work [23].

We proceed from the research questions stated in chaptepgebgnting
the research topics in that order. The research is dividseldan the questions
Q1 and Q2. Each part answers parts of the questions. Finallyilvpresent a
discussion on the questions and the research topics. Tésrobsdoes not give
complete answers to the questions, but will give partly arsvand be subjects
for further research.

The research has been performed in close cooperation vdthsiry and
academia. All research has been made in the context of tweqtsdSAVE
and FLEXCON, but we have had close cooperation with other research group
e.g., the HEAVE project.

The following sections will describe each research topic.

1SAVE Project, http://iwww.mrtc.mdh.se/SAVE
2FLEXCON Project, http:/iwww.mrtc.mdh.se/FLEXCON
SHEAVE Project, http:/Aww.mrtc.mdh.se/HEAVE

17
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3.1 Non-functional properties for embedded sys-
tems

Objective: The objective of this research is to find out which propertieth
technical and development related, that are importantfervehicular
industry and investigate how a number of, commercial andiecéc,
component models fulfils these requirements. The purposieecéval-
uations is to be a foundation for defining models, methodstaold for
component-based software engineering. The objectivetimmoutually
rank component technologies or properties, but mainly tpmirt what
properties that are regarded as important by the industtyimihe ve-
hicular domain, and investigate which properties that lggad or poor
support by existing technologies.

This research gives parts of the answer to question Q1.

Goal: This research aims at understanding which non-functioraberties
(quality attributes) are important for the vehicular domaind show
how well current component technologies fulfil these prtpsr We
also present a list of quality attributes and analyze tindct in a com-
ponent technology.

Research: The research is comprised by two parts; the first part is based
a survey that was sent to a number of representatives fardiff ve-
hicular companies, and the second part is an evaluationstfreex com-
ponent technologies with respect to industrial requiretsielm the first
part, representatives from several companies were resgplisprioritize
a number of quality attribute@xtendibility, maintainability, usability,
predictability, security, safety and reliability¢garding importance. The
representatives were requested to group the qualityzates in four dif-
ferent categoriegvery important, important, less important and unim-
portant). The list of quality attributes covers attributes that wii@ught
to be of interest to the vehicular domain. The non-functipmaperties
that we focus on most in this thesis are predictability rdgey timeli-
ness, and efficiency which are both considered as importapepties.
We also discuss the two most important properties safetyeliability.

The second part of this research is an evaluation of exisdolgnolo-
gies. The technologies described and evaluated are PEG,TH&ala
[9], Rubus CM [13, 24], PBO [14], PECOS [15] and CORBA based
technologies [25]. The technologies were chosen firstly tenttasis
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that there is enough information available, and secondlittie authors
claim that they are suitable for embedded systems. CORB#geher,
was chosen as a reference technology to represent the péstemnet
domain, although CORBA have flavours for small systems and=fal-
time systems.

The technologies were evaluated on how well they conformvivie
different, both technical and development related, regménts. The
evaluation points out which requirements that are partljiied by a
component technology, and which are not. For instance thétyguat-
tribute Testable and Maintainablbas received rather low points indi-
cating that few component models have good support for thasé-
ties. On the other hand most models have been considlBrddrstand-
able The requirements were gathered from an industrial casbygter-
formed at Volvo Construction Equipménand at CC-Systems The
technologies evaluated in the second part of the reseaiginate from
both industry and academia. The evaluation work in thisaretehas
been workshop-oriented, where the authors have discusskévalu-
ated quality attributes and technologies.

Results: The research ended up with a grading of component models with

respect to the studied requirements. The research showthdra is

no single component technology that stands out as a very gaodi-
date for fulfilling the industrial requirements from the sed part of

this research, nor the non-functional properties from tts¢ fiart. Some
properties are supported by very many technologies, whiilergroper-

ties are not considered at all. Component technologiesotiigin from
academia puts more focus on extra-functional propertibdewthe in-
dustrial technologies are more pragmatic. Details abautésearch can

be found in the included papers D and E.

Limitations and future work: There are several unanswered questions regard-
ing the validity of the studies. Did the representativeshef tompanies
represent the company or their own view of the study. Haveehll
evant representatives been interviewed, and are all r@l@zanpanies
included in the process? The study should be extended tedserits
validity and reliability. Although, unanswered questiptige study can

“http:/Avww.volvo.com
Shttp://www.cc-system.se/



20 Chapter 3. Research Contributions

be used as a guide for coming studies, and as an indicatiantomaed
research.

3.2 Component models for embedded systems

Obijective: Previous research has shown that there are component techno
gies that only partially support the properties that theiasglar domain
finds important [26]. This research should aim at providingpanpo-
nent technology with powerful compile-time techniques dreldesired
support for the vehicular domain.

This research will give partly answers to question Q1 and Q2.

Goal: The research should propose the core of a component tegjynibiat
utilizes powerful compile-time techniques and focusesam-functional
attributes and resource efficiency. The component teclyyadbould
also be a foundation for defining new powerful compile timehtgques.

Research: As described in the previous section, our research hasqubout
that there are few component models that support some ofrpertant
non-functional attributes. We show how CBSE can be usedrfdresl-
ded real-time systems with high requirements on analyinalihd low
memory footprint. We consider the non-functional attréspredictabil-
ity, reliability, safety and usability which are all expsesl as important
by the vehicular domain. Existing commercial componertitetogies
often have powerful run-time mechanisms to realize the comapt-
based approach, which is a disadvantage in terms of resatilization
for resource constrained systems. The idea of this reséatohhave
expressive design-time models, utilizing the UML 2.0 st power-
ful compile-time techniques and efficient, temporally fied, mappings
to a run-time system, e.g., a commercial real-time opegatiystem.
The defined component model is based on the pipe-and-filteraic
tion model and uses Read-Execute-Writparadigm; all in-ports of a
component are read, the component executes and finallysvaitéts
out-ports. This execution model has the advantage of begidyhana-
lyzable. Moreover, the control systems in vehicles arencftatable for
the pipe-and-filter paradigm. End-to-end deadlines areogag to the
model and are augmented with start and completion jittergniddle-
ware is proposed to handles all communication between thigonent



3.3 Allocating components to real-time tasks 21

model and the underlying run-time system. This researctased on
earlier work [27] and the experience from senior reseascher

Results: The research indicates that embedded component techeslogn
be resource efficient, reliable and easy to extend with sujmon pow-
erful compile-time techniques. We have paid attention joressed re-
quirements and propose powerful compile time techniqudseapres-
sive design-time models. Details on the results can be fouimtluded
paper C.

Within the SAVE project this work has been extended with tigle-
mentation of the SaveCCM component technology [28].

Limitations and future work: The proposed techniques have not been indus-
trially verified; although its successor (SaveCCM) has begtemented
and verified in a small scale industry case-study within tRéESproject.

The model is restrictive and due to the pipe-and-filter sxtéon model
it may not be suitable for some systems.

3.3 Allocating components to real-time tasks

Objective: Many component-based systems today use one-to-one &losat
between design-time components and real-time tasks, er nidimen-
tary allocations. Finding allocations that co-allocatessal components
to one real-time task leads to better memory and CPU usagseVo,
the one-to-one allocations have the benefit of being highblyzable,
which is often a strong requirement in embedded systemecesly in
embedded systems that handle time-critical functions ssckngine-
control and breaking systems.

A good allocation should be analyzable and reduce the anodumném-
ory and CPU-usage compared to a one-to-one allocation.

This research answers parts of questions Q1 and Q2.

Goal: Theresearch aims at finding near-optimal allocations thatehse mem-
ory and CPU usage, while preserving timeliness. Furtheegbe meth-
ods for allocating components to tasks should be generalgimto be
able to optimize regarding other properties besides merandyCPU-
usage.
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Research: The research is based on previous work [27, 29], which shaiv th

important issues in the embedded systems domain are @bititgtin
terms of timeliness and performance in terms of memory aoipsion
and CPU-load. To increase the performance and maintairréoiégpabil-
ity we propose an allocation between components and mealtasks,
where several components are allocated to one task; theagng mem-
ory in terms of stack and task control blocks and CPU-timesimt of
task switching.

Both the component model and task model used in this resessichilar
to those described in the previous section, where the ma4tiodel uses
tasks and transactions. The scheduling policy used is adsd firiority
scheduling. A modified method of the Bate and Burns approa6h [
is used to calculate the feasibility of the system in termsead-time
behaviour. The Bate and Burns approach assumes systentar gini
the ones described in our research. They use fixed prioritgdiding
and transactions with end-to-end deadlines. We do not dengiter
and separation in our work, hence these requirements anegeislied.
Moreover, they assume that a transaction has a period egtieleast
common multiple of all tasks participating in the transacti In our
work we do not have this limitation. However, the approadhtgitive,
and is easily adjusted to suit our needs.

Due to the combinatorial explosion of possible allocatifnesn com-
ponents to tasks, the problem is complex by nature. An dilmeérom
componentsto a task is evaluated considering schediye(titneliness)
andisolation, where isolation is defined asutual exclusion of compo-
nents regarding shared resources or other legitimate egjimg rea-
sons Because the problem is inherently complex the strategy éval-
uate our allocation approach by implementing a framewoak tilizes
a meta-heuristic search technique, in our daseetic AlgorithmgGA)
[31]. GA can solve, roughly, any problem as long as there seswvay
of comparing two solutions. Each allocation is validatethwespect
to period-times, isolation, end-to-end deadlines anddwaladility to en-
sure that an allocation is feasible. The proposed framegiwds the
possibility to optimize allocations regarding the propeimemory con-
sumption and CPU-overhead to findesource efficiensolution. Other
possible approaches for solving the problem is differentisécs [32]
or simulated annealing [33]. Genetic algorithms was ch@setly due
to in-house experience, but also because it is very vezsaiid can han-
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dle several dimensions as opposed to, e.g., simulated lamnea

Similar approaches, for the parallel and distributed donfes been
performed, e.g.Partitioning and Clustering Partitioning is a method
for dividing an application into small blocks for execution separate
nodes. Clustering is the issue of allocating nodes of a taghigto

labelled clusters, where the task graph represents theatiph behav-
iour. Compared to our research partitioning is the opppsitgding

applications for parallelism as opposed to co-allocategesal compo-
nents to one task considering speed and memory. Clusteiowaid

tasks to clusters regarding, mostly, parallelism. Clusteis based on
task behaviour in form of directed acyclic task graphs, gmospd to our
component-to-task approach. Clustering is often usedl&ming tasks
on distributed nodes in a schedulable way. Our approachratsrds
timeliness, but performs the allocation regarding optatian of given
non-functional properties, currently memory usage and ©Ré&fhead.

Results: The results from the evaluation were satisfactory, and we faund

that for industrially representative systems memory consion and

CPU-overhead can be decreased by as much as 32% and 48% respec

tively compared to a one-to-one mapping. Details about tethods,
framework and results can be found in the included paper A.

Limitations and future work: The research only considgipe-and-filterand
blackboardarchitectures. Further we do not consider blocking or ad-

vanced real-time properties such as jitter or separatiompractice, the
allocation will probably have to be guided with a knowledgeéd or in-
teractivity with engineers. Further, for validity reasptise allocation
should be verified with an industrial case-study.

Future work includes optimizing allocations regardingssavnon-functional

properties.

3.4 Resource reclaiming

Objective: In real-time systems there are often unused resourcesnis tef

CPU-time due to pessimistic predictions. These resouraede used
for executing tasks, e.g., more often, or with higher qudla@nger time).

This research will give partly answers to question Q2.
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Goal: This research aims at defining methods for using residua fiom
pessimistic real-time predictions to provide a higher fyalf service.

Research: We show how component technologies can be extended with mul-
tiple services to provide different quality levels depeargdon residual
time in real-time systems. We do this by combining the midtiper-
sions paradigm [34], with the adaptive threshold algorifl3%]. The
multiple versions paradigm allows us to have several vass{eervices)
of the same component. In this research the multiple vessgounsed for
the same functionality with different quality; considexy.e more or less
iterations in a numerical approximation. Thereby we prewiifferent
guality levels of the same component. Each quality leveksoaiated
with a value which is accumulated to the system as that guighitel
is chosen and executed. The Adaptive threshold algorithoavalus
to provide a system that strives to maximize the total systaelae by
choosing the appropriate quality level dependent on tHduaktime of
the system.

However, the multiple versions and adaptive thresholdrilyn gen-
erates some extra overhead in the system, both in terms oforgem
and CPU-time. Thus this approach may not be appropriate doy v
small systems with extreme requirements on keeping the mearal
CPU-overhead low. The research is based on knowledge fraiorse
researchers, and literature studies of previously pubdisiesearch. Al-
though, by combining this approach with the previously désd com-
ponent to task allocation approach may be interesting éuttark.

Results: The research shows how the multiple versions paradigm aratthp-
tive threshold algorithm can be combined with the notioresfdual time
for providing higher quality of service in a system. The tesfrom this
research can be found in included paper B.

Limitations and future work: The proposed approach adds complexity to, in
some sense, reduce resource usage. Further, the apprqachsé¢hat a
solution or method can be divided into several quality Isvelence, it is
highly suitable for, e.g., numeric approximations. Howewad system
may not easily be divided into quality levels. Finally, tredue of each
quality level is implicit, and must be acquired in some way.
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3.5 Conclusion

In this section we connect the research questions with theritbed research
topics.

Question@1: What is required by a component technology for embedded sys-
tems in order to analyze mappings from design-time compgenereal-
time tasks?rom the research summary, we can see that this question is
answered by the first three research topics. The first, whigdstigates
how well current component technologies support non-fonel prop-
erties, and the second and third that investigates whiahinements are
important for lowering resource usage and performing gdlodaions
between components and tasks.

Question@2: How can resource efficiency and predictability be combimed i
a component model for embedded systeM&?note that three last re-
search topics contribute with answers to this question. sdw®nd re-
search topic considers resource efficiency and predidiabil propos-
ing efficient compile-time techniques for embedded componech-
nologies.

The third considers resource efficiency by proposing mayplretween
components and tasks through using stochastic searclitafgsito find
near optimal solutions. The fourth and last research topisiclers re-
source management and predictability in terms of time$ifigsincorpo-
rating the multiple versions paradigm with the adaptiveshiold algo-
rithm together with fixed priority real-time analysis.

Hence both questions Q1 and Q2 have been at least partly setswé/e
have of course only provided one possible answer to eachtignesvhere
many more answers are feasible.






Chapter 4

Related Work and Basic
Principles

In this section we will explore research areas related togbearch described
in chapter 3. We will focus on the areReal-Time AnalysjsTask Allocation
Optimization TechniqueendComponent Models

Real-Time Analysis is an area where much research has badonced. In
this section we will discuss the classical exact analysigsactions, attribute
assignment and resource management.

4.1 Real-time systems

In the past decades a lot of research has been performed Withdomain of
real-time systems. A majority of the research is aimed atdglability analy-
sis and system predictability. As early as 1973, Liu and &aaglpublished
work on real-time analysis and scheduling [36], definingehdiest deadline
first (EDF) andrate monotoni¢RM) scheduling policies. Since then, a myriad
of different scheduling techniques has been produced. diedsiling policies
can be divided into three paradigms, these are:

e Priority-driven (e.g., RM or EDF) [36]
e Time-driven (table-driven) [37, 38]
e Share-driven [39]

27



28 Chapter 4. Related Work and Basic Principles

The industry today primarily uses priority-driven schedgl(e.g. Rubus
blue part and VxWorks) [40, 41]. A few companies use timexetmioff-line
scheduling and cyclic scheduling.

Real-Time Systems consists of a number of resources, etwdsler and
CPU. The scheduler decides which task is assigned CPU-&nmkfor how
long. A task is a schedulable entity that consists of a cobtoxk with data
for the scheduler and operating system such as periodijtgréord pointers to
user code and user data.

4.1.1 Classical Real-Time Analysis

A schedule has a fix timé&C M (Least Common Multiple) time units, thus
the schedule is repeated eveiy’ M time units. Hence, if one instance of
the schedule over the tinjfe — LCM) is feasible, then all instances of that
schedule will be feasible.

For time-driven scheduling a schedule is created off-ljpre (fun-time).
The schedule is created according to some heuristics toestiat it is feasible.

For priority-driven scheduling, the feasibility can be Biaally calculated
by analyzing the longest time a task can be pre-empted (inteerd) by other
tasks to decide its longest response time. A task in a pyidriven system has
at least three analytical properties:

e Period time (how often the task is invocated)
e Worst-case execution tim&CET (how long the task runs)
¢ Deadline (when the task must be finished)
and
e Priority (how important is the task)

There are both fix priority scheduling and dynamic prioricheduling.
As the names reveal, a task in a fix priority schedule is assign prior-
ity that never changes. Examples of fix priority scheduliofjqies areRate
MonotoniG where the priority is the inverted period time, ddeladline Monotonic
where the priority is the inverted deadline.

When using Dynamic priority scheduling, the priorities oche during run-
time. An example of a dynamic priority scheduling policye&rliest deadline
first (EDF).
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There are both pros and cons with both these approachesgi@baoriori-
ties dynamically during run-time requires computatiohgstgenerating over-
head. However, it can be assured that the task that is inggtea¢ed of exe-
cuting gets CPU-time. For instance, the EDF schedulingpddioptimal, i.e.,
there is no scheduling policy that is better; although, tthenoverhead is not
considered.

In this section we will concentrate on fix-priority scheadgji

A scheduler decides, based on the priorities of the taskat task should
run next. There are two different approaches on how to hahfigbesides the
scheduling policy; pre-emptive scheduling, and non-prpt#ve scheduling.
In pre-emptive systems, a task with a higher priority witeimupt a lower pri-
ority task, if the higher priority task is scheduled to run.a non-pre-emptive
system, a task can not be interrupted but always finishexdésu¢ion. Pre-
emptive systems have the advantage of being more dynamicpvides
shorter response-times for time-critical tasks. Howetier,complexity of the
system and the schedule is also increased.

The most commonly used analytical approach for priorityetr systems
is theexact analysisExact analysis analyses the feasibility of the task-set co
sidering scheduling. We will show the classical exact asialfor pre-emptive
systems.

Exact Analysis

Liu and Layland [36] present analysis to calculate the woeste response time
R;. The response tim®; for taskt; has to be less or equal to the deadling
The deadline is assumed to be equal to the period time. THgsinhegins
with the highest priority task. Then the exact analysis fingel as:

R;
R; = WCET, + ‘Z‘ [?JWCETJ- (4.1)
JERpP(3)
Where hp(i) is the set of tasks with higher priority than i.
Equation 4.1 is solved by forming a recurrence relationship
n+1 Wzn
Wit = WCOET + [T] WCET; (4.2)

jehp(i) J

The set of value®/?, W1,...W is monotonically none decreasing. When
W = Wt the solution to the equation has been found. If all tasksgsass
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the test they will meet all their deadlines; if they fail tlest then, at run time,
a task will miss its deadline (unless the worst-case exacuiine estimation
turn out to be too pessimistic).

4.1.2 Transactions

Transactions are collections of related tasks, which ctillely perform some
function or have some shared timing attributes. A traneadti usually has a
timing requirement, i.e., an end-to-end deadlifgs. The transaction usually
has a period;r which denotes a lower bound on the time between re-arrivals
of the transaction. Unfortunately exact analysis is corafionhally infeasible to
evaluate for task-sets with transactions[42]; hence saher @approach has to
be used. To use exact analysis the schedule has to be sicholegethehyper-
period (LCM of all periods). A common approach is schedule simolaf4 3].

In [44] Redell presents a fast method for calculating respetimes for task
sets with transactions with advanced timing-propertieb s1s offsets and jitter.

4.1.3 Attribute Assignment

For a real-time schedule to be feasible, the task attritlud®e to be set ac-
cordingly. Several publications exist on the matter but ynahthem, e.g.,
[45, 46], are not very straight forward and difficult to usehal is because
they are difficult to justify and they assume that all atttésuare changeable.
A more straight forward approach is the one by Bate and Bk [Timing
requirements such d&eriod, Deadline, Jittemnd Separationare considered.
Furthermore, transactions are sequences of tasks exgdnten fixed order.
The timing requirements for transactions &eriod, End-to-End Deadlines
andJitter. Bate and Burns use an iterative approach by considerirggsuient
instances of tasks within one transaction and derive thi@aties from the iter-
ative process. Their approach is somewhat similar to sdbesiinulation.

4.2 Resource Management

Hard Real-Time Analysis is pessimistic because of the fattthe timing cri-
teria must always be fulfilled in any situation. Assume a paog that has
more than one path and both paths take different long to égecthen the
program must be assigned a worst-case execution time thasponds to the
longer path. If, in fact, the longer path is run very seldoheré will be a
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lot of capacity in vain. Several approaches have been stegyés use this
extra time (residual time). The slack-stealing algoriti][is an algorithm
that tries to use as much residual time as possible for, ®gving aperiodic
requests. Other approaches include the constant bandsedtér [48] and the
total bandwidth server [49]. An approach to decide whatisershould be ex-
ecuted in the residual time is the adaptive threshold alyor[35]. The Adap-
tive Threshold Algorithm decides based on values assigneddry pending
service, aperiodic or periodic, which service should becetedd. The goal of
the algorithm is to maximize an accumulated value.

4.3 Task allocation

Allocation from components to real-time tasks is a subjbat has not been
widely explored. Several related allocations in paraltel distributed systems
exist, e.g., partitioning and clustering, and we will dissthese.

Tasks allocation is the issue of allocating a task to differesources. A
common research area is to allocate tasks to processors uitigpnocessor
system. Different approaches have been used [50, 51, 53453,

4.3.1 Task to Node Allocation in Distributed Systems

Tindell et.al [51] uses a stochastic search method to dkotzesks in a dis-
tributed real-time system. The majority of these approadbeus on load-
balancing in order to minimize communication overhead. 98] [genetic al-

gorithms and simulated annealing is used to select top@agdyplace tasks on
nodes in distributed control systems.

