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Abstract

Industry is constantly looking for new developments in software for use in in-
creasingly complex computer applications. Today, the development of compo-
nent-based systems is an attractive area for both Industry and Academia. The
systems we focus on in this thesis are embedded computers, inparticular those
in automotive systems. A modern car incorporates several embedded com-
puters that control different functions of the car, e.g., anti-spin and anti-lock
breaks.

The main purpose of this thesis is to investigate how component technolo-
gies for use in embedded systems can reduce resource usage without compro-
mising non-functional requirements, such as timeliness.

The component-technologies available have not yet been used extensively
in the vehicular domain. To understand why this is the case wehave conducted
a survey and performed evaluations of the requirements of the vehicular in-
dustry with respect to software and software development. The purpose of the
evaluation was to provide a foundation for defining models, methods and tools
for component-based software engineering.

The main contribution of this work is the implementation andevaluation of
a framework for resource-efficient mappings between component-models and
real-time systems. Few component technologies today consider the mapping
between components and run-time tasks. We show how effective mappings
can reduce memory usage and CPU-overhead. The implemented framework
utilizes genetic algorithms to find feasible, resource efficient mappings.

We show how component models designed for resource constrained safety-
critical embedded real-time systems can use powerful compile-time techniques
to realize the component-based approach and ensure predictable behaviour.

Further, we propose a resource reclaiming strategy for component-based
real-time systems, to decrease the impact of pessimistic execution time predic-
tions. In our approach, components run in different qualitylevels as unused
processor time is accumulated.
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Chapter 1

Introduction

During recent decades processors have become more powerfuland more cost
efficient. They are now of interest in areas where not used before, permitting
the development of ever more complex system applications. To manage the
increasing complexity of applications, Industry is constantly looking for new
software development strategies. One paradigm found to be of use in desktop
computing systems is Component-Based Software Engineering (CBSE). CBSE
has been under development since at least 1968 and is based onthe idea of
reusing existing components, in much the same way as standard components
are used in other engineering disciplines [1, 2, 3].

Processors are used in what is known as embedded systems for control
all kinds of devices and technical systems used in society, ranging from mp3-
players to nuclear plants. The fastest growing demand for microprocessors is
for use in embedded systems and in recent years, over 99.8% [4] of all proces-
sors produced are incorporated in embedded systems. IEEE [5] has provided a
common definition of embedded systems as follows:

A computer system that is a part of a larger system and performs
some of the requirements of that system; for example a computer
system used in an aircraft or rapid transit system.

Embedded systems have requirements that are not regarded indesktop ap-
plications, such as low memory utilization, low processor overhead and pre-
dictability. Many embedded systems are safety-critical because they control
applications in our society. If these applications malfunction they can have
disastrous consequences. Hence, non-functional characteristics (such as reli-
ability) are very important in these types of applications.Non-functional re-
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4 Chapter 1. Introduction

quirements are attributes indicating in some way the quality of the system.
One important class of such requirements are real-time requirements. These
requirements define within what time a task must be performed. More specifi-
cally in [6] Stankovic states:

Real-time systems are computer systems in which the correctness
of the system depends not only on the logical correctness of the
computations performed, but also on which point in time the re-
sults are provided.

In the real-time and embedded systems domains there are manytheories,
methods and tools. These methods use a number of real-time properties, such
as worst-case execution time (WCET), execution period, deadlines, etc., and
terms such as tasks and scheduling, in reasoning about timing and other re-
quirements.

The notion of components is rarely used in real-time systems. On the other
hand, current component technologies usually do not include non-functional
properties typical of real-time systems. To be able to use a component ap-
proach, which makes the system development process more efficient, and at
the same time guarantees system behaviour, both how the component technol-
ogy uses non-functional properties, and how components areallocated to the
run-time systems are important.

The purpose of this work is to demonstrate how component models can
use non-functional properties to support real-time analysis; and in particular
to provide methods for resource-efficient allocation of components to run-time
tasks, optimized for, e.g., memory and performance. Further we demonstrate
how a light weight component framework can use more advancedfeatures such
as multiple versions, with no negative effect on the real-time properties.

1.1 Research Motivation

The research leading to this thesis was motivated by the increasing complex-
ity of modern embedded systems, such as, e.g., advanced engine controls and
anti-skid systems. The significance of the research is confirmed by the vehic-
ular industry performing research in the same area, e.g., inprojects such as
AUTOSAR [7]. Today issues relevant to embedded component-based systems
such as real-time and resource efficiency are often addressed outside CBSE.
There are many methods and theories for, e.g., real-time analysis, but very few
in relation to CBSE. To handle real-time and resource efficiency in CBSE for
embedded systems we consider several aspects, including:
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• Optimization with respect to speed and memory for component-based
systems.

• Support for non-functional properties.

• Prediction of system properties, e.g., timeliness, etc.

• Light-weight component frameworks for more advanced features.

The significance of these issues is confirmed by research referred to in [8],
in which the authors have identified needs and priorities forresearch related to
CBSE for embedded systems.

1.2 Embedded Real-Time Systems

We do not need to search far to find an example of an embedded real-time sys-
tem in a modern everyday appliance. This thesis focuses on vehicular systems,
using a modern vehicle as an example. The engine is controlled by a complex
real-time system, measuring the airflow to the engine, pumping in just the right
amount of fuel and igniting this in each cylinder at the exactright moment. The
anti-lock breaks are controlled by a real-time system, continuously monitoring
and controlling the breaks to ensure the maximum breaking effect. In the un-
likely case of a collision, an embedded real-time system will detect the impact
and deploy the airbag at exactly the right point in time. Whatis common to all
these systems is that they are parts of a bigger system and their actions have to
be delivered at a specified interval in the time. If they fail to deliver their ser-
vices at the right time, the consequences can lead to low performance, material
damage or in the worst scenario, loss of human life.

Though this thesis focuses on vehicular systems, the research is applica-
ble in a wider range of application domains. Thus, in this section, we briefly
describe three application areas of embedded real-time systems,vehicular sys-
tems, consumer electronicsand industrial embedded applications. Complex
embedded systems with requirements on timeliness are used in all these do-
mains, which are characterized by large production volumesand product lines.
Other domains in which component-based engineering for embedded systems
can be used are, e.g.,medicalandtelecom systems.

Vehicular systems The complexity of the computerized vehicular systems has
increased over the last decade, and component based development is en-
visioned as a promising future approach to increasing productivity. The
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cost reduction impact from, e.g., lowering the memory requirement by
enabling efficient mappings between components and tasks, and thereby
saving a number of bytes of memory can be substantial. Many parts of
a vehicle, e.g., the breaking and the airbag systems have strict require-
ments with respect to reliability, safety, and predictability. It is therefore
vital that the real-time properties are maintained even though resource
usage is minimized.

Consumer electronicsThe consumer electronics domain embraces, among
many other products television receivers, DVD-players, cell phones. Many
consumer products have real-time properties which must be guaranteed,
e.g., a smooth playback, or synchronization of picture and sound. It is
often important to maintain timeliness, especially for high-end products,
to maintain a competitive edge. The component-based approach has suc-
cessfully been used for several years by, e.g., Philips [9].

Industrial embedded applications In the domain of industrial applications,
such as industrial robots and automation systems, the systems are of-
ten more extensive and complex than those in vehicular and consumer
electronics. A single node in an industrial application canconsist of
hundreds or thousands of software modules. Industrial applications of-
ten have strict requirements on timing and reliability, safety and perfor-
mance, but must also be flexible, portable and scalable. By improving
performance and reducing the memory requirement, it may be possible
to add more sophisticated or more advanced features to an industrial ap-
plication without adding to its costs which may give a competitive edge.

Before continuing we will provide some basic terminology ofReal-Time
Systems.

1.2.1 Real-Time Systems Terminology

In hard real-time systems, a program delivering a result after its latest accept-
able time, i.e., itsdeadline, may lead to catastrophic consequences; vehicle
control systems are examples of such systems. On the other hand in soft
real-time systemsa number of deadlines can be missed without serious con-
sequences. Examples of such systems are, e.g., multimedia systems.

A Real-Time System (RTS) consists of a number ofresources(e.g. proces-
sors), a number oftasks(executing programs), designed to fulfil a number
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of timing constraints, and aschedulerthat assigns each task a fraction of the
processor(s) time according to ascheduling policy. Tasks areperiodicor non-
periodic. Periodic tasks are an infinite sequence ofinvocations(task instances),
while non-periodic tasks are invoked by external events. The choice of schedul-
ing policy is made to satisfy the constraints imposed on the system. A task
has timing constraints and timing properties. The timing constraints are im-
posed on the task and are, e.g.,deadline(D) andperiod / minimum interarrival
time(T / MINT). A task has timing properties, e.g.,worst-case execution time
(WCET) and in some casesbest-case execution time(BCET). The WCET is
the longest time it can take for a task to execute, and conversely the BCET
is the shortest possible execution time. The Deadline is thelongest allowed
latency from the tasks nominal starting point of the task until its completion.
This latency is dependent on when the task starts, and, e.g.,how much it is
interrupted by tasks with higher priorities. T is the nominal time between two
task instances, and the MINT is the shortest time between twonon-periodic
task invocations. A transaction is defined as an ordered sequence of tasks to
be executed in a specified order. A transactions has a periodTtr and is often
constrained with an end-to-end deadline (E2ED).

Consider figure 1.1, in which taskt1 has aWCET1, aBCET1, a deadline
DL1 and a periodT1. A transactiontr1 is defined over the tasks< t1, t2, t3 >
and has an end-to-end deadlineE2ED1. The period of the transaction is de-
cided by the first task in the transaction (t1).

1.3 Component Based Development for Embed-
ded Real-Time Systems

Component-Based Development, in general, is widely adopted in most mature
engineering disciplines such as mechanics, electronics and construction. The
component-based approach has also been used in computer science, within the
development of desktop and internet applications, e.g., COM [10] and CORBA
[11]. However, the component based strategy has not yet beenas successful
within embedded system software engineering as in the previously mentioned
domains. The many reasons for this includes the varying demands of different
domains in software engineering, unsatisfactory tool support [8] and lack of
support for non-functional properties.

Further, desktop applications usually run on modern desktop computers
with highly advanced processors, and huge amounts of memory, several hun-
dreds of mega-bytes. Embedded systems on the other hand usually run on very
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Figure 1.1: Real-Time Properties

small low-power processors, and often with no more memory than a few kilo-
bytes. The difference in system characteristics calls for different approaches to
fulfil the system requirements. For instance, desktop applications often do not
require memory usage to be kept at a low level.

1.3.1 Component-Based Software Engineering Terminology

The basis of component-based systems is naturally thecomponent. A software
component is a software entity that conforms to acomponent modeland can
becomposedwithout modification [2]. The termcomponent modelembraces
the specification of components, how components are assembled, and the com-
ponent framework. With other words, the component model is aset of rules
governing how the components may or may not be used. Thecompositionof
components is the process of assembling components to form an application.
Components are composed by constitute systems by connecting their interfaces
according to the rules defined in the component model. The component inter-
face is the entry to the component functionality. A component composition is
executed in the context of acomponent framework. The component framework
provides the necessary run-time support that is not provided by the underlying
run-time system, e.g., scheduling, and finally, acomponent technologyis the
concrete implementation of a component model.
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1.3.2 Component Based Development for Embedded Real-
Time Systems

There have been many attempts to develop component models for embedded
systems [12, 9, 13, 14, 15]. They have often been tightly coupled to a specific
operating system or a specific domain and they seldom consider non-functional
properties. Thus, they have not been general enough to be adopted for use in
other domains [16]. Even though generality has not often been the goal of
these models; in order for CBSE to be widespread in the embedded domain
one or more standards must be developed. Standards for embedded CBSE
will facilitate the integration of third party components and have shown to be
effective in desktop applications.

Existing component technologies for embedded systems often do not pro-
vide support for non-functional properties. However, witha suitable resource-
efficient component-technologywith effective tools and support for non-functio-
nal properties, a more structured development can be incorporated in the em-
bedded domain. Also, since product lines [17] are common within the domain,
issues of commonality and reuse are central for reducing cost as well as in-
creasing reliability.

It is, however, no more likely that one component-model willbe applicable
in all of software engineering, than that bridges and houseswill be built from
the same building blocks.

1.3.3 CBSE for vehicular systems

Vehicular systems incorporate highly advanced distributed embedded control
systems. For instance, the luxurious new BMW [18] 7-series incorporates more
than 65Electronic Control Units(ECUs)

An ECU is an on-board computer system that runs software to control
a specific process in the vehicle, e.g., the breaking system.Such systems
are already component-based on a hardware level and the incorporation of
component-based software systems would appear to be a natural abstraction.

In [19] the authors indicate that the costs of developing theelectronics and
software incorporated in a motor vehicle constitute more than half of the total
development costs of the vehicle. Further requirements of the end-users mean
that there is a continuous and increasing demand for both thehardware and
software of vehicular electronics of increasing complexity. The objectives of
CBSE in developing ECU’s for vehicular systems are on the hand to lower the
production costs, in terms of both development and hardwarecosts, and on the
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other hand to cope with the increasing complexity of the emerging systems.
CBSE has been shown to be an effective approach in lowering development
costs and enhancing, e.g., reuse of components in other domains.

Component-based development of embedded vehicular systems usually re-
quires a system architecture different from that of other systems. Due to the
control nature of these systems, pipe-and-filter or blackboard architectures are
usually used. In less restricted systems, such as multimedia systems, client-
server architectures are used, such as the Koala component model for television
sets [9]. Due to the difficulty of verifying the timing behaviour of client-server
architecture it is not used in connection with vehicular embedded systems.

Moreover, middlewares and component frameworks must be deterministic
in terms of timing behaviour and use a minimum of resources.

Analysis of the systems is essential to be able to prove that the vehicle is
safe. Non-functional properties are very important as is tools and methods to
be used by those performing analysis.

1.4 Outline of the thesis

The remainder of part I is organized as follows. Chapter 2 describes the Re-
search Problems to be addressed and the questions derived. Chapter 3 describes
the research performed and the answers obtained. Related work is described
in chapter 4. Finally the thesis is concluded and future workis discussed in
chapter 5. Part II contains all the papers included in chapters 6 to 10.



Chapter 2

Research Problems

In this chapter we will present the scope of our work by defining the research
problems, introducing the research questions and presenting answers to these
questions.

In the following section we will describe the problem we try to solve.

2.1 Problem Definitions

As mentioned in the introduction, component based development for embed-
ded systems is not widespread. There are several presumptive reasons to this;
there are no standard component models for embedded systems, thus it is hard
to integrate third party functionality. The de-facto standard component models
for desktop and internet applications are too resource demanding and they do
not support non-functional properties. In order for a component model to be
widely used within the embedded domain it has to have powerful design-time
models and be efficient in terms of resource usage. With this in mind, we state
two research problems,P1 andP2.

P1 Today’s component models do not consider adequately the transformation
of design-time models to real-time models. Most component models for
embedded systems do not focus on low resource usage and analyzability
and are developed for specific purposes. Any problems that arise are
very specialized. Many qualities are implicit, or simply disregarded (e.g.
real-time properties). Specifically we have observed that the mapping
between components, and run-time entities, i.e., tasks, istotally omitted

11
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from most existing component models, which leads to ineffective usage
of the hardware. Moreover, it is in very few models that attention is
given to optimization of performance and memory usage.

P2 Today’s component models do not have efficient resource usage. When
hard real-time properties are imposed on a system, the real-time proper-
ties are generally exaggerated to guarantee a predictable behaviour with
respect to timeliness. The systems are highly complex and therefore
there are very few ways of defining the non-functional properties in an
analytically exact way. Properties such as, e.g., WCET, areincreased
to ensure that a deadline is not missed. As a consequence, theresource
utilization is lower than the optimum.

For an overview of the problems stated, consider table 2.1. The table is used to
identify more effectively similarities between the problems stated. The prob-
lems are summarized in the same order as they appear in the problem definition.

We can see that there are several issues in common to the problems stated.
From an analysis of these issues we have derived two researchquestions, firstly
one question with respect to resources, analyzability and mappings between
components and tasks, the other one with respect to resourceusage, efficiency
and predictability.

Problem Problem Related Issues
P1 Resource usage Analyzability Mapping Optimization
P2 Predictability Resource usage Efficiency

Table 2.1: Summary of the core problems in the problem definition

2.2 Research Questions

As stated in the problem definition, resource usage and analyzability are im-
portant qualities in a component technology for embedded systems. One way
of reducing resource usage is to map components to run-time tasks in such a
way that memory usage and CPU-overhead is lowered. Components can be
mapped to run-time tasks with respect to other properties aswell. In order to
do this, it is necessary to understand what qualities are important and how they
are affected. Thus, technologies for embedded and real-time systems must de-
fine a set of non-functional properties. Non-functional properties are properties
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that define different qualities of the software, e.g., timing behaviour, memory
consumption, safety and reliability. These properties arefor analysis purposes
only and have no functional value. It is especially important to understand
which non-functional properties are regarded as importantby the industry, and
which can be disregarded.

Thus, from these reflections we form our first questionQ1:

What is required by a component technology for embedded systems in order to
analyze mappings from design-time components to real-timetasks?

(Q1)

This question aims at understanding which requirements areimportant for a
component technology for the vehicular domain regarding performing efficient
mappings from design-time to run-time in component-based systems.

If a component technology supports the non-functional properties requested
by the automotive domain, then how should they be realized? The properties
define system qualities; hence, non-functional propertiesare only a measure
of qualities of components or assemblies. What is really important is how the
properties are realized. For instance, how is a component with high reliability
implemented? In the case of component-based systems, how the components
are assembled are equally important. Two components withhigh reliability
individually cannot be guaranteed to providehigh reliability when assembled
[20] to form one system.

As stated earlier, most embedded systems in vehicles are real-time systems,
and real-time systems are dependent on the timeliness; hence the real-time re-
lated non-functional properties must reflect the real-timebehaviour. However,
some real-time properties are hard to realize in an exact way. For instance
the execution time of a complex system is difficult to establish because of the
varying behaviour and the many program paths.

To guarantee timeliness in all possible circumstances predictions in real-
time systems are based on worst-case scenarios. The actual-case is often lower
than the worst-case due to safety margins, varying behaviour (e.g. different
loop counts) leading to unused processor time, i.e., inefficient resource usage,
and either simpler and less expensive hardware could have been used, or more
functionality could have been implemented. However, the behaviour of soft-
ware is often inherently variable, and to satisfy safety requirements, worst-case
estimations should not be overly optimistic. How, therefore, can resource us-
age be reduced?
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Component based systems often have very simple strategies for allocat-
ing components to run-time entities. In many component models there is no
clear strategy for providing this mapping; thus this part isoften not included in
the component technology causing a gap between high-level design and con-
crete implementation. For CBSE to be adopted by domains using resource-
constrained embedded real-time systems, the mapping between component
models and real-time models must be automated and made mote efficient with
respect to resource utilization. These reflections are summarized in question
Q2:

How can resource efficiency and predictability be combined in a component
model for embedded systems?

(Q2)

The answer to this question will be an explanation of how resource usage
can be reduced through efficient component technologies, efficient mappings
between component models and run-time systems; while maintaining the pre-
dictability of the system.

2.3 Contributions

The main contributions of the presented research have been summarized and
are presented in the list below:

• A Classifications of the importance of software quality attributes accord-
ing to companies in the vehicular domain.

• An Evaluation of the suitability of commercial component models with
respect to the requirements of the vehicular industry.

• A proposal for the use of component to task allocation to increase per-
formance and system utilization, and a proposal for an evaluation frame-
work for such allocations.

• The development of a real-time component model that utilizes theMulti-
ple Versions Paradigmtogether with different existing real-time schedul-
ing methods and theAdaptive Threshold Algorithm.

• A proposal for the use of a software component technology fordevelop-
ing embedded systems through permitting the use of real-time theory by
synthesis of run-time mechanisms for predictable execution according to
the temporal specification of the component model.
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The research performed and contributions made are further discussed in
chapter 3.





Chapter 3

Research Contributions

Recent work [21, 22] has addressed the issue of reducing the cost of software
development for embedded systems; specifically for automotive embedded sys-
tems. This thesis focuses on optimization of resource utilization when using
component-based development. The research is a continuation of previous
work [23].

We proceed from the research questions stated in chapter 2 bypresenting
the research topics in that order. The research is divided based on the questions
Q1 and Q2. Each part answers parts of the questions. Finally we will present a
discussion on the questions and the research topics. The research does not give
complete answers to the questions, but will give partly answers and be subjects
for further research.

The research has been performed in close cooperation with industry and
academia. All research has been made in the context of two projects SAVE1

and FLEXCON2, but we have had close cooperation with other research groups,
e.g., the HEAVE3 project.

The following sections will describe each research topic.

1SAVE Project, http://www.mrtc.mdh.se/SAVE
2FLEXCON Project, http://www.mrtc.mdh.se/FLEXCON
3HEAVE Project, http://www.mrtc.mdh.se/HEAVE

17
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3.1 Non-functional properties for embedded sys-
tems

Objective: The objective of this research is to find out which properties, both
technical and development related, that are important for the vehicular
industry and investigate how a number of, commercial and academic,
component models fulfils these requirements. The purpose ofthe eval-
uations is to be a foundation for defining models, methods andtools for
component-based software engineering. The objective is not to mutually
rank component technologies or properties, but mainly point out what
properties that are regarded as important by the industry within the ve-
hicular domain, and investigate which properties that havegood or poor
support by existing technologies.

This research gives parts of the answer to question Q1.

Goal: This research aims at understanding which non-functional properties
(quality attributes) are important for the vehicular domain, and show
how well current component technologies fulfil these properties. We
also present a list of quality attributes and analyze their impact in a com-
ponent technology.

Research: The research is comprised by two parts; the first part is basedon
a survey that was sent to a number of representatives for different ve-
hicular companies, and the second part is an evaluation of existing com-
ponent technologies with respect to industrial requirements. In the first
part, representatives from several companies were requested to prioritize
a number of quality attributes(extendibility, maintainability, usability,
predictability, security, safety and reliability)regarding importance. The
representatives were requested to group the quality-attributes in four dif-
ferent categories(very important, important, less important and unim-
portant). The list of quality attributes covers attributes that werethought
to be of interest to the vehicular domain. The non-functional properties
that we focus on most in this thesis are predictability regarding timeli-
ness, and efficiency which are both considered as important properties.
We also discuss the two most important properties safety andreliability.

The second part of this research is an evaluation of existingtechnolo-
gies. The technologies described and evaluated are PECT [12], Koala
[9], Rubus CM [13, 24], PBO [14], PECOS [15] and CORBA based
technologies [25]. The technologies were chosen firstly on the basis
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that there is enough information available, and secondly that the authors
claim that they are suitable for embedded systems. CORBA, however,
was chosen as a reference technology to represent the desktop/Internet
domain, although CORBA have flavours for small systems and for real-
time systems.

The technologies were evaluated on how well they conform to twelve
different, both technical and development related, requirements. The
evaluation points out which requirements that are partly fulfilled by a
component technology, and which are not. For instance the quality at-
tribute Testable and Maintainablehas received rather low points indi-
cating that few component models have good support for thesequali-
ties. On the other hand most models have been consideredUnderstand-
able. The requirements were gathered from an industrial case-study per-
formed at Volvo Construction Equipment4 and at CC-Systems5. The
technologies evaluated in the second part of the research originate from
both industry and academia. The evaluation work in this research has
been workshop-oriented, where the authors have discussed and evalu-
ated quality attributes and technologies.

