
Mälardalen University Press Dissertations
No. 13

Engineering Strength
Response-Time Analysis

A Timing Analysis Approach for the
Development of Real-Time Systems

Jukka Mäki-Turja

May 2005

Mälardalen Research and Technology Centre (MRTC)
Department of Computer Science and Electronics

Mälardalen University
Västerås, Sweden

Copyright c© Jukka Mäki-Turja, 2005
E-mail: jukka.maki-turja@mdh.se
ISSN 1651-4238
ISBN 91-88834-57-3
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

I

ABSTRACT

When developing computer systems that are part of larger systems, as in con-
trol systems for cars, airplanes, or medical equipment, reliability and safety is
of major concern. Developers of these systems want to keep the production
and development costs to a minimum while maximizing customer benefit by
increasing the functionality of the product.

Increasing the number of functions, along with the added complexity that
it entails, places a demand on better development methods, models, and tools.
Response-Time Analysis (RTA) can be a useful method for these systems by
able to guarantee a system’s temporal behavior. This thesispresents new tech-
niques aimed at improving currently existing RTA methods. Specifically, these
techniques lead to the following improvements:

• The precision in the calculated response times are significantly higher than
with previous methods, with typically 15% shorter responsetimes.

• The analysis, itself, can be made more 100 times faster than with previous
implementations.

By combining these independent techniques of precise (tight) response
times and fast analysis, as shown in this thesis, one can get the benefits of
both in a single analysis method. High precision response-time estimates en-
able either increased functionality within a given hardwaren cost, or a lower
cost for a given functionality. Faster RTA will increase theusefulness of RTA
by enabling the use of RTA in development tools for real-timesystems with
hundreds, or even thousands of tasks.

RTA can be particularly beneficial for safety critical applications that have
even higher requirements on reliability and safety, and often undergo expensive
and lengthy certification processes. We illustrate the possible advantages by
applying RTA for tasks with offsets in a real industrial context. The benefits
consist of simplifying the development process as well as enabling an efficient
resource usage.

III

SWEDISH SUMMARY

Vid utvecklingen av datorsystem som är en del av en större produkt, som t.ex.
styrsystemet i en bil, ett flygplan eller medicinsk utrustning, ställs det ofta
mycket hårda krav på säkerhet och tillförlitlighet. En av målsättningarna är
även att hålla nere produkt- och utvecklingskostnaden, samtidigt som man vill
öka kundnyttan genom att öka innehållet, dvs. funktionaliteten.

Ökningen i antalet funktioner, och komplexiteten den medför, ställer krav
på bättre utvecklingsmetoder, -modeller och -verktyg. Attanalysera svarstider
genom s.k. responstidsanalys (RTA) är ett sätt att kunna garantera systemets
tidsbeteende innan produkten tas i drift. I denna avhandling presenteras nya
tekniker som syftar till att förbättra existerande RTA-metoder, vilket konkret
leder till följande förbättringar:

• Precisionen i de beräknade svarstiderna blir avsevärt högre än tidigare
(typiskt ca 15% kortare responstider).

• Analyserna kan göras avsevärt snabbare än tidigare (typiskt ca 100 ggr
snabbare än tidigare).

Genom att kombinera dessa två helt oberoende tekniker, behöver man ej
offra precision för snabb analys eller vice versa. Det bästaav två världar upp-
nås i en och samma analysmetod; snabb analystid och precisa svarstider. Hö-
gre precision i svarstider möjliggör antingen ökad funktionalitet inom ramen
för en given produktkostnad, eller en lägre kostnad för en given funktionalitet.
Snabbare analysmetoder innebär att utvecklingsverktyg nukan använda RTA i
praktiken även för riktigt stora system med hundratals, ja även tusentals, funk-
tioner.

Speciellt säkerhetskritiska tillämpningar som måste varaoerhört säkra och
tillförlitliga, och många gånger måste genomgå en dyr och tidskrävande cer-
tifieringsprocess, kan dra nytta av RTA. En stor del av svenskexportindustri
såsom Volvo, Saab, och ABB utvecklar realtidssystem för vilka denna forskn-
ing skulle kunna vara av strategisk betydelse.

WHAT IS TIME?
TIME IS WHAT PREVENTS EVERYTHING FROM HAPPENING AT ONCE.

John Archibald Wheeler (The American Journal of Physics, 1978)

VII

PREFACE

The road leading to this Ph.D. thesis has been long and rocky.I have had tons
of fun and met people along the way with whom I have shared somewonderful
(but sometimes tough) moments. I wouldn’t have made it this far without their
encouragement, support, and friendship. Therefore, I would like to take this
opportunity to express my gratitude to all of them.

First of all, I want to thank my supervisors, Mikael Nolin andChrister
Norström, for their invaluable support and friendship throughout the entire
process of the development of this thesis. With you, Mikael,I have had endless
discussions of the detailed technical aspects as well as theoverall big picture
(really big after some beers). I must say that I am impressed by how quickly
you seem to grasp and find the essence of my sometimes incoherent thoughts.
Something I wouldn’t have previously believed is that paperwriting can ac-
tually be fun. However, writing papers with you has actuallybeen a lot fun.
You have been a great supervisor. Thanks! And you, Christer,have constantly
made an effort to try to broaden my view so I didn’t get trappedin the jungle
of details and mathematical formulae. Instead, you encouraged me to look at
what I have accomplished in a broader context. However, yourmost valuable
asset, as I see it, is that you seem to be able to bring out the best in people,
including me. Thanks, Christer, for all your encouragementand support far
beyond the call of duty. Thanks also to Hans Hansson and Sasikumar Pun-
nekkat, who by their proof reading, raised the quality of theintroductory part
of this thesis considerably. Sven Lindow who found errors inpapers C and D,
which I was able to correct at the last minute, also deserves athank you.

I would like to thank friends and co-workers at the department who have
made the atmosphere both creative and fun. Kaj Hänninen, whorecently began
the PhD program, has taught me that regardless of how well youmight think
you understand a problem area, there will always exist questions that have not
been addressed before. Don’t lose that ability, Kaj. Your curiosity and dedi-
cation will bring you and people around you a long way. With Dag Nyström

VIII

I have enjoyed some really high moments, sometimes as high as4000 meters.
Now you owe me three times Dag ;-). I really enjoyed our paper writing session
at Grundagsätern. It didn’t even seem like work, but in paperD you can see the
end result. I would also like to thank Sasikumar Punnekkat, who is not only an
excellent researcher, but also a very good friend. I appreciate your insightful
comments in reviewing papers. Extra thanks also go to Kristian Sandström,
Anders Wall, Daniel Sundmark and Åsa Lundkvist for interesting and fruitful
research and educational discussions. Ylva Boivie also deserves an extra thank
you for her infectious enthusiasm and help in explaining my research to lay
people. And of course Harriet Ekwall, who always makes sure my trips are
organized in the best way and happily goes that extra mile to make sure you
are satisfied, deserves much appreciation.

I would also like to thank some of my best friends who unknowingly have
influenced this Ph.D. thesis. First of all, I’d like to thank Sören Helenelund
who recommended the bachelor program (no, not the one on TV) to which I
got accepted. It turned out pretty well, Sören, don’t you think? I have had
endless discussions with Joachim Yngvesson about all aspects of life. What
our discussions boil down to, I think, is that life prepares you well for the
challenges you will be facing on the golf course. I hope we, together with Sören
(he introduced me to golf too), will continue to collect empirical evidence for
those theories this summer. I have recruited some researchers at the department
to strengthen the scientific credibility of our findings. A big thanks also goes
to Catherine Reed, my spades buddy in the U.S., who has helpedme not only
with (well deserved?) breaks from paper and thesis writing but also with help
in improving my English. She has also provided me with a glimpse into the
field of advanced medical equipment.

Last, but by no means least, I would like to thank my family fornever end-
ing love, encouragement and support. My mother, Mirja, has had perseverance
to withstand my sometimes stubborn ways. For that, I am trulygrateful. My
father, Seppo, a craftsman by trade, is a recent and enthusiastic computer user.
He cannot, for his life, understand what I have been doing allthese years when
I cannot even solve his computer problems. In fact, I consider my greatest
achievement, related to computers, being able to convince my entire family to
acquire them, and to actually use them. Hannu, my younger brother, still be-
lieves that "big" in big brother, refers to size. I am sorry tosay (or maybe not),
you will always be my little brother. Now, you have it in writing ;-).

THANK YOU ALL!
Jukka Mäki-Turja

Västerås a sunny day in April, 2005

IX

L IST OF PUBLICATIONS

Publications included in this thesis

Paper A Jukka Mäki-Turja and Mikael Nolin.Tighter Response-Times for
Tasks with Offsets. In proceedings of Real-time and Embedded
Computing Systems and Applications Conference (RTCSA), Goth-
enburg Sweden, August 2004.

Paper B Jukka Mäki-Turja and Mikael Nolin.Efficient Response-Time An-
alysis for Tasks with Offsets.In proceedings of the 10th IEEE Real-
Time Technology and Applications Symposium (RTAS), Toronto
Canada, May 2004.

Paper C Jukka Mäki-Turja and Mikael Nolin.Fast and Tight Response-Times
for Tasks with Offsets.To appear in proceedings of 17th Euromi-
cro Conference on Real-Time Systems (ECRTS), Palma de Mallorca
Spain, July 2005.

Paper D Jukka Mäki-Turja, Kaj Hänninen, and Mikael Nolin.Efficient De-
velopment of Real-Time Systems Using Hybrid Scheduling.To ap-
pear in proceedings of international conference on Embedded Sys-
tems and Applications (ESA), Las Vegas USA, June 2005.

I have been the main author and the driving force in developing the ideas pre-
sented in these papers which have been supervised by Mikael Nolin. For paper
D, Kaj Hänninen provided the basis for the case study that is included in the
paper.