4.3.2 Partitioning

An other approach to task allocation for parallel or muitiaded systems is
the partitioning [56] approach. Partitioning is the issdie¢hat, for an appli-
cation to operate on a multiprocessor system, it must bel@ivinto separate
threads of execution for each processor. Sarkar [57] dessd system for au-
tomatically partitioning and scheduling parallel apptioas on multiprocessor
systems. SarkarSs approach is dividing the applicatiottsetesmallest possi-
ble fundamental blocks, and then merges them back untildtreoer of blocks
left equals the number of processors.
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In [58, 59] partitioning is used to divide a control applicatinto processes
for semi-distributed real-time control systems.

4.3.3 Clustering

To efficiently execute programs in parallel on a multiprecesystem, a min-
imum execution time multi-processor scheduling problensinbe solved to
determine the assignment of tasks to the processors ansebet@n order of
the tasks so that the execution time is minimized [60]. @risy [61] is the

issue of mapping of the nodes of a task graph onto labelleslarisl A cluster
consists of a set of tasks and each task is an indivisibleofieitecution. Each
cluster executes on a separate processor. In [62] a paititjiand scheduling
technique for streamlining inter-process communicatosuggested. Multi-
processor clustering techniques are exploited to incrigseompile-time tol-

erance of the embedded systems domain. The authors in [6@¢stmethods
for efficient mapping of applications to multiprocessortatectures by using
clustering.

4.4 Optimization of real-time systems

Different optimization techniques have regularly beendusefind solutions
for complex problems. The problem of finding allocationsietn component
models and real-time models is a problem that grows vendhap terms of
possible solutions. To find a solution within a reasonabteetbptimization
techniques are used.

Different optimization techniques have been used to soifferdnt prob-
lems, in, e.g., [63] genetic algorithms are used for asamattributes for com-
plex real-time constraints. In [51] simulated annealingised for assigning
tasks to different nodes in a distributed real-time system.

4.4.1 Heuristic methods

Due to the difficulty to find optimal solutions to allocationoplems, heuris-
tic methods are commonly adopted. A heuristic method in dbistext is a
method that uses some rules to create a solution. Theseareldgfined by the
algorithm designer who uses intuition and experience. ptamf commonly
used heuristics for, e.g., the classical bin-packing gotikfirst fit, best fitand
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worst fit Which heuristics that fits a specific problemis hard to teddvance,
hence experience or in-depth knowledge of the problem enaftquired.

4.4.2 Genetic Algorithms

A GA is a guided search technique, based on models of Damwii6i4] and

Lamarkian [65] evolution. Solutions are represented bydfilength strings.
The value of a solution is a measure of its ~ fitness for purpoddany re-

searchers have applied machine-learning methods to solgtinize differ-

ent problems. Genetic algorithms [66, 67] were formallyaduced in the
United States in the 1970s by John Holland [31] at the Unityeo$ Michigan.

Genetic Algorithms, together with, e.g., simulated aningdl33, 68], belongs
to the class of stochastic search methods.

The continuing price/performance improvements of comjrial systems
have made stochastic search techniques attractive fareiiff types of opti-
mization. In particular, genetic algorithms work very weii mixed (continu-
ous and discrete), combinatorial problems. They are les=egtible to getting
'stuck’ at local optima than gradient search methods. Bey tend to be com-
putationally expensive.

In order to use genetic algorithms, the problem must be septed as a
genome (chromosome). The GA then creates a populationui@at and ap-
plies genetic operators such as mutation and crossovenslitihné best solution.
A mutation is random bit flips, and a crossover is defined sotihaindividu-
als (genomes) combine to produce two new individuals (chilyl There also
exist asexual crossovers, or single-child crossovers.

GA uses a direct analogy of natural behaviour. The saliattifes of each
individual population member are represented by a strefgrred to as ahro-
mosomé The components of the strings are caligshe When using GA the
design problem often have to be represented by bit strings.

4.4.3 Simulated Annealing

Simulated Annealing (SA) [33] is a variant of the stochasgarch methods,
and has been applied to a wide range of practical problemsw&Ainitially
inspired by the laws of thermodynamics which state thatraperature, t, the

1chromosome stands for coloured body after the colouringucfei in early experiments to
identify DNA
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probability of an increase in energy of magnitudg, is given by equation 4.3
P[6E] = exp(—0E/kt) 4.3)

Where k is the physical constant knownBaltzmann’s constardgnd t can be
considered to b a parameter of the process. In a simulatetbuehis equation
is used within a system that is 'cooling’ towards a steadiest®A can find
solutions in non-linear models. It is versatile since it slo®t rely on any
restrictive properties of the model.

In order to use SA a representation of possible solutionsaarsshnealing
scheduldan initial temperature and rules for lowering it) are reqdi

4.4.4 Branch-and-Bound

Branch and Bound (B& B) [69] is a widely used optimization asehrch
method for solving complex discrete optimization problem®elongs to the
class ofimplicit enumerationmethods, meaning that it make a limited enumer-
ation of possible solutions in order to find an optimal or syibimal solution.
The algorithm partitions the total solution domain into #israand smaller sub-
sets, thereby the nantanch After the branching, each subset is assigned a
value, and thereby some subsets can be eliminated fronefuztinsideration
(there byBounding.

4.5 Component models for embedded systems

We will discuss component models regarding their mappingitetime sys-
tems and their relation to non-functional properties. Weddi the component
models in categories relating to the application domainwfresearch, i.e.,
Vehicular systems, Consumer Electroracsiindustrial systems

This section of related work is based on the State Of The part§SOTA)
[70] that was produced as a pre-study to our research.

In this section we will discuss component models used, dabld, for
different domains. We will discuss the application areavjmusly defined,
i.e., vehicular systems, consumer electronics and Indilisyrstems.

4.5.1 Component models for Vehicular Systems

Component models for vehicular systems have high requineioa reliability
and predictability. One component model that is succdgsfisked within the
automotive domain is the Rubus Component Model.
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Rubus Component Model

The Rubus Component Model (Rubus CM) [13] is developed byiéus sys-
tems. The component technology is tailored for resourcstcaimed systems
with real-time requirements. The Rubus Operating Systeab(R OS) [24]
has one time-triggered part (used for time-critical haal-tame activities) and
one event-triggered part (used for less time-critical seét-time activities).
However, the Rubus CM is only supported by the time-trigd guart.

The Rubus CM runs on top of the Rubus OS, and the Rubus CM ithtigh
coupled to the Rubus OS. The Rubus OS is very small, and albooent and
port configuration is resolved off-line by the Rubus confagion compiler.

Non-functional properties can be analysed during desige tince the
component technology is statically configured, but timinglgsis on compo-
nentand node level (i.e. schedulability analysis) is tHg analysable property
implemented in the Rubus tools.

The Rubus component model has a rather rudimentary mapgingdom-
ponents to tasks. All components are scheduled off-lineasadhen basically
assigned one task each.

Thus, Rubus does not fully consider the requirements state¢de vehic-
ular domain due to the rudimentary mapping to real-timedaskd the few
non-functional attributes.

SaveCCM Component Model

The SaveCCM Component Model [28] is developed at the MalandReal-
Time Research Centre within the bounds of the SAVEoject. The com-
ponent model is tailored for resource constrained systeitisreal-time re-
quirements. Unlike Rubus CM, SaveCCM support a variety fiédint non-
functional properties. The properties are analyzed dutegign-time, and the
technology is statically configured at compile-time. Sa@&Cis not bound to
any operating system but generates intermediate codeghdtectranslated to
specific programming languages.

SaveCCM has is built on the pipe-and-filter interaction nipodad sep-
arates data, control and analytical interfaces. There isnatouction called
switches that acts as configuration mode changes preme)-tind acts as
logical conditions between interfaces during run-time.e domponent tech-
nology is augmented with transactions and end-to-end otessdIA switch can
also split and join transactions.

2http://www.mrtc.mdh.se/SAVE
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SaveCCM uses simple heuristics to map components to tasksdigning
all components that belong to the same transaction and argeparated by
any switch.

SaveCCM is probably the best suited technology considehagequire-
ments from the vehicular domain. It considers our requireseegarding non-
functional attributes. However, the mapping between camepts and real-
time tasks can be improved.

45.2 Consumer Electronics
Koala

The Koala componenttechnology [9] is designed and used tip®for devel-
opment of software in consumer electronics. Typically,stoner electronics
are resource constrained since they use cheap hardwarepakgelopment
costs low. Koala is tailored for Product Line Architectufé4]. The Koala
components can interact with the environment, or other @mapts, through
explicit interfaces. The interfaces are statically contegat design time.

Low resource consumption was one of the requirements cereidvhen
Koala was created. Passive components are allocated ve #uteads during
compile-time and they interact through a pipes-and-filleoslel. A construc-
tion called thread pumps is used to decrease the number oégses in the
system. Koala does not support analysis of run-time pragserhowever, re-
search has presented how properties like memory usagenaing ttan be pre-
dicted in general component-based systems, althoughrdadipumps used in
Koala might cause some problems to apply existing timindyaisatheories.
Furthermore, Koala is implemented for a specific operatystesn.

Since Koala uses thread pumps it is difficult to analyze thepimg be-
tween the components and the run-time system. Because Kada non-
functional properties it is not very predictable.

Koala does not consider any of the requirements from thewddridomain;
not non-functional properties, nor predictable mapping®al-time tasks.

Robocop

Robocop is a component model developed in Eindhoven Uriyert is a
follow-up, or a variant of, the Koala model. The aim of Robpd®to define
an open component-based framework for the middleware layegh volume
embedded applications [72]. A component framework and arept mod-
els in different abstractions form the core of the Robocaghiéecture. Un-
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like Koala, Robocop has several non-functional propesies as timeliness,
performance, reliability, availability, safety and satur The model is based
on resource predictions, which does not give 100% guaraniekke formal
methods. Therefore, it can not be considered suitable fetysaritical sys-
tems.

A Robocop component is a set of models providing informasibaut the
component. The models may be in different forms; human tdadarm, e.g.,
documentation or binary form. Other types of models aretional model and
non-functional model where the functional model describegunctionality of
the component, whereas the non-functional model desdiibew, reliability,
memory usage etc.

In [73, 74] an approach to define tasks from component behaidcsug-
gested. The tasks are assigned non-functional propeatidsare analyzed re-
garding schedulability in order to guarantee a feasible $at. However, there
is no attempt to optimize the allocation regarding any priype

4.5.3 Industrial Systems
PECOS

PECOS (PErvasive COmponent Systems) [15, 75] is a colltiderproject
between ABB Corporate Research Centre and academia. Thdogdhe
PECOS project was to enable component-based technolofyapjiropriate
tools to specify, compose, validate and compile softwaresfobedded sys-
tems. The component technology is designed especiallydiar dievices, i.e.
reactive embedded systems that gathers and analyse daengiars and react
by controlling actuators, valves, motors etc.

Non-functional properties like memory consumption andstxaase execution-
times are associated with the components. These are uséffidogrit PECOS
tools, such as the composition rule checker and the schegulerating and
verification tool.

The PECOS componenttechnology uses layered softwareaestire. One
of the layers is the Run-Time Environment (RTE) that takee cd the com-
munication between the application specific parts and thktime operating
system. The components communicate using a data-flowtedémteraction,
it is a pipes-and-filters.

The PECOS architecture does not handle the actual mapping dom-
ponents to tasks. A Run-Time Environment Layer is definecbtaraunicate
with the underlying real-time operating system. Howeuee, thapping is left
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to the policy of the operating system.

The PECOS component technology has a lot of focus on norti€unad
properties, which goes in line with the requirements statethe companies
in the vehicular domain. The RTE gives the possibility to nP&gCOS com-
ponents to several platforms. However, the component doby does not
consider this mapping. Though, the task allocation apgreaggested in this
thesis can be used for resource efficient mappings.

PBO

Port Based Objects (PBO) [14] combines object orienteddesiith port au-
tomaton theory. PBO was developed as a part of the Chimerea@pg Sys-
tem (Chimera OS) project [76], at the Advanced Manipulatalsoratory at
Carnegie Mellon University. Together with Chimera, PBOnfigra framework
aimed for development of sensor-based control systemis spicialisation in
reconfigurable robotics applications. An explicit desigaldor a system based
on PBO was to minimise communication and synchronisatfars facilitating
reuse.

PBO implements analysis for timeliness and facilitatesavetural models
to ensure predictable communication and behaviour. Theraamcation and
computation model is based on the pipes-and-filters model.

The Chimera OS is a large and dynamically configurable opeyaystem
supporting dynamic binding, it is not resource constraingtke low coupling
between the components makes it easy to modify or replacegéesbbject.
Due to the low coupling between components through simptensonication
and synchronisation the objects are highly reusable. Thetaiaability is also
affected in a good way due to the loose coupling between tirpoaents.

A single PBO-component is tightly coupled to the Chimera @8] is an
independent concurrent process, i.e., they use a rudinyeoria-to-one map-
ping.

This component technology has too little focus on non-fiometl proper-
ties considering the requirements on vehicles. Furthentapping between
components and tasks is a one-to-one mapping, where resefiicency is
not considered.

IEC 61131 : Programmable Logic Controllers

Because of the lack of standards for PLCs (Programmablecl@gntrollers),
IEC instituted this standard in 1993 [77]. At that time seevell established
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techniques for programming PLCs existed, so the autholsedftandard found
it necessary to include several different programming wwesh The standard
describes three graphical and two text based languages)deatrates on the
syntax and leave the semantics less definitive. It is pasetband very re-
source constrained. There are no non-functional propantéch makes the
analyzability low.

One of the graphical languages included in the standard earalied a
component language, the Function Block Diagram (FBD) laggu It is a
graphical language that can be used to define applicatiotesrims of control
blocks, which also can be imagined as components.

In principle, user-defined components (function blocksy mantain con-
trol code very similar to conventional PLC programs in anyhaf defined pro-
gramming languages. The control code defined in the compeican there-
fore be re-used within the same PLC task, shared betweeipieutisks. There
is however no pronounced strategy for allocating compatertasks, and it is
up to the user to define an allocation.

Further, IEC61131-3 does not support non-functional prigge Thus, it
is not very suitable regarding vehicular requirements.






Chapter 5

Conclusions and Future
Work

We have addressed the problem of mapping components tameansystems
by developing answers to two main research questions. Otleahain con-

tributions of the thesis is the development and evaluatidhemethods used
in allocating components to real-time tasks. The evalnatlearly shows that
these methods can provide substantial benefits in termsdotesl memory
consumption and CPU-utilization and thereby in terms ofduced hardware
requirement. This is the main contributor to answering thestjons. We have
also investigated several issues concerning componengimaguirements in
relation to the allocation of components. We have also iiyated several
issues concerning what quality attributes are importartfe vehicular indus-
try. Further we have studied resource effective comporesttrtologies and
resource reclaiming for the often pessimistic real-timalysis. In the follow-

ing sections we will summarize the contributions of this ky@nd discuss how
our research will be continued in the future.

5.1 Summary

The main contributions of the presented research have heemarized and
are presented in the list below:

¢ A Classifications of the importance of software qualityibtites accord-
ing to companies in the vehicular domain.

41
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e An Evaluation of the suitability of commercial componentdets with
respect to the requirements of the vehicular industry.

e A proposal for the use of component to task allocation todase per-
formance and system utilization, and a proposal for an etialn frame-
work for such allocations.

e The development of a real-time component model that usifibeMulti-
ple Versions Paradigrntogether with different existing real-time schedul-
ing methods and thadaptive Threshold Algorithm

e A proposal for the use of a software component technologgéeelop-
ing embedded systems through permitting the use of rea-ti@ory by
synthesis of run-time mechanisms for predictable exenattzording to
the temporal specification of the component model.

5.2 Future Work

Future work will primarily be in a further study of the alld@n from compo-
nents to real-time tasks. It will include the addition of@tkallocation criteria,
e.g., by adding jitter and blocking requirements. When aglgitter constraints
and blocking, trade offs arise between switch overhead ardary size versus
deviation from nominal start and end times and blocking $mteurthermore, a
more efficient scheduling policy and priority assignment e applied. Due
to the architecture of the GA it is easy to add new optimizetisuch as those
proposed.

Further validation of the work presented in this thesis isassary. In or-
der to facilitate this, a prototype implementation of a camgnt technology
within the SAVE project is under development where the ca# [ being
completed. The prototype will enable evaluation of différeechnology real-
isations with respect to performance. The model transfoomaf that tech-
nology needs additional attention, particularly the si&s for allocation of
components to tasks. We will integrate our methods intodbieponent tech-
nology (SaveCCM [28]).

Other approaches to future work are to add Case-Based Regg@BR)
for a knowledge based approach to help engineers determitable task al-
locations for specific domains.
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Abstract

The embedded systems domain represents a class of systdrnavh high re-
quirements on cost efficiency as well as run-time propesiieh as timeliness
and dependability. The research on component-based sy$tasnproduced
component technologies for guaranteeing real-time ptaserHowever, the
issue of saving resources by allocating several componmnemesal-time tasks
has gained little focus. Trade-offs when allocating congris to tasks are,
e.g., CPU-overhead, footprint and integrity. In this paperpresent a general
approach for allocating components to real-time tasksleatfilizing existing
real-time analysis to ensure a feasible allocation. We destnate that CPU-
overhead and memory consumption can be reduced by as mu@vaard
32% respectively for industrially representative systems
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6.1 Introduction

Many real-time systems (RTS) have high requirements onysafdiability
and availability. Furthermore the development of embedetems is often
sensitive to system resource usage in terms of, e.g., metoogumption and
processing power. Historically, to guarantee full contreér the system be-
haviour, the development of embedded systems has been dimigeanly low
level programming. However, as the complexity and the arhofifunction-
ality implemented by software increase, so does the costdfiware devel-
opment. Also, since product lines are common within the dopiasues of
commonality and reuse are central for reducing cost. CompBased De-
velopment (CBD) has shown to be an efficient and promisingaeah for
software development, enabling well defined software &chires as well as
reuse. Hence, CBD can be used to achieve goals such as costioadand
quality and reliability improvements.

In embedded RTS timing is important, and scheduling is usecr¢ate
predictable timing. Furthermore, these systems are offeource constrained;
consequently memory consumption and CPU load are desirbd tow. A
problem in current component-based embedded softwardogement prac-
tices is the allocation of components to run-time tasks [RBgcause of the
real-time requirements on most embedded systems, it isth@athe alloca-
tion considers temporal attributes, such as worst casaiggadime (WCET),
deadline (D) and period time (T). Hence, to facilitate selied), components
are often allocated to tasks in a one-to-one fashion. Howé»emany em-
bedded systems it is desired to optimize for memory and sfBethus the
one-to-one allocation is unnecessarily memory and CPUwuimgy.

Embedded RTS consist of periodic and sporadic events thatlyhave
end-to-end timing requirements. Components triggerechbysame periodic
event can often be coordinated and executed by the samentia still pre-
serving temporal constraints. Thus, it is easy to undedstiaat there can be
profits from allocating several components into one taskn&of the bene-
fits are less memory consumption in terms of stacks and taskatdlocks
or lower CPU utilization due to less overhead for contextchés. Different
properties can be accentuated depending on how compomeraiccated to
tasks, e.g., memory usage and performance; Hence, theneaanetrade-offs
to be made when allocating components to tasks.

Allocating components to tasks, and scheduling tasks atie cmmplex
problems and different approaches are used. Simulatecdbmgpand genetic
algorithms are examples of algorithms that are frequersgyldor optimization
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problems. However, to be able to use such algorithms, a fremketo calcu-
late properties, such as memory consumption and CPU-caérlie needed.
The work presented in this paper describes a general frarkdamoreasoning
about trade-offs concerning allocating components tostaskile preserving
extra-functional requirements. Temporal constraintsvardied and the allo-
cations are optimized for low memory consumption and CPEHosad. The
framework is evaluated using industrially relevant comgratrassemblies, and
the results show that CPU-overhead and memory consumiobe reduced
by as much as 48% and 32% respectively.

The idea of assigning components to tasks for embeddednsysidile
considering extra-functional properties and resourdezation is a relatively
uncovered area. In [3, 4] Bondarev et. al. are looking atiptied) and sim-
ulating real-time properties on component assemblies. édew there is no
focus on increasing resource utilization through compbtetask allocation.
The problem of allocating tasks to different nodes is a prbthat has been
studied by researchers using different methods [5, 6]. §laee also meth-
ods proposed for transforming structural models to ruretimodels [7, 8, 1],
but extra-functional properties are usually ignored orsidered as non-critical
[9]. In[10], an architecture for embedded systems is pregpand it is iden-
tified that components has to be allocated to tasks, howbeee is no focus
on the allocation of components to tasks. In [9] the authoop@se a model
transformation where all components with the same priaity allocated to
the same task; however no consideration is taken to loweures usage. In
[11], the authors discuss how to minimize memory consumgptioreal-time
task sets, though it is not in the context of allocating congrds to tasks. Shin
et. al [12] are discussing the code size, and how it can bemied, but does
not regard scheduling and resource constraints.

The outline for the rest of the paper is as follows; sectioivegjan overview
of the component to task allocations, and describes thetateiof the compo-
nents and tasks. Section 3 describes a framework for céilogilke properties
of components allocated to tasks. Section 4 discussesatibocand schedul-
ing approaches, while evaluations and simulations areepted in section 5.
Finally in section 6, future work is discussed and the papeoncluded. De-
tailed data regarding the simulations can be found in apgehd



6.2 Allocating components to real-time tasks 57

6.2 Allocating components to real-time tasks

In RTS temporal constraints are of great importance andteghtrol the ex-
ecution of software. Hence, components need to be allotatidks in such
a way that temporal requirements are met, and resource isageaimized.