Results: The research ended up with a grading of component models with
respect to the studied requirements. The research shows that there is
no single component technology that stands out as a very goodcandi-
date for fulfilling the industrial requirements from the second part of
this research, nor the non-functional properties from the first part. Some
properties are supported by very many technologies, while other proper-
ties are not considered at all. Component technologies thatorigin from
academia puts more focus on extra-functional properties, while the in-
dustrial technologies are more pragmatic. Details about the research can
be found in the included papers D and E.

Limitations and future work: There are several unanswered questions regard-
ing the validity of the studies. Did the representatives of the companies
represent the company or their own view of the study. Have allrel-
evant representatives been interviewed, and are all relevant companies
included in the process? The study should be extended to increase its
validity and reliability. Although, unanswered questions, the study can

4http://www.volvo.com
5http://www.cc-system.se/
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be used as a guide for coming studies, and as an indication to continued
research.

3.2 Component models for embedded systems

Objective: Previous research has shown that there are component technolo-
gies that only partially support the properties that the vehicular domain
finds important [26]. This research should aim at providing acompo-
nent technology with powerful compile-time techniques andthe desired
support for the vehicular domain.

This research will give partly answers to question Q1 and Q2.

Goal: The research should propose the core of a component technology that
utilizes powerful compile-time techniques and focuses on non-functional
attributes and resource efficiency. The component technology should
also be a foundation for defining new powerful compile time techniques.

Research: As described in the previous section, our research has pointed out
that there are few component models that support some of the important
non-functional attributes. We show how CBSE can be used for embed-
ded real-time systems with high requirements on analyzability and low
memory footprint. We consider the non-functional attributes predictabil-
ity, reliability, safety and usability which are all expressed as important
by the vehicular domain. Existing commercial component technologies
often have powerful run-time mechanisms to realize the component-
based approach, which is a disadvantage in terms of resourceutilization
for resource constrained systems. The idea of this researchis to have
expressive design-time models, utilizing the UML 2.0 standard, power-
ful compile-time techniques and efficient, temporally verified, mappings
to a run-time system, e.g., a commercial real-time operating system.
The defined component model is based on the pipe-and-filter interac-
tion model and uses aRead-Execute-Writeparadigm; all in-ports of a
component are read, the component executes and finally writes all its
out-ports. This execution model has the advantage of being highly ana-
lyzable. Moreover, the control systems in vehicles are often suitable for
the pipe-and-filter paradigm. End-to-end deadlines are imposed to the
model and are augmented with start and completion jitters. Amiddle-
ware is proposed to handles all communication between the component
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model and the underlying run-time system. This research is based on
earlier work [27] and the experience from senior researchers.

Results: The research indicates that embedded component technologies can
be resource efficient, reliable and easy to extend with support from pow-
erful compile-time techniques. We have paid attention to expressed re-
quirements and propose powerful compile time techniques and expres-
sive design-time models. Details on the results can be foundin included
paper C.

Within the SAVE project this work has been extended with the imple-
mentation of the SaveCCM component technology [28].

Limitations and future work: The proposed techniques have not been indus-
trially verified; although its successor (SaveCCM) has beenimplemented
and verified in a small scale industry case-study within the SAVE project.

The model is restrictive and due to the pipe-and-filter interaction model
it may not be suitable for some systems.

3.3 Allocating components to real-time tasks

Objective: Many component-based systems today use one-to-one allocations
between design-time components and real-time tasks, or other rudimen-
tary allocations. Finding allocations that co-allocate several components
to one real-time task leads to better memory and CPU usage. However,
the one-to-one allocations have the benefit of being highly analyzable,
which is often a strong requirement in embedded systems, especially in
embedded systems that handle time-critical functions suchas engine-
control and breaking systems.

A good allocation should be analyzable and reduce the amountof mem-
ory and CPU-usage compared to a one-to-one allocation.

This research answers parts of questions Q1 and Q2.

Goal: The research aims at finding near-optimal allocations that decrease mem-
ory and CPU usage, while preserving timeliness. Furthermore, the meth-
ods for allocating components to tasks should be general enough to be
able to optimize regarding other properties besides memoryand CPU-
usage.
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Research: The research is based on previous work [27, 29], which show that
important issues in the embedded systems domain are predictability in
terms of timeliness and performance in terms of memory consumption
and CPU-load. To increase the performance and maintain the predictabil-
ity we propose an allocation between components and real-time tasks,
where several components are allocated to one task; therebysaving mem-
ory in terms of stack and task control blocks and CPU-time in terms of
task switching.

Both the component model and task model used in this researchis similar
to those described in the previous section, where the run-time model uses
tasks and transactions. The scheduling policy used is also fixed priority
scheduling. A modified method of the Bate and Burns approach [30]
is used to calculate the feasibility of the system in terms ofreal-time
behaviour. The Bate and Burns approach assumes systems similar to
the ones described in our research. They use fixed priority scheduling
and transactions with end-to-end deadlines. We do not consider jitter
and separation in our work, hence these requirements are disregarded.
Moreover, they assume that a transaction has a period equal to theleast
common multiple of all tasks participating in the transaction. In our
work we do not have this limitation. However, the approach isintuitive,
and is easily adjusted to suit our needs.

Due to the combinatorial explosion of possible allocationsfrom com-
ponents to tasks, the problem is complex by nature. An allocation from
components to a task is evaluated considering schedulability (timeliness)
and isolation, where isolation is defined asmutual exclusion of compo-
nents regarding shared resources or other legitimate engineering rea-
sons. Because the problem is inherently complex the strategy is to eval-
uate our allocation approach by implementing a framework that utilizes
a meta-heuristic search technique, in our caseGenetic Algorithms(GA)
[31]. GA can solve, roughly, any problem as long as there is some way
of comparing two solutions. Each allocation is validated with respect
to period-times, isolation, end-to-end deadlines and schedulability to en-
sure that an allocation is feasible. The proposed frameworkgives the
possibility to optimize allocations regarding the properties memory con-
sumption and CPU-overhead to find aresource efficientsolution. Other
possible approaches for solving the problem is different heuristics [32]
or simulated annealing [33]. Genetic algorithms was chosenpartly due
to in-house experience, but also because it is very versatile and can han-
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dle several dimensions as opposed to, e.g., simulated annealing.

Similar approaches, for the parallel and distributed domain has been
performed, e.g.,Partitioning and Clustering. Partitioning is a method
for dividing an application into small blocks for executionon separate
nodes. Clustering is the issue of allocating nodes of a task graph to
labelled clusters, where the task graph represents the application behav-
iour. Compared to our research partitioning is the opposite, dividing
applications for parallelism as opposed to co-allocating several compo-
nents to one task considering speed and memory. Clustering allocated
tasks to clusters regarding, mostly, parallelism. Clustering is based on
task behaviour in form of directed acyclic task graphs, as opposed to our
component-to-task approach. Clustering is often used for placing tasks
on distributed nodes in a schedulable way. Our approach alsoregards
timeliness, but performs the allocation regarding optimization of given
non-functional properties, currently memory usage and CPU-overhead.

Results: The results from the evaluation were satisfactory, and we have found
that for industrially representative systems memory consumption and
CPU-overhead can be decreased by as much as 32% and 48% respec-
tively compared to a one-to-one mapping. Details about the methods,
framework and results can be found in the included paper A.

Limitations and future work: The research only considerpipe-and-filterand
blackboardarchitectures. Further we do not consider blocking or ad-
vanced real-time properties such as jitter or separation. In practice, the
allocation will probably have to be guided with a knowledge base or in-
teractivity with engineers. Further, for validity reasons, the allocation
should be verified with an industrial case-study.

Future work includes optimizing allocations regarding several non-functional
properties.

3.4 Resource reclaiming

Objective: In real-time systems there are often unused resources in terms of
CPU-time due to pessimistic predictions. These resources can be used
for executing tasks, e.g., more often, or with higher quality (longer time).

This research will give partly answers to question Q2.
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Goal: This research aims at defining methods for using residual time from
pessimistic real-time predictions to provide a higher quality of service.

Research: We show how component technologies can be extended with mul-
tiple services to provide different quality levels depending on residual
time in real-time systems. We do this by combining the multiple ver-
sions paradigm [34], with the adaptive threshold algorithm[35]. The
multiple versions paradigm allows us to have several versions (services)
of the same component. In this research the multiple versions is used for
the same functionality with different quality; consider, e.g., more or less
iterations in a numerical approximation. Thereby we provide different
quality levels of the same component. Each quality level is associated
with a value which is accumulated to the system as that quality level
is chosen and executed. The Adaptive threshold algorithm allows us
to provide a system that strives to maximize the total systemvalue by
choosing the appropriate quality level dependent on the residual time of
the system.

However, the multiple versions and adaptive threshold algorithm gen-
erates some extra overhead in the system, both in terms of memory
and CPU-time. Thus this approach may not be appropriate for very
small systems with extreme requirements on keeping the memory and
CPU-overhead low. The research is based on knowledge from senior
researchers, and literature studies of previously published research. Al-
though, by combining this approach with the previously described com-
ponent to task allocation approach may be interesting future work.

Results: The research shows how the multiple versions paradigm and the adap-
tive threshold algorithm can be combined with the notion of residual time
for providing higher quality of service in a system. The results from this
research can be found in included paper B.

Limitations and future work: The proposed approach adds complexity to, in
some sense, reduce resource usage. Further, the approach requires that a
solution or method can be divided into several quality levels. Hence, it is
highly suitable for, e.g., numeric approximations. However, all system
may not easily be divided into quality levels. Finally, the value of each
quality level is implicit, and must be acquired in some way.
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3.5 Conclusion

In this section we connect the research questions with the described research
topics.

QuestionQ1: What is required by a component technology for embedded sys-
tems in order to analyze mappings from design-time components to real-
time tasks?From the research summary, we can see that this question is
answered by the first three research topics. The first, which investigates
how well current component technologies support non-functional prop-
erties, and the second and third that investigates which requirements are
important for lowering resource usage and performing good allocations
between components and tasks.

QuestionQ2: How can resource efficiency and predictability be combined in
a component model for embedded systems?We note that three last re-
search topics contribute with answers to this question. Thesecond re-
search topic considers resource efficiency and predictability by propos-
ing efficient compile-time techniques for embedded component tech-
nologies.

The third considers resource efficiency by proposing mappings between
components and tasks through using stochastic search algorithms to find
near optimal solutions. The fourth and last research topic considers re-
source management and predictability in terms of timeliness by incorpo-
rating the multiple versions paradigm with the adaptive threshold algo-
rithm together with fixed priority real-time analysis.

Hence both questions Q1 and Q2 have been at least partly answered. We
have of course only provided one possible answer to each question, where
many more answers are feasible.





Chapter 4

Related Work and Basic
Principles

In this section we will explore research areas related to theresearch described
in chapter 3. We will focus on the areasReal-Time Analysis, Task Allocation
Optimization TechniquesandComponent Models.

Real-Time Analysis is an area where much research has been conducted. In
this section we will discuss the classical exact analysis, transactions, attribute
assignment and resource management.

4.1 Real-time systems

In the past decades a lot of research has been performed within the domain of
real-time systems. A majority of the research is aimed at schedulability analy-
sis and system predictability. As early as 1973, Liu and Layland published
work on real-time analysis and scheduling [36], defining theearliest deadline
first (EDF) andrate monotonic(RM) scheduling policies. Since then, a myriad
of different scheduling techniques has been produced. The scheduling policies
can be divided into three paradigms, these are:

• Priority-driven (e.g., RM or EDF) [36]

• Time-driven (table-driven) [37, 38]

• Share-driven [39]

27
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The industry today primarily uses priority-driven scheduling (e.g. Rubus
blue part and VxWorks) [40, 41]. A few companies use time-driven off-line
scheduling and cyclic scheduling.

Real-Time Systems consists of a number of resources, e.g., scheduler and
CPU. The scheduler decides which task is assigned CPU-time,and for how
long. A task is a schedulable entity that consists of a control block with data
for the scheduler and operating system such as period, priority and pointers to
user code and user data.

4.1.1 Classical Real-Time Analysis

A schedule has a fix timeLCM (Least Common Multiple) time units, thus
the schedule is repeated everyLCM time units. Hence, if one instance of
the schedule over the time[0 − LCM) is feasible, then all instances of that
schedule will be feasible.

For time-driven scheduling a schedule is created off-line (pre run-time).
The schedule is created according to some heuristics to ensure that it is feasible.

For priority-driven scheduling, the feasibility can be analytically calculated
by analyzing the longest time a task can be pre-empted (interrupted) by other
tasks to decide its longest response time. A task in a priority driven system has
at least three analytical properties:

• Period time (how often the task is invocated)

• Worst-case execution timeWCET(how long the task runs)

• Deadline (when the task must be finished)

and

• Priority (how important is the task)

There are both fix priority scheduling and dynamic priority scheduling.
As the names reveal, a task in a fix priority schedule is assigned a prior-
ity that never changes. Examples of fix priority scheduling policies areRate
Monotonic, where the priority is the inverted period time, andDeadline Monotonic,
where the priority is the inverted deadline.

When using Dynamic priority scheduling, the priorities change during run-
time. An example of a dynamic priority scheduling policy isearliest deadline
first (EDF).
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There are both pros and cons with both these approaches. Changing priori-
ties dynamically during run-time requires computations, thus generating over-
head. However, it can be assured that the task that is in greatest need of exe-
cuting gets CPU-time. For instance, the EDF scheduling policy is optimal, i.e.,
there is no scheduling policy that is better; although, thenthe overhead is not
considered.

In this section we will concentrate on fix-priority scheduling.
A scheduler decides, based on the priorities of the tasks, what task should

run next. There are two different approaches on how to handlethis, besides the
scheduling policy; pre-emptive scheduling, and non-pre-emptive scheduling.
In pre-emptive systems, a task with a higher priority will interrupt a lower pri-
ority task, if the higher priority task is scheduled to run. In a non-pre-emptive
system, a task can not be interrupted but always finishes its execution. Pre-
emptive systems have the advantage of being more dynamic, and provides
shorter response-times for time-critical tasks. However,the complexity of the
system and the schedule is also increased.

The most commonly used analytical approach for priority-driven systems
is theexact analysis. Exact analysis analyses the feasibility of the task-set con-
sidering scheduling. We will show the classical exact analysis for pre-emptive
systems.

Exact Analysis

Liu and Layland [36] present analysis to calculate the worst-case response time
Ri. The response timeRi for taskti has to be less or equal to the deadlineDi.
The deadline is assumed to be equal to the period time. The analysis begins
with the highest priority task. Then the exact analysis is defined as:

Ri = WCETi +
∑

j∈hp(i)

⌈Ri

Tj

⌉

WCETj (4.1)

Where hp(i) is the set of tasks with higher priority than i.

Equation 4.1 is solved by forming a recurrence relationship:

Wn+1
i = WCETi +

∑

j∈hp(i)

⌈Wn
i

Tj

⌉

WCETj (4.2)

The set of valuesW 0
i , W 1

i ,...,Wn
i is monotonically none decreasing. When

Wn
i = Wn+1

i the solution to the equation has been found. If all tasks passes
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the test they will meet all their deadlines; if they fail the test then, at run time,
a task will miss its deadline (unless the worst-case execution time estimation
turn out to be too pessimistic).

4.1.2 Transactions

Transactions are collections of related tasks, which collectively perform some
function or have some shared timing attributes. A transaction tr usually has a
timing requirement, i.e., an end-to-end deadlinesDtr. The transaction usually
has a periodTtr which denotes a lower bound on the time between re-arrivals
of the transaction. Unfortunately exact analysis is computationally infeasible to
evaluate for task-sets with transactions[42]; hence some other approach has to
be used. To use exact analysis the schedule has to be simulated over thehyper-
period(LCM of all periods). A common approach is schedule simulation [43].
In [44] Redell presents a fast method for calculating response-times for task
sets with transactions with advanced timing-properties such as offsets and jitter.

4.1.3 Attribute Assignment

For a real-time schedule to be feasible, the task attributeshave to be set ac-
cordingly. Several publications exist on the matter but many of them, e.g.,
[45, 46], are not very straight forward and difficult to use. That is because
they are difficult to justify and they assume that all attributes are changeable.
A more straight forward approach is the one by Bate and Burns [30]. Timing
requirements such asPeriod, Deadline, JitterandSeparationare considered.
Furthermore, transactions are sequences of tasks executing in a fixed order.
The timing requirements for transactions arePeriod, End-to-End Deadlines
andJitter. Bate and Burns use an iterative approach by considering subsequent
instances of tasks within one transaction and derive the attributes from the iter-
ative process. Their approach is somewhat similar to schedule simulation.

4.2 Resource Management

Hard Real-Time Analysis is pessimistic because of the fact that the timing cri-
teria must always be fulfilled in any situation. Assume a program that has
more than one path and both paths take different long to execute. Then the
program must be assigned a worst-case execution time that corresponds to the
longer path. If, in fact, the longer path is run very seldom, there will be a
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lot of capacity in vain. Several approaches have been suggested to use this
extra time (residual time). The slack-stealing algorithm [47] is an algorithm
that tries to use as much residual time as possible for, e.g.,serving aperiodic
requests. Other approaches include the constant bandwidthserver [48] and the
total bandwidth server [49]. An approach to decide what service should be ex-
ecuted in the residual time is the adaptive threshold algorithm [35]. The Adap-
tive Threshold Algorithm decides based on values assigned to every pending
service, aperiodic or periodic, which service should be executed. The goal of
the algorithm is to maximize an accumulated value.

4.3 Task allocation

Allocation from components to real-time tasks is a subject that has not been
widely explored. Several related allocations in parallel and distributed systems
exist, e.g., partitioning and clustering, and we will discuss these.

Tasks allocation is the issue of allocating a task to different resources. A
common research area is to allocate tasks to processors in a multi processor
system. Different approaches have been used [50, 51, 52, 53,54].

4.3.1 Task to Node Allocation in Distributed Systems

Tindell et.al [51] uses a stochastic search method to allocate tasks in a dis-
tributed real-time system. The majority of these approaches focus on load-
balancing in order to minimize communication overhead. In [55] genetic al-
gorithms and simulated annealing is used to select topologyand place tasks on
nodes in distributed control systems.

4.3.2 Partitioning

An other approach to task allocation for parallel or multi-threaded systems is
the partitioning [56] approach. Partitioning is the issue of that, for an appli-
cation to operate on a multiprocessor system, it must be divided into separate
threads of execution for each processor. Sarkar [57] describes a system for au-
tomatically partitioning and scheduling parallel applications on multiprocessor
systems. SarkarŠs approach is dividing the applications tothe smallest possi-
ble fundamental blocks, and then merges them back until the number of blocks
left equals the number of processors.
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In [58, 59] partitioning is used to divide a control application into processes
for semi-distributed real-time control systems.

4.3.3 Clustering

To efficiently execute programs in parallel on a multiprocessor system, a min-
imum execution time multi-processor scheduling problem must be solved to
determine the assignment of tasks to the processors and the execution order of
the tasks so that the execution time is minimized [60]. Clustering [61] is the
issue of mapping of the nodes of a task graph onto labelled clusters. A cluster
consists of a set of tasks and each task is an indivisible unitof execution. Each
cluster executes on a separate processor. In [62] a partitioning and scheduling
technique for streamlining inter-process communication is suggested. Multi-
processor clustering techniques are exploited to increasethe compile-time tol-
erance of the embedded systems domain. The authors in [62] suggest methods
for efficient mapping of applications to multiprocessor architectures by using
clustering.

4.4 Optimization of real-time systems

Different optimization techniques have regularly been used to find solutions
for complex problems. The problem of finding allocations between component
models and real-time models is a problem that grows very rapidly in terms of
possible solutions. To find a solution within a reasonable time optimization
techniques are used.

Different optimization techniques have been used to solve different prob-
lems, in, e.g., [63] genetic algorithms are used for assigning attributes for com-
plex real-time constraints. In [51] simulated annealing isused for assigning
tasks to different nodes in a distributed real-time system.

4.4.1 Heuristic methods

Due to the difficulty to find optimal solutions to allocation problems, heuris-
tic methods are commonly adopted. A heuristic method in thiscontext is a
method that uses some rules to create a solution. These rulesare defined by the
algorithm designer who uses intuition and experience. Example of commonly
used heuristics for, e.g., the classical bin-packing problem isfirst fit, best fitand
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worst fit. Which heuristics that fits a specific problem is hard to tell in advance,
hence experience or in-depth knowledge of the problem is often required.

4.4.2 Genetic Algorithms

A GA is a guided search technique, based on models of Darwinian [64] and
Lamarkian [65] evolution. Solutions are represented by fixed length strings.
The value of a solution is a measure of its ¨ fitness for purpose¨ . Many re-
searchers have applied machine-learning methods to solve or optimize differ-
ent problems. Genetic algorithms [66, 67] were formally introduced in the
United States in the 1970s by John Holland [31] at the University of Michigan.
Genetic Algorithms, together with, e.g., simulated annealing [33, 68], belongs
to the class of stochastic search methods.

The continuing price/performance improvements of computational systems
have made stochastic search techniques attractive for different types of opti-
mization. In particular, genetic algorithms work very wellon mixed (continu-
ous and discrete), combinatorial problems. They are less susceptible to getting
’stuck’ at local optima than gradient search methods. But they tend to be com-
putationally expensive.

In order to use genetic algorithms, the problem must be represented as a
genome (chromosome). The GA then creates a population of solutions and ap-
plies genetic operators such as mutation and crossovers to find the best solution.
A mutation is random bit flips, and a crossover is defined so that two individu-
als (genomes) combine to produce two new individuals (children). There also
exist asexual crossovers, or single-child crossovers.

GA uses a direct analogy of natural behaviour. The salient features of each
individual population member are represented by a string, referred to as achro-
mosome1. The components of the strings are calledgene. When using GA the
design problem often have to be represented by bit strings.

4.4.3 Simulated Annealing

Simulated Annealing (SA) [33] is a variant of the stochasticsearch methods,
and has been applied to a wide range of practical problems. SAwas initially
inspired by the laws of thermodynamics which state that at temperature, t, the

1Chromosome stands for coloured body after the colouring of nuclei in early experiments to
identify DNA
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probability of an increase in energy of magnitude,δE, is given by equation 4.3

P [δE] = exp(−δE/kt) (4.3)

Where k is the physical constant known asBoltzmann’s constantand t can be
considered to b a parameter of the process. In a simulated version this equation
is used within a system that is ’cooling’ towards a steady state. SA can find
solutions in non-linear models. It is versatile since it does not rely on any
restrictive properties of the model.

In order to use SA a representation of possible solutions andanannealing
schedule(an initial temperature and rules for lowering it) are required.

4.4.4 Branch-and-Bound

Branch and Bound (B& B) [69] is a widely used optimization andsearch
method for solving complex discrete optimization problems. It belongs to the
class ofimplicit enumerationmethods, meaning that it make a limited enumer-
ation of possible solutions in order to find an optimal or sub-optimal solution.
The algorithm partitions the total solution domain into smaller and smaller sub-
sets, thereby the namebranch. After the branching, each subset is assigned a
value, and thereby some subsets can be eliminated from further consideration
(there byBounding).

4.5 Component models for embedded systems

We will discuss component models regarding their mapping torun-time sys-
tems and their relation to non-functional properties. We divide the component
models in categories relating to the application domain of our research, i.e.,
Vehicular systems, Consumer ElectronicsandIndustrial systems.

This section of related work is based on the State Of The Art report (SOTA)
[70] that was produced as a pre-study to our research.

In this section we will discuss component models used, or suitable, for
different domains. We will discuss the application areas previously defined,
i.e., vehicular systems, consumer electronics and Industrial systems.