X L IST OF PUBLICATIONS

Publications not included in this thesis

To present a more comprehensive picture of achievements, during my studies in
the area of real-time systems, I list my publications not included in this thesis.
See MRTC web1 for a complete list of also MRTC and technical reports.

Books

• Christer Norström, Kristian Sandström, Jukka Mäki-Turja,Hans Hans-
son, Henrik Thane, Jan Gustafsson, and Damir Isovic.Robusta realtids-
system.MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-25/2000-1-
SE, Mälardalen Real-Time research Centre, Mälardalen University, Au-
gust 2000.

Journals

• Christer Norström, Jukka Mäki-Turja, Jan Gustafsson, Kristian Sand-
ström, and Ellus Brorson.An Overview of RTT: A Design Framework
for Real-Time Systems.In Journal of Parallel and Distributed Comput-
ing, August 1996.

• Jan Gustafsson, Jukka Mäki-Turja, and Ellus Brorson.Benefits of Type
Inference for an Object-Oriented Real-Time Language.In OOPS Mes-
senger, 7(1), January 1996.

Conferences and workshops

• Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin.Industrial Require-
ments in Development of Embedded Real-Time Systems – Interviews with
Senior Designers. To appear in WiP Session of 17th Euromicro Confer-
ence on Real-Time Systems (ECRTS), Palma de Mallorca Spain,July
2005.

• Kaj Hänninen, John Lundbäck, Kurt-Lennart Lundbäck, JukkaMäki-
Turja, and Mikael Nolin.Efficient Event-Triggered Tasks in an RTOS. To
appear in proceedings of international conference on Embedded Systems
and Applications (ESA), Las Vegas USA, June 2005.

1http://www.mrtc.mdh.se/publications

SELECTED PUBLICATIONS NOT INCLUDED IN THIS THESIS XI

• Jukka Mäki-Turja and Mikael Nolin.Faster Response Time Analysis
of Tasks With Offsets, WiP Session of Real-Time Systems Symposium
(RTSS), Cancun Mexico, December 2003.

• Christer Norström, Mikael Gustafsson, Kristian Sandström, Jukka Mäki-
Turja, and Nils-Erik Bånkestad.Experiences from Introducing State-of-
the-art Real-Time Techniques in the Automotive Industry.In proceed-
ings of the 8th IEEE International Conference and Workshop on the En-
gineering of Computer-Based Systems, Washington US, April2001.

• Anders Wall, Kristian Sandström, Jukka Mäki-Turja, and Christer Nor-
ström. Verifying Temporal Constraints on Data in Multi-Rate Transac-
tions. In proceedings of Real-time and Embedded Computing Systems
and Applications Conference (RTCSA), Korea, December 2000.

• Christer Norström, Kristian Sandström, Jukka Mäki-Turja,and Nils-Erik
Bånkestad. Findings from introducing state-of-the-art real-time tech-
niques in vehicle industry. In industrial session of the 12th Euromicro
Conference on Real-Time Systems, Stockholm Sweden, June 2000.

• Jukka Mäki-Turja, Gerhard Fohler, and Kristian Sandström.Towards Ef-
ficient Analysis of Interrupts in Real-Time Systems.In 11th EUROMI-
CRO Conference on Real-Time Systems, York England, May 1999.

Technical and MRTC reports

• Kaj Hänninen and Jukka Mäki-Turja.Component technology in Re-
source Constrained Embedded Real-Time SystemsTechnical Report,
Mälardalen Research and Technology Centre, March 2004.

• Jukka Mäki-Turja and Mikael Nolin,Combining Dynamic and Static
Scheduling in Hard Real-Time Systems. MRTC report 71, Mälardalen
Research and Technology Centre, Mälardalen University, October 2002.

Other post graduate theses

• Jukka Mäki-Turja.Smalltalk - a suitable Real-Time Language?Licen-
tiate thesis no. 639, ISSN 0280-7971, Department of Computer and In-
formation Science, Linköping University, October 1997.

XIII

CONTENTS

Abstract I

Swedish summary III

Acknowledgements VII

List of publications IX

Contents XIII

I Thesis 1

1 Introduction 3
1.1 Problem formulation . 4
1.2 Thesis outline . 5

2 Real-time systems 7
2.1 Types of real-time functionality 9
2.2 Real-time scheduling . 11

3 Response-time analysis 17
3.1 Basic RTA . 18
3.2 Extending and applying RTA 22
3.3 RTA for tasks with offsets . 25

4 Thesis contributions 29
4.1 Problem formulation restated 29
4.2 Summary of contributions 30

XIV CONTENTS

4.3 Paper A . 31
4.4 Paper B . 32
4.5 Paper C . 33
4.6 Paper D . 34
4.7 Impact of contributions . 34

5 Related work on tasks with offsets 39
5.1 Variant of exact RTA . 39
5.2 Best case RTA . 39
5.3 Improving RTA using precedence information 40
5.4 RTA for earliest deadline first systems 40
5.5 Relation to work presented in this thesis 41

6 Conclusions and future work 43
6.1 Conclusions . 43
6.2 Future work . 45

Bibliography 47

II Included Papers 53

1 Paper A:
Tighter Response-Times for Tasks with Offsets 55
1.1 Introduction . 57
1.2 The Concept of Interference 59
1.3 Existing offset RTA . 61
1.4 Tight offset RTA . 65
1.5 Evaluation . 74
1.6 Conclusions and Future Work 82
References . 83
Appendix A: Complete RTA formulae 85

2 Paper B:
Efficient Response-Time Analysis for Tasks with Offsets 87
2.1 Introduction . 89
2.2 Existing offset RTA . 90
2.3 Fast offset RTA . 96
2.4 Evaluation . 101
2.5 Conclusions and Future Work 106

CONTENTS XV

References . 107
Appendix A: Complete RTA formulae 109
Appendix B: Proof of Theorems 111

3 Paper C:
Fast and Tight Response-Times for Tasks with Offsets 117
3.1 Introduction . 119
3.2 Tight offset RTA . 120
3.3 Fast and Tight Analysis . 125
3.4 Evaluation . 136
3.5 Conclusions . 140
References . 141
Appendix A: Complete RTA formulae 142
Appendix B: Proof of Theorem 3.2 143
Appendix C: Proof of Theorem 3.3 148

4 Paper D:
Efficient Development of Real-Time Systems Using Hybrid Sched-
uling 151
4.1 Introduction . 153
4.2 System description . 156
4.3 Modeling the system . 158
4.4 Related work . 161
4.5 Case Study . 161
4.6 Conclusions . 165
References . 166

III Appendicies 169

A RTA Formulae 171

B Table of concepts 175

C Table of abbreviations 177

D Table of symbols 179

I

Thesis

3

CHAPTER 1

Introduction

Modern society is getting more and more dependent on computers and soft-
ware. This is strikingly illustrated by the following quote:

"Modern society runs on oil and software, and we think we know
how to replace the oil".1

When talking about computers and software, most people thinkof the
boxes and screens at our desks, desktop computers. However,the vast ma-
jority, more than 99.8% of all computers sold 2002, were embedded in other
products [Tur02], such as mobile phones, microwave ovens, cars, or airplanes,
etc. In fact, almost every electronic device today containsat least one simple
computer. As an example, modern cars – such as the BMW 7-series – contain
more than 65 microprocessors [Tur02].

Since computers and software are replacing more and more of the tradi-
tional mechanical solutions, the software systems are becoming larger in size.
Furthermore, since software is more flexible, the possibility for new types of
functionality emerges when switching to software solutions. One example is
the anti skid functionality in a modern car. The possibilityfor this functionality
arose from the fact that when switching from mechanically controlled brakes
to computer controlled brakes, the wheels can be individually controlled.

This increase in size and diversity of functionality, [HMTN05], presents an
increasing challenge for the developers of this kind of systems. One of the main
challenges comes from the fact that when replacing mechanical subsystems
with software controlled solutions, the computer based systems must be at least
as reliable and safe as the mechanical solutions they replace. Consider, e.g., the

1Australia’s competitive dependence on software by Australian Software Quality Research In-
stitute, 1992, URL:http://www.sqi.gu.edu.au/docs/sqi/misc/Aus_Comp_Depend_onS_W.pdf

4 CHAPTER 1. INTRODUCTION I

control systems for a nuclear power plant, an airplane or medical equipment.
We would not accept that these system malfunction or have glitches in the
same manner as, e.g., desktop computers. It is not uncommon that desktop
computers, every now and then, crash or slow down and have to be restarted.

The increased demand on reliability and safety of control systems means
that the functionality of these systems must be verified before the system is
actually taken into use.

Another important and complicating factor for this type of system, com-
pared to a desktop system, is the timing (temporal) behaviorof the computer
system. In the desktop domain, the computer sets the pace of interaction, and
its environment (most often human) has to adapt to that pace.For control
systems where the computer is controlling a physical device, the roles are re-
versed. The environment (e.g., car, airplane, robot, powerplant, or medical
equipment), i.e., laws of nature, dictates the pace of interaction. Therefore, cor-
rect timing behavior is a vital part of the overall correctness criteria for these
types of computer systems. For this reason, they are called real-time systems.

1.1 Problem formulation

In order to meet the challenges of reliability and safety requirements during the
ever increasing complexity of real-time functionality, developers need to have
proper development and analysis tools at their disposal.

One of the most important aspects of real-time systems is that they must
exhibit a predictable timing behavior. Furthermore, thesesystems are also of-
ten embedded in larger systems where resources are often scarce. Therefore,
models and analysis tools aiming at predicting the temporalbehavior in a re-
source constrained environment, are of great concern. One such method is the
Response-Time Analysis (RTA) method. By predicting response times, RTA
aims at predicting the systems worst case timing behavior.