Given an allocation we determine if it is feasible and cadteiithe memory
consumption and task switch overhead. To impose timingtcainss, we de-
fine end-to-end timing requirements and denote them tréinsac Transac-
tions are defined by a sequence of components and a deadting, the work
in this paper has three main concerns:

1. Verification of allocations from components to tasks.
2. Calculating system properties for an allocation

3. Minimizing resource utilization

CBSE is generally not used when developing embedded RT Syt
to the lack of efficient mappings to run-time systems and-tiea properties.
One approach that allows an efficient mapping from compantena RTS is
the Autocomp technology [13]. An overview of the Autocomglteology can
be seen in Figure 6.1. The different steps in the figure aidetivinto design-
time, compile-time, and run-time to display at which poimtime during de-
velopment they are addressed or used. The compile-timse,stieystrated in
Figure 6.1, incorporate an allocation from the componersed design, to a
real-time model and mapping to a real-time operating sy$EhOS). During
this step the components are allocated to real-time tastksrencomponent
requirements are mapped to task-level attributes.

By combining the notion of transactions and the pipe-aridrfinterac-
tion model we get a general component model that is easy téemgnt for
a large set of component technologies for embedded systechsas Auto-
comp [13], SaveCCM [14], Rubus [15], Koala [16], Port-basdgects [17],
IEC61131[18] and Simulink[19]. The component model cheeastics are
described in the section 6.2.1 and the task model charstitsrare described
in section 6.2.2.

6.2.1 Component model characteristics

In this section we describe characteristics for a generapoment model that
is applicable to a large set of embedded component modetk. donponent
and task models described are meta-models for modellingntet important
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Figure 6.1: Autocomp system description

attributes of an allocation between components and taske cbmponent
interaction model used throughout this paper is a pipeféted-model with
transactions. Each component has a trigger; a time triggen @vent trigger
or a trigger from a preceding component. A component traisadescribes
an order of components and defines an end-to-end timingresgant. In Fig-
ure 6.2, the notation of a component assembly with six coraptsnand four
transactions is described. The graphical notation is aintdl the one used in
UML.

The component model chosen is relatively straight forwardrtalyse and
verify. The pipe-and-filter interaction model is commonged within the em-
bedded systems domain. Many component models for embeystedrs have
the notion of transactions built in; however, if a componemtdel lacks the
notion of transactions, there are often possibilities talel@nd-to-end timing
requirements and execution order at a higher abstractiai. lén general a
system is described with components, component relatams transactions
(flow) between components. The component model is descwitld

Componente; is described with the tuple: S;, Q;, X;, M; >, wheres; is
a signal from another component, an external event or a tievedt.
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Q; represents theninimum inter arrival timgMINT) in the case of an
external event. It represents the period in the case of alttngger and
it is unused if the signal is from another component. The patar.X;

is the WCET for the component, anid; is the amount of stack required
by the component.

Isolation set! defines a relation between components that should not be allo
cated. Itis described with a set of component pAies< (c1, ¢2), (c3,¢4) >
that define what components may not be allocated to the saske ta
There may be memory protection requirements or other fegit en-
gineering reasons to avoid allocating certain combinatiohcompo-
nents; for example, if a component has a highly uncertain Wdtke
isolation set is indexed with subscripts denoting nextirelement, i.e.,

I = (61,62) andIlg = C3.

Component Transactionctr; is an ordered relation between componeyits=
c1,c, ..., cn, and an end-to-end deadlide;. The deadline is relative to
the event that triggered the component transaction, anfirfieompo-
nent within a transaction defines the transaction triggecofponent
transaction can stretch over one or several componentsa aodhpo-
nent can participate in several component transactions.cémponent
¢, Should execute before the componentnd the componenf should
execute before. to produce the expected results etc. The correct execu-
tion behaviour for the seV = ¢y, ca, ..., ¢, can be formalized with the
regular expression denoted in 6.1.

X X ...cp (6.1)

WhereX* denotes all allowed elements defined/gy

In a component assembly, event triggers are treated diffém@m the pe-
riodic triggers as the former is not strictly periodic. Téds only a lower
boundary restricting how often it can occur, but there is ppar bound re-
stricting how much time may elapse between two invocatiohbus, if an
event trigger could exist inside or last in a transactiomduld be impossible

to calculate the response time for the transaction, andehaenteadline could
never be guaranteed.

6.2.2 Task characteristics

The task model specifies the organization of entities in timaponent model
into tasks and transactions over tasks. During the trameftion from compo-
nent model to run-time model, extra-functional propertiks schedulability
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Figure 6.2: Graphical notation of the component model.

and response-time constraints must be considered in aydgrdure the cor-
rectness of the final system. Components only interact gir@xplicit inter-
faces; hence tasks do not synchronize outside the comporoetal. The task
model is for evaluating schedulability and other propsrtéa system, and is
similar to standard task graphs as used in scheduling thaogmented with
exclusion constraints (isolation). The task model is dbscrwith:

SystemK is described with the tuple A, 7, p > where A is a task set sched-
uled by the system. The constanis the size of each task control block,
and can be considered constant and the same for all tasksohs&ant
p is the time associated with a task switch. The system kesn#id
only explicitly shared resource between tasks; hence wetloansider
blocking. Also blocking is not the focus of this paper.

Task ¢; is described with the tuple C;, T;, wcet;, stack; > whereC; is an
ordered set of components. Components within a task areiden
sequence. Components within a task are executed at the semity s
the task, and a high priority task pre-empts a low priorigkt&’; is the
period or minimum inter arrival time of the task. The paraangtvcet;
andstack; are worst case execution time and stack size respectiviety. T
weet;, stack; and period ;) are deduced from the componentgin
The wecet; is the sum of all the WCETSs for all components allocated
to the task. Hence, for a tagk the parametersicet; and stack; are
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calculated with (2) and (3) .

weet, = Z (X3) (6.2)
Vi(c; €Cn)
stackn = Vi(ci € Cn)max(M;) (6.3)

Task transactionttr; is a sequence of tasks; = t1, to, ..., tx and a relative
deadlinedt;. O; defines an ordered relation between the tasks, where in
the case ofD = t;,t9; t; is predecessor ttp. The timing and execu-
tion order requirements of a task transaction are deduced from the
requirements of the component transactiofts. The task transaction
ttr; has the same parameter as the component transactigrzaut ¢4,
ta,..., tx are the tasks that map the component, ..., ¢,, as denoted
in Figure 6.4. If several task transactiafns; span over the exact same
tasks, the transactions are merged and assigned the shiwéeBine.
An event-triggered task may only appear first in a transacfiavo tasks
can execute in an order not defined by the transactions. Episnitis on
that the tasks have different period times, and therebgstriim period
phasing; hence transactions can not define a strict precedetation
between two tasks. Figure 6.3 is an execution trace thatstimswela-
tion between tasks and transactions. The tasks and traorsaete the
same as in Figure 6.4, left part.

6.3 Allocation framework

The allocation framework is a set of models for calculatingperties of allo-
cations of components to tasks. The properties calculaiitine framework
are used for optimization algorithms to find feasible altanes that fulfil given
requirements on memory consumption and CPU-overhead.

For a task set A that has been mapped from components in soeoreet
fashion, it is trivial to calculate the system memory conption and CPU-
overhead since each task has the same properties as thecbagionent.
When several components are allocated to one task we needctdate the
appropriateness of the allocation and the tasks properfiesa set of com-
ponents,ci,...cn, allocated to a set of tasks A, the following properties are
considered.

e CPU-overheag 4
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Components
¢1= {S1,Q1,X3,M} ={T,4,0.5,5} Ca={S4,Q4,Xs,Ms} ={T,9,1,6}
C2= {S2,Q XMz} = {c,-,0.3,3} C5= {S5,Q5,X5,Ms} = {C4,-, 1,4}
C3 = {S3,Q5,X5,M3} = {c,.,0.2,2 } Cs = {S6,Q6,X6,Me} = {E,6,1,10}
Tasks Transactions

M t={CuTiwecetstack} = {{c 1,C2.Cc}4,1,10} | ——p  ttry = {Os,dti} = {{t1 b}, 11}
t,= {C,, To,weeb, stack} = {{c 4,¢5},9,2,10} == ttr,={0,dh} = {{t5},3}
B  t:={CsTswcegstack} = {{c},6,1,10} = => tir3={Os,dt} = {{t 3},5}

Priority

Figure 6.3: Task execution order and task transactions.

e Memory consumptiom: 4

Each component; has a memory consumption stack. The stack of the task
is the maximum size of all components stacks allocated tdasle since all
components will use the same stack. The CPU overhead p, thromeon-
sumption m for a task set in a system K are formalized in equations 6.4 and
6.5:

- »
pa= >, & (6.4)
Vi(ti€A)
ma = Z (stack; + ) (6.5)
Vi(t;€A)

Wherep 4 represents the sum of the task switch overhead divided byetied
for all tasks is the system, amd4 represents the total amount of memory used
for stacks and task control blocks for all tasks in the system

6.3.1 Constraints on allocations

There is a set of constraints that must be considered whecasithg compo-
nents. These are:

e Component isolation
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Event

Figure 6.4: Two allocations from components to tasks depetai intersect-
ing transactions.

¢ Intersecting transactions
e Trigger types and period times
e Schedulability

Each constraint is further discussed below:

Isolation

Itis not realistic to expect that components can be allatiatan arbitrary way.

There may be explicit dependencies that prohibits thatzedomponents are
allocated together, therefore the isolation set | defindslwtomponents may
not be allocated together. There may be specific engineegagpns to why
some components should be separated. For instance, it nigshied to min-

imize the jitter for some tasks, thus components with highigertain WCET

should be isolated. There may also be integrity reasonpfrate certain com-
binations of components. Hence it must be assured that twipopents that
are defined to be isolated do not reside in the same task. &hibevalidated
with equation 6.6:

Iso(a,b) : ¢, has an isolation requirement ¢g
ﬁai(Vjvk(Cj ceCiNcg € Cy N ISO(j, k))) (66)
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Where there must not exist any tagkhat has two components andcy,
if these components have an isolation requirement.

Intersecting transactions

If component transactions intersect, there are differgategies for how to
allocate the component where the transactions interséet fdasibility is de-
scribed in equations 6.7 and 6.8. A component in the intéseshould not
be allocated with any preceding component if both transastare event trig-
gered; the task should be triggered by both transactionsdial gpessimistic
scheduling. A component in the intersection of one timggered transaction
and one event-triggered transaction can be allocated tpaaate task, or with
a preceding task in the time-triggered transaction. A camepbin the intersec-
tion of two time-triggered transactions can be allocatdaitiarily. In Figure
6.4, two different allocations are imposed due to inteiegotvent-triggered
transactions. In the left part of Figure 6.4 there is an Beetion between a
time triggered and an event triggered transaction. Theintieesecting com-
ponentcs is allocated to the task triggered by the time triggereddaation. In
the right part of the figure, where two event triggered tratisas intersect, the
component; is allocated to a separate task, triggered by both tramsesti

Tg(tr) : transaction is event triggered
Tp(tr) : transaction is time triggered
P(a,b,d) : cq is predecessor tg, in the setVy
X(lzczca € Ny Acg € N,
S =ca€CcNeyeCe
=3, (VYo (X5 AV AT (ctr) NTs (ctri) A(P(m, 1, k)V P(m, 1, 5)))) (6.7)
=3 (V) VYoo (X7 P AYi Acm € NeATr(ctr;) AT (ctri) AP(cm, ¢, Ni))) (6.8)
Where there must not exist any tagkhat has two components andc,,

in a way that two component transactiafts; andctry, intersect inc;, andc,
precedes; in the transactionstr; or ctry, if ctr; or ctr), are event-triggered.

Triggers

Some allocations from components to tasks can be perforritedwtimpact-
ing the schedulability negatively. A componentthat triggge subsequent com-
ponent can be allocated into a task if it has no other exglgitendencies, see
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(1) in Figure 6.5. Components with the same period time caallbeated to-
gether if they do not have any other explicit dependencies,(8) in Figure
6.5. To facilitate analysis, a task may only have one triggetime triggered
components with the same period can be triggered by the saygertand thus
allocated to the same task. However, event triggered coergemay only be
allocated to the same task if they in fact trigger on the saveate and have
the same minimum inter arrival time, see (3) in Figure 6.5m@onents with
harmonic periods could also be allocated to the same taskewr, harmonic
periods create jitter. Consider two components with thenlaauic periods five
and ten that are allocated to one task. The component withated five will
run every invocation, while the other component will rungv&cond invoca-
tion, which creates a jitter; therefore we have chosen nptitsue this specific
issue.

(AP{B]=> 1)
)= @
E]= (3)

Figure 6.5: Component to task allocation considering &igg

Schedulability

Schedulability analysis is highly dependent on the schedudolicy chosen.
Depending on the system design, different analyses appesdave to be con-
sidered. The task and task transaction meta-models ar¢rectesl to fit dif-
ferent scheduling analyses. In this work we have used fixéatir exact
analysis. However, the model can easily be extended widr gind blocking
for real-time analysis models that use those properties.filimework assigns
each task a unique priority pre run-time, and it uses exalyais for schedu-
lability analysis, together with the Bate and Burns [20] eggeh for verifying
that the transaction deadlines are met.
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6.4 Using the framework

An allocation can be performed in several different waysa lsmall system
all possible allocations can be evaluated and the best chése a larger sys-
tem, however, this is not possible due to the combinatoxalesion. Different
algorithms can be used to find a feasible allocation and sdimgdof tasks.
For any algorithm to work there must be some way to evaluatallanation
or real-time schedule. The proposed allocation framewarkhe used to cal-
culate schedulability, CPU-overhead and total memory.IoHte worst-case
allocation is a one-to-one allocation where every compbigeallocated to
one task. The best-case allocation on the other hand, isevatlesomponents
are allocated to one single task. To allocate all comporerise task is very
seldom feasible. Also, excessive allocation of componessig negatively af-
fect scheduling, because the granularity is coarsenechanelty the flexibility
for the scheduler is reduced.

Simulated annealing, genetic algorithms and bin packiegnall known
algorithms often used for optimization problems. Thesertlgms have been
used for problems similar to those described in this paperphcking, e.g.,
has been proposed in [21] for real-time scheduling. Here medly discuss
how theses algorithms can be used with the described frarketeoperform
component to task allocations.

Bin Packing is a method well suited for our framework. In [22] a bin pagkin
model that handles arbitrary conflicts (BPAC) is presenilue BPAC
model constrains certain elements from being packed irgs&me bin,
which directly can be used in our model as the isolation/séthe bin-
packing feasibility function is the schedulability, aneé ®8PU and mem-
ory overhead constitute the optimization function.

Genetic algorithms can solve, roughly, any problem as long as there is some

way of comparing two solutions. The framework proposed is plaper
give the possibility to use the properties memory consupnptCPU-
overhead and schedulability as grades for an allocatiarder to evolve
new allocation specimen. In, e.g., [23] and [24], genetipethms are
used for scheduling complex task sets and scheduling tésknsdistrib-
uted systems.

Simulated annealing (SA) is a global optimization technique that is regularly
used for solving NP-Hard problems. The energy function isteiof
a schedulability test, the memory consumption and CPUtweaat. In
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[6] and [25] simulated annealing is used to place tasks oresiad a
distributed system.

6.5 Evaluation

In order to evaluate the performance of the allocation aggirdhe framework
has been implemented. We have chosen to perform a set o&tidios and

compare the results to a corresponding one-to-one altotathere each com-
ponent is allocated to a task. We compare the allocations segpect to if

the allocation is feasible (real-time analysis), memorgstonption and CPU
overhead. The implementation is based on genetic algosi{@A) [26], and

as Figure 6.6 shows, each gene represents a component gathsanrefer-

ence to the task it is assigned. Each chromosome repreberggtire system
with all components assigned to tasks. Each allocationymed by the GA

is evaluated by the framework, and is given a fithess valuemidgnt on the
validity of the allocation, the memory consumption and tioverhead.

chromosome

gene

t | to |t | ts|ta | T3 |t [t1 T2 |11
C1 C C3 C4 C5 Cg C7 Cg Cg Cic

Figure 6.6: The genetic algorithm view of the component s& talocation; A
system with ten components, allocated to four tasks.

6.5.1 Fitness function

The fitness function is based on the feasibility of the alfimratogether with
the memory consumption and CPU overhead. The feasibility gfethe fit-
ness function is mandatory, i.e., the fitness value for a le@miory and CPU
overhead can never exceed the value for a feasible allocafibe feasibility
function consists of: | which represents component isohatl T representing
intersecting transactions, Tr representing trigger tygas period times, and
finally Sc represents scheduling. Consider that each oétfessibility tests
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are assigned a value greater than 1 if they are true, and a galuif they are
false. The parameter n represents the total number of coemp@nThen, the
fithess function can be described as with equation 6.9.

Fitness = <(I+IT+T7’+SC)F—|— (L—i— Z piﬁ)O) (I IT-Tr-Sc+1)

m ,
A Vieay 1

(6.9)
Where the fitness is the sum of all feasibility values timescdr F, added
with the inverted memory usage and performance overhaadsta factor O.
The total fitness is multiplies with 1 if any feasibility tdail, and the products
of all feasibility values plus 1 if all feasibility tests steed.

6.5.2 Simulation set up

This section describes the simulation method and set upe&ar simulation
the genetic algorithm assigns components to tasks andatealthe alloca-
tion, and incrementally finds new allocations. The evabrais performed in a
number steps:

1. System data - components and transactions with deadlieesreated.
There exist at least one solution for all data that are passé¢ol the GA.

2. Initial Population - The GA creates a random populati@t thakes up a
set of allocations. One population comprises several chsames, and
each chromosome represents an allocation.

3. Apply Fitness function - The fithess function calculatesvtiit a chro-
mosome is. The higher fithess value, the more likely is therlasome
to be passed on to the next generation.

4. Create New population - The GA combines different chromnuss, and
performs mutations by reassigning one or several compsnent

5. Repeat from step 3, each iteration is referred to as a gtoer

The system data is produced by creating a random schedtgaklset, on
which all components are randomly allocated. The compopegerties are
deduced from the task they are allocated. Transactionseahgced the same
way from the task set. In this way it is always at least onetawiufor each
system. However, it is not sure that all systems are solwaithea one-to-one
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allocation. The components and component transactiongsae as input to
the framework. Hereafter, systems that are referred to asrgted systems
are generated to form input to the framework. Systems thatecout of the

framework are referred to as allocated systems. The simanlparameters are
set up as follows:

e The number of components of a system is randomly selected &o
number of predefined sets. The numbers of components in gtersy
are ranging in twenty steps from 40 to 400, with a main pointlaa
components.

e The period times for the components are randomly selected & pre-
defined set of different periods.

e The worst case execution time (WCET) is specified as a pexgeruf
the period time and chosen from a predefined set. The WCEEshteg
with the periods in the system constitutes the system load.

e The transaction size is the size of the generated transadtigpercent-
age of the number of components in the system. The transagitie is
randomly chosen from a predefined set. The longer the triosacthe
more constraints on how components may be allocated.

e The transaction deadline laxity is the percentage of theshwossible
transaction deadline for the generated system. The traosateadline
laxity is evenly distributed among all generated systentsiaralways
greater or equal to one, to guarantee that the generatedrsisspossible
to map. The higher the laxity, the less constrained trafmadeadlines.

One component can be involved in more than one transacésulting in more
constraints in terms of timing. The probability that a comeot is participating
in two transactions is set to 50% for all systems.

To get as realistic systems to simulate as possible, thesalsed to gen-
erate systems are gathered from some of our industrialgrarthe industrial
partners chosen are active within the vehicular embeddstersysegment. A
complete table with all values and distributions, of theteysgeneration val-
ues, can be found in appendix A. The task switch time usedhéosystem is 22
1S, and the tcb size is 300 bytes. The task switch time and tebask repre-
sentative of commercial RTOS tcb sizes and context switnkgifor common
CPUs.
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The simulations are performed for four different utilizatilevels, 30%,
50%, 70% and 90%. For each level of utilization 1000 differgystems are
generated with the parameters presented above.

6.5.3 Results

A series of simulations have been carried out to evaluat@én®rmance of
the proposed framework. To evaluate the schedulabilithefdystems, FPS
scheduling analysis is used. The priorities are randonsigasd by the genetic
algorithm, and no two tasks have the same priority. The stiaris compare
the approach in this paper to a one-to-one allocation. Tasl& summarizes
the results from the simulations. The columns entitledclstand "CPU" dis-
plays the average memory size (stack + tcb) and CPU overlespéctively,
for all systems with a specific load and transaction deadtixi¢y. The column
entitled "success" in the 1-1 allocation section displagsrate of systems that
are solvable with the 1-1 allocation. The column entitlegctsess” in the GA
allocation section displays the rate at which our frameworlts allocations,
since all systems has at least one solution. The stack andv@lEs are only
collected from systems where a solution was found.

The first graph for the simulations (Figure 6.7) shows thecess ratio,
i.e., the percentage of systems that were possible to mépthétone-to-one
allocation, and the GA allocation respectively. The susaagio is relative
to the effort of the GA, and is expected to increase with a éigiumber of
generations for each system. Something that might seenusiogfis that the
success ratio is lower for low utilization than for high izt#ltions, event though
it, intuitively, should be the opposite. The explanatioritts phenomenon is
that the timing constraints become tighter as fewer taskicfgate in each
transaction (lower utilization often leads to fewer task&fjth fewer tasks the
task phasing, due o different periods, will be lower, anddéadline can be set
tighter.

The second graph (Figure 6.8) shows that the deadlines lareedewith
higher utilization, since the allocations with relaxed dleges perform well,
and the systems with a more constrained deadline show aiolpapvement
with higher utilization.