4.5.1 Component models for Vehicular Systems

Component models for vehicular systems have high requirements on reliability
and predictability. One component model that is successfully used within the
automotive domain is the Rubus Component Model.
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Rubus Component Model

The Rubus Component Model (Rubus CM) [13] is developed by Arcticus sys-
tems. The component technology is tailored for resource constrained systems
with real-time requirements. The Rubus Operating System (Rubus OS) [24]
has one time-triggered part (used for time-critical hard real-time activities) and
one event-triggered part (used for less time-critical softreal-time activities).
However, the Rubus CM is only supported by the time-triggered part.

The Rubus CM runs on top of the Rubus OS, and the Rubus CM is tightly
coupled to the Rubus OS. The Rubus OS is very small, and all component and
port configuration is resolved off-line by the Rubus configuration compiler.

Non-functional properties can be analysed during design time since the
component technology is statically configured, but timing analysis on compo-
nent and node level (i.e. schedulability analysis) is the only analysable property
implemented in the Rubus tools.

The Rubus component model has a rather rudimentary mapping from com-
ponents to tasks. All components are scheduled off-line andare then basically
assigned one task each.

Thus, Rubus does not fully consider the requirements statedby the vehic-
ular domain due to the rudimentary mapping to real-time tasks, and the few
non-functional attributes.

SaveCCM Component Model

The SaveCCM Component Model [28] is developed at the Mälardalen Real-
Time Research Centre within the bounds of the SAVE2-Project. The com-
ponent model is tailored for resource constrained systems with real-time re-
quirements. Unlike Rubus CM, SaveCCM support a variety of different non-
functional properties. The properties are analyzed duringdesign-time, and the
technology is statically configured at compile-time. SaveCCM is not bound to
any operating system but generates intermediate code that can be translated to
specific programming languages.

SaveCCM has is built on the pipe-and-filter interaction model, and sep-
arates data, control and analytical interfaces. There is a construction called
switches that acts as configuration mode changes pre-run-time, and acts as
logical conditions between interfaces during run-time. The component tech-
nology is augmented with transactions and end-to-end deadlines. A switch can
also split and join transactions.

2http://www.mrtc.mdh.se/SAVE



36 Chapter 4. Related Work and Basic Principles

SaveCCM uses simple heuristics to map components to tasks byassigning
all components that belong to the same transaction and are not separated by
any switch.

SaveCCM is probably the best suited technology consideringthe require-
ments from the vehicular domain. It considers our requirements regarding non-
functional attributes. However, the mapping between components and real-
time tasks can be improved.

4.5.2 Consumer Electronics

Koala

The Koala component technology [9] is designed and used by Philips for devel-
opment of software in consumer electronics. Typically, consumer electronics
are resource constrained since they use cheap hardware to keep development
costs low. Koala is tailored for Product Line Architectures[71]. The Koala
components can interact with the environment, or other components, through
explicit interfaces. The interfaces are statically connected at design time.

Low resource consumption was one of the requirements considered when
Koala was created. Passive components are allocated to active threads during
compile-time and they interact through a pipes-and-filtersmodel. A construc-
tion called thread pumps is used to decrease the number of processes in the
system. Koala does not support analysis of run-time properties; however, re-
search has presented how properties like memory usage and timing can be pre-
dicted in general component-based systems, although the thread pumps used in
Koala might cause some problems to apply existing timing analysis theories.
Furthermore, Koala is implemented for a specific operating system.

Since Koala uses thread pumps it is difficult to analyze the mapping be-
tween the components and the run-time system. Because Koalalacks non-
functional properties it is not very predictable.

Koala does not consider any of the requirements from the vehicular domain;
not non-functional properties, nor predictable mappings to real-time tasks.

Robocop

Robocop is a component model developed in Eindhoven University. It is a
follow-up, or a variant of, the Koala model. The aim of Robocop is to define
an open component-based framework for the middleware layerin high volume
embedded applications [72]. A component framework and component mod-
els in different abstractions form the core of the Robocop architecture. Un-
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like Koala, Robocop has several non-functional propertiessuch as timeliness,
performance, reliability, availability, safety and security. The model is based
on resource predictions, which does not give 100% guarantees unlike formal
methods. Therefore, it can not be considered suitable for safety-critical sys-
tems.

A Robocop component is a set of models providing informationabout the
component. The models may be in different forms; human readable form, e.g.,
documentation or binary form. Other types of models are functional model and
non-functional model where the functional model describesthe functionality of
the component, whereas the non-functional model describestiming, reliability,
memory usage etc.

In [73, 74] an approach to define tasks from component behaviour is sug-
gested. The tasks are assigned non-functional properties,and are analyzed re-
garding schedulability in order to guarantee a feasible task set. However, there
is no attempt to optimize the allocation regarding any property.

4.5.3 Industrial Systems

PECOS

PECOS (PErvasive COmponent Systems) [15, 75] is a collaborative project
between ABB Corporate Research Centre and academia. The goal for the
PECOS project was to enable component-based technology with appropriate
tools to specify, compose, validate and compile software for embedded sys-
tems. The component technology is designed especially for field devices, i.e.
reactive embedded systems that gathers and analyse data viasensors and react
by controlling actuators, valves, motors etc.

Non-functional properties like memory consumption and worst-case execution-
times are associated with the components. These are used by different PECOS
tools, such as the composition rule checker and the schedulegenerating and
verification tool.

The PECOS component technology uses layered software architecture. One
of the layers is the Run-Time Environment (RTE) that takes care of the com-
munication between the application specific parts and the real-time operating
system. The components communicate using a data-flow-oriented interaction,
it is a pipes-and-filters.

The PECOS architecture does not handle the actual mapping from com-
ponents to tasks. A Run-Time Environment Layer is defined to communicate
with the underlying real-time operating system. However, the mapping is left
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to the policy of the operating system.
The PECOS component technology has a lot of focus on non-functional

properties, which goes in line with the requirements statedby the companies
in the vehicular domain. The RTE gives the possibility to mapPECOS com-
ponents to several platforms. However, the component technology does not
consider this mapping. Though, the task allocation approach suggested in this
thesis can be used for resource efficient mappings.

PBO

Port Based Objects (PBO) [14] combines object oriented design, with port au-
tomaton theory. PBO was developed as a part of the Chimera Operating Sys-
tem (Chimera OS) project [76], at the Advanced ManipulatorsLaboratory at
Carnegie Mellon University. Together with Chimera, PBO forms a framework
aimed for development of sensor-based control systems, with specialisation in
reconfigurable robotics applications. An explicit design goal for a system based
on PBO was to minimise communication and synchronisation, thus facilitating
reuse.

PBO implements analysis for timeliness and facilitates behavioural models
to ensure predictable communication and behaviour. The communication and
computation model is based on the pipes-and-filters model.

The Chimera OS is a large and dynamically configurable operating system
supporting dynamic binding, it is not resource constrained. The low coupling
between the components makes it easy to modify or replace a single object.
Due to the low coupling between components through simple communication
and synchronisation the objects are highly reusable. The maintainability is also
affected in a good way due to the loose coupling between the components.

A single PBO-component is tightly coupled to the Chimera OS,and is an
independent concurrent process, i.e., they use a rudimentary one-to-one map-
ping.

This component technology has too little focus on non-functional proper-
ties considering the requirements on vehicles. Further themapping between
components and tasks is a one-to-one mapping, where resource efficiency is
not considered.

IEC 61131 : Programmable Logic Controllers

Because of the lack of standards for PLCs (Programmable Logic Controllers),
IEC instituted this standard in 1993 [77]. At that time several well established
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techniques for programming PLCs existed, so the authors of the standard found
it necessary to include several different programming methods. The standard
describes three graphical and two text based languages, it concentrates on the
syntax and leave the semantics less definitive. It is port-based and very re-
source constrained. There are no non-functional properties which makes the
analyzability low.

One of the graphical languages included in the standard can be called a
component language, the Function Block Diagram (FBD) language. It is a
graphical language that can be used to define applications interms of control
blocks, which also can be imagined as components.

In principle, user-defined components (function blocks) may contain con-
trol code very similar to conventional PLC programs in any ofthe defined pro-
gramming languages. The control code defined in the components can there-
fore be re-used within the same PLC task, shared between multiple tasks. There
is however no pronounced strategy for allocating components to tasks, and it is
up to the user to define an allocation.

Further, IEC61131-3 does not support non-functional properties. Thus, it
is not very suitable regarding vehicular requirements.





Chapter 5

Conclusions and Future
Work

We have addressed the problem of mapping components to run-time systems
by developing answers to two main research questions. One ofthe main con-
tributions of the thesis is the development and evaluation of the methods used
in allocating components to real-time tasks. The evaluation clearly shows that
these methods can provide substantial benefits in terms of reduced memory
consumption and CPU-utilization and thereby in terms of a reduced hardware
requirement. This is the main contributor to answering the questions. We have
also investigated several issues concerning component model requirements in
relation to the allocation of components. We have also investigated several
issues concerning what quality attributes are important for the vehicular indus-
try. Further we have studied resource effective component technologies and
resource reclaiming for the often pessimistic real-time analysis. In the follow-
ing sections we will summarize the contributions of this work, and discuss how
our research will be continued in the future.

5.1 Summary

The main contributions of the presented research have been summarized and
are presented in the list below:

• A Classifications of the importance of software quality attributes accord-
ing to companies in the vehicular domain.

41
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• An Evaluation of the suitability of commercial component models with
respect to the requirements of the vehicular industry.

• A proposal for the use of component to task allocation to increase per-
formance and system utilization, and a proposal for an evaluation frame-
work for such allocations.

• The development of a real-time component model that utilizes theMulti-
ple Versions Paradigmtogether with different existing real-time schedul-
ing methods and theAdaptive Threshold Algorithm.

• A proposal for the use of a software component technology fordevelop-
ing embedded systems through permitting the use of real-time theory by
synthesis of run-time mechanisms for predictable execution according to
the temporal specification of the component model.

5.2 Future Work

Future work will primarily be in a further study of the allocation from compo-
nents to real-time tasks. It will include the addition of other allocation criteria,
e.g., by adding jitter and blocking requirements. When adding jitter constraints
and blocking, trade offs arise between switch overhead and memory size versus
deviation from nominal start and end times and blocking times. Furthermore, a
more efficient scheduling policy and priority assignment will be applied. Due
to the architecture of the GA it is easy to add new optimizations such as those
proposed.

Further validation of the work presented in this thesis is necessary. In or-
der to facilitate this, a prototype implementation of a component technology
within the SAVE project is under development where the core part is being
completed. The prototype will enable evaluation of different technology real-
isations with respect to performance. The model transformation of that tech-
nology needs additional attention, particularly the strategies for allocation of
components to tasks. We will integrate our methods into thiscomponent tech-
nology (SaveCCM [28]).

Other approaches to future work are to add Case-Based Reasoning (CBR)
for a knowledge based approach to help engineers determine suitable task al-
locations for specific domains.
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Abstract

The embedded systems domain represents a class of systems that have high re-
quirements on cost efficiency as well as run-time propertiessuch as timeliness
and dependability. The research on component-based systems has produced
component technologies for guaranteeing real-time properties. However, the
issue of saving resources by allocating several componentsto real-time tasks
has gained little focus. Trade-offs when allocating components to tasks are,
e.g., CPU-overhead, footprint and integrity. In this paperwe present a general
approach for allocating components to real-time tasks, while utilizing existing
real-time analysis to ensure a feasible allocation. We demonstrate that CPU-
overhead and memory consumption can be reduced by as much as 48% and
32% respectively for industrially representative systems.
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6.1 Introduction

Many real-time systems (RTS) have high requirements on safety, reliability
and availability. Furthermore the development of embeddedsystems is often
sensitive to system resource usage in terms of, e.g., memoryconsumption and
processing power. Historically, to guarantee full controlover the system be-
haviour, the development of embedded systems has been done using only low
level programming. However, as the complexity and the amount of function-
ality implemented by software increase, so does the cost forsoftware devel-
opment. Also, since product lines are common within the domain, issues of
commonality and reuse are central for reducing cost. Component-Based De-
velopment (CBD) has shown to be an efficient and promising approach for
software development, enabling well defined software architectures as well as
reuse. Hence, CBD can be used to achieve goals such as cost reduction, and
quality and reliability improvements.

In embedded RTS timing is important, and scheduling is used to create
predictable timing. Furthermore, these systems are often resource constrained;
consequently memory consumption and CPU load are desired tobe low. A
problem in current component-based embedded software development prac-
tices is the allocation of components to run-time tasks [1].Because of the
real-time requirements on most embedded systems, it is vital that the alloca-
tion considers temporal attributes, such as worst case execution time (WCET),
deadline (D) and period time (T). Hence, to facilitate scheduling, components
are often allocated to tasks in a one-to-one fashion. However, for many em-
bedded systems it is desired to optimize for memory and speed[2], thus the
one-to-one allocation is unnecessarily memory and CPU consuming.

Embedded RTS consist of periodic and sporadic events that usually have
end-to-end timing requirements. Components triggered by the same periodic
event can often be coordinated and executed by the same task,while still pre-
serving temporal constraints. Thus, it is easy to understand that there can be
profits from allocating several components into one task. Some of the bene-
fits are less memory consumption in terms of stacks and task control blocks
or lower CPU utilization due to less overhead for context switches. Different
properties can be accentuated depending on how components are allocated to
tasks, e.g., memory usage and performance; Hence, there aremany trade-offs
to be made when allocating components to tasks.

Allocating components to tasks, and scheduling tasks are both complex
problems and different approaches are used. Simulated annealing and genetic
algorithms are examples of algorithms that are frequently used for optimization
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problems. However, to be able to use such algorithms, a framework to calcu-
late properties, such as memory consumption and CPU-overhead, is needed.
The work presented in this paper describes a general framework for reasoning
about trade-offs concerning allocating components to tasks, while preserving
extra-functional requirements. Temporal constraints areverified and the allo-
cations are optimized for low memory consumption and CPU-overhead. The
framework is evaluated using industrially relevant component assemblies, and
the results show that CPU-overhead and memory consumption can be reduced
by as much as 48% and 32% respectively.

The idea of assigning components to tasks for embedded systems while
considering extra-functional properties and resource utilization is a relatively
uncovered area. In [3, 4] Bondarev et. al. are looking at predicting and sim-
ulating real-time properties on component assemblies. However, there is no
focus on increasing resource utilization through component to task allocation.
The problem of allocating tasks to different nodes is a problem that has been
studied by researchers using different methods [5, 6]. There are also meth-
ods proposed for transforming structural models to run-time models [7, 8, 1],
but extra-functional properties are usually ignored or considered as non-critical
[9]. In [10], an architecture for embedded systems is proposed, and it is iden-
tified that components has to be allocated to tasks, however there is no focus
on the allocation of components to tasks. In [9] the authors propose a model
transformation where all components with the same priorityare allocated to
the same task; however no consideration is taken to lower resource usage. In
[11], the authors discuss how to minimize memory consumption in real-time
task sets, though it is not in the context of allocating components to tasks. Shin
et. al [12] are discussing the code size, and how it can be minimized, but does
not regard scheduling and resource constraints.

The outline for the rest of the paper is as follows; section 2 gives an overview
of the component to task allocations, and describes the structure of the compo-
nents and tasks. Section 3 describes a framework for calculating the properties
of components allocated to tasks. Section 4 discusses allocation and schedul-
ing approaches, while evaluations and simulations are presented in section 5.
Finally in section 6, future work is discussed and the paper is concluded. De-
tailed data regarding the simulations can be found in appendix A.
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6.2 Allocating components to real-time tasks

In RTS temporal constraints are of great importance and tasks control the ex-
ecution of software. Hence, components need to be allocatedto tasks in such
a way that temporal requirements are met, and resource usageis minimized.
Given an allocation we determine if it is feasible and calculate the memory
consumption and task switch overhead. To impose timing constraints, we de-
fine end-to-end timing requirements and denote them transactions. Transac-
tions are defined by a sequence of components and a deadline. Thus, the work
in this paper has three main concerns:

1. Verification of allocations from components to tasks.

2. Calculating system properties for an allocation

3. Minimizing resource utilization

CBSE is generally not used when developing embedded RTS, mostly due
to the lack of efficient mappings to run-time systems and real-time properties.
One approach that allows an efficient mapping from components to a RTS is
the Autocomp technology [13]. An overview of the Autocomp technology can
be seen in Figure 6.1. The different steps in the figure are divided into design-
time, compile-time, and run-time to display at which point in time during de-
velopment they are addressed or used. The compile-time steps, illustrated in
Figure 6.1, incorporate an allocation from the component-based design, to a
real-time model and mapping to a real-time operating system(RTOS). During
this step the components are allocated to real-time tasks and the component
requirements are mapped to task-level attributes.

By combining the notion of transactions and the pipe-and-filter interac-
tion model we get a general component model that is easy to implement for
a large set of component technologies for embedded systems such as Auto-
comp [13], SaveCCM [14], Rubus [15], Koala [16], Port-basedobjects [17],
IEC61131[18] and Simulink[19]. The component model characteristics are
described in the section 6.2.1 and the task model characteristics are described
in section 6.2.2.

6.2.1 Component model characteristics

In this section we describe characteristics for a general component model that
is applicable to a large set of embedded component models. Both component
and task models described are meta-models for modelling themost important



58 Paper A

 
Design-
TimeComponent model

Component to Task 
Allocation

Real-time modelReal-Time
Analysis

tt

Compile-
Time

Synthesis

Run-
Time

RTOS

Target Application

Figure 6.1: Autocomp system description

attributes of an allocation between components and tasks. The component
interaction model used throughout this paper is a pipe-and-filter model with
transactions. Each component has a trigger; a time trigger or an event trigger
or a trigger from a preceding component. A component transaction describes
an order of components and defines an end-to-end timing requirement. In Fig-
ure 6.2, the notation of a component assembly with six components and four
transactions is described. The graphical notation is similar to the one used in
UML.

The component model chosen is relatively straight forward to analyse and
verify. The pipe-and-filter interaction model is commonly used within the em-
bedded systems domain. Many component models for embedded systems have
the notion of transactions built in; however, if a componentmodel lacks the
notion of transactions, there are often possibilities to model end-to-end timing
requirements and execution order at a higher abstraction level. In general a
system is described with components, component relations,and transactions
(flow) between components. The component model is describedwith:

Componentci is described with the tuple< Si, Qi, Xi, Mi >, whereSi is
a signal from another component, an external event or a timedevent.
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Qi represents theminimum inter arrival time(MINT) in the case of an
external event. It represents the period in the case of a timed trigger and
it is unused if the signal is from another component. The parameterXi

is the WCET for the component, andMi is the amount of stack required
by the component.

Isolation setI defines a relation between components that should not be allo-
cated. It is described with a set of component pairsI =< (c1, c2), (c3, c4) >
that define what components may not be allocated to the same task.
There may be memory protection requirements or other legitimate en-
gineering reasons to avoid allocating certain combinations of compo-
nents; for example, if a component has a highly uncertain WCET. The
isolation set is indexed with subscripts denoting next inner element, i.e.,
I1 = (c1, c2) andI12 = c2.

Component Transactionctri is an ordered relation between componentsNi =
c1, c2, ..., cn, and an end-to-end deadlinedci. The deadline is relative to
the event that triggered the component transaction, and thefirst compo-
nent within a transaction defines the transaction trigger. Acomponent
transaction can stretch over one or several components, anda compo-
nent can participate in several component transactions. The component
ca should execute before the componentcb, and the componentcb should
execute beforecc to produce the expected results etc. The correct execu-
tion behaviour for the setN = c1, c2, ..., cn can be formalized with the
regular expression denoted in 6.1.

c1Σ
∗c2Σ

∗...cn (6.1)

WhereΣ∗ denotes all allowed elements defined byN .
In a component assembly, event triggers are treated different from the pe-

riodic triggers as the former is not strictly periodic. There is only a lower
boundary restricting how often it can occur, but there is no upper bound re-
stricting how much time may elapse between two invocations.Thus, if an
event trigger could exist inside or last in a transaction, itwould be impossible
to calculate the response time for the transaction, and hence a deadline could
never be guaranteed.

6.2.2 Task characteristics

The task model specifies the organization of entities in the component model
into tasks and transactions over tasks. During the transformation from compo-
nent model to run-time model, extra-functional propertieslike schedulability
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and response-time constraints must be considered in order to ensure the cor-
rectness of the final system. Components only interact through explicit inter-
faces; hence tasks do not synchronize outside the componentmodel. The task
model is for evaluating schedulability and other properties of a system, and is
similar to standard task graphs as used in scheduling theory, augmented with
exclusion constraints (isolation). The task model is described with:

SystemK is described with the tuple< A, τ, ρ > where A is a task set sched-
uled by the system. The constantτ is the size of each task control block,
and can be considered constant and the same for all tasks. Theconstant
ρ is the time associated with a task switch. The system kernel is the
only explicitly shared resource between tasks; hence we do not consider
blocking. Also blocking is not the focus of this paper.

Task ti is described with the tuple< Ci, Ti, wceti, stacki > whereCi is an
ordered set of components. Components within a task are executed in
sequence. Components within a task are executed at the same priority as
the task, and a high priority task pre-empts a low priority task. Ti is the
period or minimum inter arrival time of the task. The parameterswceti
andstacki are worst case execution time and stack size respectively. The
wceti, stacki and period (Ti) are deduced from the components inCi.
The wceti is the sum of all the WCETs for all components allocated
to the task. Hence, for a taskti, the parameterswceti andstacki are
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calculated with (2) and (3) .

wcetn =
∑

∀i(ci∈Cn)

(Xi) (6.2)

stackn = ∀i(ci ∈ Cn)max(Mi) (6.3)

Task transaction ttri is a sequence of tasksOi = t1, t2, ..., tk and a relative
deadlinedti. Oi defines an ordered relation between the tasks, where in
the case ofO = t1, t2; t1 is predecessor tot2. The timing and execu-
tion order requirements of a task transactionttri are deduced from the
requirements of the component transactionsctri. The task transaction
ttri has the same parameter as the component transactionsctri but t1,
t2,..., tk are the tasks that map the componentca, cb, ..., cn, as denoted
in Figure 6.4. If several task transactionsttri span over the exact same
tasks, the transactions are merged and assigned the shortest deadline.
An event-triggered task may only appear first in a transaction. Two tasks
can execute in an order not defined by the transactions. This depends on
that the tasks have different period times, and thereby suffer from period
phasing; hence transactions can not define a strict precedence relation
between two tasks. Figure 6.3 is an execution trace that shows the rela-
tion between tasks and transactions. The tasks and transactions are the
same as in Figure 6.4, left part.

6.3 Allocation framework

The allocation framework is a set of models for calculating properties of allo-
cations of components to tasks. The properties calculated with the framework
are used for optimization algorithms to find feasible allocations that fulfil given
requirements on memory consumption and CPU-overhead.

For a task set A that has been mapped from components in a one-to-one
fashion, it is trivial to calculate the system memory consumption and CPU-
overhead since each task has the same properties as the basiccomponent.
When several components are allocated to one task we need to calculate the
appropriateness of the allocation and the tasks properties. For a set of com-
ponents,c1,...,cn, allocated to a set of tasks A, the following properties are
considered.

• CPU-overheadpA
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t1 = {C1,T1,wcet1,stack1} = {{c 1,c2,c3},4,1,10} 
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c5 = {S5,Q5,X5,M5} = {c 4,-,1,4} 

c6 = {S6,Q6,X6,M6}  = {E,6,1,10} 

Figure 6.3: Task execution order and task transactions.

• Memory consumptionmA

Each componentci has a memory consumption stack. The stack of the task
is the maximum size of all components stacks allocated to thetask since all
components will use the same stack. The CPU overhead p, the memory con-
sumption m for a task setA in a system K are formalized in equations 6.4 and
6.5:

pA =
∑

∀i(ti∈A)

ρ

Ti

(6.4)

mA =
∑

∀i(ti∈A)

(stacki + τ ) (6.5)

WherepA represents the sum of the task switch overhead divided by theperiod
for all tasks is the system, andmA represents the total amount of memory used
for stacks and task control blocks for all tasks in the system

6.3.1 Constraints on allocations

There is a set of constraints that must be considered when allocating compo-
nents. These are:

• Component isolation
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Figure 6.4: Two allocations from components to tasks dependent on intersect-
ing transactions.