This thesis investigates to what extent RTA can be extended to fit an in-
dustrial development context of predictable embedded real-time systems. In
particular, we will:

1. Investigate how RTA could calculate more accurate, i.e.,less pessimistic,
response times and which would reduce the resource consumption for
these systems.

2. Investigate how to make the current RTA analysis methods more effi-
cient with respect to analysis speed. The goal is to achieve an efficient

I 1.2 THESIS OUTLINE 5

RTA able to handle large enough task sets for handling real industrial
applications.

3. Furthermore, we investigate how a task model with offsetsand the cor-
responding RTA could improve the design process in the development of
embedded real-time systems.

1.2 Thesis outline

This thesis is a so called "sammanläggningsavhandling"2 where the main part
constitutes of a number of previously published research papers. In addition to
the appended papers, a "sammanläggningsavhandling" contains an introduc-
tory part consisting of introduction and background to the research area where
the research papers make scientific contributions. It also summarizes these
contributions. This thesis is thus organized into two parts:

Part I Contains the introductory part for the thesis which aims at giving an
introduction and background to the area of research for the appended
papers. Furthermore, this part will also present some related work and
discuss aspects of the research presented in this thesis from an indus-
trial viewpoint.

Part II Contains four appended scientific papers A, B, C and D.These papers
appear as published, except for paper C which is an extended version
of the published paper. They have only been modified to fit the layout3

of this thesis.

Part I is organized as follows:

• Chapter 1 has given a short introduction to real-time systems and how
such systems differ from other (desktop) systems. It has also motivated
temporal analysis of such systems and presents this thesis’problem for-
mulation.

• Chapter 2 gives a more formal definition of a real-time systemand de-
fines important terms in the area of temporal analysis. This chapter also
presents the field of real-time scheduling. In particular, schedulability
analysis is presented which will lead to the area of Response-Time An-
alysis (RTA).

2A doctoral thesis consisting of a collection of previously published research papers.
3Discovered typos have also been corrected.

6 CHAPTER 1. INTRODUCTION I

• RTA is the specific research area of this thesis and will be discussed
extensively in Chapter 3. Basic RTA, introduced by Joseph and Pandya,
will be presented. Furthermore, the work leading to RTA for tasks with
offsets will be outlined.

• This thesis’ scientific contributions, presented in papersA, B, C and D,
together with their impact, are summarized in Chapter 4.

• Chapter 5 presents and discusses some related work in the area of RTA
for tasks with offsets.

• Finally, Chapter 6 concludes this thesis and describes possible future
work and relevant open problems.

7

CHAPTER 2

Real-time systems

The fundamental view of a real-time system is that it interacts with, i.e., ob-
serves and controls, its physical environment. The main objective is to act and
react upon changes in the controlled process. To be able to control a physi-
cal process that obeys the laws of nature, the computer control system must
be fast enough in order to establish an internal view of the controlled process’
state and to be able to produce a relevant response to changes(events) in the
process. As an example, consider a computer controlled airbag functionality in
the control system for a car, depicted in figure 2.1.

Collision
Too late

time

Too early

Inflate airbag

Response time

Figure 2.1: Fundamental view of a real-time system

The control system must be able to:

1. Detect that an event (a collision) has occurred.

8 CHAPTER 2. REAL -TIME SYSTEMS I

2. Decide on what action to perform by executing some computations. In
this example it could be to determine whether or not the forceof impact
is severe enough to launch the airbag.

3. Produce a response to the event, i.e., launch the airbag inresponse to the
collision.

The correctness of the airbag functionality is not only dependent on if the
computations (deciding whether to launch the airbag or not)are correct, it is
also dependent on timely response to the event, i.e., when the control systems
acts (launches the airbag). This timing, i.e., the time fromthe event occurs
until the computer system produces a response is called aresponse time, for
that functionality.

For the airbag functionality, there is a window of time, see figure 2.1, when
the airbag must be launched. If the airbag is launched beforethat window of
time, it will be collapsing by the time the driver hits it, making it useless. The
consequences of launching the airbag after the specified window of time, are
more serious. If the driver is just about to hit the steering wheel when the airbag
inflates, it will explode in his face. This example also showsthat real-time
systems are not the same as fast systems, rather they must be able to predictably
adapt themselves to the pace of their environment. Various definitions of real-
time systems exist. The one provided byThe Oxford dictionary of computing
offers one that agrees well with our view as well as being descriptive:

DEFINITION 2.1 (REAL -TIME SYSTEM) A system in which the time at which
the output is produced is significant. This is usually because the input corre-
sponds to some movement in the physical world, and the outputhas to relate to
that same movement. The lag (delay) from the input time to output time must
be sufficiently small for acceptable timeliness.

In a computer based system, there are often many different types of func-
tionality that compete for the computer’s resources, such as computing power,
memory, and I/O. In the control system for a car there is much more func-
tionality than controlling the airbag. Examples include anti-locking breaking
systems (ABS), engine control, cruise control, infotainment systems, and so
on. In desktop computers there are lot of different programsthat are active at
the same, such as, e-mail client, web browser, word processor, MP3 player, etc.

There are two fundamental differences between real-time and desktop ap-
plications:

I 2.1 TYPES OF REAL-TIME FUNCTIONALITY 9

1. A real-time system must be able to handleall the critical functionality
in a timely fashion, whereas desktop computers strive for maximum av-
eragethroughput. That is, some functionality may suffer, but that is ac-
ceptable as long as the average responsiveness is high. In real-time com-
puting, the average response time is of little or no concern.This fact is
strikingly illustrated in the analogy by J.A. Stankovic: "There was a man
who drowned crossing a stream with an average depth of six inches."

2. In a desktop application, the computer dictates the pace of interaction.
Most often, this suffices since its environment, probably a human, reacts
much slower than the computer. But sometimes, when the computer has
many things to do, the user may get annoyed at waiting for a response
from the computer. In real-time systems, on the other hand, the environ-
ment dictates the pace of interaction and the computer has tokeep up and
respond to changes in the environment in a timely fashion. Otherwise,
the system may not perform correctly, and in the worst case there can be
threat to human lives.

Thus, we see that the notion of time and timely response in real-time sys-
tems is important. Safety critical systems, where timing faults could mean
threat to human lives, place an even greater concern on timeliness. In safety
critical systems, correct timing behavior must be guaranteed before the product
is deployed. This is often done by lengthy and costly certification processes.

2.1 Types of real-time functionality

Since more and more functionality is being controlled by real-time software,
the diversity of this functionality continues to increase.A typical real-time sys-
tem contains functionality ranging from control (e.g., continuous engine con-
trol) to user interaction or diagnostics functionality. Real-time systems can be
classified in several ways. One common classification is to distinguish between
hard and soft real-time systems:

Hard Failing to meet timing requirements will result in failure of the system.
Systems where failures potentially result in catastrophichuman conse-
quences are also called safety critical systems.

Soft The system does not fail if a timing requirement is not met, rather the
quality of service deteriorates by a late response.

10 CHAPTER 2. REAL -TIME SYSTEMS I

In reality it is unusual that a system contains solely hard orsoft function-
ality. Rather, the functionality is mixed, and/or fits on a grey scale between
purely soft and purely hard functionality. For example, in acontrol system
for a car, functionality such as ABS and engine control are considered hard.
Functionality such as electronic windows, seat heaters, and infotainment sys-
tems can be considered soft. This thesis focuses on analyzing and verifying
temporal behavior for hard real-time systems. However, knowledge of timing
behavior is also useful in quantifying the quality of service for soft real-time
systems.

Another common classification of systems is to distinguish betweentime-
triggered(TT) andevent-triggered(ET) systems. Typically, control functional-
ity is by its nature time-triggered, i.e., the activation ofthe functionality is con-
trolled by the progress of time. Examples include controlling the water level
in a tank or medical equipment monitoring the vital signs, such as a cardiopul-
monary monitor1. In these instances, the water level and vital signs are checked
periodically independently of what happens in the environment. Functionality
characterized by sudden changes in the environment is termed event-triggered.
Examples of such functionality include user interaction such as detecting an ac-
tivation of an emergency button. The airbag functionality depicted in figure 2.1
is also a typical example of an event-triggered functionality.

Control systems are generally embedded in larger applications, so called
embedded systems. These systems are characterized by having a fixed and
limited amount of resources. They are fixed in the sense that when applications
are shipped, upgrades are difficult and costly; and they are limited in the sense
that the amount of memory and computing power is small. The motivation for
manufacturers to limit resources is increased revenue. As an example, consider
a modern car which consists of several computers (CPUs), more than 65 for the
BMW 7-series. Since the product volumes are high (hundreds of thousands),
even small savings in product cost, e.g., hardware resources, will result in a
substantial increased revenue.

In conclusion, we see that there is a wide variety of functionality in a real-
time system. All this functionality, at least the hard and safety critical parts,
have to be guaranteed to meet their timing requirements. Furthermore, for
embedded systems, this has to be achieved in a system with limited resources.
In order to meet this challenge, developers of real-time systems need proper
method, analysis, and tool-support.

1Monitors and records blood pressure, pulse rate and rhythm, respirations, and body tempera-
ture

I 2.2 REAL -TIME SCHEDULING 11

2.2 Real-time scheduling

Oxford English Dictionary Online2 defines scheduling as:

The action of entering in or drawing up a schedule; esp. the prepa-
ration of a timetable for the completion of the various stages of
a complex project; the co-ordination of many related actions or
tasks into a single time-sequence.

Scheduling in the area of computer systems, according to Encyclopedia
Britannica Online3, is:

The allocation of system resources to various tasks, known as job
scheduling, is a major assignment of the operating system. The
system maintains prioritized queues of jobs waiting for CPUtime
and must decide which job to take from which queue and how
much time to allocate to it, so that all jobs are completed in afair
and timely manner.

We see that scheduling, in general, means to decide what to doat each
specific point in time, and that scheduling from an operatingsystems view
is to decide what task (job) to assign the CPU. Real-time scheduling aims at
ensuring that all tasks in the system will meet their timing requirements under
resource constraints.