The third graph (Figure 6.9) shows for both approaches theage stack
size for the systems at different utilization. The comparigs only amongst
allocations that are have been mapped by both strategiesmémory size is
consistent of the tcb and the stack size. The tcb size is 3@&0 Bg described
earlier, each task allocates a stack that is equal to theo$itree largest stack
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Load | Laxit 1-1 allocation GA allocation
y Stack | CPU | success| stack | CPU | success
All 28882 4,1% | 74% 17380| 2,0% | 87%

11 25949| 3,5% | 39% 14970| 1,6% | 58%
1.3 33077 | 4,4% | 78% 21005| 2,2% | 97%
15 26755| 4,1% | 95% 15503 | 2,0% | 99%
All 37277| 4,8% | 82% 24297 | 2,4% | 90%
1.1 35391 4,3% | 49% 23146| 2,3% | 64%
1.3 38251 4,8% | 88% 25350 2,5% | 96%
15 37043 | 4,9% | 98% 23740| 2,3% | 100%
All 44455| 5,1% | 85% 30694 | 2,7% | 91%
1.1 44226| 5,0% | 58% 31638 | 2,7% | 73%
1.3 44267 | 5,1% | 94% 30686 | 2,7% | 98%
15 44619 5,2% | 98% 30232 | 2,6% | 100%
All 46943 | 5,6% | 87% 37733| 3,1% | 93%
1.1 54858 | 5,7% | 65% 41207| 3,4% | 80%
1.3 49607 | 5,5% | 92% 35470| 3,0% | 98%
15 53535| 5,7% | 98% 38260 | 3,1% | 99%

30%

50%

70%

90%

Table 6.1: Memory, CPU overhead and success ratio for 1-1G#dlloca-
tions
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Figure 6.7: Average success ratioFigure 6.8: Success rate for allocations

among its allocated components.

The fourth graph (Figure 6.10) shows the average task swiitedin mi-
cro seconds for the entire system. The task switch overteadly depen-
dent on how many tasks there are in the system. The averagevement
of GA allocation in comparison to the 1-1 allocation is, fbetsuccess ratio,
10%. The memory size is reduced by 32%, and the task switcthead is
reduced by 48%. Hence we can see a substantial improvemesinig smart
methods to map components to tasks. A better strategy fngeriorities
would probably lead to an improvement in the success ratiis i expected
because the constraints are more relaxed, allowing for freeeom in the al-
location. Further we see that lower utilization give beiteprovements than
higher laxity of the deadlines. Since lower utilizationesftin the simulations
give tighter deadlines, we can conclude that the allocatmes not negatively
impact schedulability. However, the more components, te higher load,
the more constrains are put on the transactions, and therellye compo-
nents, making it harder to perform a good allocation.

6.6 Conclusions and Future Work

Resource efficiency is important for RTS, both regardinggrerance and
memory. Schedulability, considering resource efficiehag gained much fo-
cus, however the allocation between components to taskgairmsd very little
focus. Hence, in this paper we have described an allocatomdwork for allo-
cating components to tasks, to facilitate existing schiagund optimization
algorithms such as genetic algorithms, bin packing and Isitad annealing.
The framework is designed to be used during compile-time itimize re-
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Figure 6.9: Average memory size Figure 6.10: Average task switch over-
head

source usage and maximize timeliness. It can also be ugatiiedy in case
of design changes; however with some obvious drawbackseoretults. The
framework can easily be extended to support other optiioizat besides task
switch overhead and memory consumption. Results from sitioms show
that the framework gives substantial improvements botkeims of memory
consumption and task switch overhead. The described frankes¥so has a
high ratio in finding feasible allocations. Moreover, in qoemison to allo-
cations performed with a one-to-one allocation our franméweerforms very
well, with 32% reduced memory size and 48% reduced task Bwiterhead.
The simulations show that the proposed framework perforfosations on
systems of a size that covers many embedded systems, anceasanable
time for an off-line tool. We have also shown how CPU load arddiine
laxity affects the allocation. Future work includes addatlger allocation cri-
teria, e.g., by looking at jitter requirements, and blogkirBy adding jitter
constraints and blocking, trade-offs arise between swit@rhead and mem-
ory size versus deviation from nominal start and end timesxéocking times.
Furthermore, a more efficient scheduling policy and pryoaissignment will
be applied. Due to the nature of GA it is easy to add new opétitns as the
ones suggested above.
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Appendix A

In this appendix we show the specific data used for generagisggms to the
simulations. The software is implemented using java, andhe basic struc-
tures and operations of the genetic algorithm the open grarij Gajit, written
by Mathew Faupel. The GA was setup with an initial populaté800 indi-
viduals, and every simulation was run for 500 generationise Jimulations
were run on a 1.8 GHz Pentium 4m processor with 768 MB of RAMe Th
mean time for each simulation is 133 seconds. The parametedsfor the GA
in the experiments are shown in table 6.



Bibliography

77

Param on component level || WCET in % of period Dist. %
Number component$ Dist. % || 2 45
40 1,25 4 50
50 6,25 8 5
60 10 Stack size Dist. %
70 6,25 256 10
80 2,75 512 25
100 7,5 1024 25
120 13 2048 35
140 7,5 4096 10
150 5 Param on System level
160 2,5 ctr. size % of num. comp| Dist. %
180 8 10 10
200 5,25 13 25
210 5 17 25
240 9 21 25
250 1,25 25 15
280 5 Laxity % of ctr.dl Dist. %
300 2 110 33
320 1 130 33
350 1,25 150 33
400 0,25 Utilization % Dist. %
Isolation % Dist. % || 30 25
0 20 50 25
10 30 70 25
20 30 90 25
30 20 GA parameters
Period time (1s) Dist. % || GA property Value
10000 20 Population 300
25000 20 Generations 500
50000 40 Elite rate 5%
100000 20 Cull rate 40%

Mutation rate

1%

Table 6.2: Data used for generating systems, and GA paramete
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Abstract

The use of real-time systems (RTS) has gained a wide aceeptama
number of industrial applications during the past yearswal as the field
is continuously expanding. At the same time, the main chgliefor software
developers today, is to deal with complexity and to quicldgjat to changes.
Component-based software engineering (CBSE) has arisedegfinology to
meet a number of issues like software reusability, relighénd a short time
to market for industrial products. However, the generabadages of utilizing
CBSE techniques for RTS are desirable only if the corredtignecan be main-
tained. Therefore we need real-time theory, which providestime mecha-
nisms and analysis to guarantee the timeliness in the syssed on an upper
bound of the execution time. In this paper we present a coetomodel,
together with run-time mechanisms, gathering benefitsigeavby both RTS
and CBSE. In particular, we show that the proposed model istalde pack-
age for efficient utilization of the multiple version pargdi. The purpose for
using a multiple version technique is to ensure real-timergotee for a mini-
mum level of service quality while providing user-specifiad-time flexibility
in terms of increased level of quality based on resourcdatiity.
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7.1 Introduction

Computer control systems are embedded in a large and grgrang of prod-

ucts. Products such as automotive vehicles, aircraft, mddstrial robots are
equipped with advanced computer control systems and hghe&fuirements
of reliable and safe operation. A motivation for establighé CBSE discipline
for such systems is that the systems are becoming incréasimge complex

due to the inclusion of more functionality. At the same tirtkes product cy-

cles are becoming shorter leading to requirements of shimte to market.

Moreover, the industry strives to enable cost effectivel@ngentation of new
functionality. Thus, the challenge is cost efficient depaet@nt of these sys-
tems, with respect to business, quality, reliability, anddtionality.

Although the motivation for utilizing CBSE methods for deygment of
embedded control systems are essentially the same as fenragporpose soft-
ware, the requirements on a component model for embeddéshsysre not
the same. For embedded control systems a component modefonus on
extra-functional requirements most often not addresseldet@xtent required
by general purpose component models. This includes reqgaints on reliabil-
ity, timing, resource usage and linkage to specific hardwareight be a trade
off between flexible composition which often is in focus bymqmonent models
and some extra functional properties. For example, it mgh& requirement
that components for an embedded system must be physicadijesrthan the
common office application component; no unused code candbiedied since
the embedded memory shall be as small as possible.

We are proposing a componentmodel aimed for embedded teystems,
addressing the extra functional requirements with focusealtime analysis.
The real-time requirements of a control system can be dyrdescended from
the environment that is controlled. The most common reaétrequirement
of a control system is to generate a response to an eveneleefwertain point
in time, which forms the deadline of the response. To be ablguarantee
that the deadline of a certain event can be met during allilplessonditions,
a schedulabillity analysis is applied. However, analygiseal-time systems
can be restrictive since, in order to guarantee the timgdirie the system, it
assumes a worst case scenario based on Worst Case Exedmt®(MCET)
estimations and worst case environment assumptions. #iece/orst case
scenario in most cases will occur very infrequently, th@vese usage at run-
time will be lower than estimated.

Consider that some missions in a system can be performediiffiénent
quality levels, for instance, monitoring more or less pagtars, more or less
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deep iterations in numerical approximations, sometimesay even be possi-
ble to not execute a particular task at all and so forth. Itiddluen be possible
to adjust the quality level to the available resources awedethy reclaim re-
sources during run-time. The Multiple Versions paradigirigla method that
can be used to reduce the consequences of pessimistic ianaflyeal-time

systems. In this paper we are packaging this paradigm iatletime compo-

nents.

The component model presented is based on ideas from thel mede
scribed in [2]. Their work defines a prediction enabled comgrd technology
(PECT) [3]. In a PECT, both constructive and analytic mo@etsconsidered.
A constructive model deals with functional properties, ielain analytic model
is concerned with non functional (extra functional) praesy, e.g., timing and
memory issues.

The contribution of this work is the joining of componenthaclogy and
theories for obtaining flexible, yet reliable, real-timesw®ms. We have defined
a component model that makes this integration possiblelevatiil preserv-
ing fundamental component properties. Moreover, we hatenebed existing
work to also allow aperiodic activities, something whicteipecially impor-
tant when considering flexible systems.

The rest of the paper is outlined as follows. Section 7.2eressfunda-
mental RTS theory. In section 7.3, the component model sgmted, topics as
componentdescription and system assembly are treateghafiee proceeds in
section 7.4 by describing the required run-time mechanisrich is proposed
to be built into a middleware. The analysis possibilities also presented in
this section. The last section concludes the paper andiosrgaggestion to
future work.

7.2 Real-Time Systems

In this section, we give an introduction to some basic cotsapd principles
in real-time systems.

7.2.1 Definition and basic terminology

Real-time systems are computer systems in which the coeesbf the system
depends not only on the logical correctness of the compuunsperformed, but
also on the time factors [4]. A real-time system typicallysist of a number
of resources (e.g., one or several processors), a numbasld, teach one as-
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sociated with a program code, and a scheduler that assighdask a fraction

of the processor(s), according to a scheduling policy. Jas& usually divided
in periodic and non periodic. Periodic tasks consist of dimite sequence of
invocations, called instances or jobs. Non periodic tasgsreoked by the oc-
currence of an event and are divided into aperiodic and sigotasks. While

the arrival times of aperiodc tasks are not known in advasperadic tasks ar-
rive with a minimum interarrival time, i.e., the minimum tnmnterval between
two consecutive invocations. Tasks can have various pdeasjesuch as pe-
riod, deadline and priority, depending on the scheduliniicpehosen to be

used. What is common for all real-time tasks is the worst exseution time

(WCET), which has to be calculated in order to be able to makeeedictions

about the system behaviour, i.e., to guarantee that thedineiquirements will

be met at run-time.

Real-time systems can be classified into two major categjohiard and
soft real-time systems. Hard real-time systems are compystems in which
all task deadlines must be met. Examples of such systemseatieahcontrol
equipment or vehicle control systems. On the other handpfinreal-time
systems, i.e., multimedia applications, a number of deadlcan be missed
without serious consequences. In this paper we will prilpdoicus on hard
real-time systems.

The choice of scheduling technique used in order to achidfereht re-
quirements has been well analyzed and discussed. Offadible-driven schedul-
ing is usually used to achieve predictability in systems hick failure may
have catastrophic consequences, but for the cost of flayib# task execu-
tions are fixed and determined in advance, and limited ghidithandle tasks
with incompletely known attributes, e.g., aperiodic orisahc run-time events.
If the main goal is to achieve run-time flexibility, the appob typically used
is priority driven scheduling, but the price to pay is theited ability to handle
multiple complex constraints.

7.2.2 Off-line scheduling

Off-line, table driven, scheduling for time-triggered ®ms provides deter-
minism, as all times for task executions are determined aogk in advance.
In addition, complex constraints can be solved off-linehsas distribution,
end-to-end deadlines, precedence, jitter, or instancaragpn. The guarantee
that tasks will meet their deadlines is the off-line consted schedule. How-
ever, since all actions have to be planned before startamgtime flexibility is
lacking.
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7.2.3 Periority driven (on-line) scheduling

Priority driven (on-line) scheduling can be divided in twaim categories:
fixed priority scheduling (FPS) or dynamic priority schedglsuch as earliest
deadline first (EDF). Common for both categories is that teeduling deci-
sion for individual tasks is made at run-time, based on tharipy of the tasks.
This results in a flexible system with a potentially higheiligbto cope with
run-time events. Temporal analysis of priority based systéocuses on pro-
viding guarantees that all instances of tasks will finistobetheir deadlines.
The actual start and completion times of execution of tagkes generally not
known and depend largely on run-time events.

In fixed priority based systems, guarantees for temporal\iebr are achieved
by performing response time analysis (in standard FPS)65][7], [8] and
[4]. In dynamic priority based systems, i.e., EDF, the gotea that all tasks
will meet their deadlines is the processor utilization, agax 100% [9].

In this paper we will focus on hard, fixed priority driven rémhe systems.
That is mainly due to the run-time flexibility provided by shiind of systems,
wide usage in the industry and low run-time overhead contpiaxee.g., EDF-
based systems.

7.3 Component Model

In this paper, we deal with the extra-functional requiretaeri a typical em-
bedded real-time system and add flexibility by introduciagvges with dif-
ferent quality levels.

The basic idea of the component model is that the servicesutatpd
within a component shall be related in some way, like the wghoffered
by an ordinary C++ or Java object should be related. A summgttye char-
acteristics of a component is presented below:

e The implementation of a component is not reachable by a garty; a
componentis a black-box. The only way to communicate witbrao-
nent is through its interfaces.

e Advanced components can be composed from basic comporergs.
considered as an advantage in system design to naturallylédé&asiew
a larger composition of design.

e A service provided by a component can be implemented inréiffiever-
sions, in direction with the multiple version paradigm, tiferent ver-
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sions are denoted quality levels.

e A service provided by a component can be active, or passineachive
service is scheduled by the run-time system, while a pasgidgce is
not directly in contact with the run-time mechanisms.

7.3.1 Component description

Infigure 7.1, we present an UML meta-model of a component.siéreotypes
show the property class of the building bricks and have theesaeaning as in
[3], i.e., analytic properties are those needed for ansgsd constructive are
those that provide functionality.

A component provides one or more services, which is simdanéthods
offered by an object in an object oriented language as Jafa 6r

A service provides in and out ports [10] for exchanging dath wther ser-
vices. Connecting in and out ports is the only way to exchatega between
services, even for services within the same component. Gihvar of in and
out ports and the type of parameters passed through the grerfsee for a
component (or service) developer to specify. As mentionedraice can be
active or passive, an active service has an associatedmtes@ontaining all
parameters needed by the run-time system. Further moreyigeséas one
or more quality levels, which are completely independeatpdures for solv-
ing the same problem. The number of provided quality levelgde for the
developer to specify, but at least one should be provided.

Each quality level has an implementation. A function paingpresents the
implementation of the quality level for a basic componerdwdver, a quality
level provided by a more advanced composed component haguarsse of
sub-services, which should be executed upon an invoca#oquality level
also has a WCET and a value associated with itself. Upon aretipation
of the model, it is possible to add more parameters, suchadis shemory
consumption, depending on desired tools and focuses. ThETWEpresents
the maximum time interval for which the service is executedaequential
program without being interrupted. Theories regarding VW@Etimation have
been presented ([11] [12]). The value can be set to an anpinamber, and
is used by the run-time system for choosing between diftegaality levels.
Short and a bit simplified, the run-time system tries to alés high value as
possible depending on available resources. If WCET andadlaitime allows
the version with highest value will be chosen for execution.
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Figure 7.1: UML meta-model of a component

7.3.2 Component Interfaces

The interface of a component is defined as a specificatiors aftitess points,
as in [13]. A component has multiple access points specifiedetached in-
dependent interfaces. The interfaces are the only visintes pf a component;
they offer no implementation of the services, but only mdthand protocols
to access the services. Furthermore it is assumed that et&eface, besides
the pure functional specification, provides all necessafigrimation regarding
the provided service in the form of ordinary comments addetthé developer.
Included additional information should at least be seneantiescribing the
service, and, especially for RTS, temporal and memory reqment attributes.
The proposed component model consists of three types afanés.

e Data interfaces, are port based, and contain informationtaéxisting
ports and data type definitions. Each service can providedroat ports
for sharing data between each others.

e Control interfaces, provide access points for control obaponent. A
control interface provides methods for invocation of thiéetlént encap-
sulated services and also if a service is defined as activengists of
parameters and structures required by the run-time system.
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e Analytic interfaces, provide parameters concerning cffe quality lev-
els of a service. The minimum amount of parameters includatie
number of levels with corresponding WCET and value. Thisriiaice
substitute basis for the decisions made by the run-timesyst
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Q"“‘—IO i nsert
1 ! ToDat abase

r eadSensor
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r eadSensor insert

ToDat abase

Quality Level 2 --Q print
OnDi spl ay

Figure 7.2: data connections through in and out ports

7.3.3 Assembling components

Assembling components or parts of components into new caemts and as-
sembling systems through exchanging data between comizir@arried out
utilizing different interfaces. Hence, data exchange amwmonent compo-
sition are independent to each others. A consequence isl#it@tcan cross
component boundaries utilizing the same mechanisms aswattomponent.
Exchanging data between services is carried out by comggictports and
out ports. A smallest requirement on the type level is thainkeracting in and
out ports uses the same types of parameters. The ports ofieutsarservice
is accessible trough the data interface provided by the oot hosting the
service. When a service is launched, it begins with readatg ftom all its in
ports (zero or more), and, when its execution is finishedy datvritten to its
out ports (zero or more). A schematic picture of the datafletwieen the com-
ponents SensorMonitor and RevolutionCounter is shown ird@.2. In the
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figure the interior of the composed component SensorMorstbatched, the
in ports in the figure are marked as small circles to the leftamth component,
and the out ports are marked as a small circle to the rightdf eamponent.
The figure describes the connections between in and out foortse imple-
mentation of two different quality levels of the readSersatUpdate service,
provided by the SensorMonitor component. As shown the octiores of in
and out ports are transparent across the node boundaries.

Composing a service within a component from services pexl/tay other
components is achieved through the definition of a sequérte@sequence is
constructed by using the control interface provided by thiecemponents. A
pseudo code example is shown in figure 7.3; it could be theesegubelong-
ing to the SensorMonitor component shown in figure 7.2. Quigiel 1 of the
provided readSensorAndUpdate service is built by the twossurvices read-
Sensor and insertToDatabase provided respectively byethgos component
and the 10 component. Quality level 2, however, utilizes @ditonal service
printOnDisplay. As shown in the pseudo code example (figug €hoosing
quality level of sub services when defining a sequence esilstatic binding,
e.g., the desired quality level is specified. To be able tizatdifferent qual-
ity levels of a sub service, a designer must additionally pose different top
quality levels.

SensorMonitor Sequences{

readSensorAndUpdate {

QLevell(
Sensor.Control.readSenscr.QLlevell () ;
I0.Control .insertToDatabase.QLevell () ;

I

QLevelZ{
8ensor.Control.readSensor.Qlevell();
I0.Control.insertToDatabase.QLevell () ;
I0.Control.printOnDisplay.QLevell();

Figure 7.3: data connections through in and out ports

Assembly of applications may be viewed as a hierarchy. Bigjave can
distinguish between:

e Basic passive components
e Composed passive components

e Active components
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e An application

Basic passive components are components which are ratladrasmd offer
well defined services. On this level WCET estimations of esafvice should
be included. It is usually easier to make an accurate WCEmatbn on a
small service than on complex composed services. Once tiheagsd value is
assigned, it can be reused in other systems. However, theVé@tbe further
tuned during the life of a basic component through an evahatiy process.

Composed passive components are components which cohsatvices
derived by specifying sequences of other services, andhiaitelata connec-
tions through connecting the in and out ports of the incluskdices. WCET
is automatically calculated from the WCET:s of the includedvices. The
automatic calculation is based on the serialization pattaturally provided
by the sequence; it is basically a summation of the WCET:$efincluded
services, since no concurrent services are regardedathdtee dynamics with
concurrent services are taken care of by the schedulahiti#yysis described
in the next section.

Active components have services that are scheduled by therlying com-
ponent technology. Active services have some additionarpaters asserted
by the developer when the service is chosen to be active. difaeeters are (T,
D, P). T is the period time, and is asserted for periodic iation of a service.
If T is set, the service will be automatically set as readyeiegcution with an
interval T between two invocations. The relative deadliperuan invocation
of a service is denoted by D, and represents the time intéwal which the
service became ready for execution until it has to be coragleP is priority
and is a number representing the priority of the servicegiitloe asserted with
an arbitrary theory.

Finally, the application is the set of active services, wtiogether solves
the particular mission for the system. A set of active s&wican be compared
with a set of tasks in a traditional RTS.

7.4 Component technology

The component model offers a set of quality levels. Tempamalysis of fixed
priority pre-emptive systems [6] can guarantee temporaabieur before run-
time. In the model proposed in section 7.3, a service has dauof quality
levels. One of the levels is the basic level that has beeragteed pre-runtime
by a schedulability test. However the schedulability testdsed on the WCET
that can be over estimated. Hence, the pre-run-time asatgsi turn quite
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Figure 7.4: hierarchy of components building an applicatio

pessimistic. Because of this pessimistic off-line analyise component model
also offers the same service at a higher quality level. Thécecan be per-

formed with higher quality if there are more available rases than the basic
quality level demands. The concept of quality is up to thegies to define.