• Intersecting transactions

• Trigger types and period times

• Schedulability

Each constraint is further discussed below:

Isolation

It is not realistic to expect that components can be allocated in an arbitrary way.
There may be explicit dependencies that prohibits that certain components are
allocated together, therefore the isolation set I defines which components may
not be allocated together. There may be specific engineeringreasons to why
some components should be separated. For instance, it may bedesired to min-
imize the jitter for some tasks, thus components with highlyuncertain WCET
should be isolated. There may also be integrity reasons to separate certain com-
binations of components. Hence it must be assured that two components that
are defined to be isolated do not reside in the same task. This can be validated
with equation 6.6:

Iso(a, b) : ca has an isolation requirement tocb

¬∃i(∀j∀k(cj ∈ Ci ∧ ck ∈ Ci ∧ Iso(j, k))) (6.6)
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Where there must not exist any taskti that has two componentscj andck,
if these components have an isolation requirement.

Intersecting transactions

If component transactions intersect, there are different strategies for how to
allocate the component where the transactions intersect. The feasibility is de-
scribed in equations 6.7 and 6.8. A component in the intersection should not
be allocated with any preceding component if both transactions are event trig-
gered; the task should be triggered by both transactions to avoid pessimistic
scheduling. A component in the intersection of one time-triggered transaction
and one event-triggered transaction can be allocated to a separate task, or with
a preceding task in the time-triggered transaction. A component in the intersec-
tion of two time-triggered transactions can be allocated arbitrarily. In Figure
6.4, two different allocations are imposed due to intersecting event-triggered
transactions. In the left part of Figure 6.4 there is an intersection between a
time triggered and an event triggered transaction. Then theintersecting com-
ponentc3 is allocated to the task triggered by the time triggered transaction. In
the right part of the figure, where two event triggered transactions intersect, the
componentc3 is allocated to a separate task, triggered by both transactions.

TE(tr) : transaction is event triggered

TT (tr) : transaction is time triggered

P (a, b, d) : ca is predecessor tocb in the setNd

Xbc
a = ca ∈ Nb ∧ ca ∈ Nc

Y c
ab = ca ∈ Cc ∧ cb ∈ Cc

¬∃i(∀j∀k∀l∀m(Xjk

l ∧Y
i

lm∧TE(ctrj)∧TE(ctrk)∧(P (m, l, k)∨P (m, l, j)))) (6.7)

¬∃i(∀j∀k∀l∀m(Xjk

l ∧Y
i
lm∧cm ∈ Nk∧TT (ctrj)∧TE(ctrk)∧P (cm, cl, Nk))) (6.8)

Where there must not exist any taskti that has two componentscl andcm

in a way that two component transactionsctrj andctrk intersect incl, andcm

precedescl in the transactionsctrj or ctrk, if ctrj or ctrk are event-triggered.

Triggers

Some allocations from components to tasks can be performed without impact-
ing the schedulability negatively. A component that triggers a subsequent com-
ponent can be allocated into a task if it has no other explicitdependencies, see
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(1) in Figure 6.5. Components with the same period time can beallocated to-
gether if they do not have any other explicit dependencies, see (2) in Figure
6.5. To facilitate analysis, a task may only have one trigger, so time triggered
components with the same period can be triggered by the same trigger and thus
allocated to the same task. However, event triggered components may only be
allocated to the same task if they in fact trigger on the same event, and have
the same minimum inter arrival time, see (3) in Figure 6.5. Components with
harmonic periods could also be allocated to the same task. However, harmonic
periods create jitter. Consider two components with the harmonic periods five
and ten that are allocated to one task. The component with theperiod five will
run every invocation, while the other component will run every second invoca-
tion, which creates a jitter; therefore we have chosen not topursue this specific
issue.

 
A B => A B (1)

T T => T T (2)

E E => (3)A A EA EA

Figure 6.5: Component to task allocation considering triggers.

Schedulability

Schedulability analysis is highly dependent on the scheduling policy chosen.
Depending on the system design, different analyses approaches have to be con-
sidered. The task and task transaction meta-models are constructed to fit dif-
ferent scheduling analyses. In this work we have used fixed priority exact
analysis. However, the model can easily be extended with jitter and blocking
for real-time analysis models that use those properties. The framework assigns
each task a unique priority pre run-time, and it uses exact analysis for schedu-
lability analysis, together with the Bate and Burns [20] approach for verifying
that the transaction deadlines are met.
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6.4 Using the framework

An allocation can be performed in several different ways. Ina small system
all possible allocations can be evaluated and the best chosen. For a larger sys-
tem, however, this is not possible due to the combinatorial explosion. Different
algorithms can be used to find a feasible allocation and scheduling of tasks.
For any algorithm to work there must be some way to evaluate anallocation
or real-time schedule. The proposed allocation framework can be used to cal-
culate schedulability, CPU-overhead and total memory load. The worst-case
allocation is a one-to-one allocation where every component is allocated to
one task. The best-case allocation on the other hand, is where all components
are allocated to one single task. To allocate all componentsto one task is very
seldom feasible. Also, excessive allocation of componentsmay negatively af-
fect scheduling, because the granularity is coarsened and thereby the flexibility
for the scheduler is reduced.

Simulated annealing, genetic algorithms and bin packing are well known
algorithms often used for optimization problems. These algorithms have been
used for problems similar to those described in this paper; bin packing, e.g.,
has been proposed in [21] for real-time scheduling. Here we briefly discuss
how theses algorithms can be used with the described framework, to perform
component to task allocations.

Bin Packing is a method well suited for our framework. In [22] a bin packing
model that handles arbitrary conflicts (BPAC) is presented.The BPAC
model constrains certain elements from being packed into the same bin,
which directly can be used in our model as the isolation setI. The bin-
packing feasibility function is the schedulability, and the CPU and mem-
ory overhead constitute the optimization function.

Genetic algorithms can solve, roughly, any problem as long as there is some
way of comparing two solutions. The framework proposed in this paper
give the possibility to use the properties memory consumption, CPU-
overhead and schedulability as grades for an allocation, inorder to evolve
new allocation specimen. In, e.g., [23] and [24], genetic algorithms are
used for scheduling complex task sets and scheduling task sets in distrib-
uted systems.

Simulated annealing (SA) is a global optimization technique that is regularly
used for solving NP-Hard problems. The energy function consists of
a schedulability test, the memory consumption and CPU-overhead. In
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[6] and [25] simulated annealing is used to place tasks on nodes in a
distributed system.

6.5 Evaluation

In order to evaluate the performance of the allocation approach the framework
has been implemented. We have chosen to perform a set of allocations and
compare the results to a corresponding one-to-one allocation where each com-
ponent is allocated to a task. We compare the allocations with respect to if
the allocation is feasible (real-time analysis), memory consumption and CPU
overhead. The implementation is based on genetic algorithms (GA) [26], and
as Figure 6.6 shows, each gene represents a component and contains a refer-
ence to the task it is assigned. Each chromosome represents the entire system
with all components assigned to tasks. Each allocation produced by the GA
is evaluated by the framework, and is given a fitness value dependent on the
validity of the allocation, the memory consumption and the CPU overhead.
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Figure 6.6: The genetic algorithm view of the component to task allocation; A
system with ten components, allocated to four tasks.

6.5.1 Fitness function

The fitness function is based on the feasibility of the allocation together with
the memory consumption and CPU overhead. The feasibility part of the fit-
ness function is mandatory, i.e., the fitness value for a low memory and CPU
overhead can never exceed the value for a feasible allocation. The feasibility
function consists of: I which represents component isolation, IT representing
intersecting transactions, Tr representing trigger typesand period times, and
finally Sc represents scheduling. Consider that each of these feasibility tests
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are assigned a value greater than 1 if they are true, and a value of 0 if they are
false. The parameter n represents the total number of components. Then, the
fitness function can be described as with equation 6.9.

Fitness =

(

(I+IT+Tr+Sc)F+
( n

mA

+
∑

∀i(ti∈A)

ρ · n

Ti

)

O

)

·(I·IT ·Tr·Sc+1)

(6.9)
Where the fitness is the sum of all feasibility values times a factor F, added

with the inverted memory usage and performance overhead, times a factor O.
The total fitness is multiplies with 1 if any feasibility testfail, and the products
of all feasibility values plus 1 if all feasibility tests succeed.

6.5.2 Simulation set up

This section describes the simulation method and set up. Foreach simulation
the genetic algorithm assigns components to tasks and evaluates the alloca-
tion, and incrementally finds new allocations. The evaluation is performed in a
number steps:

1. System data - components and transactions with deadlinesare created.
There exist at least one solution for all data that are passedon to the GA.

2. Initial Population - The GA creates a random population that makes up a
set of allocations. One population comprises several chromosomes, and
each chromosome represents an allocation.

3. Apply Fitness function - The fitness function calculates how fit a chro-
mosome is. The higher fitness value, the more likely is the chromosome
to be passed on to the next generation.

4. Create New population - The GA combines different chromosomes, and
performs mutations by reassigning one or several components.

5. Repeat from step 3, each iteration is referred to as a generation.

The system data is produced by creating a random schedulabletask set, on
which all components are randomly allocated. The componentproperties are
deduced from the task they are allocated. Transactions are deduced the same
way from the task set. In this way it is always at least one solution for each
system. However, it is not sure that all systems are solvablewith a one-to-one
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allocation. The components and component transactions areused as input to
the framework. Hereafter, systems that are referred to as generated systems
are generated to form input to the framework. Systems that come out of the
framework are referred to as allocated systems. The simulation parameters are
set up as follows:

• The number of components of a system is randomly selected from a
number of predefined sets. The numbers of components in the systems
are ranging in twenty steps from 40 to 400, with a main point on120
components.

• The period times for the components are randomly selected from a pre-
defined set of different periods.

• The worst case execution time (WCET) is specified as a percentage of
the period time and chosen from a predefined set. The WCETs together
with the periods in the system constitutes the system load.

• The transaction size is the size of the generated transactions in percent-
age of the number of components in the system. The transaction size is
randomly chosen from a predefined set. The longer the transactions, the
more constraints on how components may be allocated.

• The transaction deadline laxity is the percentage of the lowest possible
transaction deadline for the generated system. The transaction deadline
laxity is evenly distributed among all generated systems and is always
greater or equal to one, to guarantee that the generated system is possible
to map. The higher the laxity, the less constrained transaction deadlines.

One component can be involved in more than one transaction, resulting in more
constraints in terms of timing. The probability that a component is participating
in two transactions is set to 50% for all systems.

To get as realistic systems to simulate as possible, the values used to gen-
erate systems are gathered from some of our industrial partners. The industrial
partners chosen are active within the vehicular embedded system segment. A
complete table with all values and distributions, of the system generation val-
ues, can be found in appendix A. The task switch time used for the system is 22
µs, and the tcb size is 300 bytes. The task switch time and tcb size are repre-
sentative of commercial RTOS tcb sizes and context switch times for common
CPUs.
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The simulations are performed for four different utilization levels, 30%,
50%, 70% and 90%. For each level of utilization 1000 different systems are
generated with the parameters presented above.

6.5.3 Results

A series of simulations have been carried out to evaluate theperformance of
the proposed framework. To evaluate the schedulability of the systems, FPS
scheduling analysis is used. The priorities are randomly assigned by the genetic
algorithm, and no two tasks have the same priority. The simulations compare
the approach in this paper to a one-to-one allocation. Table6.5.3 summarizes
the results from the simulations. The columns entitled "stack" and "CPU" dis-
plays the average memory size (stack + tcb) and CPU overhead respectively,
for all systems with a specific load and transaction deadlinelaxity. The column
entitled "success" in the 1-1 allocation section displays the rate of systems that
are solvable with the 1-1 allocation. The column entitled "success" in the GA
allocation section displays the rate at which our frameworkfinds allocations,
since all systems has at least one solution. The stack and CPUvalues are only
collected from systems where a solution was found.

The first graph for the simulations (Figure 6.7) shows the success ratio,
i.e., the percentage of systems that were possible to map with the one-to-one
allocation, and the GA allocation respectively. The success ratio is relative
to the effort of the GA, and is expected to increase with a higher number of
generations for each system. Something that might seem confusing is that the
success ratio is lower for low utilization than for high utilizations, event though
it, intuitively, should be the opposite. The explanation tothis phenomenon is
that the timing constraints become tighter as fewer tasks participate in each
transaction (lower utilization often leads to fewer tasks). With fewer tasks the
task phasing, due o different periods, will be lower, and thedeadline can be set
tighter.

The second graph (Figure 6.8) shows that the deadlines are relaxed with
higher utilization, since the allocations with relaxed deadlines perform well,
and the systems with a more constrained deadline show a clearimprovement
with higher utilization.

The third graph (Figure 6.9) shows for both approaches the average stack
size for the systems at different utilization. The comparison is only amongst
allocations that are have been mapped by both strategies. The memory size is
consistent of the tcb and the stack size. The tcb size is 300 byte. As described
earlier, each task allocates a stack that is equal to the sizeof the largest stack
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Load Laxity
1-1 allocation GA allocation

Stack CPU success stack CPU success

30%

All 28882 4,1% 74% 17380 2,0% 87%
1.1 25949 3,5% 39% 14970 1,6% 58%
1.3 33077 4,4% 78% 21005 2,2% 97%
1.5 26755 4,1% 95% 15503 2,0% 99%

50%

All 37277 4,8% 82% 24297 2,4% 90%
1.1 35391 4,3% 49% 23146 2,3% 64%
1.3 38251 4,8% 88% 25350 2,5% 96%
1.5 37043 4,9% 98% 23740 2,3% 100%

70%

All 44455 5,1% 85% 30694 2,7% 91%
1.1 44226 5,0% 58% 31638 2,7% 73%
1.3 44267 5,1% 94% 30686 2,7% 98%
1.5 44619 5,2% 98% 30232 2,6% 100%

90%

All 46943 5,6% 87% 37733 3,1% 93%
1.1 54858 5,7% 65% 41207 3,4% 80%
1.3 49607 5,5% 92% 35470 3,0% 98%
1.5 53535 5,7% 98% 38260 3,1% 99%

Table 6.1: Memory, CPU overhead and success ratio for 1-1 andGA alloca-
tions
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Figure 6.8: Success rate for allocations

among its allocated components.
The fourth graph (Figure 6.10) shows the average task switchtime in mi-

cro seconds for the entire system. The task switch overhead is only depen-
dent on how many tasks there are in the system. The average improvement
of GA allocation in comparison to the 1-1 allocation is, for the success ratio,
10%. The memory size is reduced by 32%, and the task switch overhead is
reduced by 48%. Hence we can see a substantial improvement inusing smart
methods to map components to tasks. A better strategy for setting priorities
would probably lead to an improvement in the success ratio. This is expected
because the constraints are more relaxed, allowing for morefreedom in the al-
location. Further we see that lower utilization give betterimprovements than
higher laxity of the deadlines. Since lower utilization often in the simulations
give tighter deadlines, we can conclude that the allocationdoes not negatively
impact schedulability. However, the more components, i.e., the higher load,
the more constrains are put on the transactions, and therebyon the compo-
nents, making it harder to perform a good allocation.

6.6 Conclusions and Future Work

Resource efficiency is important for RTS, both regarding performance and
memory. Schedulability, considering resource efficiency,has gained much fo-
cus, however the allocation between components to tasks hasgained very little
focus. Hence, in this paper we have described an allocation framework for allo-
cating components to tasks, to facilitate existing scheduling and optimization
algorithms such as genetic algorithms, bin packing and simulated annealing.
The framework is designed to be used during compile-time to minimize re-
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source usage and maximize timeliness. It can also be used iteratively in case
of design changes; however with some obvious drawbacks on the results. The
framework can easily be extended to support other optimizations, besides task
switch overhead and memory consumption. Results from simulations show
that the framework gives substantial improvements both in terms of memory
consumption and task switch overhead. The described framework also has a
high ratio in finding feasible allocations. Moreover, in comparison to allo-
cations performed with a one-to-one allocation our framework performs very
well, with 32% reduced memory size and 48% reduced task switch overhead.
The simulations show that the proposed framework performs allocations on
systems of a size that covers many embedded systems, and in a reasonable
time for an off-line tool. We have also shown how CPU load and deadline
laxity affects the allocation. Future work includes addingother allocation cri-
teria, e.g., by looking at jitter requirements, and blocking. By adding jitter
constraints and blocking, trade-offs arise between switchoverhead and mem-
ory size versus deviation from nominal start and end times and blocking times.
Furthermore, a more efficient scheduling policy and priority assignment will
be applied. Due to the nature of GA it is easy to add new optimizations as the
ones suggested above.
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Appendix A

In this appendix we show the specific data used for generatingsystems to the
simulations. The software is implemented using java, and for the basic struc-
tures and operations of the genetic algorithm the open gnu library Gajit, written
by Mathew Faupel. The GA was setup with an initial populationof 300 indi-
viduals, and every simulation was run for 500 generations. The simulations
were run on a 1.8 GHz Pentium 4m processor with 768 MB of RAM. The
mean time for each simulation is 133 seconds. The parametersused for the GA
in the experiments are shown in table 6.
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Param on component level WCET in % of period Dist. %
Number components Dist. % 2 45
40 1,25 4 50
50 6,25 8 5
60 10 Stack size Dist. %
70 6,25 256 10
80 2,75 512 25
100 7,5 1024 25
120 13 2048 35
140 7,5 4096 10
150 5 Param on System level
160 2,5 ctr. size % of num. comp. Dist. %
180 8 10 10
200 5,25 13 25
210 5 17 25
240 9 21 25
250 1,25 25 15
280 5 Laxity % of ctr.dl Dist. %
300 2 110 33
320 1 130 33
350 1,25 150 33
400 0,25 Utilization % Dist. %
Isolation % Dist. % 30 25
0 20 50 25
10 30 70 25
20 30 90 25
30 20 GA parameters
Period time (ţs) Dist. % GA property Value
10000 20 Population 300
25000 20 Generations 500
50000 40 Elite rate 5%
100000 20 Cull rate 40%

Mutation rate 1%

Table 6.2: Data used for generating systems, and GA parameter
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Abstract

The use of real-time systems (RTS) has gained a wide acceptance in a
number of industrial applications during the past years, aswell as the field
is continuously expanding. At the same time, the main challenge for software
developers today, is to deal with complexity and to quickly adapt to changes.
Component-based software engineering (CBSE) has arised asa technology to
meet a number of issues like software reusability, reliability, and a short time
to market for industrial products. However, the general advantages of utilizing
CBSE techniques for RTS are desirable only if the correct timing can be main-
tained. Therefore we need real-time theory, which providesrun-time mecha-
nisms and analysis to guarantee the timeliness in the systembased on an upper
bound of the execution time. In this paper we present a component model,
together with run-time mechanisms, gathering benefits provided by both RTS
and CBSE. In particular, we show that the proposed model is a suitable pack-
age for efficient utilization of the multiple version paradigm. The purpose for
using a multiple version technique is to ensure real-time guarantee for a mini-
mum level of service quality while providing user-specifiedrun-time flexibility
in terms of increased level of quality based on resource availability.
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7.1 Introduction

Computer control systems are embedded in a large and growinggroup of prod-
ucts. Products such as automotive vehicles, aircraft, and industrial robots are
equipped with advanced computer control systems and have high requirements
of reliable and safe operation. A motivation for establishing a CBSE discipline
for such systems is that the systems are becoming increasingly more complex
due to the inclusion of more functionality. At the same time,the product cy-
cles are becoming shorter leading to requirements of shorter time to market.
Moreover, the industry strives to enable cost effective implementation of new
functionality. Thus, the challenge is cost efficient development of these sys-
tems, with respect to business, quality, reliability, and functionality.

Although the motivation for utilizing CBSE methods for development of
embedded control systems are essentially the same as for general purpose soft-
ware, the requirements on a component model for embedded systems are not
the same. For embedded control systems a component model must focus on
extra-functional requirements most often not addressed tothe extent required
by general purpose component models. This includes requirements on reliabil-
ity, timing, resource usage and linkage to specific hardware. It might be a trade
off between flexible composition which often is in focus by component models
and some extra functional properties. For example, it mightbe a requirement
that components for an embedded system must be physically smaller than the
common office application component; no unused code can be included since
the embedded memory shall be as small as possible.

We are proposing a component model aimed for embedded control systems,
addressing the extra functional requirements with focus onreal-time analysis.
The real-time requirements of a control system can be directly descended from
the environment that is controlled. The most common real-time requirement
of a control system is to generate a response to an event before a certain point
in time, which forms the deadline of the response. To be able to guarantee
that the deadline of a certain event can be met during all possible conditions,
a schedulabillity analysis is applied. However, analysis of real-time systems
can be restrictive since, in order to guarantee the timeliness in the system, it
assumes a worst case scenario based on Worst Case Execution Time (WCET)
estimations and worst case environment assumptions. Sincethe worst case
scenario in most cases will occur very infrequently, the resource usage at run-
time will be lower than estimated.

Consider that some missions in a system can be performed withdifferent
quality levels, for instance, monitoring more or less parameters, more or less
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deep iterations in numerical approximations, sometimes itmay even be possi-
ble to not execute a particular task at all and so forth. It would then be possible
to adjust the quality level to the available resources and thereby reclaim re-
sources during run-time. The Multiple Versions paradigm [1] is a method that
can be used to reduce the consequences of pessimistic analysis of real-time
systems. In this paper we are packaging this paradigm into real-time compo-
nents.

The component model presented is based on ideas from the model de-
scribed in [2]. Their work defines a prediction enabled component technology
(PECT) [3]. In a PECT, both constructive and analytic modelsare considered.
A constructive model deals with functional properties, while an analytic model
is concerned with non functional (extra functional) properties, e.g., timing and
memory issues.

The contribution of this work is the joining of component technology and
theories for obtaining flexible, yet reliable, real-time systems. We have defined
a component model that makes this integration possible, while still preserv-
ing fundamental component properties. Moreover, we have extended existing
work to also allow aperiodic activities, something which isespecially impor-
tant when considering flexible systems.

The rest of the paper is outlined as follows. Section 7.2 presents funda-
mental RTS theory. In section 7.3, the component model is presented, topics as
component description and system assembly are treated. Thepaper proceeds in
section 7.4 by describing the required run-time mechanisms, which is proposed
to be built into a middleware. The analysis possibilities are also presented in
this section. The last section concludes the paper and contains suggestion to
future work.

7.2 Real-Time Systems

In this section, we give an introduction to some basic concepts and principles
in real-time systems.

7.2.1 Definition and basic terminology

Real-time systems are computer systems in which the correctness of the system
depends not only on the logical correctness of the computations performed, but
also on the time factors [4]. A real-time system typically consist of a number
of resources (e.g., one or several processors), a number of tasks, each one as-
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sociated with a program code, and a scheduler that assigns each task a fraction
of the processor(s), according to a scheduling policy. Tasks are usually divided
in periodic and non periodic. Periodic tasks consist of an infinite sequence of
invocations, called instances or jobs. Non periodic tasks are invoked by the oc-
currence of an event and are divided into aperiodic and sporadic tasks. While
the arrival times of aperiodc tasks are not known in advance,sporadic tasks ar-
rive with a minimum interarrival time, i.e., the minimum time interval between
two consecutive invocations. Tasks can have various parameters, such as pe-
riod, deadline and priority, depending on the scheduling policy chosen to be
used. What is common for all real-time tasks is the worst caseexecution time
(WCET), which has to be calculated in order to be able to make any predictions
about the system behaviour, i.e., to guarantee that the timing requirements will
be met at run-time.