2.2.1 Task model

The schedulable entity, representing a single thread of control in real time sys-
tems is called atask. A task is, from a scheduling point of view, an abstraction
of functionality and corresponds to a piece of sequentiallyexecutable code. A
task describes the temporal requirements and constraints of the corresponding
functionality by a number of attributes. Common examples oftask attributes
include:

• Period, Ti, specifies how often a taski gets activated, and is inversely
proportional to frequency. However, not all tasks are periodic, as we
shall later see.

2http://www.oed.com/
3http://www.eb.com/

12 CHAPTER 2. REAL -TIME SYSTEMS I

• Worst case execution time, Ci, specifies the absolute longest time it
takes to execute the code of taski, if it could run on the CPU without
interruption. There has a been numerous research results covering the
topic of establishing a task’s WCET. Ermedahl and Engblomet al. give
good overviews of some of these methods [Erm03, EEN+03].

• Deadline, Di, specifies a constraint on the completion time of taski. The
task must finish no later thanDi time units after it has been activated.

A task is said to arrive to the system upon activation. For event-triggered func-
tionality the corresponding task (or tasks) handling that functionality is acti-
vated when the triggering event happens. Time-triggered tasks are activated at
their scheduled time. Different activation patterns commonly considered in the
real-time scheduling community are (see figure 2.2):

• Periodic tasks are activated at perfect periodicity, i.e., they are activated
at times0, T, 2T, 3T , etc.

• Aperiodic tasks can be activated at any time and with any frequency, i.e.,
there is no information about their activations at design time, and thus a
hard real-time system is unattainable. However, there exists methods
that allow aperiodic tasks in hard real-time systems. Theseare based on
providing either firm guarantees4 or best effort service5 for them [But97].
Systems that provide firm guarantees for aperiodic tasks arealso known
as admission control systems. Examples can be found in .

• Sporadic tasks is another approach to deal with aperiodic task activa-
tions. Sporadic tasks have an uncertainty on when they are activated.
However, they are characterized by having aminimum inter-arrival time
between two consecutive activations. while there is no information on
exactly when task activations will occur their frequency isbounded by
the minimum inter-arrival time. This gives that sporadic tasks will have
a periodic worst-case activation-pattern with the minimuminter-arrival
time as the period. So, from worst case scheduling point of view, spo-
radic tasks can be treated as if they were periodic.

The collection of tasks that constitute a system is called atask set. A task
set with corresponding attributes, and the constraints andrules under which

4Upon arrival, the task is either admitted to the system and guaranteed to make its deadline or
it is rejected.

5Task are admitted to the system but no grantees can be given.

I 2.2 REAL -TIME SCHEDULING 13

?

period

Minimum interarrival time

Periodic

Sporadic

Aperiodic

Figure 2.2: Different task activation patterns

tasks execute, is called atask model. The task model should ideally reflect as
much as possible the requirements of the functionality and the capabilities and
constraints of the underlying run-time system.

2.2.2 Scheduling algorithms

A scheduling algorithmfor embedded real-time systems aims at satisfying the
timing requirements of the entire system functionality, i.e., meet all tasks dead-
line constraints, while minimizing the use of resources. There exist a wide va-
riety of scheduling algorithms in the real-time research literature. These can
be classified in many ways: priority-based, value-based, rate-based, server al-
gorithms, etc. One common and coarse grained classificationis based on when
the actual scheduling decision, i.e., the decision of what task to execute at each
point in time, is made. This classification categorizes scheduling algorithms
into static and dynamic scheduling:

• Static scheduling. The scheduling decisions are made off-line, i.e., be-
fore run-time. These decisions are stored in a static schedule. During
run-time, the dispatcher simply dispatches tasks according to the pre-
defined schedule. Static scheduling is also commonly referred to as off-
line or time-triggered scheduling.

• Dynamic scheduling. Scheduling decisions are made on-line by a run-
time scheduler. Typically some task attribute, such as deadline or pri-

14 CHAPTER 2. REAL -TIME SYSTEMS I

ority, is used by the scheduler to decide what task to execute. Dynamic
scheduling is also commonly referred to as on-line or event-triggered
scheduling.

For static schedulers, where every scheduling decision is made at design
time, the run-time dispatcher becomes very simple, it just activates tasks ac-
cording to the predefined schedule. The static scheduler however, is often
complex in the sense that it deals with task models with a highdegree of ex-
pressiveness where tasks have many attributes and complicated constraints.

Dynamic schedulers are often much simpler, both with respect to the ex-
pressiveness of the corresponding task model and sophistication of the schedul-
ing algorithm. This is due to the fact that the scheduling decisions are made at
run-time and a too sophisticated and powerful algorithm would steal processing
power (CPU time) from tasks, resulting in a too large administrative overhead.
The most widespread, both in research and in commercial real-time operat-
ing systems, is thefixed priority scheduling(FPS) algorithm. All major open
standards on real-time computing support fixed-priority scheduling [SAr+04].

The pre-run-time configuration activities of fixed priorityschedulers con-
sist of assigning priorities to tasks. At run-time, tasks that are activated, ei-
ther by passing of time or external events, are placed in a ready queue. The
dispatcher chooses, each time it is invoked (typically at each clock tick and
system call that releases a task), to execute the task with the highest priority
among those in the ready queue. In fixed priority scheduling,a task placed in
the ready queue is consideredreleased for execution(which usually happens at
its activation, also known as the task’s arrival time).

Further discussions on static versus dynamic (FPS) schedulers can be found
in [Loc92, XP00].

2.2.3 Schedulability analysis

A task set is said to be schedulable if a schedule can be found which guaran-
tees that all tasks will meet their timing constraints underall circumstances.
Schedulability analysis aims, before run-time, to determine whether a task set
is schedulable or not. For most real-time scheduling algorithms some kind of
schedulability analysis test is available.

In static scheduling, the schedulability analysis is combined with the con-
struction of the schedule, a so called proof by constructionapproach. That
is, if a schedule which fulfills all timing requirements and constraints can be
constructed, the system is, by definition, schedulable.

I 2.2 REAL -TIME SCHEDULING 15

Real-time research on schedulability in fixed priority scheduled systems
has resulted in a wide variety of research results. Several different sched-
ulability-analysis techniques for fixed priority systems exist. The most power-
ful approach, that provides the highest obtainable utilization and is able handle
the most expressive task models, is to useresponse-time analysis(RTA).

17

CHAPTER 3

Response-time analysis

Liu and Layland [LL73] provide the theoretical foundation for analysis of fixed
priority scheduled systems. They define an instant in time, called acritical
instant, which, if a task is released at that time, will lead to its worst case
(longest) response time. For a simple task model with independent periodic
tasks the critical instant is defined as:

THEOREM 3.1 A critical instant for any task occurs whenever the task is re-
leased simultaneously with the release of all higher priority tasks.

PROOF REFERENCE. The theorem is proved in [LL73].

For the simple task model used by Liu and Layland this means that the
critical instant for the entire system will occur when all tasks are released si-
multaneously. Liu and Layland also present a utilization based schedulability
test under the assumption of independent tasks that have deadlines equal to
their period (Di = Ti). Furthermore, priorities must be assigned according to
rate monotonic (RM) priority ordering, stating that the shorter the period of a
task, the higher the priority. The schedulability test forn number of tasks in
the system is then as follows:

n∑

i=1

Ci

Ti
≤ n(21/n − 1)

Stating that the total utilization (achieved by summing up all task utiliza-
tionsCi/Ti) must be lower than or equal to the expression on the right hand
side. This schedulability bound approaches about 69% (ln 2), when n ap-
proaches infinity. This schedulability test, although verysimple, provides

18 CHAPTER 3. RESPONSE-TIME ANALYSIS I

an onlysufficientcondition under which the task set is schedulable. That is,
while guaranteeing schedulability upon passing the test, the task set may still
be schedulable upon failing the test.

• A schedulability test providing only asufficientcondition means that if a
task set passes the test, it guarantees that all deadlines will be met under
any circumstances. However, if the task set does not pass thetest, the
task set might be deemed schedulable with some other test. Putting it
another way, a sufficient condition might place unnecessaryhard restric-
tions to be able to guarantee schedulability.

• A schedulability test providing only anecessarycondition means that
the task set can not be schedulable upon failing the schedulability test.
However, passing the test does not guarantee schedulability. Putting it
another way, a necessary condition is insufficient to be ableto guarantee
schedulability. A trivial example of a necessary conditionis that the total
utilization must not exceed 100%.

A schedulability test providing bothnecessary and sufficientconditions
means that upon passing the test the task set is schedulable and upon failing
the test the task set is unschedulable. The necessary and sufficient condition
also means that the schedulability test isexact. Such a schedulability test,
for the simple Liu and Layland task model, is provided by theresponse-time
analysis(RTA) method. RTA consist of calculating response times for all task
and comparing them with corresponding task’s deadlines. Tests that merely
provide a sufficient condition are also denoted asapproximatetests, since, e.g.,
overestimating worst case response times will never wrongfully deem a task
set as schedulable.

3.1 Basic RTA

Joseph and Pandya presented the first basic RTA for the simpleLiu and Layland
task model [JP86]. The task model for basic RTA is as follows.A task τi is
specified by:

• A period,Ti, specifies either the period of a periodic task or the minimum
inter-arrival time of a sporadic task.

• Worst case execution time,Ci, specifies the longest time it takes to exe-
cute the code of the task if it could run on the CPU uninterruptedly.

I 3.1 BASIC RTA 19

• Deadline,Di, specifies a constraint on the completion time of the task.
The task must finish no later thanDi time units after it has been activated.

• Priority, Pi. A user defined integer value. As opposed to rate monotonic
schedulability analysis, priorities can be set arbitrarily.