However, a higher level of quality would probably demand en@sources in

form of processor time. In [14], the authors have compargdra¢ admission

policies to be used with Multiple Versions paradigm [1]. histpaper we have
adapted and extended the Adaptive Threshold algorithmitogucomponent

model.

7.4.1 Runtime system

The run-time system is a middleware, intended to give thearsamage of a to-
tally self-providing service i.e., a service that autorcaty chooses to run the
highest quality level with respect to available resourdé® service scheduling
algorithm is located in the middleware, hence it is easidraee a dispatcher
suited for a specific system or underlying scheduling atgoriwithout having
to change the service or component model.

7.4.2 Pre-runtime analysis

Real-time analysis is an important tool to examine if a satieks is feasible,
without having to try every possible execution path. Thelysisiis used to
ensure that all deadlines and other extra functional pt@sesre met.

In our approach, the schedulability analysis is perfornmegdrder to guar-
antee the basic level for each periodic service. There areymways of for-
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mally guaranteeing that a set of services will complete teefloeir deadlines.
In [5] a formal analysis for guaranteeing services in fixeidniy systems is
proposed. If the schedulability analysis fails, the systers to be redesigned
by, e.g., choosing a basic quality level with a lower WCET o or several
services.

As previously mentioned, the off-line analysis is quitegiesstic and dur-
ing run-time the services will usually not use all time akok

7222245 v ZZANS: e NN S ==

A possibléWorstCase executioiime (Wet) scenario t

/SlAcet /' """"” %

A possibléActuatCase executiaime (Acer) scenario t

Figure 7.5: Worst case vs. actual case execution times

A method for using the time gap between the WCET and the acassd
execution time (ACET) is known as resource reclaiming. TREA is, as the
name reveals, the amount of time actually used at run- timexXecuting a
service.

Assume a set of components that have been analysed praweamiih
respect to their basic quality levels. If the WCET:s havenbaeer estimated,
the ACET:s will be lower at run-time. The difference in timetiwveen the
estimated WCET and ACET of a service is here called spare time

In figure 7.6, the second service has executed less than WBETSubse-
quent component then chooses to run at a higher quality (sgelfigure 7.7)
since the time available is greater than in the original doke

However, in figure 7.7, the WCET of the higher quality levelioé third
service is also an approximation. Consequently the ACEThaf service is
likely to be lower than it's WCET, which is the case in figur&.7This result
is spare time, just as with the second service (figure 7.63.spare time of the
third service can be applied on the next service and so forth.

Another way to get more time for a service is to postpone Iqwieritized
services. Postponing lower quality services can be aagjtim®ugh, e.g., the
slack-stealing algorithm [15]. The admission algorithmafative Threshold
considers, e.g., resource reclaiming and slack stealimgoffline scheduling
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Figure 7.6: ACET allows a subsequent component to run at laehiguality
level

based systems, a method to address the issue of resouienieglhas been
presented in [16].

The "left over" time, which we here choose to denote slaci, ¢bnsists of
reclaimed resources and slack by postponing lower piedtservices, can be
used for executing components at a higher quality level.rtteoto schedule
a component at a higher quality level, the run-time systerstrfitst decide
if there’s enough slack. The basic idea is to query each tytiakel for its
WCET, and compare the amount of available time with the tieggiired for a
specific quality-level.

Small resource limited systems often consist of only a wioitgp. Hence,
a relatively large complex algorithm might not be feasiltlewever, the com-
ponent model can be used for an arbitrary complex systemhismaper we
focus on an algorithm aimed for complex embedded systems.

7.4.3 On line service scheduler

The on line scheduler is based on the Adaptive Thresholdoagpr[14]. We
first apply the adaptive threshold algorithm to our compdomnesdel. Then, in
section 7.4.3 we extend it to handle aperiodic servicest, irmsection 7.4.3,
we illustrate our algorithm by an example.

Adaptive threshold

The service scheduler assumes that each service has atredsasic quality
level. The pre-run-time schedule is analysed with respetite¢ basic quality
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level of each scheduled service. We refer to these qualigld@s) L’ where i
and s are the level and service numbers respectively. Hgoaéty levels two
of service one would be denoted@¢.}. Each quality level has a worst-case
execution timéV C ET? and a valud/! which is set pre runtime. The service
incorporates a deadling,, and a release timB,. The basic quality level of a
service is denoted a3’ and is as mentioned earlier guaranteed via off-line
analysis.

In [14], a method is presented to calculate the minimum @Esiog time,
As(t), available before the deadline of a service (equation 7.1).

Ay (t) = Weet! +min[Li(t, Ds), Miny;eipi)S;(t)] (7.2)

In equation 7.1,L,(t,D;) is the lower bound on the additional execution
time available at priority level i in the interval [t , t ;). S; is the extra
interference that any task with priority less than i can bgestted to without
missing its next deadline.

As equation 7.1 shows, at time t, the time interval availdbieexecuting
a medium priority service (MP) ig;. That is the additional execution time,
i.e., the time not used by any service. The reclaimed timebeamsed for any
service ready to execute at timeS;, is the time that can be allocated through
delaying lower prioritized services without missing thégadlines. However
the maximum amount of time that can be used by MP is until isdtiee
(dmp).

In addition to the values Vsi corresponding to each sentiwre is also a
global system valu& *Y %, TheV*Y 9 is the mean value of executed services.
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In [14], a value density-based strategy has been proposeristfategy is used
to choose the quality level that gives the highest value iden3he value-
densityD? is given by:

; Vi-Weeth + [Ag(t) — Weetl] - VSYS
Di =
‘ As(t)

(7.2)
The quality level with the highest value densiby, is chosen for execu-

tion. For all components that have been analysed off-lmergtis at least one
feasible quality level, i.e., the basic quality level.
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Figure 7.8: visual explanation of equation 7.1

Aperiodic requests extension

In this section we will describe an extension to the adaptiveshold algo-
rithm. In particular, we want to handle run-time events witbompletely
known parameters, e.g., aperiodics.

Aperiodic requests have to be considered in a number ofiyyrtmaised real-
time systems, as not all event parameters can be known befwle In some
cases it might be of greater value to the system to executeeaiodic service,
rather than executing a periodic service at a higher quightyl. However, all
the periodics have to be guaranteed to complete beforedkaillines. The
value of an aperiodic service is decided in the same way asatue of the
periodic services, i.e., based on the value density. Hehealgorithm for the
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value density has to be modified to include aperiodics as wellalue V has
to be added to aperiodic services such that the system acarigher value.
The computation of the value density for all pending peaatid aperiodic
requests is described in equation 7.3.

Vi Weethy + Vi Weetl + | As(t) — Weett — Weety | - VIYS

Pa= A1)

(7.3)

However, the periodic services must always be guaranteecsglime that
the aperiodic services have the same structure as the period., they have at
least a basic quality level. Hence, an acceptance testdaRriodic services
must be included. The WCET of an aperiodic service’s basaityulevel is
compared to the available time. However, since the perigeligcices must be
guaranteed to run, the available-time for the aperiodicises is not quite the
same as for the periodic. Considering equation 7.3, the WEiiiesponding
to the basic quality level is the time that the periodic seghas been guaran-
teed through the off-line analysis. That time cannot becalied by aperiodic
services, thus:

Ap(t) = min[Li(t, Ds), ming;eipi)S; (t) (7.4)

In equation 7.4,4,(t) is the time that can be allocated to any aperiodic
quality level with a WCET lower than or equal b, (¢).

Example

In this section we present an example of the adaptive thiesthgorithm with
the aperiodic request extension.

We assume a service S with three quality levels,, QL, and@QLs. We
assume the following worst-case execution tim&set=1, W cet?=4, W cet?
=9 and the valueg!=1, V2=8, V3=15. We also assumé, (¢)=10 and quality
level 2 is the basic level i.e. the level that has been andlgsel guaranteed
pre-runtime. All quality levels are feasible, thus the aitjon will choose the
quality level that will accrue the greatest value. We willhntmok at a few
scenarios where the algorithm will choose different qyddivels.

Scenario 1: We assumié®Y®=5 and no aperiodic services. Executing
quality level 1 for 1 time unit will accumulate a value of onEhe rest of the
time (nine time units) will give a value of 45 because (&Y (9*5=45),
hence the total value when choosing quality level one willlbd5= 46. A
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value of 46 will give a value density of 4.6. In the same w@a¥» will give
a value of 8+30=38, thus a value density 3@.L3 will acquire a value of
15+5=20 and a value density of 2. Consequently With" > equal to five,
quality level one is the level that will accrue the highedtieadensity.

Scenario 2: Here we assur@¥ ®=2 and no aperiodic services. In the
same way as scenario 1, quality level one will consume one timit and
accumulate 1 to the value. The remaining 9 time units will bedufor the
other services in the system which will accumulate a valusBohence a total
accumulated value of 199 L, will accumulate a value of eight for the first 4
time units, and a value of 12 for the following 6 time unitsnbe a total of 20.
QL3 will acquire a value of 17. Consequent}L- is the best choice for this
scenario.

Scenario 3: We assumié®Y®=1 and the aperiodic servicg, with two
quality levelsS andS%. The properties o6 A1 are: WCET}=1 andV}=3.
The properties ob% areWCET3=3 andV3;=6. Further we assume that the
available-time for aperiodic requests=6, because WCET of the basic quality
level is guaranteed offline and cannot be allocated by anaeservice. One
can see that the possible permutations for executing thedseand aperiodic
service are

o V+V1+8*YSYS = 143+48=12 (1.2)
o VI+V2+6*V Y5 = 14+6+6=13 (1.3)
o V2+V1+5*V Y5 = 8+3+5=16 (1.6)
o V2+V2+3*V Y5 = 8+6+3=17 (1.7)
o V3+V}=15+3=18(1.8)

One can see directly thg L of the periodic service an@Q L, of the ape-
riodic service will acquire the highest value density.

7.5 Conclusions and future work

In this paper we presented work to show that a real-time compids a suitable
package for the multiple versions paradigm. We have prapassomponent
model with a middleware aimed for execution on top of an RT@i8ch gives
the developer possibilities for issuing real-time guagastwith additional flex-
ibility through implementing multiple versions.



7.5 Conclusions and future work 97

Our component model can be used together with differentiegiseal-
time scheduling methods to achieve flexibility, still guateeing timeliness. In
this paper we show how the model can be used with the Adaptiveshold
algorithm. Furthermore, the Adaptive Threshold algoriisraxtended to also
cater for aperiodic activities, which is important in ordeiprovide flexibility
in many real-time systems.

A prototype implementation of the proposal with developtrtenls and
possibility to compile for execution upon some commeraal{time operating
system is be the next step towards a realization of the maddghg to utilize
such a prototype in the development of an embedded contstérsy would
result in useful input for future development of the compdmeodel.
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Abstract

Safety critical embedded real-time systems representss cfsystems that
has attracted relatively little attention in research adding component based
software engineering. Hence, the most widely spread coemdachnologies
are not used for resource constrained safety criticaltieed-systems. They are
simply to resource demanding, to complex and to unpredietab this paper
we show how to use component based software engineeringviciolotprint
systems with very high demands on safe and reliable behavibe key con-
cept is to provide expressive design time models and yeuresceffective
run-time models by statically resolve resource usage amithdi by powerful
compile time techniques. This results in a component teldigydor resource
effective and temporally verified mapping of a component el¢ala commer-
cial real-time operating system.
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8.1 Introduction

The vehicle domain represents a class of embedded reaktistems where
the requirements on safety, reliability, resource usaggcast leaven all through
development. Historically, the development of such systéiams been done
using only low level programming languages, to guarantdlectintrol over
the system behaviour. As the complexity and the amount aftfanality im-
plemented by software increase, so does the cost for satdearelopment.
Therefore it is important to introduce software develophpamadigms that in-
crease software development productivity. Furthermdresesproduct lines
are common within the domain, issues of commonality ander&usentral for
reducing cost as well as increasing reliability.

Component based software engineering is a promising apiprima ef-
ficient software development, enabling well defined sofeaachitectures as
well as reuse. Although component technologies have beatafed address-
ing different demands and domains, there are few compomrehnoblogies
targeting the specific demands of safety critical embeddatitime systems.
Critical for the safe and reliable operation of these systenthe real-time be-
haviour, where the timeliness of computer activities issatial. To be able
to guarantee these properties it is necessary to applyinealsystems theory.
Thus, a component technology to be used within this domasnttvaddress
specification, analysis, and implementation of real-tirakdviour.

A typical real-time constraint is a deadline on a transawtibco-operating
activities. A transaction in these systems would typicaliynple information
about the environment, perform calculations based on tifiatrhation and ac-
cordingly apply a response to the environment, all withimrated time frame.
Also important is the ability to constrain the variation ierjpdicity of an activ-
ity (jitter). The reason for this is that variations in petioty of observations
of the environment and responses to the same, will affectdoimérol perfor-
mance. Hence, a component technology for this domain slaviel the ability
to clearly express and efficiently realize these conssditjt[2],[3],[4]-

The work described in this paper present a component teagnor safety
critical embedded real-time systems that is based on esqpegifrom our previ-
ous work with introducing state-of-the-art real-time teology in the vehicle
industry. The benefits in development have been discussgg] end have
also been proven by long industrial use. That real-timeneldgy has been
incorporated in the Rubus development suite and has bethefuteveloped
[6]. Experience from the industrial application of the r@sd reveals that a
proper component model is not enough; success requiresoaakan chain of
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models, methods, and tools from early design to implemiemtaind run-time
environment.

The contribution of the work presented in this paper inctudecompo-
nent technology for resource effective and temporallyfietimapping of a
component model to a resource structure such as a comnieeaklime Op-
erating System (RTOS). This is made possible by introdoaifca component
model that support specification of high level real-timestaaints, by present-
ing a mapping to a real-time model permitting use of standsatitime theory.
Moreover, it supports synthesis of run-time mechanismpffedictable execu-
tion according to the temporal specification in the componssdel. Further-
more, in this work some limitations in previous work with pest to specifi-
cation and synthesis of real-time behaviour are removedsd limitations are
partially discussed in [5] and is mainly related to jittedaxecution behaviour.

Many common component technologies are not used for rescwon-
strained systems, nor safety critical, neither real-tiggtesms. They are simply
to resource demanding, to complex and unpredictable. Tdeareh commu-
nity has paid attention to the problem, and recent reseashdsulted in devel-
opment of more suitable technologies for these classesstéisg. Philips use
Koala [7], designed for resource constrained systems, hbut support for
real-time verification. Pecos [8] is a collaboration projeetween ABB and
University partners with focus on a component technologyfifdd devices.
The project considers different aspects related to rea-tind resource con-
strained systems, during composition they are using coemswithout code
introspection possibilities that might be a problem foresafcritical applica-
tions. Rubus OS [6] is shipped with a component technolodly stipport for
prediction of real-time behaviour, though not directly camisactions and jitter
constraints and not on sporadic activities. Stewart, \jodpel Khosla suggest
a combination of object oriented design and port automdtearty called Port
Based Objects [9]. The port automaton theory gives premtighiossibilities
for control applications, although not for transactiond gtter constraints dis-
cussed in this paper. Schmidt and Reussner propose to nséitna functions
to model and predict reliability in [10]; they are not addsieg real-time be-
haviour. Wallnau et al. suggest to restrict the usage of @orapt technologies,
to enable prediction of desired run-time attributes in [t work is general
and not focused on particular theories and methods like tité presented in
this paper.

The outline of the rest of this paper is as follows; sectio? @ves an
overview of the component technology. In section 8.3 the mament model
is described and its transformation to a real-time modetjdagned in section



8.2 Component Technology 105

8.4. Section 8.5 presents the steps for synthesis of maal-ttributes and
discusses run-time support. Finally, in section 8.6, fitwork is discussed
and the paper is concluded.

8.2 Component Technology

In this section we will give an overview of the component tealogy facil-
itating component based software development for safiétizal embedded
real-time systems. We will hereafter refer to this compatechnology as the
AutoComp technology. A key conceptin AutoComp is that ibats engineers
to practise Component Based Software Engineering (CBStHpowi involv-
ing heavy run-time mechanisms; it relies on powerful desigt compile-time
mechanisms and simple and predictable run-time mechani8omeComp is
separated into three different parts; component modelstima model and
run-time system model. The component model is used durisgadime
for describing an application. The model is then transfatiméo a real-time
model providing theories for synthesis of the high level penal constraints
into attributes of the run-time system model. An overvievited technology
can be seen in Figure 8.1. The different steps in the figuré/idet! into de-
sign time, compile time, and run-time to display at whichrpgan time during
development they are addressed or used.

During design time, developers are only concerned with thrapgonent
model and can practise CBSE fully utilizing its advantagereover, high
level temporal constraints in form of end-to-end deadliaed jitter are sup-
ported. Meaning that developers are not burdened with Hkeafsetting artifi-
cial requirements on task level, which is essential [17], It5s often natural to
express timing constraints in the application requiremastend-to-end con-
straints.

The compile time steps, illustrated in Figure 8.1, incogtera transition
from the component based design, to a real-time model ergpbkisting real-
time analysis and mapping to a RTOS. During this step the compts are
replaced by real-time tasks. Main concerns in this phasallreation of com-
ponents to tasks, assignment of task attributes, andirealanalysis. During
attribute assignment, run-time attributes that are useithéyinderlying oper-
ating system are assigned to the tasks. The attributes teardeed so that
the high level constraints specified by the developer dutieglesign step are
met. Finally, when meeting the constraints of the systenynéhesis step is
executed. It is within this step the binary representatibthe system is cre-
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ated, often the operating system and run-time system arénalsided with the
application code in a single bundle

Component model Design-
Time
. 3
Model transformation
@ 0 IQ§ I Real-time model Compile-
@ Time
Real-Time Synthesis
Analysis Y,
OgO O | Target application R
—] un-
Time

RTOS

Figure 8.1: The AutoComp component technology

The run-time system is assumed to be a traditional RTOS vixgdPrior-
ity Scheduling (FPS) of tasks. Most commercial RTOS can bssified into
this category; furthermore they are simple, resource efficand many real-
time analysis techniques exist. In some cases a layer pngvidn-time sup-
port for the tasks has to be implemented in order to fully suppPS models
used in real-time theory.

8.3 Component Model

Vehicles present a heterogeneous environment where tr@adation between
the computer system and the vehicle take different formmeSeehicle func-
tionality requires periodic execution of software, e.gedback control, whereas
other functionality has a sporadic nature, e.g., alarmshoAigh vehicle con-
trol plays a central role, there is also an abundance of dthreationality in
vehicles that is less critical and has other charactesiséay., requires more
flexibility. Although less critical, many of these functiemvill still interact
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with other more critical parts of the control system, coesifibr example di-
agnostics. We present a model that in a seamless way allevistdgration of
different functionality, by supporting early specificatiof the high level tem-
poral constraints that a given functionality has to meetradoer, the compu-
tational model is based on a data flow style that results ipleirapplication
descriptions and system implementations that are relptsimightforward to
analyse and verify. The data flow style is commonly used withé embedded
systems domain, e.g., in IEC 61131 used for automation [A8Jia Simulink
used for control modelling [14].

The definition of the AutoComp component model is divided iodbmpo-
nents, component interfaces, composition, the comporieviisation cycle,
transactions and system representation. In Figure 8.2dhmaonent model
is illustrated using UML2, which could be a possible graphiepresentation
during design.

Component Transaction
<< AutoComp>> E
Power Supervison Regulate Output
<<control ports>>
Sink ‘ Power Supervision ‘ ‘ Valve Regulator ‘
Source T
<<provided ports>> H
Desired Output Level 5
i Desired Outpitheyel
<<required ports>> E Air Valve t=now
Air Valve H Droseialve
Diesel Valve : ~
! {{t.120
<<realisations>> H {t..t+20}
airDieselRegulation
WCET
Composition
sink <<AutoComp>> E e <<AutoComp>
T=40ms O— |
Power Supervison & Valve Regulator
Source
Desired Output level Diesel Valve
O
Diesel Valve
Air Valve
Air Valve

Figure 8.2: In the upper left part of the figure there is a UMLdainponent
diagram for modelling of a component. The lower part of thergis a com-
position diagram showing a composition of two componeritsally the upper
right part of the figure is a sequence diagram with a timingst@int that is
used to express the end-to-end deadline for a transaction
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The components are definedglass boxmeaning that a developer can see
the code of a component for introspection purposes. It doesaan that a de-
veloper has to look into a component during normal compmsitind not that
it is allowed to modify a component. The introspection ploiisy is a require-
ment during verification of safety critical applicationsander to gain com-
plete knowledge about components behaviour. Furtherndoeecomponents
can only exchange data with each others through data podsn#onent can
be a composite containing a complete subsystem, or a basipareent with
an entry function. Composite components can be treatedyasther compo-
nent during composition, but it is also possible to enterraposite and change
timing requirements and other properties. The entry fumgdrovided by non-
composite components can be compared to the entry funairoe éomputer
program, meaning that the contained number of functionfi®@fcomponent
can be arbitrary.

The interfaces offered by a component can be grouped intwviinelasses
data and control interfaces. The data interfaces are uspdtafy the data flow
between components, and consist of data ports. Data pedstspecified type
and can be either provided or required. Provided ports a@ahnts provided
by components for input, i.e., the ports a component rea@dsfitam. Required
ports are the ports a component writes data to. A componsmtals a control
interface with a mandatory control sink, and an optionaltc@rsource. The
control interface is used for specifying the control flowle &application, i.e.,
when or as a response to what component should be triggened:ontrol sink
is used for triggering the functionality inside the compotevhile the control
source is used for triggering other components.

During composition the developer has three main technitpuesrk with.
The data flow is specified through connection of provided atfiired data
ports. The rules are as follows; required ports must be wiwgatovided ports
with a compatible type. Itis possible to make abstractibnsugh definition of
composite components. Composite components can be pédwabgiactions
for visualizing and understanding a complex system, as agethey provide
larger units of reuse. The control flow is specified throughdlyig the con-
trol sinks to period times for periodic invocation, to extarevents for event
invocation, or to control sources of other components fepdation upon com-
pletion of the other components.