Real-time systems can be classified into two major categories: hard and
soft real-time systems. Hard real-time systems are computer systems in which
all task deadlines must be met. Examples of such systems are medical control
equipment or vehicle control systems. On the other hand, in soft real-time
systems, i.e., multimedia applications, a number of deadlines can be missed
without serious consequences. In this paper we will primarily focus on hard
real-time systems.

The choice of scheduling technique used in order to achieve different re-
quirements has been well analyzed and discussed. Off-line table-driven schedul-
ing is usually used to achieve predictability in systems in which failure may
have catastrophic consequences, but for the cost of flexibility as task execu-
tions are fixed and determined in advance, and limited ability to handle tasks
with incompletely known attributes, e.g., aperiodic or sporadic run-time events.
If the main goal is to achieve run-time flexibility, the approach typically used
is priority driven scheduling, but the price to pay is the limited ability to handle
multiple complex constraints.

7.2.2 Off-line scheduling

Off-line, table driven, scheduling for time-triggered systems provides deter-
minism, as all times for task executions are determined and known in advance.
In addition, complex constraints can be solved off-line, such as distribution,
end-to-end deadlines, precedence, jitter, or instance separation. The guarantee
that tasks will meet their deadlines is the off-line constructed schedule. How-
ever, since all actions have to be planned before start-up, run-time flexibility is
lacking.
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7.2.3 Priority driven (on-line) scheduling

Priority driven (on-line) scheduling can be divided in two main categories:
fixed priority scheduling (FPS) or dynamic priority scheduling such as earliest
deadline first (EDF). Common for both categories is that the scheduling deci-
sion for individual tasks is made at run-time, based on the priority of the tasks.
This results in a flexible system with a potentially higher ability to cope with
run-time events. Temporal analysis of priority based systems focuses on pro-
viding guarantees that all instances of tasks will finish before their deadlines.
The actual start and completion times of execution of tasks,are generally not
known and depend largely on run-time events.

In fixed priority based systems, guarantees for temporal behaviour are achieved
by performing response time analysis (in standard FPS) [5],[6], [7], [8] and
[4]. In dynamic priority based systems, i.e., EDF, the guarantee that all tasks
will meet their deadlines is the processor utilization, e.g., max 100% [9].

In this paper we will focus on hard, fixed priority driven real-time systems.
That is mainly due to the run-time flexibility provided by this kind of systems,
wide usage in the industry and low run-time overhead compared to, e.g., EDF-
based systems.

7.3 Component Model

In this paper, we deal with the extra-functional requirements of a typical em-
bedded real-time system and add flexibility by introducing services with dif-
ferent quality levels.

The basic idea of the component model is that the services capsulated
within a component shall be related in some way, like the methods offered
by an ordinary C++ or Java object should be related. A summaryof the char-
acteristics of a component is presented below:

• The implementation of a component is not reachable by a thirdparty; a
component is a black-box. The only way to communicate with a compo-
nent is through its interfaces.

• Advanced components can be composed from basic components.It is
considered as an advantage in system design to naturally be able to view
a larger composition of design.

• A service provided by a component can be implemented in different ver-
sions, in direction with the multiple version paradigm, thedifferent ver-



7.3 Component Model 85

sions are denoted quality levels.

• A service provided by a component can be active, or passive. An active
service is scheduled by the run-time system, while a passiveservice is
not directly in contact with the run-time mechanisms.

7.3.1 Component description

In figure 7.1, we present an UML meta-model of a component. Thestereotypes
show the property class of the building bricks and have the same meaning as in
[3], i.e., analytic properties are those needed for analysis and constructive are
those that provide functionality.

A component provides one or more services, which is similar to methods
offered by an object in an object oriented language as Java orC++.

A service provides in and out ports [10] for exchanging data with other ser-
vices. Connecting in and out ports is the only way to exchangedata between
services, even for services within the same component. The number of in and
out ports and the type of parameters passed through the portsare free for a
component (or service) developer to specify. As mentioned aservice can be
active or passive, an active service has an associated descriptor containing all
parameters needed by the run-time system. Further more, a service has one
or more quality levels, which are completely independent procedures for solv-
ing the same problem. The number of provided quality levels is free for the
developer to specify, but at least one should be provided.

Each quality level has an implementation. A function pointer represents the
implementation of the quality level for a basic component. However, a quality
level provided by a more advanced composed component has a sequence of
sub-services, which should be executed upon an invocation.A quality level
also has a WCET and a value associated with itself. Upon a concretization
of the model, it is possible to add more parameters, such as static memory
consumption, depending on desired tools and focuses. The WCET represents
the maximum time interval for which the service is executed as a sequential
program without being interrupted. Theories regarding WCET estimation have
been presented ([11] [12]). The value can be set to an arbitrary number, and
is used by the run-time system for choosing between different quality levels.
Short and a bit simplified, the run-time system tries to collect as high value as
possible depending on available resources. If WCET and available time allows
the version with highest value will be chosen for execution.
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Figure 7.1: UML meta-model of a component

7.3.2 Component Interfaces

The interface of a component is defined as a specification of its access points,
as in [13]. A component has multiple access points specified as detached in-
dependent interfaces. The interfaces are the only visible parts of a component;
they offer no implementation of the services, but only methods and protocols
to access the services. Furthermore it is assumed that each interface, besides
the pure functional specification, provides all necessary information regarding
the provided service in the form of ordinary comments added by the developer.
Included additional information should at least be semantics describing the
service, and, especially for RTS, temporal and memory requirement attributes.
The proposed component model consists of three types of interfaces.

• Data interfaces, are port based, and contain information about existing
ports and data type definitions. Each service can provide in and out ports
for sharing data between each others.

• Control interfaces, provide access points for control of a component. A
control interface provides methods for invocation of the different encap-
sulated services and also if a service is defined as active it consists of
parameters and structures required by the run-time system.
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• Analytic interfaces, provide parameters concerning different quality lev-
els of a service. The minimum amount of parameters included is the
number of levels with corresponding WCET and value. This interface
substitute basis for the decisions made by the run-time system.
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Figure 7.2: data connections through in and out ports

7.3.3 Assembling components

Assembling components or parts of components into new components and as-
sembling systems through exchanging data between components is carried out
utilizing different interfaces. Hence, data exchange and component compo-
sition are independent to each others. A consequence is thatdata can cross
component boundaries utilizing the same mechanisms as within a component.

Exchanging data between services is carried out by connecting in ports and
out ports. A smallest requirement on the type level is that the interacting in and
out ports uses the same types of parameters. The ports of a particular service
is accessible trough the data interface provided by the component hosting the
service. When a service is launched, it begins with reading data from all its in
ports (zero or more), and, when its execution is finished, data is written to its
out ports (zero or more). A schematic picture of the dataflow between the com-
ponents SensorMonitor and RevolutionCounter is shown in figure 7.2. In the
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figure the interior of the composed component SensorMonitoris hatched, the
in ports in the figure are marked as small circles to the left ofeach component,
and the out ports are marked as a small circle to the right of each component.
The figure describes the connections between in and out portsfor the imple-
mentation of two different quality levels of the readSensorAndUpdate service,
provided by the SensorMonitor component. As shown the connections of in
and out ports are transparent across the node boundaries.

Composing a service within a component from services provided by other
components is achieved through the definition of a sequence.The sequence is
constructed by using the control interface provided by the subcomponents. A
pseudo code example is shown in figure 7.3; it could be the sequence belong-
ing to the SensorMonitor component shown in figure 7.2. Quality level 1 of the
provided readSensorAndUpdate service is built by the two sub services read-
Sensor and insertToDatabase provided respectively by the sensor component
and the IO component. Quality level 2, however, utilizes an additional service
printOnDisplay. As shown in the pseudo code example (figure 7.3), choosing
quality level of sub services when defining a sequence utilizes static binding,
e.g., the desired quality level is specified. To be able to utilize different qual-
ity levels of a sub service, a designer must additionally compose different top
quality levels.

 

Figure 7.3: data connections through in and out ports

Assembly of applications may be viewed as a hierarchy. Basically, we can
distinguish between:

• Basic passive components

• Composed passive components

• Active components
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• An application

Basic passive components are components which are rather small and offer
well defined services. On this level WCET estimations of eachservice should
be included. It is usually easier to make an accurate WCET estimation on a
small service than on complex composed services. Once the estimated value is
assigned, it can be reused in other systems. However, the WCET can be further
tuned during the life of a basic component through an evolutionary process.

Composed passive components are components which consist of services
derived by specifying sequences of other services, and internal data connec-
tions through connecting the in and out ports of the includedservices. WCET
is automatically calculated from the WCET:s of the includedservices. The
automatic calculation is based on the serialization pattern naturally provided
by the sequence; it is basically a summation of the WCET:s of the included
services, since no concurrent services are regarded. Instead, the dynamics with
concurrent services are taken care of by the schedulabilityanalysis described
in the next section.

Active components have services that are scheduled by the underlying com-
ponent technology. Active services have some additional parameters asserted
by the developer when the service is chosen to be active. The parameters are (T,
D, P). T is the period time, and is asserted for periodic invocation of a service.
If T is set, the service will be automatically set as ready forexecution with an
interval T between two invocations. The relative deadline upon an invocation
of a service is denoted by D, and represents the time intervalfrom which the
service became ready for execution until it has to be completed. P is priority
and is a number representing the priority of the service; it can be asserted with
an arbitrary theory.

Finally, the application is the set of active services, which together solves
the particular mission for the system. A set of active services can be compared
with a set of tasks in a traditional RTS.

7.4 Component technology

The component model offers a set of quality levels. Temporalanalysis of fixed
priority pre-emptive systems [6] can guarantee temporal behaviour before run-
time. In the model proposed in section 7.3, a service has a number of quality
levels. One of the levels is the basic level that has been guaranteed pre-runtime
by a schedulability test. However the schedulability test is based on the WCET
that can be over estimated. Hence, the pre-run-time analysis can turn quite
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Figure 7.4: hierarchy of components building an application

pessimistic. Because of this pessimistic off-line analysis the component model
also offers the same service at a higher quality level. The service can be per-
formed with higher quality if there are more available resources than the basic
quality level demands. The concept of quality is up to the designer to define.
However, a higher level of quality would probably demand more resources in
form of processor time. In [14], the authors have compared several admission
policies to be used with Multiple Versions paradigm [1]. In this paper we have
adapted and extended the Adaptive Threshold algorithm to suit our component
model.

7.4.1 Runtime system

The run-time system is a middleware, intended to give the user an image of a to-
tally self-providing service i.e., a service that automatically chooses to run the
highest quality level with respect to available resources.The service scheduling
algorithm is located in the middleware, hence it is easier tohave a dispatcher
suited for a specific system or underlying scheduling algorithm without having
to change the service or component model.

7.4.2 Pre-runtime analysis

Real-time analysis is an important tool to examine if a set oftasks is feasible,
without having to try every possible execution path. The analysis is used to
ensure that all deadlines and other extra functional properties are met.

In our approach, the schedulability analysis is performed in order to guar-
antee the basic level for each periodic service. There are many ways of for-
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mally guaranteeing that a set of services will complete before their deadlines.
In [5] a formal analysis for guaranteeing services in fixed priority systems is
proposed. If the schedulability analysis fails, the systemhas to be redesigned
by, e.g., choosing a basic quality level with a lower WCET on one or several
services.

As previously mentioned, the off-line analysis is quite pessimistic and dur-
ing run-time the services will usually not use all time allotted.
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Figure 7.5: Worst case vs. actual case execution times

A method for using the time gap between the WCET and the actualcase
execution time (ACET) is known as resource reclaiming. The ACET is, as the
name reveals, the amount of time actually used at run- time for executing a
service.

Assume a set of components that have been analysed pre-run time with
respect to their basic quality levels. If the WCET:s have been over estimated,
the ACET:s will be lower at run-time. The difference in time between the
estimated WCET and ACET of a service is here called spare time.

In figure 7.6, the second service has executed less than WCET.The subse-
quent component then chooses to run at a higher quality level(see figure 7.7)
since the time available is greater than in the original schedule.

However, in figure 7.7, the WCET of the higher quality level ofthe third
service is also an approximation. Consequently the ACET of that service is
likely to be lower than it’s WCET, which is the case in figure 7.7. This result
is spare time, just as with the second service (figure 7.6). The spare time of the
third service can be applied on the next service and so forth.

Another way to get more time for a service is to postpone lowerprioritized
services. Postponing lower quality services can be acquired through, e.g., the
slack-stealing algorithm [15]. The admission algorithm Adaptive Threshold
considers, e.g., resource reclaiming and slack stealing. For off-line scheduling
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Figure 7.6: ACET allows a subsequent component to run at a higher quality
level

based systems, a method to address the issue of resource reclaiming has been
presented in [16].

The "left over" time, which we here choose to denote slack, that consists of
reclaimed resources and slack by postponing lower prioritised services, can be
used for executing components at a higher quality level. In order to schedule
a component at a higher quality level, the run-time system must first decide
if there’s enough slack. The basic idea is to query each quality-level for its
WCET, and compare the amount of available time with the time required for a
specific quality-level.

Small resource limited systems often consist of only a whileloop. Hence,
a relatively large complex algorithm might not be feasible.However, the com-
ponent model can be used for an arbitrary complex system. In this paper we
focus on an algorithm aimed for complex embedded systems.

7.4.3 On line service scheduler

The on line scheduler is based on the Adaptive Threshold approach [14]. We
first apply the adaptive threshold algorithm to our component model. Then, in
section 7.4.3 we extend it to handle aperiodic services. Last, in section 7.4.3,
we illustrate our algorithm by an example.

Adaptive threshold

The service scheduler assumes that each service has at leastone basic quality
level. The pre-run-time schedule is analysed with respect to the basic quality
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level of each scheduled service. We refer to these quality levels asQLi
s where i

and s are the level and service numbers respectively. Hence,quality levels two
of service one would be denoted asQL1

2. Each quality level has a worst-case
execution timeWCET i

s and a valueV i
s which is set pre runtime. The service

incorporates a deadlineDs, and a release timeRs. The basic quality level of a
service is denoted asQLP

s and is as mentioned earlier guaranteed via off-line
analysis.

In [14], a method is presented to calculate the minimum processing time,
As(t), available before the deadline of a service (equation 7.1).

As(t) = WcetPs + min[Li(t, Ds), min∀j∈lp(i)Sj(t)] (7.1)

In equation 7.1,Li(t,Di) is the lower bound on the additional execution
time available at priority level i in the interval [t , t +Di). Sj is the extra
interference that any task with priority less than i can be subjected to without
missing its next deadline.

As equation 7.1 shows, at time t, the time interval availablefor executing
a medium priority service (MP) isLi. That is the additional execution time,
i.e., the time not used by any service. The reclaimed time canbe used for any
service ready to execute at time t.Sj , is the time that can be allocated through
delaying lower prioritized services without missing theirdeadlines. However
the maximum amount of time that can be used by MP is until its deadline
(dMP ).

In addition to the values Vsi corresponding to each service,there is also a
global system valueV SY S . TheV SY S is the mean value of executed services.
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In [14], a value density-based strategy has been proposed. The strategy is used
to choose the quality level that gives the highest value density. The value-
densityDi

s is given by:

Di
s =

V i
s · Wcetis + [As(t) − Wcetis] · V

SY S

As(t)
(7.2)

The quality level with the highest value densityDi
s is chosen for execu-

tion. For all components that have been analysed off-line, there is at least one
feasible quality level, i.e., the basic quality level.
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Aperiodic requests extension

In this section we will describe an extension to the adaptivethreshold algo-
rithm. In particular, we want to handle run-time events withincompletely
known parameters, e.g., aperiodics.

Aperiodic requests have to be considered in a number of priority based real-
time systems, as not all event parameters can be known beforehand. In some
cases it might be of greater value to the system to execute an aperiodic service,
rather than executing a periodic service at a higher qualitylevel. However, all
the periodics have to be guaranteed to complete before theirdeadlines. The
value of an aperiodic service is decided in the same way as thevalue of the
periodic services, i.e., based on the value density. Hence,the algorithm for the
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value density has to be modified to include aperiodics as well. A value V has
to be added to aperiodic services such that the system accrues a higher value.
The computation of the value density for all pending periodic and aperiodic
requests is described in equation 7.3.

Di
A =

V i
A · WcetiA + V i

s · Wcetis + bAs(t) − Wcetis − WcetiAc · V
SY S

As(t)
(7.3)

However, the periodic services must always be guaranteed. We assume that
the aperiodic services have the same structure as the periodics, i.e., they have at
least a basic quality level. Hence, an acceptance test for the aperiodic services
must be included. The WCET of an aperiodic service’s basic quality level is
compared to the available time. However, since the periodicservices must be
guaranteed to run, the available-time for the aperiodic services is not quite the
same as for the periodic. Considering equation 7.3, the WCETcorresponding
to the basic quality level is the time that the periodic service has been guaran-
teed through the off-line analysis. That time cannot be allocated by aperiodic
services, thus:

Ap(t) = min[Li(t, Ds), min∀j∈lp(i)Sj(t) (7.4)

In equation 7.4,Ap(t) is the time that can be allocated to any aperiodic
quality level with a WCET lower than or equal toAp(t).

Example

In this section we present an example of the adaptive threshold algorithm with
the aperiodic request extension.

We assume a service S with three quality levelsQL1, QL2 andQL3. We
assume the following worst-case execution times,Wcet1s=1,Wcet2s=4,Wcet3s
= 9 and the valuesV 1

s =1,V 2
s =8,V 3

s =15. We also assumeAs(t)=10 and quality
level 2 is the basic level i.e. the level that has been analysed and guaranteed
pre-runtime. All quality levels are feasible, thus the algorithm will choose the
quality level that will accrue the greatest value. We will now look at a few
scenarios where the algorithm will choose different quality levels.

Scenario 1: We assumeV SY S=5 and no aperiodic services. Executing
quality level 1 for 1 time unit will accumulate a value of one.The rest of the
time (nine time units) will give a value of 45 because theV SY S (9*5=45),
hence the total value when choosing quality level one will be1+45= 46. A
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value of 46 will give a value density of 4.6. In the same wayQL2 will give
a value of 8+30=38, thus a value density 3.8.QL3 will acquire a value of
15+5=20 and a value density of 2. Consequently withV SY S equal to five,
quality level one is the level that will accrue the highest value density.

Scenario 2: Here we assumeV SY S=2 and no aperiodic services. In the
same way as scenario 1, quality level one will consume one time unit and
accumulate 1 to the value. The remaining 9 time units will be used for the
other services in the system which will accumulate a value of18, hence a total
accumulated value of 19.QL2 will accumulate a value of eight for the first 4
time units, and a value of 12 for the following 6 time units, hence a total of 20.
QL3 will acquire a value of 17. ConsequentlyQL2 is the best choice for this
scenario.

Scenario 3: We assumeV SY S=1 and the aperiodic serviceSA with two
quality levelsS1

A andS2
A. The properties ofSA1 are:WCET 1

A=1 andV 1
A=3.

The properties ofS2
A areWCET 2

A=3 andV 2
A=6. Further we assume that the

available-time for aperiodic requestsAp=6, because WCET of the basic quality
level is guaranteed offline and cannot be allocated by an aperiodic service. One
can see that the possible permutations for executing the periodic and aperiodic
service are

• V 1
S +V 1

A+8*V SY S = 1+3+8=12 (1.2)

• V 1
S +V 2

A+6*V SY S = 1+6+6=13 (1.3)

• V 2
S +V 1

A+5*V SY S = 8+3+5=16 (1.6)

• V 2
S +V 2

A+3*V SY S = 8+6+3=17 (1.7)

• V 3
S +V 1

A = 15+3=18 (1.8)

One can see directly thatQL3 of the periodic service andQL1 of the ape-
riodic service will acquire the highest value density.

7.5 Conclusions and future work

In this paper we presented work to show that a real-time component is a suitable
package for the multiple versions paradigm. We have proposed a component
model with a middleware aimed for execution on top of an RTOS,which gives
the developer possibilities for issuing real-time guarantees with additional flex-
ibility through implementing multiple versions.
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Our component model can be used together with different existing real-
time scheduling methods to achieve flexibility, still guaranteeing timeliness. In
this paper we show how the model can be used with the Adaptive Threshold
algorithm. Furthermore, the Adaptive Threshold algorithmis extended to also
cater for aperiodic activities, which is important in orderto provide flexibility
in many real-time systems.

A prototype implementation of the proposal with development tools and
possibility to compile for execution upon some commercial real-time operating
system is be the next step towards a realization of the model.Trying to utilize
such a prototype in the development of an embedded control system, would
result in useful input for future development of the component model.
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Abstract

Safety critical embedded real-time systems represent a class of systems that
has attracted relatively little attention in research addressing component based
software engineering. Hence, the most widely spread component technologies
are not used for resource constrained safety critical real-time systems. They are
simply to resource demanding, to complex and to unpredictable. In this paper
we show how to use component based software engineering for low footprint
systems with very high demands on safe and reliable behaviour. The key con-
cept is to provide expressive design time models and yet resource effective
run-time models by statically resolve resource usage and timing by powerful
compile time techniques. This results in a component technology for resource
effective and temporally verified mapping of a component model to a commer-
cial real-time operating system.
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8.1 Introduction

The vehicle domain represents a class of embedded real-timesystems where
the requirements on safety, reliability, resource usage, and cost leaven all through
development. Historically, the development of such systems has been done
using only low level programming languages, to guarantee full control over
the system behaviour. As the complexity and the amount of functionality im-
plemented by software increase, so does the cost for software development.
Therefore it is important to introduce software development paradigms that in-
crease software development productivity. Furthermore, since product lines
are common within the domain, issues of commonality and reuse is central for
reducing cost as well as increasing reliability.

Component based software engineering is a promising approach for ef-
ficient software development, enabling well defined software architectures as
well as reuse. Although component technologies have been developed address-
ing different demands and domains, there are few component technologies
targeting the specific demands of safety critical embedded real-time systems.
Critical for the safe and reliable operation of these systems is the real-time be-
haviour, where the timeliness of computer activities is essential. To be able
to guarantee these properties it is necessary to apply real-time systems theory.
Thus, a component technology to be used within this domain has to address
specification, analysis, and implementation of real-time behaviour.

A typical real-time constraint is a deadline on a transaction of co-operating
activities. A transaction in these systems would typicallysample information
about the environment, perform calculations based on that information and ac-
cordingly apply a response to the environment, all within a limited time frame.
Also important is the ability to constrain the variation in periodicity of an activ-
ity (jitter). The reason for this is that variations in periodicity of observations
of the environment and responses to the same, will affect thecontrol perfor-
mance. Hence, a component technology for this domain shouldhave the ability
to clearly express and efficiently realize these constraints [1],[2],[3],[4].

The work described in this paper present a component technology for safety
critical embedded real-time systems that is based on experience from our previ-
ous work with introducing state-of-the-art real-time technology in the vehicle
industry. The benefits in development have been discussed in[5] and have
also been proven by long industrial use. That real-time technology has been
incorporated in the Rubus development suite and has been further developed
[6]. Experience from the industrial application of the research reveals that a
proper component model is not enough; success requires an unbroken chain of
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models, methods, and tools from early design to implementation and run-time
environment.

The contribution of the work presented in this paper includes a compo-
nent technology for resource effective and temporally verified mapping of a
component model to a resource structure such as a commercialReal-Time Op-
erating System (RTOS). This is made possible by introduction of a component
model that support specification of high level real-time constraints, by present-
ing a mapping to a real-time model permitting use of standardreal-time theory.
Moreover, it supports synthesis of run-time mechanisms forpredictable execu-
tion according to the temporal specification in the component model. Further-
more, in this work some limitations in previous work with respect to specifi-
cation and synthesis of real-time behaviour are removed. These limitations are
partially discussed in [5] and is mainly related to jitter and execution behaviour.