In addition, the following assumptions must hold in order for the analysis to be
valid:

• Tasks must be independent, i.e., there can be no synchronization between
tasks.

• Tasks must not suspend themselves.

• Deadlines must be less or equal to corresponding periods, i.e.,Di ≤ Ti.

• Tasks must have unique priorities.

The following formula determines the worst case response time,Ri, of taskτi:

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉

Cj

Wherehp(i) is the set of all higher priority tasks toτi.
The smallest positive value which satisfies the above equation corresponds

to the worst case response time. SinceRi occurs both at the left and right side
of the equation, it cannot be solved directly. Also,Ri cannot be factored out.
However, the equation can be numerically solved by the following recurrence
relation:

Rn+1
i = Ci +

∑

∀j∈hp(i)

⌈
Rn

i

Tj

⌉

Cj

which can iteratively be solved using fix-point iteration [ABRW91, ABT+93].
Starting withR0

i = Ci and iterating untilRn+1
i = Rn

i is guaranteed to yield
the smallest possible solution and thus the response time for τi [SH98].1

EXAMPLE 3.1 (RESPONSE-TIME CALCULATIONS) As an example, consid-
er the task set in table 3.1 on the following page where the priorities H, M, and
L denotes high, medium, and low respectively.

1In order to guarantee convergence either 1) one must ensure a total task utilization is not
greater than 100% or 2) one can stop iterating whenRn

i
> Di, i.e., a deadline violation has

occurred.

20 CHAPTER 3. RESPONSE-TIME ANALYSIS I

Task Ti Ci Di Pi

τ1 4 1 4 H
τ2 6 2 6 M
τ3 10 3 10 L

Table 3.1: Example task set

Below we show the fix-point iterations for calculating the response time
of the lowest priority taskτ3. In the formulae we omit the subscript 3, so
Rk actually denotesRk

3 (the kth iteration in the fix-point calculations when
calculating the response time of taskτ3). Figure 3.1 depicts these calculations
graphically. At the top of the figure, activation patterns for the two higher
priority tasks,τ1 andτ2, are depicted. The progress of the fix-point iterations
is illustrated beneath, starting withR0 = C3 = 3. Intuitively,R1 is obtained
by accounting for interference from higher priority tasks during R0. The figure
indicates that bothτ1 and τ2 are activated one time each during that time,
interfering with 1 and 2 units of time, respectively. HenceR1 = 6. This
intuition applies to each iteration step untilR4 = 10 (higher priority task
interference duringR3 is 3 and 4 time units, respectively). Higher priority
task interference duringR4 is still 3 and 4 time units andR5 = 10. Thus, a
fix-point has been reached and the response time forτ3, R3 = R5 = 10, has
been obtained.

R0 = C3 = 3

R1 = C3 +

⌈
R0

T1

⌉

C1 +

⌈
R0

T2

⌉

C2 = 3 + 1 + 2 = 6

R2 = C3 +

⌈
R1

T1

⌉

C1 +

⌈
R1

T2

⌉

C2 = 3 + 2 + 2 = 7

R3 = C3 +

⌈
R2

T1

⌉

C1 +

⌈
R2

T2

⌉

C2 = 3 + 2 + 4 = 9

R4 = C3 +

⌈
R3

T1

⌉

C1 +

⌈
R3

T2

⌉

C2 = 3 + 3 + 4 = 10

R5 = C3 +

⌈
R4

T1

⌉

C1 +

⌈
R4

T2

⌉

C2 = 3 + 3 + 4 = 10

R5 = R4 Fix-point has been reached!

I 3.1 BASIC RTA 21

t

t

5 10 150

5 10 150

t
5 10 150

R0

R1

t
5 10 150

R2

t
5 10 150

R3

t
5 10 150

R4=R5

Activation pattern and amount of execution of higher priority tasks

�
1�
2

Figure 3.1: Fix-point iteration example

22 CHAPTER 3. RESPONSE-TIME ANALYSIS I

SinceR3 ≤ D3, and assumingτ1 andτ2 also meet their deadlines, the task
set is schedulable, i.e., all tasks will, under all run-timecircumstances, meet
their deadlines.

One can view the fix-point and RTA equations as: when the totaltask exe-
cution demand meets the supply of the CPU, all tasks have finished their exe-
cution, and thus a fix-point has been reached. Figure 3.2 depicts this viewpoint
for the example above. The execution demand of tasksτ1, τ2 andτ3 are high-
lighted separately and the fix-point iterations steps are illustrated by the dotted
line, with eachRk marked with a black dot.

Execution

Time

The supply of the execution
resource, CPU

5 10

2

4

6

8

Execution
demand of�
1,
�

2, and�3

10 Fixpoint has been
reached when supply

meets demand

Fix-point iteration steps

R3

Figure 3.2: Illustration of fix-point iteration steps

3.2 Extending and applying RTA

There have been numerous extensions made to this basic response-time anal-
ysis. These extensions aim at either lifting some of the restrictions made in
the assumptions in section 3.1 or extending the capabilities of the task model.
Some of the extensions improving the applicability of RTA are:2

• Lifting the assumption of independent tasks. Enabling task communi-
cation via shared (locked) resources, such as semaphores, will have the

2The RTA formulae for some of these extensions can be found in Appendix A.

I 3.2 EXTENDING AND APPLYING RTA 23

effect, on a task’s execution, of potential interference also from lower
priority tasks. Shaet al. [SRL87, SRL90] introduced priority inheritance
protocols that solve the priority inversion problem where atask may in-
definitely be waiting for a lower priority task to finish. Furthermore, they
also presented the priority ceiling protocol (PCP) which prevents dead-
locks. An even more important property of PCP is that the blocking time
caused by lower priority tasks can be bounded and thus incorporated in
the RTA method. Algorithms to calculate blocking times for different
resource locking protocols can be found in [But97].

• Arbitrary deadlines . Lehoczky lifts the restriction of deadlines being
less than or equal to periods [Leh90]. Consequently, several instances
of a task can be simultaneously active. The impact of this is that RTA,
for a taskτi, first has to determine the length of a level-i busy period
(processor is busy executing tasks with priority higher or equal toτi).
During that busy periodτi may have been activated several times, and the
worst case response ofτi is the maximum of all of those corresponding
instance response times. Lehoczky provides two sufficient utilization
based schedulability tests, while Tindell extends the RTA formulae and
thus provides both a sufficient and necessary test in [Tin92a].

• Accounting for jitter . This is an extension of the basic task model by
considering variations in task periodicity, so called jitter. This kind of
variation could occur, e.g., due to precedence constraints, i.e., the ac-
tivation of a task is dependent on the completion of another.It could
also depend on the arrival of a message if analyzing a distributed sys-
tem. Depending on the variation in execution time (or message sending
time in case of a message) of the predecessor, the activationof the suc-
cessor may vary, even if the predecessor is activated periodically. The
deviation from perfect periodicity (can also be viewed as the difference
between the earliest and the latest possible release of a task or message)
is calledrelease jitter. Rajkumar first reasoned about jitter in [RSL88],
and it became more explicitly addressed by Tindell and Audsley et al.
[Tin92a, ABT+93].

• Analyzing other devices. RTA was originally designed for analyzing
the CPU. However, the basic RTA has been extended to handle other de-
vices such as communication and hard disk devices. Basic RTAassumes
a preemptive task model, i.e., when a higher priority task isreleased, it
preempts (interrupts) the execution of the currently running (lower pri-

24 CHAPTER 3. RESPONSE-TIME ANALYSIS I

ority) task. When modeling, e.g., communication devices such as CAN
and ATM networks, this assumption becomes invalid. A message which
has been granted the device has access to the device until completion.
The Controller Area network (CAN) can be seen as a non-preemptive
fixed priority schedulable resource. In [THW94] Tindell, Hansson, and
Wellings extend RTA to analyze message passing in CAN. Ermedahl,
Hannson, and Sjödin (now Nolin) shows how RTA can be applied to an-
alyze traffic in an ATM network [EHS97, Sjö00]. Tindell and Burns also
provides a method to calculate response times for hard real-time multi-
media disks [TB94].

• Fault tolerant systems. S. Punnekkat extends the worst-case response
time analysis to include fault-tolerant real-time tasks under various fault
tolerant strategies with the assumption of a known minimum inter-arrival
time between faults [Pun97].

• Distributed systems. In [TC94] Tindell and Clark apply RTA in a dis-
tributed context where the communication channel is also scheduled and
analyzed by RTA. With these results, end-to-end response times can be
calculated for tasks scheduled in a distributed system. Precedence re-
lations among tasks (and messages) are modelled by release jitter, i.e.,
variation in the response time of a predecessor become release jitter for
the successor.

• Modeling OS overhead. In order for RTA to be used in engineering
practice it has to be able to efficiently model real world situations. One
such reality is to model operating system overhead. Two examples of
taking scheduler overhead into account is Katcheret al. [KAS93] and
Burnset al. [BTW95].

• Temporal dependencies – Introducing offsets. For all above methods
it is assumed that tasks are arbitrarily phased, which meansthat the crit-
ical instant assumption of simultaneous release of all tasks is in fact
possible at run-time. In systems where tasks are temporallydependent,
and thus can not be activated simultaneously, the critical instant assump-
tion of [LL73] becomes pessimistic. Tindell introduced thetask model
with offsets [Tin92b] with a corresponding RTA. Palencia Gutiérrez and
González Harbour formalized and extended Tindells work in [PG98] by
allowing unlimited release jitter and by introducing dynamic offsets.

I 3.3 RTA FOR TASKS WITH OFFSETS 25

A more detailed discussion of some of these improvements canbe found in
A Practitioners Handbook for Real-Time Analysis [KRP+99]. This book is
focused on a practitioner’s point of view and thus aims at applying RTA in an
engineering context. A historical perspective of real-time scheduling research,
where RTA is a big part, can be found in [SAr+04]. This thesis focuses on
the task model with offsets and improves upon the corresponding approximate
RTA.