A components invocation cycle can be explained as in thevatlg sen-
tences. Upon stimuli on the control sink, in form of an eveanf a timer, an
external source or another component; the component i&éaoTr he execu-
tion begins with reading the provided ports. Then the corepbexecutes the
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contained code. During the execution, the component camatsefrom the
provided ports and write to the required ports as desiretdthHmiwrites will
only have local effect. In the last phase written data becwisiéle on the
required ports, and if the control source in the controlriiatee is present and
wired to the control sink of another component stimulus isegated.

Transactions allow developers to define and set end-to{emdg con-
straints on activities involving several components. Asaction in AutoComp
can be defined as:

A transactionl'r; is defined by a tuple: C, D, J;, J. > where:

C -represent an ordered sequence of components;

D - represent the end-to-end deadline of the transaction;

Js - represent the constraint on start jitter of the transactio

J. - represent the constraint on completion jitter of the taation.

The end-to-end deadline is the latest point in time when thesaction
must be completed, relative to its activation. Jitter regmients are optional
and can be specified for transactions involving time triggecomponents.
Start jitter is a constraint of the periodicity of the traasans starting point,
while completion jitter is a constraint on the periodicifyectransactions com-
pletion point. Both types of jitter are expressed as a mawrinallowed de-
viation from the nominal period time. A restriction, necasgsfor real-time
analysis, is that components directly triggered by an extesvent can only be
part of a transaction as the first component.

A system can be described with the UML class diagram in Figu8e A
system is composed of one or several components, each witaanderface,
a control interface and a realization as a subsystem or ag &miction. A
system also has zero or more data couplings, describing rected pair of
required and provided data ports. Furthermore, systems hexro or more
control couplings which describe a connected pair of césirnk and source.
Finally, the last part of a system is zero or more transastwith the included
components, an end-to-end deadline and the possibilipyacify jitter require-
ments.

8.4 Model Transformation

Model transformation involves the steps necessary in daigansit from the
component model allowing an efficient and powerful desigageh to a run-
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Figure 8.3: UML class diagram showing the static view of tleenponent
model

time model enabling verification of temporal constraintd asage of efficient
and deterministic execution environments. As previoutedtan section 8.2
we assume a FPS run-time model. The FPS model defines a systersea
of tasks with the attributes period time, priority, offsehd WCET. Hence, it
is necessary to translate the component model with its teshponstraints in

to tasks holding these attributes. The translation is peréadl in two separate
steps; the first step is to make a transformation between goemnis and task
(task allocation), the second step is to assign attributeke tasks (attribute
assignment). To assign the FPS model attributes in such ghaayhe high

level temporal constraints on transactions are met is rigiadltand has been
addressed in research by e.g., [1], [3].

8.4.1 Task Allocation

The easiest approach for task allocation is a one to oneaethiip between
components and tasks, but that is not necessarily optinrafadt the task
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allocation step has a lot of different tradeoffs. Such todidecan be found
between reliability and run time overhead; few tasks redundime overhead
at the cost of memory protection (usually at task level) leetvcomponents.
Testability and schedulability are examples of other prigethat are affected
by the allocation scheme.

In this paper we introduce a task allocation strategy thratest to reduce
the number of tasks considering schedulability and rdlighComponents are
not allocated to the same task if schedulability is obvipugigatively affected
and structurally unrelated components are not allocatetiecsame task in
order to cater for memory protection and flexibility.

The first step in the allocation process is to convert all cosite com-
ponents to a flat structure of the contained basic compon&dsondly the
following rules are applied:

1. All instances of components are allocated to separdis,té¢orst Case
Execution Time (WCET) is directly inherited from a compohenthe
corresponding task

2. The start jitter Js corresponding to a transaction witérjrequirements
is set as a requirement on the task allocated for the first ooemt in
the ordered sequence C, while the completion jitter Jc isostite task
allocated for the last component in the sequence

3. Tasks allocated for components with connected pairsmtfabsink and
sources, where the task with the source do not have any rétgrire-
ments, and both tasks are participating in the same and loalyrainsac-
tion are merged. The resulting WCET is an addition from akgnated
tasks WCET

4. Tasks allocated for time triggered components that Haveame period
time, not have any jitter constraints and are in a sequenteeisame
and only that transaction are merged. The resulting WCEM &daition
from all integrated tasks WCET

The situation after application of the allocation rules setof real-time tasks.
The high level timing requirements are still expressedamsactions, but in-
stead of containing an ordered set of components a traosautiv contain an
ordered set of tasks. The rest of the attributes, those #matat be mapped di-
rectly from the component model to the real-time model aenaare of in the
following attribute assignment step. In Figure 8.4, giviea two transactions
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Try =< C,D,Js,J. >=< A,B,C,60,—,25 >andTry, =< C, D, J,, J. >=<
D, E, F,40,5, — > the task allocation step for the components in Table 8.1 is
shown. The resulting task set is in Table 8.2.
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< O Level
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Figure 8.4: Task allocation example

Sink Bound T WCET
A|T=100 5
B | A.Source 10
C|T=60 5
D T=40 5
E|T=40 6
FIT=40 9

Table 8.1: A component set

8.4.2 Attribute Assignment

After the components have been assigned to tasks, the taskdmassigned
attributes so that the high level temporal requirementsamstctions are met.
Attributes that are assigned during task allocation are W@I all tasks, a
period time for periodic tasks and a Minimum Interarrivai& (MINT) for
event triggered tasks.
The scheduling model that is used throughout this paper £, Kere
tasks have their priorities and offsets assigned using laitrany task attribute
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Trigger | Jitter| WCET
Task 1| T =100 15
Task2l T=60 |25 |5
Task 3] T=40 |5 5
Task 4/ T =40 15

Table 8.2: The resulting task set

assignment methodology. Examples of existing methodscratbe used for
priority assignment are Bate and Burns [1], Sandstrom andtion [3] or
by combination of Yerraballi [15] or Cheng and Agrawala [16th Dobrin,
Fohler and Puschner [17]. In this paper it is assumed thitatsbutes are
assigned using the algorithm proposed by Bate and Burnarf]jt is showed
that the component model described in this paper is appéicalttheir analysis
model. Weather the tasks are time triggered or event trgghisr not consid-
ered in the Bate and Burns analysis but is required duringniéyeping to the
FPS model, where periodic and event triggered (sporadikytare separated.
The attributes that are relevant, considering this workheBate and Burns
approach are listed below.

For tasks:

T (Period) - All periodic tasks have a period time that is assigned dyitire
task allocation. Sporadic tasks have a MINT that analyfican be seen
as a period time;

J (Jitter) - The jitter constraints for a task is the allowed variatiétask com-
pletion from precise periodicity. This type of jitter corant is known
as completion jitter. Jitter constraints can be set on tkedind last task
in a transaction;

R (Worst Case Response time} The initial Worst Case Response time for a
task is the WCET for the task, i.e., the longest time for a tasknish
execution from its starting point in time.

For transactions:

T (Period) - The period of a transaction is the least common multiplehef t
period times of the participating tasks of the transaction;
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End-to-End deadline - Transactions have a requirement that all tasks have
finished their execution within a certain time from the traetfons point
of start in time.

In Bate and Burns approach additional attributes, suchadlite and sep-
aration for tasks and jitter requirements for transactiares considered. In
this paper those attributes are disregarded since thermanech requirements
in the previously described component model. It is trivialsee that from
the component model, the period and jitter constraints Imtite model pro-
posed by Bate and Burns. The initial worst case responseRitiseassigned
the WCET value in the component model. For the transactierettd-to-end
deadline requirements match the transaction deadlinesoB#te and Burns
model. The period time of the transaction is derived fromlésst common
multiple of the period of the tasks participating in the saction.

The next step is naturally to assign the FPS model with nome-ind analy-
sis attributes. The new attributes priority and offsetd b derived through
existing analysis methods [1]. The new parameters for tt mBdel are de-
scribed below.

P (Priority) - The priority is an attribute that indicates the importan€¢he
task relative to other tasks in the system. In a FPS systeks ta®
scheduled according to their priority, the task with thenleist priority is
always executed first. All tasks in the system are assigneibatp;

O (Offset) - The offset is an attribute that periodic tasks with jittenstraints
are assigned. The earliest start time is derived by addmgfteet to the
period time.

In Table 8.3 it is summarized what attributes belonging meetitriggered
and event triggered tasks in the FPS model.

Attribute| Time triggered Event triggered
Period| X
MINT X
Priority | X X
Offset| X (Upon Jitter Constraints)
WCET| X X

Table 8.3: Attributes associated with time and event tnigdéasks
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Applying the Bate and Burns algorithm determines tasklattes from the
tasks and transactions described in Table 8.2. The regulimtime attributes
priority, offset period and WCET are shown in Table 8.4. Thiglates offset
and priority are determined with the Bate and Burns analysidist the period
and WCET are determined in the task allocation.

| Priority | Offsef Period WCET
Task 1| 2 0 100 |15
Task 2| 1 (Lowest)|35 |60 5
Task 3| 4 (Highest) 0 40 5
Task 4( 3 0 40 15

Table 8.4: Assigned task attributes

In Figure 8.5 a run-time trace for an FPS system is shown amttdimsac-
tionsT'r; andT'r, are indicated.

Transactio Tr, 50 10C 15C 2|

0C
S\ N\l EmE =\ 1 ! SN\l m

——
Transactio Try Transactio Try

[ TaskA
[ TaskB
B TaskC
Task C

Figure 8.5: Trace of an FPS schedule

When the FPS model has been assigned its attributes it haswterified.
The verification of the model is performed by applying reale scheduling
analysis to confirm that the model is schedulable with thegassl parame-
ters. This is necessary since attribute assignment doeseressarily guaran-
tee schedulability, but only assigns attributes considgtfie relation between
the tasks.
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Figure 8.6: The steps of synthesizing code for the run-tipséesn

8.4.3 Real-Time Analysis

To show that the FPS tasks will meet their stipulated timimgstraints, schedu-
lability analysis must be performed. Much research has deae with respect
to analysis of different properties of FPS systems, andhalse results are
available for use, once a FPS model has been establishedemberal analy-

sis of an FPS system with offsets, sporadic tasks and synidatton has been
covered in research by e.g., Palencia et al. [18], [19] ardERE20].

The output from the analysis is whether the system is feasibhot in the
worst case. If the analysis shows that the system is infleasiite parts that can
not keep its requirements are either changed and reanalysedphasised for
the developer to make changes.

8.5 Synthesis

The next step after the model transformation and real-tinadyais is to syn-
thesise code for the run-time system. This includes mappimtasks to oper-
ating system specific task entities, mapping data connmextman OS specific
communication, modifying the middleware, generating giade, compiling,
linking and bundling the program code (see Figure 8.6).

The synthesis is divided into two major parts. Given a taskasé nec-
essary information about the run-time system, the syrdéhgsherates code
considering communication, synchronization.
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Figure 8.7: A component model with adjustments for différ@merating sys-
tems to promote platform independence

e The first part in synthesis is to resolve the communicatiothiwiand
between tasks. Two communicating components that arereskip
different tasks will form an Inter Task Communication (IT&hile com-
munication between components assigned to the same taskadized
with shared data spaces within the task. The ITC is later @@pp
operating system specific communication directives.

e The other part in the synthesis is to resolve the control toge, i.e.,
the sink and source. If a tasks starting point is dependetit@former
tasks finishing point the tasks have to be synchronized. Yhehso-
nization is solved through scheduling. The synthesis vatlierate code
for scheduling periodic tasks, handle the control flow bemviasks and
consider offsets. The code generated for the periodic stimedand
offsets is dependent on the middleware and can be realized@sfigu-
ration file or actual code in each task. Invocations of spioredks are
mapped to event handlers in the middleware or the operayistgrs.

It is assumed that a middleware is present as shown in Figdréd8 each
platform and that it provides functionality that the compotmodel needs but
the operating system does not provide. The more functityntélé operating
system provides, the smaller the middleware has to be. Tddleware en-
capsulates core communication and concurrency servicebniinate many
non-portable aspects of developing and is hence platfoeifsp in favour
of a platform independent component model. Typical fumlidy that is not
provided by most commercial RTOS is periodicity and supfmrbffsets. The
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middleware also need to support sink and source couplings $ask coupled
with its source need to be able to invoke the correspondsig tBhe run-time
system conforms to FPS and hence the run-time task modehikasito the

previously described FPS model with some exceptions. Thstwease exe-
cution time is merely an analysis attribute and is not neadele run-time

model. The MINT is usually a requirement on the environmatter than a
task attribute, and is thus also analytical and unnecesklanyce the run-time
task model is for periodic tasks Period time, Priority, @ffand for sporadic
tasks Priority.

8.6 Conclusions and Future Work

In this paper we show how to use component based softwareesiig for
low footprint systems with very high demands on safe anciéi behaviour.
The key concept is to provide expressive design time models/at resource
effective run-time models by statically resolve resoursage and timing by
powerful compile time techniques.

The work presented in this paper introduces a componenthodatyy for
resource effective and temporally verified mapping of a congmt model to
a resource structure such as a commercial RTOS. This is nasiibfe by
introduction of a component model that support specificatichigh level real-
time constraints, by presenting a mapping to a real-time ehquermitting
use of standard real-time theory, and by synthesis of me-thechanisms for
predictable execution according to the temporal spedificah the component
model.

Although the basic concept has been validated by successfustrial ap-
plication of previous work [5], it is necessary to furthetigate the component
technology presented here. In order to facilitate this,aqtype implemen-
tation of the component technology is under developmentevtiee core part
has been completed. The prototype will enable evaluatiodiftérent tech-
nology realisations with respect to performance. Moreguarts of the model
transformation need additional attention, foremost thetegjies for allocation
of components to tasks. Furthermore, we will make effortextending the
component model making it more expressive and flexible watilekeeping
the ability for real-time analysis. Interesting is also twdstigate trade-offs
between run-time foot print and flexibility with respect tge adding func-
tionality post production. Finally, the component teclogyl will be evaluated
in a larger, preferably industrial, case.
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Abstract

The electronics in vehicles represents a class of systenesewduality at-
tributes, such as safety, reliability, and resource uskegeen all through de-
velopment. Vehicular manufacturers are interested inldpugy their software
using a component based approach, supported by a compeaknbtogy, but
commercial componenttechnologies are too resource denmgromplex and
unpredictable. In this paper we provide a vehicular dompétgic classifica-
tion of the importance of different quality attributes faftsvare, and a discus-
sion of how they could be facilitated by a component techgyld he results
can be used as guidance and evaluation for research aindegelbping com-
ponent technologies suitable for vehicular systems.
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9.1 Introduction

Component-based development (CBD) is of great interestdsoftware en-
gineering community and has achieved considerable successny engi-
neering domains. CBD has been extensively used for seveaasyn desktop
environments, office applications, e-business and in géh@ernet- and web-
based distributed applications. In many other domaingXample dependable
systems, CBD is utilized to a lesser degree for a number téréifit reasons.
An important reason is the inability of component-basetnetogies to deal
with quality attributes as required in these domains. Taiifiethe feasibility
of the CBD approach, the main concerns of the particular domast be iden-
tified along with how the CBD approach addresses these comesid what is
its ability to provide support for solutions related to teesncerns are.

There is currently a lot of research on predicting and maiirig different
quality attributes within the Component Based Softwareiegying (CBSE)
community, (also called non-functional properties, extnactional properties,
and illities), [1] [2] [3], [4], [5]. Many of the quality atibutes are conflicting
and cannot be fully supported at the same time [6], [7]. Thtus,important
for application and system developers to be able to przeritimong different
quality attributes when resolving conflicts.

We provide a domain specific classification of the importasicquality
attributes for software in vehicles, and discuss how thibates could be fa-
cilitated by a component technology. The discussion couatg with a general
description of the desired quality attribute support in mponent technology
suitable for the vehicle domain and it indicates which gyalttributes require
explicit support. In addition, it discusses were in the teslbgy the support
should be implemented: inside or outside the componentdeirromponent
framework, on the system architecture level, or if the dualttributes are us-
age dependent. Quality attributes might be conflicting;, étds commonly
understood that flexibility and predictability are conflict. The ranking pro-
vided by industrial partners gives domain specific guiddocdow conflicts
between quality attributes should be resolved. The reaidts enable valida-
tion and guidance for future work regarding quality atttéogupport in com-
ponent technologies for software in vehicular systemss glideline can be
used to verify that the right qualities are addressed in gveldpment process
and that conflicting interdependent quality attributesrasmlved according to
the domain specific priorities.

The starting point of this work is a list of quality attribsteanked accord-
ing to their importance for vehicular systems. The list isyiled through a
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set of interviews and discussions with experts from difiemmpanies in the
vehicular domain. The results of the ranking from the velaiccompanies are
combined with the classification of how to support differgoglity attributes
provided in [8]. The result is an abstract description of meh&vhich, and how
different quality attributes should be supported by a congmbtechnology tai-
lored for the vehicular industry.

A component technology as defined in [9] is a technology thatle used
for building component based software applications. Itlements a compo-
nent model defining the set of component types, their intesfaand, addition-
ally, a specification of the allowable patterns of interactamong component
types. A component framework is also part of the componetintelogy, its
role can be compared to the role of an operating system, grdvtdes a va-
riety of deployment and run-time services to support the pament model.
Specialized component technologies used in different dosnaf embedded
systems have recently been developed, e.g., [10, 11]. Hneralso a number
of such component technologies under development in thearels commu-
nity, e.g., [12, 13, 14]. The existence of different compartechnologies can
be motivated by their support for different quality attribs, although they fol-
low the same CBSE basic principles. It has been shown thapaoias devel-
oping embedded systems in general consider different noctifunal quality
attributes far more important than efficiency in softwargedepment, which
explains the specialization of component technologiek [12

The outline of the remaining part of the paper is as followsct®n 9.2
describes the conducted research method, and sectionex8dhlts. Section
9.4 is a discussion of the implications of the results, rduay the support
for quality attributes in a domain specific component tedbgy Section 9.5
discusses future work, and finally the section 9.6 concltidepaper.

9.2 Method

The research method is divided into three ordered steps:
1. During the first step a list of relevant quality attribuvess gathered,;

2. In the next step technical representatives from a numbeelicular
companies placed priorities on each of the attributes ifisheeflecting
their companies view respectively;

3. Finally a synthesis step was performed, resulting in arifgn of the
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desired quality attribute support in a component technologvehicular
systems.

The list of quality attributes have been collected fromefiint literature
trying to cover qualities of software that interest vehiguihanufactures. In
order to reduce a rather long list, attributes with clearilgirties in their def-
initions have been grouped in more generic types of pragseré.g., portabil-
ity and scalability are considered covered by maintaiitgbiAlthough such
grouping could fade the specific characteristics of a padicattribute, it put
focus on the main concerns. In the ISO 9126 standard [15]atgattributes
(functionality, reliability, usability, efficiency, matainability, and portability)
are defined for evaluation of software quality. However, stendard has not
been adopted fully in this work; it is considered too brieflaioes not cover at-
tributes important for embedded systems (e.g., safetypeadictability). Fur-
thermore, concepts that sometimes are mixed with qualitipates (for ex-
ample fault tolerance) are not classified as quality atteiprather as methods
to achieve qualities (as for example safety). Finally, tiorality is of course
one of the most important quality attributes of a produatjéating how well
it satisfies stated or implied needs. However, we focus ofitgadtributes be-
yond functionality often called extra-functional or namttional properties.
The resulting list of quality attributes is presented below

Extendibility the ease with which a system or component can be modified to
increase its storage or functional capacity.

Maintainability the ease with which a software system or component can be
modified to correct faults, improve performance, or othé&itattes, or
adapt to a changed environment.

Usability the ease with which a user can learn to operate, preparesifut
and interpret outputs from a system or component.

Predictability to which extent different run-time attributes can be prestic
during design time.

Security the ability of a system to manage, protect, and distributesitige
information.

Safety a measure of the absence of unsafe software conditions. bidemee
of catastrophic consequences to the environment.

Reliability the ability of a system or component to perform its requirgttf
tions under stated conditions for a specified period of time.
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Testability the degree to which a system or component facilitates thabest
lishment of test criteria and the performance of tests terdeine whether
those criteria have been met. Note: testability is not ontyemsurement
for software, but it can also apply to the testing scheme.

Flexibility the ease with which a system or component can be modified for
use in applications or environments other than those fochviiwas
specifically designed.

Efficiency the degree to which a system or component performs its dagign
functions with minimum consumption of resources (CPU, MgmidO,
Peripherals, Networks).

Representatives from the technical staff of several comegdrave been re-
quested to prioritize a list of quality attributes, reflagtieach of the respective
companiesS view. The attributes have been grouped by thparoymepresen-
tatives in four priority classes as shown in Table 9.1. Theneof the quality
attributes imply that no quality attribute can be neglectei essential to no-
tice that placing an attribute in the lowest priority clad} does not mean that
the company could avoid that quality in their software, eatinat the company
does not spend extra efforts in reaching it. The followinmpanies have been
involved in the classification process:

e \olvo Construction Equipment [16] develops and manufatux wide
variety of construction equipment vehicles, such as detted haulers,
excavators, graders, backhoe loaders, and wheel loaders.

e \olvo Cars [17] develops passenger cars in the premium segrGars
are typically manufactured in volumes in the order of seivieuamdred
thousands per year.

e Bombardier Transportation [18] is a train manufacturethva wide
range of related products. Some samples from their produetdre
passenger rail vehicles, total transit systems, locorastifreight cars,
propulsion and controls, and signalling equipment.

e Scania[19] is a manufacturer of heavy trucks and buses dasvieldus-
trial and marine engines.

e ABB Robotics [20] is included in the work as a reference conypaot
acting in the vehicular domain. They are building industadots, and
it is the department developing the control systems thapsasented.
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Priority | Description

1|very important, must be considered

2 |important, something that one should try to consider

3| less important, considered if it can be achieved with a sefdtt
4| Unimportant, do not spend extra effort on this

Table 9.1: Priority classes used to classify the importarfitiee different qual-
ity attributes

As the last step we provide a discussion where we have cochtieecol-
lected data from the companies with the classification of kmwupport dif-
ferent quality attributes in [8]. The combination gives distaact description
of where, which, and how different quality attributes shibloé supported by a
component technology tailored for usage in the vehiculdngtry.