Many common component technologies are not used for resource con-
strained systems, nor safety critical, neither real-time systems. They are simply
to resource demanding, to complex and unpredictable. The research commu-
nity has paid attention to the problem, and recent research has resulted in devel-
opment of more suitable technologies for these classes of systems. Philips use
Koala [7], designed for resource constrained systems, but without support for
real-time verification. Pecos [8] is a collaboration project between ABB and
University partners with focus on a component technology for field devices.
The project considers different aspects related to real-time and resource con-
strained systems, during composition they are using components without code
introspection possibilities that might be a problem for safety critical applica-
tions. Rubus OS [6] is shipped with a component technology with support for
prediction of real-time behaviour, though not directly on transactions and jitter
constraints and not on sporadic activities. Stewart, Volpe, and Khosla suggest
a combination of object oriented design and port automaton theory called Port
Based Objects [9]. The port automaton theory gives prediction possibilities
for control applications, although not for transactions and jitter constraints dis-
cussed in this paper. Schmidt and Reussner propose to use transition functions
to model and predict reliability in [10]; they are not addressing real-time be-
haviour. Wallnau et al. suggest to restrict the usage of component technologies,
to enable prediction of desired run-time attributes in [11], the work is general
and not focused on particular theories and methods like the work presented in
this paper.

The outline of the rest of this paper is as follows; section 8.2 gives an
overview of the component technology. In section 8.3 the component model
is described and its transformation to a real-time model is explained in section
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8.4. Section 8.5 presents the steps for synthesis of real-time attributes and
discusses run-time support. Finally, in section 8.6, future work is discussed
and the paper is concluded.

8.2 Component Technology

In this section we will give an overview of the component technology facil-
itating component based software development for safety-critical embedded
real-time systems. We will hereafter refer to this component technology as the
AutoComp technology. A key concept in AutoComp is that it allows engineers
to practise Component Based Software Engineering (CBSE) without involv-
ing heavy run-time mechanisms; it relies on powerful designand compile-time
mechanisms and simple and predictable run-time mechanisms. AutoComp is
separated into three different parts; component model, real-time model and
run-time system model. The component model is used during design time
for describing an application. The model is then transformed into a real-time
model providing theories for synthesis of the high level temporal constraints
into attributes of the run-time system model. An overview ofthe technology
can be seen in Figure 8.1. The different steps in the figure is divided into de-
sign time, compile time, and run-time to display at which point in time during
development they are addressed or used.

During design time, developers are only concerned with the component
model and can practise CBSE fully utilizing its advantages.Moreover, high
level temporal constraints in form of end-to-end deadlinesand jitter are sup-
ported. Meaning that developers are not burdened with the task of setting artifi-
cial requirements on task level, which is essential [12], [5]. It is often natural to
express timing constraints in the application requirements as end-to-end con-
straints.

The compile time steps, illustrated in Figure 8.1, incorporate a transition
from the component based design, to a real-time model enabling existing real-
time analysis and mapping to a RTOS. During this step the components are
replaced by real-time tasks. Main concerns in this phase areallocation of com-
ponents to tasks, assignment of task attributes, and real-time analysis. During
attribute assignment, run-time attributes that are used bythe underlying oper-
ating system are assigned to the tasks. The attributes are determined so that
the high level constraints specified by the developer duringthe design step are
met. Finally, when meeting the constraints of the system, a synthesis step is
executed. It is within this step the binary representation of the system is cre-
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ated, often the operating system and run-time system are also included with the
application code in a single bundle
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Figure 8.1: The AutoComp component technology

The run-time system is assumed to be a traditional RTOS with Fixed Prior-
ity Scheduling (FPS) of tasks. Most commercial RTOS can be classified into
this category; furthermore they are simple, resource efficient and many real-
time analysis techniques exist. In some cases a layer providing run-time sup-
port for the tasks has to be implemented in order to fully support FPS models
used in real-time theory.

8.3 Component Model

Vehicles present a heterogeneous environment where the interaction between
the computer system and the vehicle take different forms. Some vehicle func-
tionality requires periodic execution of software, e.g., feedback control, whereas
other functionality has a sporadic nature, e.g., alarms. Although vehicle con-
trol plays a central role, there is also an abundance of otherfunctionality in
vehicles that is less critical and has other characteristics, e.g., requires more
flexibility. Although less critical, many of these functions will still interact
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with other more critical parts of the control system, consider for example di-
agnostics. We present a model that in a seamless way allows the integration of
different functionality, by supporting early specification of the high level tem-
poral constraints that a given functionality has to meet. Moreover, the compu-
tational model is based on a data flow style that results in simple application
descriptions and system implementations that are relatively straightforward to
analyse and verify. The data flow style is commonly used within the embedded
systems domain, e.g., in IEC 61131 used for automation [13] and in Simulink
used for control modelling [14].

The definition of the AutoComp component model is divided into compo-
nents, component interfaces, composition, the componentsinvocation cycle,
transactions and system representation. In Figure 8.2 the component model
is illustrated using UML2, which could be a possible graphical representation
during design.
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Figure 8.2: In the upper left part of the figure there is a UML 2 component
diagram for modelling of a component. The lower part of the figure is a com-
position diagram showing a composition of two components. Finally the upper
right part of the figure is a sequence diagram with a timing constraint that is
used to express the end-to-end deadline for a transaction
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The components are defined asglass box, meaning that a developer can see
the code of a component for introspection purposes. It does not mean that a de-
veloper has to look into a component during normal composition, and not that
it is allowed to modify a component. The introspection possibility is a require-
ment during verification of safety critical applications inorder to gain com-
plete knowledge about components behaviour. Furthermore,the components
can only exchange data with each others through data ports. Acomponent can
be a composite containing a complete subsystem, or a basic component with
an entry function. Composite components can be treated as any other compo-
nent during composition, but it is also possible to enter a composite and change
timing requirements and other properties. The entry function provided by non-
composite components can be compared to the entry function for a computer
program, meaning that the contained number of functions of the component
can be arbitrary.

The interfaces offered by a component can be grouped into thetwo classes
data and control interfaces. The data interfaces are used tospecify the data flow
between components, and consist of data ports. Data ports have a specified type
and can be either provided or required. Provided ports are the ports provided
by components for input, i.e., the ports a component reads data from. Required
ports are the ports a component writes data to. A component also has a control
interface with a mandatory control sink, and an optional control source. The
control interface is used for specifying the control flow in the application, i.e.,
when or as a response to what component should be triggered. The control sink
is used for triggering the functionality inside the component, while the control
source is used for triggering other components.

During composition the developer has three main techniquesto work with.
The data flow is specified through connection of provided and required data
ports. The rules are as follows; required ports must be wiredto provided ports
with a compatible type. It is possible to make abstractions through definition of
composite components. Composite components can be powerful abstractions
for visualizing and understanding a complex system, as wellas they provide
larger units of reuse. The control flow is specified through binding the con-
trol sinks to period times for periodic invocation, to external events for event
invocation, or to control sources of other components for invocation upon com-
pletion of the other components.

A components invocation cycle can be explained as in the following sen-
tences. Upon stimuli on the control sink, in form of an event from a timer, an
external source or another component; the component is invoked. The execu-
tion begins with reading the provided ports. Then the component executes the
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contained code. During the execution, the component can usedata from the
provided ports and write to the required ports as desired, but the writes will
only have local effect. In the last phase written data becomevisible on the
required ports, and if the control source in the control interface is present and
wired to the control sink of another component stimulus is generated.

Transactions allow developers to define and set end-to-end timing con-
straints on activities involving several components. A transaction in AutoComp
can be defined as:

A transactionTri is defined by a tuple< C, D, Js, Jc > where:

C - represent an ordered sequence of components;

D - represent the end-to-end deadline of the transaction;

Js - represent the constraint on start jitter of the transaction;

Jc - represent the constraint on completion jitter of the transaction.

The end-to-end deadline is the latest point in time when the transaction
must be completed, relative to its activation. Jitter requirements are optional
and can be specified for transactions involving time triggered components.
Start jitter is a constraint of the periodicity of the transactions starting point,
while completion jitter is a constraint on the periodicity of a transactions com-
pletion point. Both types of jitter are expressed as a maximum allowed de-
viation from the nominal period time. A restriction, necessary for real-time
analysis, is that components directly triggered by an external event can only be
part of a transaction as the first component.

A system can be described with the UML class diagram in Figure8.3. A
system is composed of one or several components, each with a data interface,
a control interface and a realization as a subsystem or an entry function. A
system also has zero or more data couplings, describing a connected pair of
required and provided data ports. Furthermore, systems have zero or more
control couplings which describe a connected pair of control sink and source.
Finally, the last part of a system is zero or more transactions with the included
components, an end-to-end deadline and the possibility to specify jitter require-
ments.

8.4 Model Transformation

Model transformation involves the steps necessary in orderto transit from the
component model allowing an efficient and powerful design phase, to a run-
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Figure 8.3: UML class diagram showing the static view of the component
model

time model enabling verification of temporal constraints and usage of efficient
and deterministic execution environments. As previous stated in section 8.2
we assume a FPS run-time model. The FPS model defines a system as a set
of tasks with the attributes period time, priority, offset,and WCET. Hence, it
is necessary to translate the component model with its temporal constraints in
to tasks holding these attributes. The translation is performed in two separate
steps; the first step is to make a transformation between components and task
(task allocation), the second step is to assign attributes to the tasks (attribute
assignment). To assign the FPS model attributes in such a waythat the high
level temporal constraints on transactions are met is non-trivial and has been
addressed in research by e.g., [1], [3].

8.4.1 Task Allocation

The easiest approach for task allocation is a one to one relationship between
components and tasks, but that is not necessarily optimal. In fact the task
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allocation step has a lot of different tradeoffs. Such tradeoffs can be found
between reliability and run time overhead; few tasks reducerun time overhead
at the cost of memory protection (usually at task level) between components.
Testability and schedulability are examples of other properties that are affected
by the allocation scheme.

In this paper we introduce a task allocation strategy that strives to reduce
the number of tasks considering schedulability and reliability. Components are
not allocated to the same task if schedulability is obviously negatively affected
and structurally unrelated components are not allocated tothe same task in
order to cater for memory protection and flexibility.

The first step in the allocation process is to convert all composite com-
ponents to a flat structure of the contained basic components. Secondly the
following rules are applied:

1. All instances of components are allocated to separate tasks, Worst Case
Execution Time (WCET) is directly inherited from a component to the
corresponding task

2. The start jitter Js corresponding to a transaction with jitter requirements
is set as a requirement on the task allocated for the first component in
the ordered sequence C, while the completion jitter Jc is setto the task
allocated for the last component in the sequence

3. Tasks allocated for components with connected pairs of control sink and
sources, where the task with the source do not have any jitterrequire-
ments, and both tasks are participating in the same and only that transac-
tion are merged. The resulting WCET is an addition from all integrated
tasks WCET

4. Tasks allocated for time triggered components that have the same period
time, not have any jitter constraints and are in a sequence inthe same
and only that transaction are merged. The resulting WCET is an addition
from all integrated tasks WCET

The situation after application of the allocation rules is aset of real-time tasks.
The high level timing requirements are still expressed in transactions, but in-
stead of containing an ordered set of components a transaction now contain an
ordered set of tasks. The rest of the attributes, those that cannot be mapped di-
rectly from the component model to the real-time model are taken care of in the
following attribute assignment step. In Figure 8.4, given the two transactions
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Tr1 =< C, D, Js, Jc >=< A, B, C, 60,−, 25 > andTr2 =< C, D, Js, Jc >=<
D, E, F , 40, 5,− > the task allocation step for the components in Table 8.1 is
shown. The resulting task set is in Table 8.2.
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Figure 8.4: Task allocation example

Sink Bound To WCET
A T = 100 5
B A.Source 10
C T = 60 5
D T = 40 5
E T = 40 6
F T = 40 9

Table 8.1: A component set

8.4.2 Attribute Assignment

After the components have been assigned to tasks, the tasks must be assigned
attributes so that the high level temporal requirements on transactions are met.
Attributes that are assigned during task allocation are WCET for all tasks, a
period time for periodic tasks and a Minimum Interarrival Time (MINT) for
event triggered tasks.

The scheduling model that is used throughout this paper is FPS, where
tasks have their priorities and offsets assigned using an arbitrary task attribute
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Trigger Jitter WCET
Task 1 T = 100 15
Task 2 T = 60 25 5
Task 3 T = 40 5 5
Task 4 T = 40 15

Table 8.2: The resulting task set

assignment methodology. Examples of existing methods thatcan be used for
priority assignment are Bate and Burns [1], Sandström and Norström [3] or
by combination of Yerraballi [15] or Cheng and Agrawala [16]with Dobrin,
Fohler and Puschner [17]. In this paper it is assumed that task attributes are
assigned using the algorithm proposed by Bate and Burns [1],and it is showed
that the component model described in this paper is applicable to their analysis
model. Weather the tasks are time triggered or event triggered is not consid-
ered in the Bate and Burns analysis but is required during themapping to the
FPS model, where periodic and event triggered (sporadic) tasks are separated.
The attributes that are relevant, considering this work, inthe Bate and Burns
approach are listed below.

For tasks:

T (Period) - All periodic tasks have a period time that is assigned during the
task allocation. Sporadic tasks have a MINT that analytically can be seen
as a period time;

J (Jitter) - The jitter constraints for a task is the allowed variation of task com-
pletion from precise periodicity. This type of jitter constraint is known
as completion jitter. Jitter constraints can be set on the first and last task
in a transaction;

R (Worst Case Response time)- The initial Worst Case Response time for a
task is the WCET for the task, i.e., the longest time for a taskto finish
execution from its starting point in time.

For transactions:

T (Period) - The period of a transaction is the least common multiple of the
period times of the participating tasks of the transaction;
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End-to-End deadline - Transactions have a requirement that all tasks have
finished their execution within a certain time from the transactions point
of start in time.

In Bate and Burns approach additional attributes, such as deadline and sep-
aration for tasks and jitter requirements for transactionsare considered. In
this paper those attributes are disregarded since there areno such requirements
in the previously described component model. It is trivial to see that from
the component model, the period and jitter constraints match the model pro-
posed by Bate and Burns. The initial worst case response timeR is assigned
the WCET value in the component model. For the transaction the end-to-end
deadline requirements match the transaction deadline of the Bate and Burns
model. The period time of the transaction is derived from theleast common
multiple of the period of the tasks participating in the transaction.

The next step is naturally to assign the FPS model with run-time and analy-
sis attributes. The new attributes priority and offsets will be derived through
existing analysis methods [1]. The new parameters for the FPS model are de-
scribed below.

P (Priority) - The priority is an attribute that indicates the importanceof the
task relative to other tasks in the system. In a FPS system tasks are
scheduled according to their priority, the task with the highest priority is
always executed first. All tasks in the system are assigned a priority;

O (Offset) - The offset is an attribute that periodic tasks with jitter constraints
are assigned. The earliest start time is derived by adding the offset to the
period time.

In Table 8.3 it is summarized what attributes belonging to time triggered
and event triggered tasks in the FPS model.

Attribute Time triggered Event triggered
Period X
MINT X

Priority X X
Offset X (Upon Jitter Constraints)

WCET X X

Table 8.3: Attributes associated with time and event triggered tasks
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Applying the Bate and Burns algorithm determines task attributes from the
tasks and transactions described in Table 8.2. The resulting run-time attributes
priority, offset period and WCET are shown in Table 8.4. The attributes offset
and priority are determined with the Bate and Burns analysis, whilst the period
and WCET are determined in the task allocation.

Priority Offset Period WCET
Task 1 2 0 100 15
Task 2 1 (Lowest) 35 60 5
Task 3 4 (Highest) 0 40 5
Task 4 3 0 40 15

Table 8.4: Assigned task attributes

In Figure 8.5 a run-time trace for an FPS system is shown and the transac-
tionsTr1 andTr2 are indicated.
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Figure 8.5: Trace of an FPS schedule

When the FPS model has been assigned its attributes it has to be verified.
The verification of the model is performed by applying real-time scheduling
analysis to confirm that the model is schedulable with the assigned parame-
ters. This is necessary since attribute assignment does notnecessarily guaran-
tee schedulability, but only assigns attributes considering the relation between
the tasks.
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Figure 8.6: The steps of synthesizing code for the run-time system

8.4.3 Real-Time Analysis

To show that the FPS tasks will meet their stipulated timing constraints, schedu-
lability analysis must be performed. Much research has beendone with respect
to analysis of different properties of FPS systems, and all those results are
available for use, once a FPS model has been established. Thetemporal analy-
sis of an FPS system with offsets, sporadic tasks and synchronization has been
covered in research by e.g., Palencia et al. [18], [19] and Redell [20].

The output from the analysis is whether the system is feasible or not in the
worst case. If the analysis shows that the system is infeasible, the parts that can
not keep its requirements are either changed and reanalysedor emphasised for
the developer to make changes.

8.5 Synthesis

The next step after the model transformation and real-time analysis is to syn-
thesise code for the run-time system. This includes mappingthe tasks to oper-
ating system specific task entities, mapping data connections to an OS specific
communication, modifying the middleware, generating gluecode, compiling,
linking and bundling the program code (see Figure 8.6).

The synthesis is divided into two major parts. Given a task set and nec-
essary information about the run-time system, the synthesis generates code
considering communication, synchronization.
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Figure 8.7: A component model with adjustments for different operating sys-
tems to promote platform independence

• The first part in synthesis is to resolve the communication within and
between tasks. Two communicating components that are assigned to
different tasks will form an Inter Task Communication (ITC)while com-
munication between components assigned to the same task arerealized
with shared data spaces within the task. The ITC is later mapped to
operating system specific communication directives.

• The other part in the synthesis is to resolve the control couplings, i.e.,
the sink and source. If a tasks starting point is dependent onthe former
tasks finishing point the tasks have to be synchronized. The synchro-
nization is solved through scheduling. The synthesis will generate code
for scheduling periodic tasks, handle the control flow between tasks and
consider offsets. The code generated for the periodic scheduling and
offsets is dependent on the middleware and can be realized asa configu-
ration file or actual code in each task. Invocations of sporadic tasks are
mapped to event handlers in the middleware or the operating system.

It is assumed that a middleware is present as shown in Figure 8.7, for each
platform and that it provides functionality that the component model needs but
the operating system does not provide. The more functionality the operating
system provides, the smaller the middleware has to be. The middleware en-
capsulates core communication and concurrency services toeliminate many
non-portable aspects of developing and is hence platform specific in favour
of a platform independent component model. Typical functionality that is not
provided by most commercial RTOS is periodicity and supportfor offsets. The
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middleware also need to support sink and source couplings since task coupled
with its source need to be able to invoke the corresponding task. The run-time
system conforms to FPS and hence the run-time task model is similar to the
previously described FPS model with some exceptions. The worst case exe-
cution time is merely an analysis attribute and is not neededin the run-time
model. The MINT is usually a requirement on the environment rather than a
task attribute, and is thus also analytical and unnecessary. Hence the run-time
task model is for periodic tasks Period time, Priority, Offset and for sporadic
tasks Priority.

8.6 Conclusions and Future Work

In this paper we show how to use component based software engineering for
low footprint systems with very high demands on safe and reliable behaviour.
The key concept is to provide expressive design time models and yet resource
effective run-time models by statically resolve resource usage and timing by
powerful compile time techniques.

The work presented in this paper introduces a component technology for
resource effective and temporally verified mapping of a component model to
a resource structure such as a commercial RTOS. This is made possible by
introduction of a component model that support specification of high level real-
time constraints, by presenting a mapping to a real-time model, permitting
use of standard real-time theory, and by synthesis of run-time mechanisms for
predictable execution according to the temporal specification in the component
model.

Although the basic concept has been validated by successfulindustrial ap-
plication of previous work [5], it is necessary to further validate the component
technology presented here. In order to facilitate this, a prototype implemen-
tation of the component technology is under development where the core part
has been completed. The prototype will enable evaluation ofdifferent tech-
nology realisations with respect to performance. Moreover, parts of the model
transformation need additional attention, foremost the strategies for allocation
of components to tasks. Furthermore, we will make efforts inextending the
component model making it more expressive and flexible whilestill keeping
the ability for real-time analysis. Interesting is also to investigate trade-offs
between run-time foot print and flexibility with respect to e.g., adding func-
tionality post production. Finally, the component technology will be evaluated
in a larger, preferably industrial, case.
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Abstract

The electronics in vehicles represents a class of systems where quality at-
tributes, such as safety, reliability, and resource usage,leaven all through de-
velopment. Vehicular manufacturers are interested in developing their software
using a component based approach, supported by a component technology, but
commercial component technologies are too resource demanding, complex and
unpredictable. In this paper we provide a vehicular domain specific classifica-
tion of the importance of different quality attributes for software, and a discus-
sion of how they could be facilitated by a component technology. The results
can be used as guidance and evaluation for research aiming atdeveloping com-
ponent technologies suitable for vehicular systems.
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9.1 Introduction

Component-based development (CBD) is of great interest to the software en-
gineering community and has achieved considerable successin many engi-
neering domains. CBD has been extensively used for several years in desktop
environments, office applications, e-business and in general Internet- and web-
based distributed applications. In many other domains, forexample dependable
systems, CBD is utilized to a lesser degree for a number of different reasons.
An important reason is the inability of component-based technologies to deal
with quality attributes as required in these domains. To identify the feasibility
of the CBD approach, the main concerns of the particular domain must be iden-
tified along with how the CBD approach addresses these concerns and what is
its ability to provide support for solutions related to these concerns are.

There is currently a lot of research on predicting and maintaining different
quality attributes within the Component Based Software Engineering (CBSE)
community, (also called non-functional properties, extra-functional properties,
and illities), [1] [2] [3], [4], [5]. Many of the quality attributes are conflicting
and cannot be fully supported at the same time [6], [7]. Thus,it is important
for application and system developers to be able to prioritize among different
quality attributes when resolving conflicts.

We provide a domain specific classification of the importanceof quality
attributes for software in vehicles, and discuss how the attributes could be fa-
cilitated by a component technology. The discussion contribute with a general
description of the desired quality attribute support in a component technology
suitable for the vehicle domain and it indicates which quality attributes require
explicit support. In addition, it discusses were in the technology the support
should be implemented: inside or outside the components, inthe component
framework, on the system architecture level, or if the quality attributes are us-
age dependent. Quality attributes might be conflicting; e.g., it is commonly
understood that flexibility and predictability are conflicting. The ranking pro-
vided by industrial partners gives domain specific guidancefor how conflicts
between quality attributes should be resolved. The resultsalso enable valida-
tion and guidance for future work regarding quality attribute support in com-
ponent technologies for software in vehicular systems. This guideline can be
used to verify that the right qualities are addressed in the development process
and that conflicting interdependent quality attributes areresolved according to
the domain specific priorities.

The starting point of this work is a list of quality attributes ranked accord-
ing to their importance for vehicular systems. The list is provided through a
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set of interviews and discussions with experts from different companies in the
vehicular domain. The results of the ranking from the vehicular companies are
combined with the classification of how to support differentquality attributes
provided in [8]. The result is an abstract description of where, which, and how
different quality attributes should be supported by a component technology tai-
lored for the vehicular industry.