3.3 RTA for tasks with offsets

Basic RTA relies on the critical instant assumption that alltasks are released si-
multaneously. This becomes a pessimistic assumption, i.e., results in unneces-
sary long response-time estimates if task activations are temporally dependent.
This section will give an overview of RTA for tasks with offset as presented in
[PG98].

3.3.1 Task model

A system,Γ, consists of a set ofk transactionsΓ1, . . . ,Γk. Each transac-
tion Γi is activated by a periodic (or sporadic) sequence of events with period
(minimum inter-arrival time)Ti. The activating events are considered mutually
independent, i.e., phasing between them is arbitrary. A transactionΓi contains
|Γi| number of tasks, and each task is activated when a relative time denoted as
offset, elapses after the arrival of the external event. Offset is used to express
the temporal dependency between releases of tasks.

A task is denoted byτij , where the first subscript,i, denotes which transac-
tion the task belongs to, and the second subscript,j, denotes the number of the
task within the transaction. A task is defined by a worst case execution time
(Cij), an offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum block-
ing from lower priority tasks (Bij), and a priority (Pij). The system model is
formally expressed as follows:

Γ :={Γ1, . . . ,Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij , Oij ,Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jitter, e.g., they can each
be smaller or greater than the period.

26 CHAPTER 3. RESPONSE-TIME ANALYSIS I

Parameters for an example transaction (Γi) with two tasks (τi1, τi2) are
depicted in Figure 3.3. The offset denotes the earliest release time of a task
relative to the start of its transaction, and jitter (illustrated by a shaded region)
denotes the variability in the release of the task, i.e., theactual task release
can occur anywhere in the shaded region. The upward arrows denote earliest
possible release of a task, and the size of the arrow corresponds to the released
task’s worst case execution time.

0

O i1=2

Oi2=5

C i2=1 Time

1 2 3 4 5 6 7 8 9 10

Ti=10
C i1=2

J i1=8

J i2=1

Figure 3.3: Example transaction

In [PG98] dynamic offsets are introduced, i.e., offsets mayvary between
different activations of a task. However, dynamic offsets are not part of the task
model. Rather, they are modelled by static offset and jitter. The definition of a
dynamic offset,Od

ij , is that it may dynamically vary between a minimum and
a maximum value:

Od
ij ∈ [Omin

ij , Omax
ij]

This dynamic offset is modelled by the static offset (Oij) and jitter (Jij),
producing a new offset (O′

ij) and jitter (J ′
ij) term, as follows:

O′
ij = Omin

ij

J ′
ij = Jij + Omax

ij − Omin
ij

Dynamic offsets are often dependent on response times of previous tasks
in the transaction. Response times, in turn, are dependent on these dynamic
offsets. The solution to this problem is similar to that of calculating response
times for tasks with jitter in a distributed system, i.e., starting with response
times as zero, and iterating until a stable solution is achieved [TC94].

I 3.3 RTA FOR TASKS WITH OFFSETS 27

3.3.2 Exact analysis

Let τua denote thetask under analysis3. In the classical RTA (without offsets)
thecritical instant for τua is when it is released at the same time as all higher
priority tasks. In a task model with offsets this assumptionyields pessimistic
response times since some tasks can not be released simultaneously due to
offset relations. Therefore, Tindell relaxed the notion ofcritical instant to be:

At least one task in every transaction is to be released at thecrit-
ical instant. (Only tasks with priority higher toτua are consid-
ered.) [Tin92b]

Since it is not known which task coincides with (is released at) the critical
instant, every higher priority task in a transaction must betreated as acandidate
to coincide with the critical instant. Every possible combination of critical
instant candidates must be considered. LetNi(τua) denote the number of tasks
in transactionΓi having priority higher thanτua.

The number of possible critical instant combinations to examine, when cal-
culating the response time forτua, is:

(

Nu(τua) + 1
) ∏

∀i6=u

Ni(τua)

That is, all possible combinations of higher priority tasksincludingτua,4 must
be considered.

Since task attributes such as deadline and jitter are allowed to be larger
than periods, several instances of a task may be active simultaneously. Thus,
previously activated instances can interfere with the execution of a subsequent
instance. So, RTA must take this into consideration. The intuition behind
the RTA formulae (for details see paper A, B, or C and AppendixA of the
corresponding papers) is as follows:

• For each critical instant combination, assuming we are interested in the
response time ofτua, do:

1. Calculate the worst case busy period where the processor is busy
executing tasks with higher or equal priority tasks thanτua.

2. In that busy period a number of instances ofτua are released. Cal-
culate the response time for each such instance.

3This can be read astask under analysisas well as taska belonging to transactionΓu.
4Hence the+1 for Γu, the transaction ofτua.

28 CHAPTER 3. RESPONSE-TIME ANALYSIS I

• The worst case response time forτua is obtained by selecting the maxi-
mum of all such calculated instance response times.

This however, becomes computationally intractable (represents an NP-com-
plete algorithm which grows exponentially with the number of tasks [PG98])
for anything but small task sets. Hence [Tin92b] introducesan approximate
RTA algorithm with polynomial complexity.

3.3.3 Approximate RTA

The combinatorial explosion in cases to consider, makes theexact analysis in-
tractable. The heart of the approximate method, introducedby Tindell [Tin92b],
is to reduce the number of cases to explore.

During RTA, when calculating a transaction’s interferenceonτua, the exact
analysis relies on information about which task in each transaction that coin-
cides with the critical instant. Since this is not known, theexact analysis tries
every possible combination globally in the system. The approximate algorithm,
however, approximates transaction interference by only considering each task
within its corresponding transaction as coinciding with the critical instant. The
one resulting in the highest interference, at each point in time, approximates
the transaction’s interference. That is, the approximatedtransaction interfer-
ence is the maximum of all variants at each point in time. By restricting its
view locally within a transaction, the number of cases [Tin92b] has to consider
becomes:

(

Nu(τua) + 1
)

+
∑

∀i6=u

Ni(τua)

We get an additive instead of a multiplicative effect in the number of cases
to consider. In order to reduce some pessimism, [PG98] chooses not to use
this approximated transaction interference forΓu (the transactionτua belongs
to). Instead, they use the exact method by testing every possibility for Γu. The
number of critical instant combinations to consider then becomes:

(

Nu(τua) + 1
)

∗
∑

∀i6=u

Ni(τua)

This is the variant represented in Appendix A of papers A, B, and C which
also includes further discussions and complete formulae.

29

CHAPTER 4

Thesis contributions

This thesis presents scientific contributions in the area ofresponse-time anal-
ysis (RTA) for tasks with offsets, presented by Tindell [Tin92b] and Palencia
Gutiérrez and González Harbour [PG98]. This chapter summarizes and dis-
cusses the impact of these contributions.

4.1 Problem formulation restated

In order to meet the challenges of reliability and safety requirements in face
of the ever increasing complexity of real-time functionality, developers need to
have adequate development and analysis tools at their disposal.

One of the most important aspects of real-time systems is that they must
exhibit a predictable timing behavior. Furthermore, thesesystems are also of-
ten embedded in larger systems where resources often are scarce. Therefore,
models and analysis tools aiming at predicting the temporalbehavior in a re-
source constrained environment, are of great concern. One such method is the
Response-Time Analysis (RTA) method. By analyzing response times, RTA
aims at predicting the systems worst case timing behavior.

This thesis investigates to what extent RTA can be extended to fit an in-
dustrial development context of predictable embedded real-time systems. In
particular, we will:

1. Investigate how RTA could calculate more accurate, i.e.,less pessimistic,
response times which would reduce the resource consumptionfor these
systems.

2. Investigate how to make the current RTA analysis methods more efficient
with respect to analysis speed. The goal is to achieve an efficient RTA

30 CHAPTER 4. THESIS CONTRIBUTIONS I

which is able to handle large enough task sets for handling real industrial
applications.

3. Furthermore, we investigate how a task model with offsetsand the cor-
responding RTA could improve the design process in the development of
embedded real-time systems.

4.2 Summary of contributions

The contributions of this thesis, in the context of RTA for tasks with offsets,
consist of:

(1) A Technique that enables tighter approximate response-time estimates.

(2) A Technique that enables considerably faster analysis of approximate
response times.

(3) A Technique that enables the combination of (1) and (2) inone single
analysis method.

(4) Quantitative evaluations of the above techniques.

(5) Showing how RTA for tasks with offsets can simplify the design trade-
off between static and dynamic scheduling.

These contributions are presented in papers A, B, C, and D, which are enclosed
in part II of this thesis. These papers are:

Paper A Jukka Mäki-Turja and Mikael Nolin.Tighter Response-Times for
Tasks with Offsets. In proceedings of Real-time and Embedded
Computing Systems and Applications Conference (RTCSA), Goth-
enburg Sweden, August 2004.

Paper B Jukka Mäki-Turja and Mikael Nolin.Efficient Response-Time An-
alysis for Tasks with Offsets.In proceedings of the 10th IEEE Real-
Time Technology and Applications Symposium (RTAS), Toronto
Canada, May 2004.

Paper C Jukka Mäki-Turja and Mikael Nolin.Fast and Tight Response-Times
for Tasks with Offsets.To appear in proceedings of 17th EUROMI-
CRO Conference on Real-Time Systems (ECRTS), Palma de Mal-
lorca Spain, July 2005.

I 4.3 PAPER A 31

Paper D Jukka Mäki-Turja, Kaj Hänninen, and Mikael Nolin.Efficient De-
velopment of Real-Time Systems Using Hybrid Scheduling.To ap-
pear in proceedings of international conference on Embedded Sys-
tems and Applications (ESA), Las Vegas USA, June 2005.

I have been the main author and the driving force in developing the ideas pre-
sented in these papers which have been supervised by Mikael Nolin. For paper
D, Kaj Hänninen provided the basis for the case study that is included in the
paper.