9.3 Results

Figure 9.1 is a diagram that summarizes the results. Thibwtts are pri-
oritized by the different companies, in a scale from priofit(highest), to 4
(lowest) indicated on the Y-axis. On the X-axis the attrédsuaire presented
with the highest prioritized attribute as the leftmost, émdest as rightmost.
Each of the companies has one bar for each attribute, tekasrendicated be-
low the X-axis. In some cases the representatives placedtarval for the
priority of certain attributes, e.g., 1-3 dependent on igagibn; in those cases
the highest priority has been chosen in the diagram.

The result shows that the involved companies have appragiynsimilar
prioritization, except on the security quality attributbeve we have both high-
est and lowest priority. Reasonably, the most importantears are related to
dependability characteristics (i.e. to the expectatiothnefperformance of the
systems): safety, reliability and predictability. Usitlils a property important
for the customers but also crucial in competition on the reariSlightly less
important attributes are related to the life cycle (extéeility, maintainability).
This indicates that the companies are ready to pay moretiatteto the prod-
uct performance than to the development and productiors ¢osthat sense
a component-based approach which primary concerns aresofdas nature,
might not necessary be the most desirable approach).

The results also shows that ABB Robotics, included as aenter com-
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Figure 9.1: the results. Y-axis: priority of quality attnies in a scale 1 (high-
est), to 4 (lowest). X-axis: the attributes, with the highmsoritized attribute
as the leftmost, and lowest as rightmost. Each of the corepduzis one bar for
each attribute, textured as indicated below the X-axis.

pany outside the vehicular domain has also approximatelgdime opinion. It
is not possible to distinguish ABB Robotics from any of théieellar compa-
nies from a quality attribute perspective. These companight use the same
component technology with respect to quality attributepgurp thus the results
in the investigation indicate that the priority among qtyadittributes scale to a
broader scope of embedded computer control systems.
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9.4 Discussion of the results

A component technology may have built in support for maiiteg quality
attributes. However, tradeoffs between quality attributeust be made since
they are interdependent [7, 6]. We will discuss how the diffie quality at-
tributes can be supported by a component technology, argestigow nec-
essary tradeoffs can be made according to priority placethdhystry. The
discussion starts by treating the attribute that has redeive highest priority
(safety), and continues in priority order, in this way thafticts (and tradeoffs)
will be discussed in priority order. As basis for where supfor a specific
quality attribute should be implemented we use a classibicdtom [8], listed
below:

e Directly composable, possible to analyze given the samityatiributes
from the components.

e Architecture related, possible to analyze given thislaite for the com-
ponents and the assembly architecture.

e Derived attributes, possible to analyze from severalkatteis from the
involved components.

e Usage dependent, need a usage profile to analyze this.

e System environment context, possible to analyze giverremrient at-
tributes.

9.4.1 Safety

Safety is classified as dependent on the usage profile, anslyttem envi-
ronment context. Similarly to the fact that we cannot reagbaut system
safety without taking into consideration the surroundiogtext, we cannot
reason about safety of a component: simply safety is not pegpty that can
be identified on the component level. But a component tedyyatan include
numerous mechanisms that enhance safety, or simplifyysafetlysis. How-
ever, to perform safety analysis, usage and environmeortrirdtion is needed.
A component technology can have support for safety kerradls furround-
ing components and supervise that unsafe conditions doawoir.oPre- and
post conditions can be checked in conjunction with exeautfocomponents
to detect hazardous states and check the range of input d@pdtoused in
specification of components in e.g., [22, 23]. Tools suppgrsafety analysis
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as fault tree analysis (FTA) or failure modes and effectysisl(FMEA) can
also be provided with the component technology.

9.4.2 Reliability

Reliability is architecture related and usage dependeme. dominant type of
impact on reliability is the usage profile but reliability aso dependent on
the software architecture and how components are assenbfadlt-tolerant

redundant architecture improves the reliability of theeasisly of components.
One possible approach to calculation of the reliability mbasembly is to use
the following elements:

¢ Reliability of the components - Information that has beetabted by
testing and analysis of the component given a context argeysafile.

e Path information (usage paths) - Information that inclugkeesge profile
and the assembly structure.

Combined, it can give a probability of execution of each comgnt, for
example by using Markov chains.

Also common for many simple systems, the reliability for adtion of
two components is calculated using the reliability of thenponents, and their
relationship when performing the function. An AND relatstrip is when the
outputis dependent on correct operation of both componamtsan OR occurs
when the output is created when one of the two componentatgsatorrectly.

A component technology could have support for reliabilityough relia-
bility attributes associated with components, and tocd$ dutomatically de-
termines reliability of given usage profiles, path inforioat and structural
relationships.

It is noteworthy that even if the reliability of the componeare known it
is very hard to know if side effects take place that will affec assembly of the
components. E.g. a failure caused by a component writingmerory space
used by another component. A model based on these assumpteds the
means for calculating or measuring component reliabilitgl an architecture
that permits analysis of the execution path. Component iedbtat specify
provided and required interface, or implement a port-basttface make it
possible to develop a model for specifying the usage pathss i$ an exam-
ple in which the definition of the component model facilitatbe procedure of
dealing with the quality attribute. One known problem in thee of Markov
chains in modelling usage is the rapid growth of the chain emwplexity
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[24]. The problem can be solved because the reliability jtsranhierarchical
approach. The system reliability can be analyzed by (reyugie reliability
information of the assemblies and components (which carebeet! or mea-
sured).

Reliability and Safety are not conflicting attributes. Rbllity enhances
safety, high reliability increases confidence that theesystioes what it is in-
tended to and nothing else that might lead to unsafe comditio

9.4.3 Predictability

We focus on predictability of the particular run-time ditries temporal behav-
iour, memory consumption, and functional behaviour. Ratadhility is directly
composable and architecture dependent. Prediction ofdeahpehaviour is
well explored in research within the real-time communityedending on the
run-time systems scheduling strategy, the shared resaocess and execution
demands of the scheduled entities, suitable predictiocorits® can be chosen,
e.g., for fixed priority systems that are most common withiuistry [25, 26].
The choice of scheduling strategy is also a problem that bas laddressed
[27]. Static scheduled systems are more straightforwapedict than event
driven systems that on the other hand are more flexible. Mgg@mrsumption
can be predicted, given the memory consumption for therdiffecomponents
in the system [28]. However, two different types of memorpsamption can
be identified: static and dynamic. Static memory consumpisothe most
straightforward to predict, since it is a simple summatiéthe memory re-
quirements of the included components. Dynamic memorywopsion can
be more complex, since it might be dependent on usage inpdithereby be
usage dependent.

Predictability is not in conflict with the higher prioritideattributes relia-
bility and safety. Predictable behaviour enhances safedyraliability, e.g.,
unpredictable behaviour cannot be safe because it is infp@s$s be sure that
certain actions will not take place.

9.4.4 Usability

Usability is a rather complex quality attribute, which isrigiled from several
other attributes; it is architecture related and usagertigrg. Usability is not
directly related to selection of component technology.tBaffe in embedded
systems (the most common and important type of software licutar sys-

tems) is usually not visible and does not directly interaithwthe user. How-
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ever, more and more human-machine interaction is implesgentunderlying
software. In many cases we can see how the flexibility of saréws abused
- there are many devices (for example in infotainment) witmerous buttons
and flashing screens that significantly decrease the levesalfility. Use of
a component technology may however indirectly contriboteigability - by
building standard (user-interface) components, and hiy tise in different ap-
plications and products, the same style, type of interagfionctionality and
similar are repeated. In this way they become recognisatilecansequently
easier to use.

Usability as discussed above is not in obvious conflict witly af the
higher prioritized quality attributes.

9.4.5 Extendibility

Extendibility is directly composable and architectureatet. It can be sup-
ported by the component technology through absence ofiatémtis in size
related parameters, e.g., memory size, code size, anthiceesize. Extendibil-
ity is one of the main concerns of a component technology tisdeixplicitly
supported either by ability of adding or extending inteefor by providing a
framework that supports extendibility by easy updatinghefsystem with new
or modified components.

Extendibility is not in direct conflict with any of the higherioritized at-
tributes. However, conflicts may arise due to current methused for analysis
and design of safety critical systems real-time systengsptathods often re-
sults in systems that are hard to extend [29]. Predictgbiliturn enhances
extendibility, since it makes predications of the impactofextension possi-
ble.

9.4.6 Maintainability

Maintainability is directly composable and architectuetated. A component
technology supports maintainability through configunatisanagement tools,
clear architectures, and possibilities to predict impattpplied changes.

Maintainability is not in obvious conflict with any of the Higr priori-
tized attributes. But as for extendibility, current statgiactice for achieving
safety, dependability and predictability results in sgstethat often are hard
to maintain [29]. Maintainability increases usability, ¥ehgood predictability
in turn increases maintainability since impacts of maiatere efforts can be
predicted.
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9.4.7 Efficiency

Efficiency is directly composable and architecture relat&tficiency is af-
fected by the component technology, mainly through resousage by the
run-time system but also by interaction mechanisms. Goficlexfcy is equal
to low memory, processor, and communication medium usage.

In the requirements for a software application it might oftee the case
that a certain amount of efficiency is a basic requiremerdabse of limited
hardware resources, control performance, or user expetgaesponsiveness.
In such cases the certain metrics must be achieved, buteaffigiis poten-
tially in conflict with many higher prioritized quality athutes. Safety related
run-time mechanisms as safety kernels, and checking pdep@st conditions
consume extra resources and are thus in conflict with effigieReliability is
often increased by redundancy, by definition conflictingwefficiency. Meth-
ods used for guaranteeing real-time behaviour are pedgiraid result in low
utilization bounds [30], although it is a widely addresseskrarch problem and
improvements exist, e.g., [31, 32].

9.4.8 Testability

Testability is directly composable and architecture edlatA general rule for
testability is that simple systems are easier to test thamptex systems; how-
ever, what engineers build is not directly related to thémetogy itself. Di-
rect methods to increase testability provided by a compoteshnology can
be built in self tests in components, monitoring supporh@nun-time system,
simulation environments, high and low level debuggingiinfation [33].

Testability is not in conflict with any of the higher priodgd quality at-
tributes. On the contrary, it supports several other atteib, e.g., safety is
increased by testing that certain conditions cannot ogredictions are con-
firmed by testing, maintainability is increased if it is pitds to test the impact
of a change. However, efficiency tradeoffs might have to beedo enable
testing. A problem with many common testing methods is tlebereffect in-
troduced by software probes used for observing the systdin [f2he probes
used during testing are removed in the final product, it isthetsame system
that is delivered as the one tested. To avoid this problesigders can choose
to leave the probes in the final product and sacrifice effigiemcpossibly use
some form of non-intrusive hardware probing methods, §§], Reliability
implemented by fault tolerance decrease testability,esfaalts may become
hidden and complicate detection by testing.
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9.4.9 Security

Security is usage dependent and dependent on the envirbnorgaxt, mean-
ing that it is not directly affected by the component tecloggl However,
mechanisms increasing security can be built in a compoeehtblogy, e.g.,
encryption of all messages, authorization of devices thatraunicate on the
bus.

Methods to increase security that can be built in a compoteehinology
are often in conflict with higher prioritized quality atttites, e.g., encryptionis
in conflict with efficiency since it require more computinggawith testability
since it is harder to observe the system. Furthermore sgtas a low priority,
and the methods to achieve it are not dependent on suppuertlfiecomponent
technology. Hence, security can be implemented withoupstipgrom the
component technology.

9.4.10 Flexibility

Flexibility is directly composable and architecture rethtA component tech-
nology can support flexibility through the components, itivgieractions, and
architectural styles to compose systems. Methods inergdkxibility in a
component technology can be, e.g., dynamic run-time sdimgdof activities
based on events, run-time binding of resources, and conmpoEmnfiguration
during run-time.

Flexibility has received the lowest priority of all qualigttributes, and is
in conflict with many higher prioritized attributes, e.g.ithvsafety since the
number of different hazardous conditions increases, \etability since the
number of test cases increases and it may not be possiblétat@kate a
realistic run-time situation thus not to test the actualesyseither. On the other
hand flexibility increases maintainability, since a flerilslystem is easier to
change during maintenance. It is not possible to use cogiplstatic systems
with no flexibility at all when user interaction is involvellt regarding to the
numerous conflicts with higher prioritized quality attriba it should be kept
to a minimum in component technologies for this domain.

9.4.11 Quality Attribute Support in a Component Technol-
ogy for the Automotive Domain

Having presenting the basic characteristics of qualitytattes related to com-
ponent technologies, and identification of present cosflamd suggestions on
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how to resolve the conflict we give a brief description of thsuiting sugges-
tion of support for quality attributes in a component tedbgy tailored for
vehicular systems below:

Safety Safety cannot be fully supported by a component technoldtpuv-
ever, safety kernels surrounding components and suppodefiining
pre- and post conditions are suggested.

Reliability Reliability is supported to a large extent by a componeritriet
ogy. We suggest reliability attributes associated with ponents, path
information including usage profile and assembly struciame tools for
analysis. There should also be support for redundant coemgenvhen
necessary.

Predictability Predictability is supported to a large extent. Associatethe
components, attributes such as execution time, and menomguep-
tion can be specified. Tools for automated analysis can héded with
the technology.

Usability Usability is not directly supported by a component techgglo

Extendibility Extendibility is well supported. The interfaces should lasye
to extend and it should be easy to add new components to dmg)sgs-
tem. There should be no size related restrictions with i@tpanemory,
code, and interface.

Maintainability Maintainability is well supported by a component technol-
ogy. The support is provided through configuration manageno®ls,
and the fact that using well defined components gives a clehnain-
tainable architecture.

Efficiency Efficiency is suggested to be supported to a fairly high leVe
suggest support through small and efficient run-time systérmwever
not to the cost of suggested safety and reliability relatedtime mech-
anisms.

Testability Testability is supported to a large extent. The supportggeated
to be monitoring possibilities in the run-time system, diaion and de-
bug possibilities.

Security Security is not directly supported.

Flexibility Flexibility is not directly supported.
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9.5 Future Work

We will continue with research towards enabling CBSE foroauttive sys-
tems. One part is to continue investigating the requirement quality at-
tributes from the domain, with our present and other indalgpartners. An-
other part is an analysis of particular component modelsestigate their
abilities of supporting these quality attributes. A thimpis to enable support
for quality attributes in the component technologies wedaweloping as pro-
totypes suitable for the domain AutoComp [36] and SaveCoh2p, [but we
will also asses to which extent other existing componertnetogies can be
used in order to meet the industrial requirements.

9.6 Conclusions

We have presented a classification of the importance of tyuatiributes for
software made by some companies in the vehicular domaimethts showed
that the companies agreed upon the priority for most of tkdbates. The
most important concerns showed to be related to depengyatiitaracteristics
(safety, reliability and predictability). Usability reiwed a fairly high prior-
ity. Slightly less important attributes where those raldtethe life cycle (ex-
tendibility, maintainability), while security and flexiiy received the lowest
priority. We also included a company outside the domain @itivestigation,
it turned out that they also agreed upon the classificattomjght be that the
classification scale to a broader scope of embedded systems.
Furthermore, we have discussed how the attributes coulddi@dted by

a component technology, and were in the technology the stppould be
implemented: inside or outside the components, in the fvarle or if the
quality attributes are usage dependent. The discussi@aniduwded by a brief
suggestion of quality attribute support for a componertietogy.
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Abstract

We compare existing component technologies for embeddsdrag with re-
spect to industrial requirements. The requirements aleatet from the ve-
hicular industry, but our findings are applicable to simitettustries developing
resource constrained safety critical embedded distribreal-time computer
systems.

One of our conclusions is that none of the studied technefoigi a per-
fect match for the industrial requirements. Furthermocesingle technology
stands out as being a significantly better choice than thersiteach technol-
ogy has its own pros and cons.

The results of our evaluation can be used to guide modificatar ex-
tensions to existing technologies, making them betteeduibr industrial de-
ployment. Companies that want to make use of componentdtssfevare

engineering as available today can use this evaluatiori¢otse suitable tech-
nology.
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10.1 Introduction

Component-Based Software Engineering (CBSE) has receiveth attention

during the last couple of years. However, in the embeddsterydomain, use
of component technologies has had a hard time gaining ssreeptsoftware-

developers are still, to a large extent, using monolithit platform-dependent
software technologies.

We try to find out why embedded-software developers have mbraced
CBSE as an attractive tool for software development. We dolth evaluat-
ing a set of component technologies with respect to indalgteiquirements.
The requirements have been collected from industrial actathin the busi-
ness segment of heavy vehicles, and have been presentedaresious work
[1]. Examples of heavy vehicles include wheel loaders, exitas, forest har-
vesters, and combat vehicles. The software systems dedkljihin this
market segment can be characterised as resource congdtrsdtfety critical,
embedded, distributed, real-time, control systems. Oulirfis in this study
should be applicable to other domains with similar charésties.

Our evaluation, between requirements and existing tecigned, does not
only help to answer why component-based development hagehbeen em-
braced by the embedded-systems community. It also helpsiderntify what
parts of existing technologies could be enhanced, to mada thore appropri-
ate for embedded-system developers. Specifically, it Wdlnaus to select a
componenttechnology that is a close match to the requirtsyamd if needed,
guide modifications to that technology.

The reason for studying component-based development ifirttelace,
is that software developers can achieve considerabledmssirenefits in terms
of reduced costs, shortened time-to-market and increadestiase quality by
applying a suitable component technology. The componehtit@ogy should
rely on powerful design and compile-time mechanisms anglgirand pre-
dictable run-time behaviour.

There is however significant risks and costs associatedtidgthdoption of
a new development technique (such as component-baseddmazit). These
must be carefully evaluated before introduced in the dgraknt process. One
of the apparent risks is that the selected component teahpalirns out to be
inappropriate for its purpose; hence, the need to evalwayponent technolo-
gies with respect to requirements expressed by softwardajgers.
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10.2 Requirements

The requirements discussed and described in this secedmeaed on a previ-
ously conducted investigation [1]. The requirements fourttlat investigation

are divided into two main groups, the technical requiremésection 10.2.1)
and the development process related requirements (Sedi@r?). In addi-

tion, Section 10.2.3 contains derived requirements, eguirements that we
have synthesised from the requirements in Sections 10n2l1@.2.2 but that
are not explicitly stated requirements from the vehicutaluistry [1].

10.2.1 Technical Requirements

The technical requirements describe industrial needs asitted regarding
technical aspects and properties of a component technology

Analysable

System analysis, with respect to non-functional propgrsech as timing be-
haviour and memory consumption is considered highly aftrecin fact, it is
one of the single most distinguished requirements foundiirirvestigation.

When analysing a system built from well-tested, functibnedrrect, com-
ponents, the main issue is associated with composabilitye domposition
process must ensure that non-functional properties, ssicheacommunica-
tion, synchronisation, memory, and timing charactersst€ the system, are
predictable [2].

Testable and debugable

It is required that tools exist that support debugging, tagtbomponent level
(e.g., a graphical debugging tool), as well as on source laveé
Testing and debugging is one of the most commonly used tqubsito

verify software systems functionality. Testing is a verypontant comple-
ment to analysis, and testability should not be compromigieeh introducing
a component technology. Ideally, the ability to test emleedslystem software
should be improved when using CBSE, since it adds the aldlitgst compo-
nents in isolation.
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Portable

The components, and the infrastructure surrounding theould be platform
independentto the highest degree possible. Here, platfmependency means
(1) hardware independent, (2) real-time operating systemOg) indepen-
dent and (3) communications protocol independent. The comapts are kept
portable by minimising the number of dependencies to theveoé platform.
Eventually such dependencies are off course necessaryngiragot an exe-
cutable system, however the dependencies should be kephilwimum, and
whenever possible dependencies should be generated digtipdy config-
uration tools.

Resource Constrained

The components should be small and light-weighted and thgpoaents in-
frastructure and framework should be minimised. ldealBréhshould be no
run-time overhead compared to not using a CBSE approachkivdae used in
embedded real-time systems is usually resource congtrgméower produc-
tion cost and thereby increase profit.

One possibility, that significantly can reduce resourcesaomption of com-
ponents and the component framework, is to limit run-timaaiyics. This
means that it is desirable only to allow static, off-linenfigured systems.
Many existing component technologies have been designpgpostihigh run-
time dynamics, where components are added, removed andfigao@d dur-
ing run-time.

Component Modelling

The component modelling should be based on a standard rimedielhguage
like UML [3] or UML 2.0 [4]. The main reason to choose a stardiigre UML
is that it is well known and thoroughly tested, with tools dadnats supported
by many third-party developers. The reason for the vehidntiustry to have
specific demands in this detail, is that this business segduas not have the
knowledge, resources or desire to develop their own stdsdard practices.

Computational Model

Components should preferably be passive, i.e., they shmtldontain their
own threads of execution. A view where components are abact threads
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during component assembly is preferred, since this is quoedy simple, and
also believed to enhance reusability.

The computational model should be focused on a pipes-aedsfinodel
[5]. This is partly due to the well known ability to scheduledaanalyse this
model off-line. Also, the pipes-and-filters model is a gootaeptual model
for control applications.

10.2.2 Development Requirements

When discussing component-based development with industwelopment
process requirements are at least as important as thet¢athegquirements. To
obtain industrial reliance, the development requiremeatd to be addressed
by the component technology and its associated tools.