A component technology as defined in [9] is a technology that can be used
for building component based software applications. It implements a compo-
nent model defining the set of component types, their interfaces, and, addition-
ally, a specification of the allowable patterns of interaction among component
types. A component framework is also part of the component technology, its
role can be compared to the role of an operating system, and itprovides a va-
riety of deployment and run-time services to support the component model.
Specialized component technologies used in different domains of embedded
systems have recently been developed, e.g., [10, 11]. Thereare also a number
of such component technologies under development in the research commu-
nity, e.g., [12, 13, 14]. The existence of different component technologies can
be motivated by their support for different quality attributes, although they fol-
low the same CBSE basic principles. It has been shown that companies devel-
oping embedded systems in general consider different non functional quality
attributes far more important than efficiency in software development, which
explains the specialization of component technologies [12].

The outline of the remaining part of the paper is as follows. Section 9.2
describes the conducted research method, and section 9.3 the results. Section
9.4 is a discussion of the implications of the results, regarding the support
for quality attributes in a domain specific component technology. Section 9.5
discusses future work, and finally the section 9.6 concludesthe paper.

9.2 Method

The research method is divided into three ordered steps:

1. During the first step a list of relevant quality attributeswas gathered;

2. In the next step technical representatives from a number of vehicular
companies placed priorities on each of the attributes in thelist reflecting
their companies view respectively;

3. Finally a synthesis step was performed, resulting in a description of the
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desired quality attribute support in a component technology for vehicular
systems.

The list of quality attributes have been collected from different literature
trying to cover qualities of software that interest vehicular manufactures. In
order to reduce a rather long list, attributes with clear similarities in their def-
initions have been grouped in more generic types of properties, e.g., portabil-
ity and scalability are considered covered by maintainability. Although such
grouping could fade the specific characteristics of a particular attribute, it put
focus on the main concerns. In the ISO 9126 standard [15], 6 quality attributes
(functionality, reliability, usability, efficiency, maintainability, and portability)
are defined for evaluation of software quality. However, thestandard has not
been adopted fully in this work; it is considered too brief and does not cover at-
tributes important for embedded systems (e.g., safety, andpredictability). Fur-
thermore, concepts that sometimes are mixed with quality attributes (for ex-
ample fault tolerance) are not classified as quality attributes, rather as methods
to achieve qualities (as for example safety). Finally, functionality is of course
one of the most important quality attributes of a product, indicating how well
it satisfies stated or implied needs. However, we focus on quality attributes be-
yond functionality often called extra-functional or non-functional properties.
The resulting list of quality attributes is presented below.

Extendibility the ease with which a system or component can be modified to
increase its storage or functional capacity.

Maintainability the ease with which a software system or component can be
modified to correct faults, improve performance, or other attributes, or
adapt to a changed environment.

Usability the ease with which a user can learn to operate, prepare inputs for,
and interpret outputs from a system or component.

Predictability to which extent different run-time attributes can be predicted
during design time.

Security the ability of a system to manage, protect, and distribute sensitive
information.

Safety a measure of the absence of unsafe software conditions. The absence
of catastrophic consequences to the environment.

Reliability the ability of a system or component to perform its required func-
tions under stated conditions for a specified period of time.
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Testability the degree to which a system or component facilitates the estab-
lishment of test criteria and the performance of tests to determine whether
those criteria have been met. Note: testability is not only ameasurement
for software, but it can also apply to the testing scheme.

Flexibility the ease with which a system or component can be modified for
use in applications or environments other than those for which it was
specifically designed.

Efficiency the degree to which a system or component performs its designated
functions with minimum consumption of resources (CPU, Memory, I/O,
Peripherals, Networks).

Representatives from the technical staff of several companies have been re-
quested to prioritize a list of quality attributes, reflecting each of the respective
companiesŠ view. The attributes have been grouped by the company represen-
tatives in four priority classes as shown in Table 9.1. The nature of the quality
attributes imply that no quality attribute can be neglected. It is essential to no-
tice that placing an attribute in the lowest priority class (4) does not mean that
the company could avoid that quality in their software, rather that the company
does not spend extra efforts in reaching it. The following companies have been
involved in the classification process:

• Volvo Construction Equipment [16] develops and manufactures a wide
variety of construction equipment vehicles, such as articulated haulers,
excavators, graders, backhoe loaders, and wheel loaders.

• Volvo Cars [17] develops passenger cars in the premium segment. Cars
are typically manufactured in volumes in the order of several hundred
thousands per year.

• Bombardier Transportation [18] is a train manufacturer, with a wide
range of related products. Some samples from their product line are
passenger rail vehicles, total transit systems, locomotives, freight cars,
propulsion and controls, and signalling equipment.

• Scania [19] is a manufacturer of heavy trucks and buses as well as indus-
trial and marine engines.

• ABB Robotics [20] is included in the work as a reference company, not
acting in the vehicular domain. They are building industrial robots, and
it is the department developing the control systems that is represented.
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Priority Description
1 very important, must be considered
2 important, something that one should try to consider
3 less important, considered if it can be achieved with a smalleffort
4 Unimportant, do not spend extra effort on this

Table 9.1: Priority classes used to classify the importanceof the different qual-
ity attributes

As the last step we provide a discussion where we have combined the col-
lected data from the companies with the classification of howto support dif-
ferent quality attributes in [8]. The combination gives an abstract description
of where, which, and how different quality attributes should be supported by a
component technology tailored for usage in the vehicular industry.

9.3 Results

Figure 9.1 is a diagram that summarizes the results. The attributes are pri-
oritized by the different companies, in a scale from priority 1 (highest), to 4
(lowest) indicated on the Y-axis. On the X-axis the attributes are presented
with the highest prioritized attribute as the leftmost, andlowest as rightmost.
Each of the companies has one bar for each attribute, textured as indicated be-
low the X-axis. In some cases the representatives placed an interval for the
priority of certain attributes, e.g., 1-3 dependent on application; in those cases
the highest priority has been chosen in the diagram.

The result shows that the involved companies have approximately similar
prioritization, except on the security quality attribute where we have both high-
est and lowest priority. Reasonably, the most important concerns are related to
dependability characteristics (i.e. to the expectation ofthe performance of the
systems): safety, reliability and predictability. Usability is a property important
for the customers but also crucial in competition on the market. Slightly less
important attributes are related to the life cycle (extendibility, maintainability).
This indicates that the companies are ready to pay more attention to the prod-
uct performance than to the development and production costs (in that sense
a component-based approach which primary concerns are of business nature,
might not necessary be the most desirable approach).

The results also shows that ABB Robotics, included as a reference com-
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Figure 9.1: the results. Y-axis: priority of quality attributes in a scale 1 (high-
est), to 4 (lowest). X-axis: the attributes, with the highest prioritized attribute
as the leftmost, and lowest as rightmost. Each of the companies has one bar for
each attribute, textured as indicated below the X-axis.

pany outside the vehicular domain has also approximately the same opinion. It
is not possible to distinguish ABB Robotics from any of the vehicular compa-
nies from a quality attribute perspective. These companiesmight use the same
component technology with respect to quality attribute support; thus the results
in the investigation indicate that the priority among quality attributes scale to a
broader scope of embedded computer control systems.
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9.4 Discussion of the results

A component technology may have built in support for maintaining quality
attributes. However, tradeoffs between quality attributes must be made since
they are interdependent [7, 6]. We will discuss how the different quality at-
tributes can be supported by a component technology, and suggest how nec-
essary tradeoffs can be made according to priority placed byindustry. The
discussion starts by treating the attribute that has received the highest priority
(safety), and continues in priority order, in this way the conflicts (and tradeoffs)
will be discussed in priority order. As basis for where support for a specific
quality attribute should be implemented we use a classification from [8], listed
below:

• Directly composable, possible to analyze given the same quality attributes
from the components.

• Architecture related, possible to analyze given this attribute for the com-
ponents and the assembly architecture.

• Derived attributes, possible to analyze from several attributes from the
involved components.

• Usage dependent, need a usage profile to analyze this.

• System environment context, possible to analyze given environment at-
tributes.

9.4.1 Safety

Safety is classified as dependent on the usage profile, and thesystem envi-
ronment context. Similarly to the fact that we cannot reasonabout system
safety without taking into consideration the surrounding context, we cannot
reason about safety of a component: simply safety is not a property that can
be identified on the component level. But a component technology can include
numerous mechanisms that enhance safety, or simplify safety analysis. How-
ever, to perform safety analysis, usage and environment information is needed.
A component technology can have support for safety kernels [21], surround-
ing components and supervise that unsafe conditions do not occur. Pre- and
post conditions can be checked in conjunction with execution of components
to detect hazardous states and check the range of input and output, used in
specification of components in e.g., [22, 23]. Tools supporting safety analysis
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as fault tree analysis (FTA) or failure modes and effect analysis (FMEA) can
also be provided with the component technology.

9.4.2 Reliability

Reliability is architecture related and usage dependent. The dominant type of
impact on reliability is the usage profile but reliability isalso dependent on
the software architecture and how components are assembled; a fault-tolerant
redundant architecture improves the reliability of the assembly of components.
One possible approach to calculation of the reliability of an assembly is to use
the following elements:

• Reliability of the components - Information that has been obtained by
testing and analysis of the component given a context and usage profile.

• Path information (usage paths) - Information that includesusage profile
and the assembly structure.

Combined, it can give a probability of execution of each component, for
example by using Markov chains.

Also common for many simple systems, the reliability for a function of
two components is calculated using the reliability of the components, and their
relationship when performing the function. An AND relationship is when the
output is dependent on correct operation of both components, and an OR occurs
when the output is created when one of the two components operates correctly.

A component technology could have support for reliability,through relia-
bility attributes associated with components, and tools that automatically de-
termines reliability of given usage profiles, path information, and structural
relationships.

It is noteworthy that even if the reliability of the components are known it
is very hard to know if side effects take place that will affect an assembly of the
components. E.g. a failure caused by a component writing in amemory space
used by another component. A model based on these assumptions needs the
means for calculating or measuring component reliability and an architecture
that permits analysis of the execution path. Component models that specify
provided and required interface, or implement a port-basedinterface make it
possible to develop a model for specifying the usage paths. This is an exam-
ple in which the definition of the component model facilitates the procedure of
dealing with the quality attribute. One known problem in theuse of Markov
chains in modelling usage is the rapid growth of the chain andcomplexity
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[24]. The problem can be solved because the reliability permits a hierarchical
approach. The system reliability can be analyzed by (re)using the reliability
information of the assemblies and components (which can be derived or mea-
sured).

Reliability and Safety are not conflicting attributes. Reliability enhances
safety, high reliability increases confidence that the system does what it is in-
tended to and nothing else that might lead to unsafe conditions.

9.4.3 Predictability

We focus on predictability of the particular run-time attributes temporal behav-
iour, memory consumption, and functional behaviour. Predictability is directly
composable and architecture dependent. Prediction of temporal behaviour is
well explored in research within the real-time community. Depending on the
run-time systems scheduling strategy, the shared resourceaccess and execution
demands of the scheduled entities, suitable prediction theories can be chosen,
e.g., for fixed priority systems that are most common within industry [25, 26].
The choice of scheduling strategy is also a problem that has been addressed
[27]. Static scheduled systems are more straightforward topredict than event
driven systems that on the other hand are more flexible. Memory consumption
can be predicted, given the memory consumption for the different components
in the system [28]. However, two different types of memory consumption can
be identified: static and dynamic. Static memory consumption is the most
straightforward to predict, since it is a simple summation of the memory re-
quirements of the included components. Dynamic memory consumption can
be more complex, since it might be dependent on usage input, and thereby be
usage dependent.

Predictability is not in conflict with the higher prioritized attributes relia-
bility and safety. Predictable behaviour enhances safety and reliability, e.g.,
unpredictable behaviour cannot be safe because it is impossible to be sure that
certain actions will not take place.

9.4.4 Usability

Usability is a rather complex quality attribute, which is derived from several
other attributes; it is architecture related and usage dependent. Usability is not
directly related to selection of component technology. Software in embedded
systems (the most common and important type of software in vehicular sys-
tems) is usually not visible and does not directly interact with the user. How-
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ever, more and more human-machine interaction is implemented in underlying
software. In many cases we can see how the flexibility of software is abused
- there are many devices (for example in infotainment) with numerous buttons
and flashing screens that significantly decrease the level ofusability. Use of
a component technology may however indirectly contribute to usability - by
building standard (user-interface) components, and by their use in different ap-
plications and products, the same style, type of interaction, functionality and
similar are repeated. In this way they become recognisable and consequently
easier to use.

Usability as discussed above is not in obvious conflict with any of the
higher prioritized quality attributes.

9.4.5 Extendibility

Extendibility is directly composable and architecture related. It can be sup-
ported by the component technology through absence of restrictions in size
related parameters, e.g., memory size, code size, and interface size. Extendibil-
ity is one of the main concerns of a component technology and it is explicitly
supported either by ability of adding or extending interfaces or by providing a
framework that supports extendibility by easy updating of the system with new
or modified components.

Extendibility is not in direct conflict with any of the higherprioritized at-
tributes. However, conflicts may arise due to current methods used for analysis
and design of safety critical systems real-time systems, the methods often re-
sults in systems that are hard to extend [29]. Predictability in turn enhances
extendibility, since it makes predications of the impact ofan extension possi-
ble.

9.4.6 Maintainability

Maintainability is directly composable and architecture related. A component
technology supports maintainability through configuration management tools,
clear architectures, and possibilities to predict impactsof applied changes.

Maintainability is not in obvious conflict with any of the higher priori-
tized attributes. But as for extendibility, current state of practice for achieving
safety, dependability and predictability results in systems that often are hard
to maintain [29]. Maintainability increases usability, while good predictability
in turn increases maintainability since impacts of maintenance efforts can be
predicted.
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9.4.7 Efficiency

Efficiency is directly composable and architecture related. Efficiency is af-
fected by the component technology, mainly through resource usage by the
run-time system but also by interaction mechanisms. Good efficiency is equal
to low memory, processor, and communication medium usage.

In the requirements for a software application it might often be the case
that a certain amount of efficiency is a basic requirement, because of limited
hardware resources, control performance, or user experienced responsiveness.
In such cases the certain metrics must be achieved, but efficiency is poten-
tially in conflict with many higher prioritized quality attributes. Safety related
run-time mechanisms as safety kernels, and checking pre- and post conditions
consume extra resources and are thus in conflict with efficiency. Reliability is
often increased by redundancy, by definition conflicting with efficiency. Meth-
ods used for guaranteeing real-time behaviour are pessimistic and result in low
utilization bounds [30], although it is a widely addressed research problem and
improvements exist, e.g., [31, 32].

9.4.8 Testability

Testability is directly composable and architecture related. A general rule for
testability is that simple systems are easier to test than complex systems; how-
ever, what engineers build is not directly related to the technology itself. Di-
rect methods to increase testability provided by a component technology can
be built in self tests in components, monitoring support in the run-time system,
simulation environments, high and low level debugging information [33].

Testability is not in conflict with any of the higher prioritized quality at-
tributes. On the contrary, it supports several other attributes, e.g., safety is
increased by testing that certain conditions cannot occur,predictions are con-
firmed by testing, maintainability is increased if it is possible to test the impact
of a change. However, efficiency tradeoffs might have to be done to enable
testing. A problem with many common testing methods is the probe effect in-
troduced by software probes used for observing the system [34]. If the probes
used during testing are removed in the final product, it is notthe same system
that is delivered as the one tested. To avoid this problem, designers can choose
to leave the probes in the final product and sacrifice efficiency, or possibly use
some form of non-intrusive hardware probing methods, e.g.,[35]. Reliability
implemented by fault tolerance decrease testability, since faults may become
hidden and complicate detection by testing.
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9.4.9 Security

Security is usage dependent and dependent on the environment context, mean-
ing that it is not directly affected by the component technology. However,
mechanisms increasing security can be built in a component technology, e.g.,
encryption of all messages, authorization of devices that communicate on the
bus.

Methods to increase security that can be built in a componenttechnology
are often in conflict with higher prioritized quality attributes, e.g., encryption is
in conflict with efficiency since it require more computing, and with testability
since it is harder to observe the system. Furthermore security has a low priority,
and the methods to achieve it are not dependent on support from the component
technology. Hence, security can be implemented without support from the
component technology.

9.4.10 Flexibility

Flexibility is directly composable and architecture related. A component tech-
nology can support flexibility through the components, their interactions, and
architectural styles to compose systems. Methods increasing flexibility in a
component technology can be, e.g., dynamic run-time scheduling of activities
based on events, run-time binding of resources, and component reconfiguration
during run-time.

Flexibility has received the lowest priority of all qualityattributes, and is
in conflict with many higher prioritized attributes, e.g., with safety since the
number of different hazardous conditions increases, with testability since the
number of test cases increases and it may not be possible at all to create a
realistic run-time situation thus not to test the actual system either. On the other
hand flexibility increases maintainability, since a flexible system is easier to
change during maintenance. It is not possible to use completely static systems
with no flexibility at all when user interaction is involved,but regarding to the
numerous conflicts with higher prioritized quality attributes it should be kept
to a minimum in component technologies for this domain.

9.4.11 Quality Attribute Support in a Component Technol-
ogy for the Automotive Domain

Having presenting the basic characteristics of quality attributes related to com-
ponent technologies, and identification of present conflicts, and suggestions on
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how to resolve the conflict we give a brief description of the resulting sugges-
tion of support for quality attributes in a component technology tailored for
vehicular systems below:

Safety Safety cannot be fully supported by a component technology.How-
ever, safety kernels surrounding components and support for defining
pre- and post conditions are suggested.

Reliability Reliability is supported to a large extent by a component technol-
ogy. We suggest reliability attributes associated with components, path
information including usage profile and assembly structure, and tools for
analysis. There should also be support for redundant components when
necessary.

Predictability Predictability is supported to a large extent. Associated to the
components, attributes such as execution time, and memory consump-
tion can be specified. Tools for automated analysis can be provided with
the technology.

Usability Usability is not directly supported by a component technology.

Extendibility Extendibility is well supported. The interfaces should be easy
to extend and it should be easy to add new components to an existing sys-
tem. There should be no size related restrictions with respect to memory,
code, and interface.

Maintainability Maintainability is well supported by a component technol-
ogy. The support is provided through configuration management tools,
and the fact that using well defined components gives a clear and main-
tainable architecture.

Efficiency Efficiency is suggested to be supported to a fairly high level. We
suggest support through small and efficient run-time systems, however
not to the cost of suggested safety and reliability related run-time mech-
anisms.

Testability Testability is supported to a large extent. The support is suggested
to be monitoring possibilities in the run-time system, simulation and de-
bug possibilities.

Security Security is not directly supported.

Flexibility Flexibility is not directly supported.
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9.5 Future Work

We will continue with research towards enabling CBSE for automotive sys-
tems. One part is to continue investigating the requirements on quality at-
tributes from the domain, with our present and other industrial partners. An-
other part is an analysis of particular component models to investigate their
abilities of supporting these quality attributes. A third part is to enable support
for quality attributes in the component technologies we aredeveloping as pro-
totypes suitable for the domain AutoComp [36] and SaveComp [12], but we
will also asses to which extent other existing component technologies can be
used in order to meet the industrial requirements.

9.6 Conclusions

We have presented a classification of the importance of quality attributes for
software made by some companies in the vehicular domain; theresults showed
that the companies agreed upon the priority for most of the attributes. The
most important concerns showed to be related to dependability characteristics
(safety, reliability and predictability). Usability received a fairly high prior-
ity. Slightly less important attributes where those related to the life cycle (ex-
tendibility, maintainability), while security and flexibility received the lowest
priority. We also included a company outside the domain in the investigation,
it turned out that they also agreed upon the classification; it might be that the
classification scale to a broader scope of embedded systems.

Furthermore, we have discussed how the attributes could be facilitated by
a component technology, and were in the technology the support should be
implemented: inside or outside the components, in the framework, or if the
quality attributes are usage dependent. The discussion is concluded by a brief
suggestion of quality attribute support for a component technology.
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Abstract

We compare existing component technologies for embedded systems with re-
spect to industrial requirements. The requirements are collected from the ve-
hicular industry, but our findings are applicable to similarindustries developing
resource constrained safety critical embedded distributed real-time computer
systems.

One of our conclusions is that none of the studied technologies is a per-
fect match for the industrial requirements. Furthermore, no single technology
stands out as being a significantly better choice than the others; each technol-
ogy has its own pros and cons.

The results of our evaluation can be used to guide modifications or ex-
tensions to existing technologies, making them better suited for industrial de-
ployment. Companies that want to make use of component-based software
engineering as available today can use this evaluation to select a suitable tech-
nology.
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10.1 Introduction

Component-Based Software Engineering (CBSE) has receivedmuch attention
during the last couple of years. However, in the embedded-system domain, use
of component technologies has had a hard time gaining acceptance; software-
developers are still, to a large extent, using monolithic and platform-dependent
software technologies.

We try to find out why embedded-software developers have not embraced
CBSE as an attractive tool for software development. We do this by evaluat-
ing a set of component technologies with respect to industrial requirements.
The requirements have been collected from industrial actors within the busi-
ness segment of heavy vehicles, and have been presented in our previous work
[1]. Examples of heavy vehicles include wheel loaders, excavators, forest har-
vesters, and combat vehicles. The software systems developed within this
market segment can be characterised as resource constrained, safety critical,
embedded, distributed, real-time, control systems. Our findings in this study
should be applicable to other domains with similar characteristics.

Our evaluation, between requirements and existing technologies, does not
only help to answer why component-based development has notyet been em-
braced by the embedded-systems community. It also helps us to identify what
parts of existing technologies could be enhanced, to make them more appropri-
ate for embedded-system developers. Specifically, it will allow us to select a
component technology that is a close match to the requirements, and if needed,
guide modifications to that technology.

The reason for studying component-based development in thefirst place,
is that software developers can achieve considerable business benefits in terms
of reduced costs, shortened time-to-market and increased software quality by
applying a suitable component technology. The component technology should
rely on powerful design and compile-time mechanisms and simple and pre-
dictable run-time behaviour.

There is however significant risks and costs associated withthe adoption of
a new development technique (such as component-based development). These
must be carefully evaluated before introduced in the development process. One
of the apparent risks is that the selected component technology turns out to be
inappropriate for its purpose; hence, the need to evaluate component technolo-
gies with respect to requirements expressed by software developers.
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10.2 Requirements

The requirements discussed and described in this section are based on a previ-
ously conducted investigation [1]. The requirements foundin that investigation
are divided into two main groups, the technical requirements (Section 10.2.1)
and the development process related requirements (Section10.2.2). In addi-
tion, Section 10.2.3 contains derived requirements, i.e. requirements that we
have synthesised from the requirements in Sections 10.2.1 and 10.2.2 but that
are not explicitly stated requirements from the vehicular industry [1].

10.2.1 Technical Requirements

The technical requirements describe industrial needs and desires regarding
technical aspects and properties of a component technology.

Analysable

System analysis, with respect to non-functional properties, such as timing be-
haviour and memory consumption is considered highly attractive. In fact, it is
one of the single most distinguished requirements found in our investigation.

When analysing a system built from well-tested, functionally correct, com-
ponents, the main issue is associated with composability. The composition
process must ensure that non-functional properties, such as the communica-
tion, synchronisation, memory, and timing characteristics of the system, are
predictable [2].

Testable and debugable

It is required that tools exist that support debugging, bothat component level
(e.g., a graphical debugging tool), as well as on source codelevel.

Testing and debugging is one of the most commonly used techniques to
verify software systems functionality. Testing is a very important comple-
ment to analysis, and testability should not be compromisedwhen introducing
a component technology. Ideally, the ability to test embedded-system software
should be improved when using CBSE, since it adds the abilityto test compo-
nents in isolation.
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Portable

The components, and the infrastructure surrounding them, should be platform
independent to the highest degree possible. Here, platformindependency means
(1) hardware independent, (2) real-time operating system (RTOS) indepen-
dent and (3) communications protocol independent. The components are kept
portable by minimising the number of dependencies to the software platform.
Eventually such dependencies are off course necessary to construct an exe-
cutable system, however the dependencies should be kept to aminimum, and
whenever possible dependencies should be generated automatically by config-
uration tools.