In sections 4.3 to 4.6 the contribution of each paper is further detailed,
followed by description of the collected contribution and impact of this thesis
in section 4.7.

4.3 Paper A

Jukka Mäki-Turja and Mikael Nolin.Tighter Response-Times for
Tasks with Offsets. In proceedings of Real-time and Embedded
Computing Systems and Applications Conference, Gothenburg Swe-
den, August 2004.

Paper A shows how existing approximate RTA for tasks with offsets [Tin92b,
PG98] result in unnecessary pessimistic response times. Wereveal and exploit
a misconception, resulting in an overestimation of higher priority task interfer-
ence in the response-time formulae, dating back to the original response-time
analysis presented by Jospeh and Pandya [JP86]. This misconception has gone
undetected because overestimation in higher priority taskinterference does not
produce any pessimism in response times for the classical model or for the
exact analysis for task with offsets. This is due to the fact that fix-point con-
vergence cannot be reached during time intervals where thisoverestimation
occurs. However, using approximate RTA for tasks with offsets, this overesti-
mation produces overly pessimistic response times. This comes from the fact
that the overestimated interference-function is not used directly in the fix-point
iterations, instead they are first subjected to a maximization function. This situ-
ation can be compared to arithmetic calculation with rounded up floating point
values (integers); the most accurate result would be obtained by using floating
point values, and only at the end do the round up, instead of rounding up every
value before each calculation step.

In the paper we redefine the interference function, reduce the pessimism,
and show how the corresponding response time formulae change. Formal

32 CHAPTER 4. THESIS CONTRIBUTIONS I

proofs show that our modified RTA never yield response times that are longer
than those obtained with [Tin92b, PG98], and that it still provides safe, i.e.,
never underestimates, response times.

Using this new interference function, imposed interference as we call it,
significantly shorter response times can be obtained. Simulation results show
that typically 15% tighter (i.e. shorter) response time canbe obtained compared
to [Tin92b, PG98]. In certain situations the response time can be improved
upon (tightened) by more than 50%. In the special case with only one high
priority transaction, corresponding to, e.g., a static schedule (see paper D), our
approximate method yields exact response times.

On the downside, our algorithm has to pay a penalty of slower fix-point
convergence, and thus longer analysis time. Since it modelshigher priority
task interference more accurately, it needs more iterationsteps to reach a fix-
point.

4.4 Paper B

Jukka Mäki-Turja and Mikael Nolin.Efficient Response-Time An-
alysis for Tasks with Offsets.In proceedings of the 10th IEEE Real-
Time Technology and Applications Symposium, Toronto Canada,
May 2004.

In paper B we address the analysis time of the approximate RTAfor tasks
with offsets. We present a technique which enables an efficient implementa-
tion of the RTA method presented in [PG98]. The resulting method calculates
response-times in a considerably shorter analysis time.

The main effort in performing RTA for tasks with offsets is tocalculate
how higher priority tasks interfere with the task under analysis. The nature of
this interference is that it exhibits a repetitive periodicpattern for each transac-
tion. Furthermore, within that period it increases at discrete points in time. The
essence of our method is to calculate and store this information (i.e., the dis-
crete points for the duration of one period) statically and during fix-point calcu-
lations, use a simple table lookup. We formally prove that the RTA-equations
can be reformulated to allow such a static representation oftask interference.

Simulations show that the speedup for our method compared to[PG98] is
substantial. For realistically sized task sets (100 tasks), performing schedula-
bility analysis for an entire task set gives speedups of about 50 times. Since
we have reduced the complexity the relative improvement will be even higher
for larger task sets, which means that arbitrary large speedups can be achieved

I 4.5 PAPER C 33

by just scaling up the task set. In an on-line RTA context, e.g., on-line admis-
sion control, where interference from tasks in the same transaction as the task
under analysis can be ignored, our method outperforms previous methods by a
factor of more than 100 and reduces the actual time from the millisecond to the
microsecond range, for the task sets considered.

4.5 Paper C

Jukka Mäki-Turja and Mikael Nolin.Fast and Tight Response-Times
for Tasks with Offsets.To appear in proceedings of 17th EUROMI-
CRO Conference on Real-Time Systems, Palma de Mallorca Spain,
July 2005.

In this paper, we bring together the two independent improvements of paper A
and paper B. The method in paper B for fast analysis is not directly applicable
for the tight analysis of paper A. The enabling factor for a static representation
of the original approximate RTA [PG98] is that the higher priority task inter-
ference has a periodic pattern and that it increases at discrete points in time.
Our tight method, presented in paper A, defines a new interference function
which does not increase at discrete points in time and thus their approximate
interference will not exhibit a simple periodic pattern.

In paper C, we find a repetitive pattern also for the approximate imposed in-
terference of paper A. We show how this continuous interference function can
be represented and approximated by a discrete interferencefunction without
losing any precision in resulting response-time estimates. Proofs are provided
to show that all of our manipulations are safe and produce thesame response
times as those in paper A.

In a simulation study we obtain speedups of more than two orders of magni-
tude for realistically sized tasks sets compared to the tight analysis (essentially
the same result as comparing the original approximate RTA in[PG98] with
our fast approach in paper B). We also demonstrate that the fast-and-tight an-
alysis has comparable execution time to that of the fast analysis. We see that
introducing pessimism in modeling the interference function in points where a
fix-point can not be reached, we completely eliminate the penalty introduced
by our tight analysis presented in paper A. Hence, we conclude that the fast-
and-tight analysis is the preferred analysis method when fast analysis and tight
response-times estimates are needed. We do not need to sacrifice accuracy for
speed, both are obtained with the fast-and-tight analysis.

34 CHAPTER 4. THESIS CONTRIBUTIONS I

4.6 Paper D

Jukka Mäki-Turja, Kaj Hänninen, and Mikael Nolin.Efficient De-
velopment of Real-Time Systems Using Hybrid Scheduling.To ap-
pear in proceedings of The 2005 International Conference onEm-
bedded Systems and Applications, Las Vegas USA, June 2005.

This paper is an engineering paper showing how RTA for tasks with offset can
be used in an industrial setting.

When developing real time systems, there is a design trade offin choos-
ing scheduling strategy. Two of the most commonly used scheduling strategies
are the static off-line scheduling and the dynamic fixed priority scheduling.
Since both scheduling strategies have their pros and cons, ahybrid static and
dynamic scheduling model would simplify the design tradeoff of which sched-
uling strategy to choose. Choosing the most appropriate strategy for each func-
tion, instead of force-fitting it to an overall strategy for the entire system, will
simplify this trade off. Furthermore, such a hybrid system not only simplifies
the design choices but also gives the possibility to save system resources and
improve responsiveness.

Even though there have been successful attempts in incorporating both stra-
tegies in the same system, most provide only best effort service to dynamic
tasks [Arc, Flx]. In this paper we show how RTA for tasks with offset is able
to model such a hybrid system and provide tight response-time guarantees also
for dynamic tasks.

An industrial case study at Volvo Construction Equipment [Vol] using the
commercial real-time operating system Rubus by Arcticus [Arc], demonstrates
how this approach enables more efficient use of computational resources, re-
sulting in a cheaper or more competitive product since more functionality can
be fitted into legacy, resource constrained, hardware.

4.7 Impact of contributions

This section outlines potential impact of the contributions presented in this
thesis.

4.7.1 Impact of fast and tight RTA

A tight RTA has the benefit of not overestimating resources. In the case of RTA,
the resources consist of processing (CPU) power. While not actually reducing

I 4.7 I MPACT OF CONTRIBUTIONS 35

the system utilization at run-time, RTA is able to guaranteeschedulability for
task sets with higher utilization since the overestimationin response times is
reduced. The exact analysis for tasks with offsets is, of course, the tightest
possible solution to use. However, it is computationally intractable for anything
but small task sets. Thus, the approximate RTA is a good trade-off, and the
tight RTA presented in this thesis produces the tightest response times of all
comparable approximate methods available.

RTA is not only used as a schedulability analysis tool, but itis also used in
a wider context. For example, schedulability analysis is performed in the inner
loop of optimization or search techniques such as task attribute assignment and
control performance enhancement.

Many task attribute assignment techniques have a schedulability test by
RTA to test if a certain attribute configuration yields a schedulable system. For
example, Gutiérrez García and González Harbour present a method for priority
assignment for tasks and messages in [GG95]. Bate and Burns also present a
method to assign priorities, offsets, and deadlines where each configuration
is tested by a schedulability test [BB99]. Sandström and Norström (former
Eriksson) present a genetic algorithm approach where the algorithm assigns
task offsets and priorities in order to fulfil original more complex constraints
[SN02].

Cervin recognizes in [Cer99] that in achieving high controlperformance,
one needs to incorporate scheduling information in the control design. He pro-
poses an attribute (deadlines and priorities) assignment algorithm for enhanc-
ing control performance. Also, this algorithm relies on a schedulability test to
ensure that a control enhancement step does not violate schedulability.

Since RTA is performed several times to test if a configuration is schedula-
ble, task attribute assignment and control performance enhancement methods
require the implementation of RTA to be efficient in order to be useful in en-
gineering tools. One can deduce that since RTA can be used forrealistically
sized task sets with hundreds or even thousands of tasks, also these methods
could be applied to larger class of systems using such an RTA method. These
methods would, most probably even to a higher degree than RTAitself, benefit
from a fast RTA since the it is performed repeatedly for many different con-
figurations. The number of configurations to test can be several thousands for
solving a problem such as task allocation.

With the combined fast and tight RTA method presented in thisthesis, the
traditional trade-off situation between a fast RTA on one hand, and accurate
response times on the other, is eliminated. This newtight and fastmethod
exhibits the most accurate response times as well as the fastest analysis time

36 CHAPTER 4. THESIS CONTRIBUTIONS I

among all comparable approximate RTA methods.