Introducible

Appropriate support to gradually migrate to a new technplsigould be pro-
vided by the component technology. It is important to male ¢hange in
development process and techniques as safe and inexpasgiessible. Rev-
olutionary changes in development techniques are asedoieth high risks

and costs. Therefore a new technology should be possibieittednto smaller

parts, which can be introduced incrementally. Another etspe make a tech-
nology introducible, is to allow legacy code within systedesigned with the
new technology.

Reusable

Components should be reusable, e.g., for use in new apphsabr environ-
ments than those for which they where originally designédR@usability can
more easily be achieved if a loosely coupled component tdolyy is used,
i.e., the components are focusing on functionality and d@antain any direct
operating system or hardware dependencies. Reusabifiitster enhanced by
the possibility to use configuration parameters to comptaen

A clear, explicit, and well-defined component interface rigcial to en-
hance the software reusability. Also, specification of fometional proper-
ties and requirements (such as execution time, memory pdagdlines, etc.)
simplify reuse of components since it makes (otherwise)itit@ssumptions
explicit. Behavioural descriptions (such as state diagraminteraction dia-
grams) of components can be used to further enhance ratsabil
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Maintainable

The components should be easy to change and maintain, gevelthat are
about to change a component need to understand the full tnopaéice pro-

posed change. Thus, not only knowledge about componenfaoés and their
expected behaviour is needed. Also, information aboutetiirdeployment
contexts may be needed in order not to break existing systdims compo-
nents can be stored in a repository where different versaonsvariants need
to be managed in a sufficient way. The maintainability regmient also in-
cludes sufficient tools supporting the service of deployedi @elivered prod-
ucts. These tools need to be component aware and handledegmostics
from components and support for updating software comptsnen

Understandable

The component technology and the systems constructeditishnould be easy
to understand. This should also include making the teclyyodasy and intu-
itive to use in a development project.

The reason for this requirement is to simplify evaluatiod aprification
both on the system level and on the component level. Focwsiren under-
standable model makes the development process fasteriatikiaty that there
will be fewer bugs. This requirement is also related to thenfucible require-
ment (Section 10.2.2) since an understandable technigneris introducible.

It is desirable to hide as much complexity as possible frostesy devel-
opers. Ideally, complex tasks (such as mapping signals tbaneareas or bus
messages, or producing schedules or timing analysis) dl@uberformed by
tools.

10.2.3 Derived Requirements

Here, we present requirements that we have synthesisedtiraquirements
in sections 10.2.1 and 10.2.2, but that are not explicitirequents from indus-

try.

Source Code Components

A component should be source code, i.e., no binaries. Coiepare used to
have access to the source code, to find functional errorgraiale support for
white box testing (Section 10.2.1). Since source code dgbgds demanded,
even if a component technology is used, black box comporenotelesirable.
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However, the desire to look into the components does notssacg imply a
desire to be allowed to modify thém.

Using black-box components would lead to a fear of loosingtrd over
the system behaviour (Section 10.2.2). Provided that atipmments in the
systems are well tested, and that the source code are cheakdibd, and
qualified for use in the specific surrounding, the companiggtralleviate
their source code availability.

Also with respect to the resource constrained requirengadt{on 10.2.1),
source code components allow for unused parts of the compoodoe re-
moved at compile time.

Static Configurations

Better support for the technical requirements of analygalfSection 10.2.1),
testability (Section 10.2.1), and resource consumpti@ctién 10.2.1), are
achieved by using pre-runtime configuration. Here, conéiion means both
configuration of component behaviour and interconnectimie/een compo-
nents. Component technologies for use in the Office/Intedamain usually
focus on dynamic configurations [7, 8]. This is of course appate in these
specific domains, where one usually has access to amplercesolEmbed-
ded systems, however, face another reality; with resousostrained nodes
running complex, dependable, control applications.

However, most vehicles can operate in different modes, éndrectechnol-
ogy must support switches between a set of statically corgfthonodes. Static
configuration also improves the development process celatguirement of
understandability (Section 10.2.2), since each possidnéguration is known
before run-time.

10.3 Component Technologies

In this section, existing component technologies for erdieeldsystems are
described and evaluated. The technologies originate lboth &cademia and
industry. The selection criterion for a component techgglbas firstly been
that there is enough information available, secondly thattuthors claim that

1This can be viewed as a "glass box" component model, whemsiilple to acquire a "use-
only" license from a third party. This license model is todayite common in the embedded
systems market.
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the technology is suitable for embedded systems, and finadlhave tried to
achieve a combination of both academic and industrial telcigies.

The technologies described and evaluated are PECT, KoalteisRCompo-
nent Model, PBO, PECOS and CORBA-CCM. We have chosen CORBMC
to represent the set of technologies existing in the PGArtedomain (other
examples are COM, .NET [7] and Java Enterprise Beans [8esinis the
only technology that explicitly address embedded and tiesd-issues. Also,
the Windows CE version of .NET [7] is omitted, since it is tated towards
embedded display-devices, which only constitute a smabsuof the devices
in vehicular systems. The evaluation is based on publichiavle, documen-
tation.

10.3.1 PECT

A Prediction-Enabled Component Technology (PECT) [9] i@edopment in-
frastructure that incorporates developmenttools and/aisgechniques. PECT
is an ongoing research project at the Software Engineemstgute (SEI) at the
Carnegie Mellon University. The project focuses on analysis; however, the
framework does not include any concrete theories - rathimitiens of how
analysis should be applied. To be able to analyse systemg B&CT, proper
analysis theories must be found and implemented and a kuitislolerlying
component technology must be chosen.

A PECT include an abstract model of a component technologysist-
ing of a construction framework and a reasoning frameworkcdncretise a
PECT, it is necessary to choose an underlying componemaéady, define
restrictions on that technology (to allow predictions)ddimd and implement
proper analysis theories. The PECT concept is highly ptetaince it does
not include any parts that are bound to a specific platforrhjrbpractise the
underlying technology may hinder portability. For modwdjior describing a
component-based system, the Construction and Compokgioguage (CCL)
[9] is used. The CCL is not compliant to any standards. PECTighly in-
troducible, in principle it should be possible to analyseaat pf an existing
system using PECT. It should be possible to gradually magEr parts of a
system using PECT. A system constructed using PECT can fieuttifo un-
derstand; mainly because of the mapping from the abstracpooent model
to the concrete component technology. Itis likely that eyt looking identi-
cal at the PECT-level behave differently when realised fferdint component
technologies.

2Software Engineering Institute, CMU; http://www.sei.creau



152 Paper E

PECT is an abstract technology that requires an underlyamyponent
technology. For instance, how testable and debugable amsyist depends
on the technical solutions in the underlying run-time systéResource con-
sumption, computational model, reusability, maintaifiphiblack- or white-
box components, static- or dynamic-configuration are atdgossible to de-
termine without knowledge of the underlying component textbgy.

10.3.2 Koala

The Koala component technology [10] is designed and usedhilip$® for
development of software in consumer electronics. Typjcalbnsumer elec-
tronics are resource constrained since they use cheap &g dovkeep devel-
opment costs low. Koala is a light weight component techgltailored for
Product Line Architectures [11]. The Koala components caeract with the
environment, or other components, through explicit irtees. The compo-
nents source code is fully visible for the developers, fteere are no binaries
or other intermediate formats. There are two types of iate$ in the Koala
model, the provides- and the requires- interfaces, witlstree meaning as in
UML 2.0 [4]. The provides interface specify methods to ascié® compo-
nent from the outside, while the required interface definkatis required by
the component from its environment. The interfaces areatht connected at
design time.

One of the primary advantages with Koala is that it is reseeanstrained.
In fact, low resource consumption was one of the requiremeansidered
when Koala was created. Koala use passive components talibtra active
threads during compile-time; they interact through a piped-filters model.
Koala uses a construction called thread pumps to decreasethber of proces-
ses in the system. Components are stored in libraries, wighat for version
numbers and compatibility descriptions. Furthermore conegnts can be pa-
rameterised to fit different environments.

Koala does not support analysis of run-time propertieseRef has pre-
sented how properties like memory usage and timing can lzbqbeel in gen-
eral component-based systems, but the thread pumps usedlamidight cause
some problems to apply existing timing analysis theoriezl& has no explicit
support for testing and debugging, but they use source andpanents, and a
simple interaction model. Furthermore, Koala is impleradribr a specific op-
erating system. A specific compiler is used, which routeg#dr-component

3Phillips International, Inc; Home Page http://www.pl#iicom



10.3 Component Technologies 153

and component to operating system interaction through&ocahnectors. The
modelling language is defined and developed in-house, andifficult to see
an easy way to gradually introduce the Koala concept.

10.3.3 Rubus Component Model

The Rubus Component Model (Rubus CM) [12] is developed byiéus sys-
tems* The component technology incorporates tools, e.g., a stéednd a
graphical tool for application design, and it is tailoredfesource constrained
systems with real-time requirements. The Rubus Operatysges (Rubus
0S) [13] has one time-triggered part (used for time-critiad real-time ac-
tivities) and one event-triggered part (used for less targeal soft real-time
activities). However, the Rubus CM is only supported by theettriggered
part.

The Rubus CM runs on top of the Rubus OS, and the componentimode
requires the Rubus configuration compiler. There is sudgpodifferent hard-
ware platforms, but regarding to the requirement of politgl§Section 10.2.1),
this is not enough since the Rubus CM is too tightly couplethéoRubus OS.
The Rubus OS is very small, and all component and port coraiigur is re-
solved off-line by the Rubus configuration compiler.

Non-functional properties can be analysed during desige-since the
component technology is statically configured, but timinglgsis on compo-
nent and node level (i.e., schedulability analysis) is thly analysable prop-
erty implemented in the Rubus tools. Testability is faatktd by static schedul-
ing (which gives predictable execution patterns). Tedtiregfunctional behav-
iour is simplified by the Rubus Windows simulator, enablixg@ition on a
regular PC.

Applications are described in the Rubus Design Languagiehws a non-
standard modelling language. The fundamental buildingkdare passive.
The interaction model is the desired pipes-and-filters {{&ec0.2.1). The
graphical representation of a system is quite intuitive] #re Rubus CM it-
self is also easy to understand. Complexities such as stehgdneration and
synchronisation are hidden in tools.

The components are source code and open for inspection. udoigere is
no support for debugging the application on the componeet.l&he compo-
nents are very simple, and they can be parameterised towaghe possibility
to change the component behaviour without changing the oaemt source
code. This enhances the possibilities to reuse the compsanen

4Arcticus Systems; Home Page http://www.arcticus.se
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Smaller pieces of legacy code can, after minor modificafibesncapsu-
lated in Rubus components. Larger systems of legacy codbearecuted as
background service (without using the component concefitrong guaran-
tees).

10.3.4 PBO

Port Based Objects (PBO) [14] combines object orientedgdesiith port au-
tomaton theory. PBO was developed as a part of the Chimerea€@pg Sys-
tem (Chimera OS) project [15], at the Advanced Manipulatalkoratory at
Carnegie Mellon University. Together with Chimera, PBO forms a framework
aimed for development of sensor-based control systemis spicialisation in
reconfigurable robotics applications. One important géahe work was to
hide real-time programming and analysis details. Anothplieit design goal
for a system based on PBO was to minimise communication amchsynisa-
tion, thus facilitating reuse.

PBO implements analysis for timeliness and facilitatesavetural models
to ensure predictable communication and behaviour. Hokvélvere are few
additional analysis properties in the model. The commuitinaand compu-
tation model is based on the pipes-and-filters model, to @ gistribution in
multiprocessor systems the connections are implementgtbbal variables.
Easy testing and debugging is not explicitly addressed. édew the technol-
ogy relies on source code components and therefore testirgsource code
level is achievable. The PBOs are modular and loosely cdupleach other,
which admits easy unit testing. A single PBO-componengjistly coupled to
the Chimera OS, and is an independent concurrent process.

Since the components are coupled to the Chimera OS, it cameneasily
introduced in any legacy system. The Chimera OS is a largelgnamically
configurable operating system supporting dynamic bindinig,not resource
constrained.

PBO is a simple and intuitive model that is highly understdid, both
at system level and within the components themselves. Thedupling be-
tween the components makes it easy to modify or replace &gibject. PBO
is built with active and independent objects that are cotatbwith the pipes-
and-filters model. Due to the low coupling between compantmbugh sim-
ple communication and synchronisation the objects can heidered to be
highly reusable. The maintainability is also affected ino@dway due to the

SCarnegie Mellon University; Home Page http://www.cmu.edu
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loose coupling between the components; it is easy to modifgglace a single
component.

10.3.5 PECOS

PECOS (PErvasive COmponent Systems) [16, 17] is a collaboratiogept
between ABB Corporate Research Cehimed academia. The goal for the
PECOS project was to enable component-based technologyapijpropri-
ate tools to specify, compose, validate and compile soéviar embedded
systems. The component technology is designed espeaialfiefd devices,
i.e., reactive embedded systems that gathers and analigsgidaensors and
react by controlling actuators, valves, motors etc. Funttuge, PECOS is
analysable, since much focus has been put on non-funciwopérties such
as memory consumption and timeliness.

Non-functional properties like memory consumption andstxaase execution-
times are associated with the components. These are uséffidogrit PECOS
tools, such as the composition rule checker and the schegulerating and
verification tool. The schedule is generated using the mé&tion from the
components and information from the composition. The saleechn be con-
structed off-line, i.e., a static pre-calculated schedatedynamically during
run-time.

PECOS has an execution model that describes the behaviaufieifl de-
vice. The execution model deals with synchronisation amdhtj related is-
sues, and it uses Petri-Nets [18] to model concurrent &ietviike component
compositions, scheduling of components, and synchrdaisaf shared ports
[19]. Debugging can be performed using COTS debugging anitoring
tools. However, the component technology does not supmtighing on
component level as described in Section 10.2.1.

The PECOS component technology uses a layered softwarieataine,
which enhances portability (Section 10.2.1). There is a-Rinme Environment
(RTE) that takes care of the communication between the egijin specific
parts and the real-time operating system. The PECOS comptethnology
uses a modelling language that is easy to understand, howevstandard
language is used. The components communicate using a dataiflented
interaction, it is a pipes-and-filters concept, but the congmt technology uses
a shared memory, contained in a blackboard-like structure.

8PECOS Project, Home Page: http://www.pecos-project.org/
7ABB Corporate Research Centre in Ladenburg, Home Page//Wwitpv.abb.com/
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Since the software infrastructure does not depend on amyfsdeardware
or operating system, the requirement of introducabilitgaibn 10.2.2) is to
some extent fulfilled. There are two types of componentd, desnponents
(black-box components) and composite components. Thaspatents can
be passive, active, and event triggered. The requiremeopefiness is not
considered fulfilled, due to the fact that PECOS uses blackebmponents. In
later releases, the PECOS project is considering to use aopan component
model [20]. The devices are statically configured.

10.3.6 CORBA Based Technologies

The Common Object Request Broker Architecture (CORBA) isiddfeware
architecture that defines communication between nodes. B2QRovides a
communication standard that can be used to write platfodependent appli-
cations. The standard is developed by the Object ManageBren{? (OMG).
There are different versions of CORBA available, e.g., MinmCORBA [21]
for resource constrains systems, and RT-CORBA [22] for4amigcal systems.

RT-CORBA is a set of extensions tailored to equip Object RsyBrokers
(ORBs) to be used for real-time systems. RT-CORBA suppogificit thread
pools and queuing control, and controls the use of procgssonory and net-
work resources. Since RT-CORBA adds complexity to the steth@ORBA,
it is not considered very useful for resource-constrainatiesns. Minimum-
CORBA defines a subset of the CORBA functionality that is nsui¢able for
resource-constrained systems, where some of the dynasmieduced.

OMG has defined a CORBA Component Model (CCM) [23], which ex-
tends the CORBA object model by defining features and sesvitat enables
application developers to implement, mange, configure aulog compo-
nents. In addition the CCM allows better software reusedorer-applications
and provides a greater flexibility for dynamic configurateffCORBA appli-
cations.

CORBA is a middleware architecture that defines commurindietween
nodes, independent of computer architecture, operatigtesyor program-
ming language. Because of the platform and language indepee CORBA
becomes highly portable. To support the platform and laggiredependence,
CORBA implements an Object Request Broker (ORB) that durimgtime
acts as a virtual bus over which objects transparently acterith other ob-
jects located locally or remote. The ORB is responsible fatifig a requested

80bject Management Group. CORBA Home Page. http://www.onagcorba/
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objects implementation, make the method calls and carryetbigonse back to
the requester, all in a transparent way. Since CORBA run dunally any plat-
form, legacy code can exist together with the CORBA techgyl@ his makes
CORBA highly introducible.

While CORBA is portable, and powerful, it is very run-timend@nding,
since bindings are performed during run-time. Because @frtim-time de-
cisions, CORBA is not very deterministic and not analysatith respect to
timing and memory consumption. There is no explicit modellianguage for
CORBA. CORBA uses a client server model for communicatioimerg each
object is active. There are no non-functional propertiesigr specification of
interface behaviour. All these things together make reasddr. The main-
tainability is also suffering from the lack of clearly spied interfaces.

10.4 Summary of Evaluation

In this section we assign numerical grades to each of the oone technolo-
gies described in Section 10.3, grading how well they fu#fitle of the require-
ments of Section 10.2. The grades are based on the discsssiunarised in
Section 10.3. We use a simple 3 level grade, where 0 meanththatquire-
ment is not addressed by the technology and is hence nolgfd|fil means that
the requirement is addressed by the technology and/orgtipariially fulfilled,
and 2 means that the requirement is addressed and is satigfadfilled. For
PECT, which is not a complete technology, several requirgsngepended on
the underlying technology. For these requirements we dassign a grade
(indicated with NA, Not Applicable, in Figure 10.1). For tlik®ORBA-based
technologies we have listed the best grade applicable tm&tiye CORBA
flavours mentioned in Section 10.3.6.

For each requirement we have also calculated an average. grag grade
should be taken with a grain of salt, and is only interestfrigis extremely
high or extremely low. In the case that the average grade fegairement is
extremely low, it could either indicate that the requiretrisrvery difficult to
satisfy, or that component-technology designers haveipaity little atten-
tion.

In the table we see that only two requirements have averagkegibelow
1.0. The requirement "Component Modelling" has the gradg @rid "Testing
and debugging" has 1.0. We also note that no requiremenesdaery high
grade (above 1.5). This indicate that none of the requirémverhave listed
are general (or important) enough to have been consideradl bgmponent-
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technology designers. However, if ignoring CORBA (whichnist designed
for embedded systems) and PECT (which is not a complete coempdech-
nology) we see that there are a handful of our requirementstie addressed
and at least partially fulfilled by all technologies.

We have also calculated an average grade for each compecanoiogy.
Again, the average cannot be directly used to rank techied@mongst each
other. However, the two technologies PBO and CORBA standistitaving
significantly lower average values than the other techrieogThey are also
distinguished by having many 0’s and few 2’s in their gradedicating that
they are not very attractive choices. Among the completbrelogies with
an average grade above 1.0 we notice Rubus and PECOS as lbeingst
complete technologies (with respect to this set of requénats) since they have
the fewest 0’s. Also, Koala and PECOS can be recognised dsd¢heologies
with the broadest range of good support for our requiremeirise they have
the most number of 2’s.

However, we also notice that there is no technology thati$ulfiot even
partially) all requirements, and that no single technoletands out as being
the preferred choice.

Analysable

Testable and debugable
Portable

Resource Constrained
Component Modelling
Computational Model
Introducible

Reusable

Maintainable
Understandable

Source Code Components
Static Configuration
Number of 2's

Number of 0's

Average

PECT NA 2 NA 0 NA 2 NA  NA 0 NA  NA [ 1.2 3 2
Koala 1 1 2 0 2 0 2 2 2 2 21 13 7 3
Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 1.3 52
PBO 2 1 0 0 0 1 1 1 1 2 2 [ 0.9 3 4
PECOS 2 1 2 2 0 2 1 2 1 2 0 14 7 2
CORBA Based Technologies 0 1 2 0 0 0 2 0 0 1 0 g o5 2 8

Average 1.2
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Figure 10.1: Grading of component technologies with respethe require-
ments
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10.5 Conclusion

In this paper we have compared some existing componentdatagias for em-
bedded systems with respect to industrial requirementsr@duirements have
been collected from industrial actors within the busineggrgent of heavy ve-
hicles. The software systems developed in this segment eamdracterised
as resource constrained, safety critical, embeddedillittd, real-time, con-
trol systems. Our findings should be applicable to softwanelbpers whose
systems have similar characteristics.

We have noticed that, for a component technology to be fudbepted by
industry, the whole systems development context needs twbsidered. It
is not only the technical properties, such as modelling, matation model,
and openness, that needs to be addressed, but also devetopmérements
like maintainability, reusability, and to which extentstpossible to gradually
introduce the technology. It is important to keep in mindtthacomponent
technology alone cannot be expected to solve all thesesskowever a tech-
nology can have more or less support for handing the issues.

The result of the investigation is that there is no componectinology
available that fulfil all the requirements. Further, no #ngomponent tech-
nology stands out as being the obvious best match for theresgents. Each
technology has its own pros and cons. It is interesting totkaemost re-
quirements are fulfilled by one or more techniques, whichliespthat good
solutions to these requirements exist.

The question, however, is whether it is possible to combihgti®ns from
different technologies in order to achieve a technology thils all listed
requirements? Our next step is to assess to what exteningxistchnolo-
gies can be adapted in order to fulfil the requirements, ortireselected
parts of existing technologies can be reused if a new compdeehnology
needs to be developed. Examples of parts that could be rewsefiile and
message formats, interface description languages, orlewdde specifica-
tions/implementations. Further, for a new/modified tedbgpto be accepted
it is likely that it have to be compliant to one (or even morarttone) existing
technology. Hence, we will select one of the technologiestanto make as
small changes as possible to that technology.
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