Resource Constrained

The components should be small and light-weighted and the components in-
frastructure and framework should be minimised. Ideally there should be no
run-time overhead compared to not using a CBSE approach. Hardware used in
embedded real-time systems is usually resource constrained, to lower produc-
tion cost and thereby increase profit.

One possibility, that significantly can reduce resource consumption of com-
ponents and the component framework, is to limit run-time dynamics. This
means that it is desirable only to allow static, off-line, configured systems.
Many existing component technologies have been design to support high run-
time dynamics, where components are added, removed and reconfigured dur-
ing run-time.

Component Modelling

The component modelling should be based on a standard modelling language
like UML [3] or UML 2.0 [4]. The main reason to choose a standard like UML
is that it is well known and thoroughly tested, with tools andformats supported
by many third-party developers. The reason for the vehicular industry to have
specific demands in this detail, is that this business segment does not have the
knowledge, resources or desire to develop their own standards and practices.

Computational Model

Components should preferably be passive, i.e., they shouldnot contain their
own threads of execution. A view where components are allocated to threads
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during component assembly is preferred, since this is conceptually simple, and
also believed to enhance reusability.

The computational model should be focused on a pipes-and-filters model
[5]. This is partly due to the well known ability to schedule and analyse this
model off-line. Also, the pipes-and-filters model is a good conceptual model
for control applications.

10.2.2 Development Requirements

When discussing component-based development with industry, development
process requirements are at least as important as the technical requirements. To
obtain industrial reliance, the development requirementsneed to be addressed
by the component technology and its associated tools.

Introducible

Appropriate support to gradually migrate to a new technology should be pro-
vided by the component technology. It is important to make the change in
development process and techniques as safe and inexpensiveas possible. Rev-
olutionary changes in development techniques are associated with high risks
and costs. Therefore a new technology should be possible to divide into smaller
parts, which can be introduced incrementally. Another aspect, to make a tech-
nology introducible, is to allow legacy code within systemsdesigned with the
new technology.

Reusable

Components should be reusable, e.g., for use in new applications or environ-
ments than those for which they where originally designed [6]. Reusability can
more easily be achieved if a loosely coupled component technology is used,
i.e., the components are focusing on functionality and do not contain any direct
operating system or hardware dependencies. Reusability isfurther enhanced by
the possibility to use configuration parameters to components.

A clear, explicit, and well-defined component interface is crucial to en-
hance the software reusability. Also, specification of non-functional proper-
ties and requirements (such as execution time, memory usage, deadlines, etc.)
simplify reuse of components since it makes (otherwise) implicit assumptions
explicit. Behavioural descriptions (such as state diagrams or interaction dia-
grams) of components can be used to further enhance reusability.
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Maintainable

The components should be easy to change and maintain, developers that are
about to change a component need to understand the full impact of the pro-
posed change. Thus, not only knowledge about component interfaces and their
expected behaviour is needed. Also, information about current deployment
contexts may be needed in order not to break existing systems. The compo-
nents can be stored in a repository where different versionsand variants need
to be managed in a sufficient way. The maintainability requirement also in-
cludes sufficient tools supporting the service of deployed and delivered prod-
ucts. These tools need to be component aware and handle errordiagnostics
from components and support for updating software components.

Understandable

The component technology and the systems constructed usingit should be easy
to understand. This should also include making the technology easy and intu-
itive to use in a development project.

The reason for this requirement is to simplify evaluation and verification
both on the system level and on the component level. Focusingon an under-
standable model makes the development process faster and itis likely that there
will be fewer bugs. This requirement is also related to the introducible require-
ment (Section 10.2.2) since an understandable technique ismore introducible.

It is desirable to hide as much complexity as possible from system devel-
opers. Ideally, complex tasks (such as mapping signals to memory areas or bus
messages, or producing schedules or timing analysis) should be performed by
tools.

10.2.3 Derived Requirements

Here, we present requirements that we have synthesised fromthe requirements
in sections 10.2.1 and 10.2.2, but that are not explicit requirements from indus-
try.

Source Code Components

A component should be source code, i.e., no binaries. Companies are used to
have access to the source code, to find functional errors, andenable support for
white box testing (Section 10.2.1). Since source code debugging is demanded,
even if a component technology is used, black box componentsis undesirable.
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However, the desire to look into the components does not necessary imply a
desire to be allowed to modify them.1

Using black-box components would lead to a fear of loosing control over
the system behaviour (Section 10.2.2). Provided that all components in the
systems are well tested, and that the source code are checked, verified, and
qualified for use in the specific surrounding, the companies might alleviate
their source code availability.

Also with respect to the resource constrained requirement (Section 10.2.1),
source code components allow for unused parts of the component to be re-
moved at compile time.

Static Configurations

Better support for the technical requirements of analysability (Section 10.2.1),
testability (Section 10.2.1), and resource consumption (Section 10.2.1), are
achieved by using pre-runtime configuration. Here, configuration means both
configuration of component behaviour and interconnectionsbetween compo-
nents. Component technologies for use in the Office/Internet domain usually
focus on dynamic configurations [7, 8]. This is of course appropriate in these
specific domains, where one usually has access to ample resources. Embed-
ded systems, however, face another reality; with resource constrained nodes
running complex, dependable, control applications.

However, most vehicles can operate in different modes, hence the technol-
ogy must support switches between a set of statically configured modes. Static
configuration also improves the development process related requirement of
understandability (Section 10.2.2), since each possible configuration is known
before run-time.

10.3 Component Technologies

In this section, existing component technologies for embedded systems are
described and evaluated. The technologies originate both from academia and
industry. The selection criterion for a component technology has firstly been
that there is enough information available, secondly that the authors claim that

1This can be viewed as a "glass box" component model, where it possible to acquire a "use-
only" license from a third party. This license model is todayquite common in the embedded
systems market.
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the technology is suitable for embedded systems, and finallywe have tried to
achieve a combination of both academic and industrial technologies.

The technologies described and evaluated are PECT, Koala, Rubus Compo-
nent Model, PBO, PECOS and CORBA-CCM. We have chosen CORBA-CCM
to represent the set of technologies existing in the PC/Internet domain (other
examples are COM, .NET [7] and Java Enterprise Beans [8]) since it is the
only technology that explicitly address embedded and real-time issues. Also,
the Windows CE version of .NET [7] is omitted, since it is targeted towards
embedded display-devices, which only constitute a small subset of the devices
in vehicular systems. The evaluation is based on publicly available, documen-
tation.

10.3.1 PECT

A Prediction-Enabled Component Technology (PECT) [9] is a development in-
frastructure that incorporates development tools and analysis techniques. PECT
is an ongoing research project at the Software Engineering Institute (SEI) at the
Carnegie Mellon University.2 The project focuses on analysis; however, the
framework does not include any concrete theories - rather definitions of how
analysis should be applied. To be able to analyse systems using PECT, proper
analysis theories must be found and implemented and a suitable underlying
component technology must be chosen.

A PECT include an abstract model of a component technology, consist-
ing of a construction framework and a reasoning framework. To concretise a
PECT, it is necessary to choose an underlying component technology, define
restrictions on that technology (to allow predictions), and find and implement
proper analysis theories. The PECT concept is highly portable, since it does
not include any parts that are bound to a specific platform, but in practise the
underlying technology may hinder portability. For modelling or describing a
component-based system, the Construction and CompositionLanguage (CCL)
[9] is used. The CCL is not compliant to any standards. PECT ishighly in-
troducible, in principle it should be possible to analyse a part of an existing
system using PECT. It should be possible to gradually model larger parts of a
system using PECT. A system constructed using PECT can be difficult to un-
derstand; mainly because of the mapping from the abstract component model
to the concrete component technology. It is likely that systems looking identi-
cal at the PECT-level behave differently when realised on different component
technologies.

2Software Engineering Institute, CMU; http://www.sei.cmu.edu
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PECT is an abstract technology that requires an underlying component
technology. For instance, how testable and debugable a system is depends
on the technical solutions in the underlying run-time system. Resource con-
sumption, computational model, reusability, maintainability, black- or white-
box components, static- or dynamic-configuration are also not possible to de-
termine without knowledge of the underlying component technology.

10.3.2 Koala

The Koala component technology [10] is designed and used by Philips3 for
development of software in consumer electronics. Typically, consumer elec-
tronics are resource constrained since they use cheap hardware to keep devel-
opment costs low. Koala is a light weight component technology, tailored for
Product Line Architectures [11]. The Koala components can interact with the
environment, or other components, through explicit interfaces. The compo-
nents source code is fully visible for the developers, i.e.,there are no binaries
or other intermediate formats. There are two types of interfaces in the Koala
model, the provides- and the requires- interfaces, with thesame meaning as in
UML 2.0 [4]. The provides interface specify methods to access the compo-
nent from the outside, while the required interface defines what is required by
the component from its environment. The interfaces are statically connected at
design time.

One of the primary advantages with Koala is that it is resource constrained.
In fact, low resource consumption was one of the requirements considered
when Koala was created. Koala use passive components allocated to active
threads during compile-time; they interact through a pipes-and-filters model.
Koala uses a construction called thread pumps to decrease the number of proces-
ses in the system. Components are stored in libraries, with support for version
numbers and compatibility descriptions. Furthermore components can be pa-
rameterised to fit different environments.

Koala does not support analysis of run-time properties. Research has pre-
sented how properties like memory usage and timing can be predicted in gen-
eral component-based systems, but the thread pumps used in Koala might cause
some problems to apply existing timing analysis theories. Koala has no explicit
support for testing and debugging, but they use source code components, and a
simple interaction model. Furthermore, Koala is implemented for a specific op-
erating system. A specific compiler is used, which routes allinter-component

3Phillips International, Inc; Home Page http://www.phillips.com
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and component to operating system interaction through Koala connectors. The
modelling language is defined and developed in-house, and itis difficult to see
an easy way to gradually introduce the Koala concept.

10.3.3 Rubus Component Model

The Rubus Component Model (Rubus CM) [12] is developed by Arcticus sys-
tems.4 The component technology incorporates tools, e.g., a scheduler and a
graphical tool for application design, and it is tailored for resource constrained
systems with real-time requirements. The Rubus Operating System (Rubus
OS) [13] has one time-triggered part (used for time-critical hard real-time ac-
tivities) and one event-triggered part (used for less time-critical soft real-time
activities). However, the Rubus CM is only supported by the time-triggered
part.

The Rubus CM runs on top of the Rubus OS, and the component model
requires the Rubus configuration compiler. There is supportfor different hard-
ware platforms, but regarding to the requirement of portability (Section 10.2.1),
this is not enough since the Rubus CM is too tightly coupled tothe Rubus OS.
The Rubus OS is very small, and all component and port configuration is re-
solved off-line by the Rubus configuration compiler.

Non-functional properties can be analysed during design-time since the
component technology is statically configured, but timing analysis on compo-
nent and node level (i.e., schedulability analysis) is the only analysable prop-
erty implemented in the Rubus tools. Testability is facilitated by static schedul-
ing (which gives predictable execution patterns). Testingthe functional behav-
iour is simplified by the Rubus Windows simulator, enabling execution on a
regular PC.

Applications are described in the Rubus Design Language, which is a non-
standard modelling language. The fundamental building blocks are passive.
The interaction model is the desired pipes-and-filters (Section 10.2.1). The
graphical representation of a system is quite intuitive, and the Rubus CM it-
self is also easy to understand. Complexities such as schedule generation and
synchronisation are hidden in tools.

The components are source code and open for inspection. However, there is
no support for debugging the application on the component level. The compo-
nents are very simple, and they can be parameterised to improve the possibility
to change the component behaviour without changing the component source
code. This enhances the possibilities to reuse the components.

4Arcticus Systems; Home Page http://www.arcticus.se
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Smaller pieces of legacy code can, after minor modifications, be encapsu-
lated in Rubus components. Larger systems of legacy code canbe executed as
background service (without using the component concept ortiming guaran-
tees).

10.3.4 PBO

Port Based Objects (PBO) [14] combines object oriented design, with port au-
tomaton theory. PBO was developed as a part of the Chimera Operating Sys-
tem (Chimera OS) project [15], at the Advanced ManipulatorsLaboratory at
Carnegie Mellon University.5 Together with Chimera, PBO forms a framework
aimed for development of sensor-based control systems, with specialisation in
reconfigurable robotics applications. One important goal of the work was to
hide real-time programming and analysis details. Another explicit design goal
for a system based on PBO was to minimise communication and synchronisa-
tion, thus facilitating reuse.

PBO implements analysis for timeliness and facilitates behavioural models
to ensure predictable communication and behaviour. However, there are few
additional analysis properties in the model. The communication and compu-
tation model is based on the pipes-and-filters model, to support distribution in
multiprocessor systems the connections are implemented asglobal variables.
Easy testing and debugging is not explicitly addressed. However, the technol-
ogy relies on source code components and therefore testing on a source code
level is achievable. The PBOs are modular and loosely coupled to each other,
which admits easy unit testing. A single PBO-component is tightly coupled to
the Chimera OS, and is an independent concurrent process.

Since the components are coupled to the Chimera OS, it can notbe easily
introduced in any legacy system. The Chimera OS is a large anddynamically
configurable operating system supporting dynamic binding,it is not resource
constrained.

PBO is a simple and intuitive model that is highly understandable, both
at system level and within the components themselves. The low coupling be-
tween the components makes it easy to modify or replace a single object. PBO
is built with active and independent objects that are connected with the pipes-
and-filters model. Due to the low coupling between components through sim-
ple communication and synchronisation the objects can be considered to be
highly reusable. The maintainability is also affected in a good way due to the

5Carnegie Mellon University; Home Page http://www.cmu.edu
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loose coupling between the components; it is easy to modify or replace a single
component.

10.3.5 PECOS

PECOS6 (PErvasive COmponent Systems) [16, 17] is a collaborative project
between ABB Corporate Research Centre7 and academia. The goal for the
PECOS project was to enable component-based technology with appropri-
ate tools to specify, compose, validate and compile software for embedded
systems. The component technology is designed especially for field devices,
i.e., reactive embedded systems that gathers and analyse data via sensors and
react by controlling actuators, valves, motors etc. Furthermore, PECOS is
analysable, since much focus has been put on non-functionalproperties such
as memory consumption and timeliness.

Non-functional properties like memory consumption and worst-case execution-
times are associated with the components. These are used by different PECOS
tools, such as the composition rule checker and the schedulegenerating and
verification tool. The schedule is generated using the information from the
components and information from the composition. The schedule can be con-
structed off-line, i.e., a static pre-calculated schedule, or dynamically during
run-time.

PECOS has an execution model that describes the behaviour ofa field de-
vice. The execution model deals with synchronisation and timing related is-
sues, and it uses Petri-Nets [18] to model concurrent activities like component
compositions, scheduling of components, and synchronisation of shared ports
[19]. Debugging can be performed using COTS debugging and monitoring
tools. However, the component technology does not support debugging on
component level as described in Section 10.2.1.

The PECOS component technology uses a layered software architecture,
which enhances portability (Section 10.2.1). There is a Run-Time Environment
(RTE) that takes care of the communication between the application specific
parts and the real-time operating system. The PECOS component technology
uses a modelling language that is easy to understand, however no standard
language is used. The components communicate using a data-flow-oriented
interaction, it is a pipes-and-filters concept, but the component technology uses
a shared memory, contained in a blackboard-like structure.

6PECOS Project, Home Page: http://www.pecos-project.org/
7ABB Corporate Research Centre in Ladenburg, Home Page: http://www.abb.com/
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Since the software infrastructure does not depend on any specific hardware
or operating system, the requirement of introducability (Section 10.2.2) is to
some extent fulfilled. There are two types of components, leaf components
(black-box components) and composite components. These components can
be passive, active, and event triggered. The requirement ofopenness is not
considered fulfilled, due to the fact that PECOS uses black-box components. In
later releases, the PECOS project is considering to use a more open component
model [20]. The devices are statically configured.

10.3.6 CORBA Based Technologies

The Common Object Request Broker Architecture (CORBA) is a middleware
architecture that defines communication between nodes. CORBA provides a
communication standard that can be used to write platform independent appli-
cations. The standard is developed by the Object ManagementGroup8 (OMG).
There are different versions of CORBA available, e.g., MinimumCORBA [21]
for resource constrains systems, and RT-CORBA [22] for time-critical systems.

RT-CORBA is a set of extensions tailored to equip Object Request Brokers
(ORBs) to be used for real-time systems. RT-CORBA supports explicit thread
pools and queuing control, and controls the use of processor, memory and net-
work resources. Since RT-CORBA adds complexity to the standard CORBA,
it is not considered very useful for resource-constrained systems. Minimum-
CORBA defines a subset of the CORBA functionality that is moresuitable for
resource-constrained systems, where some of the dynamics is reduced.

OMG has defined a CORBA Component Model (CCM) [23], which ex-
tends the CORBA object model by defining features and services that enables
application developers to implement, mange, configure and deploy compo-
nents. In addition the CCM allows better software reuse for server-applications
and provides a greater flexibility for dynamic configurationof CORBA appli-
cations.

CORBA is a middleware architecture that defines communication between
nodes, independent of computer architecture, operating system or program-
ming language. Because of the platform and language independence CORBA
becomes highly portable. To support the platform and language independence,
CORBA implements an Object Request Broker (ORB) that duringrun-time
acts as a virtual bus over which objects transparently interact with other ob-
jects located locally or remote. The ORB is responsible for finding a requested

8Object Management Group. CORBA Home Page. http://www.omg.org/corba/
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objects implementation, make the method calls and carry theresponse back to
the requester, all in a transparent way. Since CORBA run on virtually any plat-
form, legacy code can exist together with the CORBA technology. This makes
CORBA highly introducible.

While CORBA is portable, and powerful, it is very run-time demanding,
since bindings are performed during run-time. Because of the run-time de-
cisions, CORBA is not very deterministic and not analysablewith respect to
timing and memory consumption. There is no explicit modelling language for
CORBA. CORBA uses a client server model for communication, where each
object is active. There are no non-functional properties orany specification of
interface behaviour. All these things together make reuse harder. The main-
tainability is also suffering from the lack of clearly specified interfaces.

10.4 Summary of Evaluation

In this section we assign numerical grades to each of the component technolo-
gies described in Section 10.3, grading how well they fulfil each of the require-
ments of Section 10.2. The grades are based on the discussionsummarised in
Section 10.3. We use a simple 3 level grade, where 0 means thatthe require-
ment is not addressed by the technology and is hence not fulfilled, 1 means that
the requirement is addressed by the technology and/or that is partially fulfilled,
and 2 means that the requirement is addressed and is satisfactory fulfilled. For
PECT, which is not a complete technology, several requirements depended on
the underlying technology. For these requirements we do notassign a grade
(indicated with NA, Not Applicable, in Figure 10.1). For theCORBA-based
technologies we have listed the best grade applicable to anyof the CORBA
flavours mentioned in Section 10.3.6.

For each requirement we have also calculated an average grade. This grade
should be taken with a grain of salt, and is only interesting if it is extremely
high or extremely low. In the case that the average grade for arequirement is
extremely low, it could either indicate that the requirement is very difficult to
satisfy, or that component-technology designers have paidit very little atten-
tion.

In the table we see that only two requirements have average grades below
1.0. The requirement "Component Modelling" has the grade 0 (!), and "Testing
and debugging" has 1.0. We also note that no requirements have a very high
grade (above 1.5). This indicate that none of the requirement we have listed
are general (or important) enough to have been considered byall component-
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technology designers. However, if ignoring CORBA (which isnot designed
for embedded systems) and PECT (which is not a complete component tech-
nology) we see that there are a handful of our requirements that are addressed
and at least partially fulfilled by all technologies.

We have also calculated an average grade for each component technology.
Again, the average cannot be directly used to rank technologies amongst each
other. However, the two technologies PBO and CORBA stand outas having
significantly lower average values than the other technologies. They are also
distinguished by having many 0’s and few 2’s in their grades,indicating that
they are not very attractive choices. Among the complete technologies with
an average grade above 1.0 we notice Rubus and PECOS as being the most
complete technologies (with respect to this set of requirements) since they have
the fewest 0’s. Also, Koala and PECOS can be recognised as thetechnologies
with the broadest range of good support for our requirements, since they have
the most number of 2’s.

However, we also notice that there is no technology that fulfils (not even
partially) all requirements, and that no single technologystands out as being
the preferred choice.

  A
na

ly
sa

bl
e 

 T
es

ta
bl

e 
an

d 
de

bu
ga

bl
e 

 P
or

ta
bl

e 

 R
es

ou
rc

e 
C

on
st

ra
in

ed
 

 C
om

po
ne

nt
 M

od
el

lin
g 

 C
om

pu
ta

tio
na

l M
od

el
 

 In
tr

od
uc

ib
le

 

 R
eu

sa
bl

e 

 M
ai

nt
ai

na
bl

e 

 U
nd

er
st

an
da

bl
e 

 S
ou

rc
e 

C
od

e 
C

om
po

ne
nt

s 

 S
ta

tic
 C

on
fig

ur
at

io
n 

A
ve

ra
ge

 

N
um

be
r 

of
 2

’s
 

N
um

be
r 

of
 0

’s
 

PECT 2 NA 2 NA 0 NA 2 NA NA 0 NA NA 1.2 3 2 

Koala 0 1 1 2 0 2 0 2 2 2 2 2 1.3 7 3 

Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 2 1.3 5 2 

PBO 2 1 0 0 0 1 1 1 1 2 2 0 0.9 3 4 

PECOS  2 1 2 2 0 2 1 2 1 2 0 2 1.4 7 2 

CORBA Based Technologies 0 1 2 0 0 0 2 0 0 1 0 0 0.5 2 8 

Average 1.2 1.0 1.2 1.2 0.0 1.4 1.4 1.2 1.0 1.5 1.2 1.2 1.1 4.3 3.5 

 

Figure 10.1: Grading of component technologies with respect to the require-
ments
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10.5 Conclusion

In this paper we have compared some existing component technologies for em-
bedded systems with respect to industrial requirements. The requirements have
been collected from industrial actors within the business segment of heavy ve-
hicles. The software systems developed in this segment can be characterised
as resource constrained, safety critical, embedded, distributed, real-time, con-
trol systems. Our findings should be applicable to software developers whose
systems have similar characteristics.

We have noticed that, for a component technology to be fully accepted by
industry, the whole systems development context needs to beconsidered. It
is not only the technical properties, such as modelling, computation model,
and openness, that needs to be addressed, but also development requirements
like maintainability, reusability, and to which extent it is possible to gradually
introduce the technology. It is important to keep in mind that a component
technology alone cannot be expected to solve all these issues; however a tech-
nology can have more or less support for handing the issues.

The result of the investigation is that there is no componenttechnology
available that fulfil all the requirements. Further, no single component tech-
nology stands out as being the obvious best match for the requirements. Each
technology has its own pros and cons. It is interesting to seethat most re-
quirements are fulfilled by one or more techniques, which implies that good
solutions to these requirements exist.

The question, however, is whether it is possible to combine solutions from
different technologies in order to achieve a technology that fulfils all listed
requirements? Our next step is to assess to what extent existing technolo-
gies can be adapted in order to fulfil the requirements, or whether selected
parts of existing technologies can be reused if a new component technology
needs to be developed. Examples of parts that could be reusedare file and
message formats, interface description languages, or middleware specifica-
tions/implementations. Further, for a new/modified technology to be accepted
it is likely that it have to be compliant to one (or even more than one) existing
technology. Hence, we will select one of the technologies and try to make as
small changes as possible to that technology.
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