4.7.2 Impact of RTA in an engineering context

The task model with offsets simplifies the design trade-off between static and
dynamic scheduling by enabling a choice between them on a perfunction level
instead of system level. An offset relation represents a temporal dependency
between the activation of two tasks. Offsets can be viewed asa modeling con-
cept, i.e., it is used to model situations where tasks have temporal dependencies
among them, in order for RTA to produce more accurate response times. Ex-
amples of offsets used as a modeling concept contains self suspending tasks
and precedence constraints.

With the task attributes, jitter and offsets, one can model tasks that suspend
themselves. Palencia Gutiérrez and González Harbour show in [PG98] how
a task which suspends itself can be modelled by two separate tasks. Assume
that a task suspends itself forS time units. This task would be modelled as
one transaction (Γi) consisting of two tasksτi1, corresponding to code before
suspension, andτi2, corresponding to code after suspension. The activation
time of τi2 depends on the completion time ofτi1 and the suspension timeS.
Thus offset and jitter forτi2 will be: Oi2 = S +RBC

i1 andJi2 = RWC
i1 −RBC

i1

(whereRBC denotes best case response time, for which it is always safe to
assume zero, andRWC denotes worst case response time).

We see that for self suspending tasks, the latter task’s activation is depen-
dant on the former task’s completion. This kind of effect also appears in ana-
lyzing distributed systems where tasks and messages have precedence relations
[PG98]. A task which depends on the completion of a precedingtask or the ar-
rival of a message will be assigned an offset. The offset, in this case represents
the minimum delay relative to the event that triggered the transaction, the task
will suffer before it will be released for execution. The jitter, on the other hand,
represents the longest possible delay before the task is released.

Offsets can also be viewed as a design concept where they can be used to
achieve some other goal. However, in order to use offsets as adesign parame-
ter, the run-time system has to be able to enforce these offsets. Paper D shows
such a situation where a static scheduler activates time-triggered tasks, thus
enforcing offsets. Consider a real-time system containingcontrol functional-
ity, with control performance as the main goal, coexisting with event-triggered
functionality where high responsiveness is the main goal. Some capabilities of
offsets as a design concept for such systems could include:

I 4.7 I MPACT OF CONTRIBUTIONS 37

• More complex constraints can be faithfully modeled. Time-triggered
control functionality can be scheduled by a static scheduler and assigned
offsets that the run-time system can enforce.

The main advantage of this approach is that it can use a powerful off-
line scheduler with an expressive task model which can handle more
complicated task constraints. For example, in many controlsystems,
jitter is detrimental on control performance [Cer99, NGS+01]. A static
scheduler could have, in addition to schedulability, a goalto enhance
control performance by minimizing jitter. It can do this by assigning
offsets for sampling and actuating tasks in the system.

• A higher degree of responsiveness can be obtained. By not only hav-
ing a priority to determine the degree of responsiveness, but also an ad-
ditional offset attribute, there exist better means to assign responsiveness
where it is needed the most. Assume an approach, proposed by Cervin
and Bateet al. [Cer99, BNC03], where the short sampling and actuating
part of the control functionality are modelled as separate tasks with high
priorities and offsets in order to minimize jitter. The actual control cal-
culations in between could be given lower priority as long asit finishes
before actuation starts. The updating of the control state could, with
the same argument, be given even a lower priority as long as itfinishes
before next sampling. Then responsiveness of tasks with priority lying
in between sampling and control calculation (or between actuation and
updating control state) is enhanced.

Furthermore, the static scheduler can also be given an objective to pro-
duce a schedule that enhances the responsiveness for tasks with lower
priority than those in the schedule by preventing long busy periods. The
highest degree of responsiveness for low priority tasks will be when the
static schedule contains equidistant gaps in the entire schedule.

• Eliminating the need for synchronization protocols. Another advan-
tage of being able to separate tasks in time, is that tasks accessing shared
resources can use time separation by assigning offsets instead of using
expensive synchronization protocols.

The introduction offset concept in FPS systems brings possibilities that
were previously exclusive for static scheduling. Being able to choose between
static and dynamic scheduling on a per function basis instead of an overall
system level, simplifies the design trade-off between static and dynamic sched-

38 CHAPTER 4. THESIS CONTRIBUTIONS I

uling. This will enable developers to use more suitable strategies for different
functionalities in a system.

39

CHAPTER 5

Related work on tasks with offsets

This section describes some related work in the area of RTA for tasks with
offsets, and their relation to the work of this thesis.

5.1 Variant of exact RTA

Redell presents a variant of the exact worst case RTA for tasks with offsets
and release jitter in [RT02]. All tasks in the system may havemutual offset
relations, not only tasks belonging to the same transaction. The approach is
to unfold the schedule for the duration of the least common multiple (LCM)
of all task periods and consider each task instance separately. The worst case
response time for a task is obtained by selecting the task instance that results
in the longest response time. The main advantage of the method is its time
complexity over schedule simulation method presented in [Aud91]. However,
it still suffers from the complexity problems that all exactRTA methods for
offsets do. That is, having to investigate numerous possible critical instant
scenarios. Choosing the task periods unwisely, i.e., relative prime periods, will
result in an even worse explosion in cases to consider.

5.2 Best case RTA

In systems where release jitter contributes to the resulting response times, as
for example, when analyzing end-to-end response times in a distributed system
[TC94, PG98], it is desirable to keep jitter as low as possible. In [PGG98] Pa-
lencia Gutiérrez and González Harbour tighten the worst case response times
by calculating also a lower bound on the best case response time for all tasks.

40 CHAPTER 5. RELATED WORK ON TASKS WITH OFFSETS I

Precedence-related tasks in the system are modelled by offsets and release jit-
ter. A task is assigned an offset which corresponds to its predecessors best case
response time, representing the earliest possible releaseof the task. The worst
case response time of the predecessor represent the latest possible release of the
task. Thus, the difference between earliest and latest release of a task will be
the succeeding tasks release jitter. By not assuming an indefinitely small best
case response time for tasks, the release jitter is minimized. Hence, the worst
case response time becomes less pessimistic. In [RS02], Redell and Sanfrids-
son provide an exact variant by identifying a favorable instant, corresponding
to the critical instant for the worst case RTA. The favorableinstant will lead to
the shortest possible response time for a task. Another benefit of minimizing
jitter, is that it increases RTAs applicability for controlsystems where small
jitter enhances control performance [Cer99, NGS+01, BNC03].

5.3 Improving RTA using precedence information

In systems where tasks have precedence constraints such as distributed sys-
tems, RTA methods such as [TC94, PG98] can yield pessimisticresults, i.e.,
unnecessarily long response times. During RTA, many different critical in-
stant task combinations are considered. Each combination results in a specific
mutual phasing between tasks. To obtain the response time, the combination
resulting in the longest response time is chosen. However, with precedence
relations some of these combinations may become impossible. Consider a task
chain (related by precedence) of three tasks with priorities high, low, and high
respectively. Assume further a task of middle priority for which we are inter-
ested to calculate the response time. In this situation, themiddle priority task
cannot experience interference from both higher priority tasks since they have
a low priority task between them. Using such precedence information, many
cases that can not occur at run-time can be ignored during RTA. Thus, the
pessimism in resulting response times can be reduced. Palencia and Harbour
introduced this concept for linear transactions, i.e., where each task can have
one successor [PG99]. Redell extended this approach to allow a task to have
several successors, so called tree-shaped transactions in[Red04].

5.4 RTA for earliest deadline first systems

Palencia Gutiérrez and González Harbour provides an RTA method for tasks
with offsets scheduled under earliest deadline first (EDF) scheduling policy

I 5.5 RELATION TO WORK PRESENTED IN THIS THESIS 41

[PG03]. The method highly resembles the fixed priority counterpart, and since
the exact analysis is computationally intractable they provide a similar approx-
imate technique. However, the analysis time of the approximate technique is
significantly higher than for the fixed priority case. Since both offset based
methods, the one for fixed priority and the one for EDF, can be combined in
analyzing distributed systems, heterogeneous systems consisting of some EDF
nodes and some FPS nodes can feasibly be analyzed for end-to-end response
times.

5.5 Relation to work presented in this thesis

This thesis contributes to the theory of RTA for tasks with offsets in fixed pri-
ority systems in two ways. First, by introducing the conceptof imposed in-
terference, which more accurately captures the nature of higher priority task
interference, the approximate RTA is able to produce less pessimistic response
times. Second, this thesis recognizes that higher prioritytask interference ex-
hibits a periodic pattern which can be stored statically, and during fix-point
iteration perform a simple table lookup. This will result inconsiderably faster
approximate RTA. The work of this thesis relates to the work presented in this
chapter as follows:

• Exact RTA. Since the improvement of this thesis focuses on the approx-
imate RTA, the relation to exact RTA work is limited. One possibility
would be that the fast analysis technique of storing points could also be
applied to the exact variant. This would mean that points would have
to be stored for the smallest periodic pattern which would bethe en-
tire LCM. One would have to further investigate the gain of such an
approach.

• Best case RTA. Similarly, to exact RTA, best case RTA of Redell [RS02]
is an exact approach. However, the work of this thesis and thework per-
formed on best case RTA are orthogonal in the sense that they improve
RTA in different and independent ways. The orthogonality also means
that the improvements does not invalidate each other. And thus, RTA for
distributed systems with precedence (offsets and release jitter) [TC94,
PG98] can be further improved upon by applying the work of this thesis
together with the work of best case response times [PGG98, RS02].

• Improving RTA using precedence information. The work of applying

42 CHAPTER 5. RELATED WORK ON TASKS WITH OFFSETS I

high level precedence information aims at eliminating cases that can not
occur at run-time.

Our fast and tight improvements of higher priority task interference, stat-
ically stored imposed interference, however, zeroes in on amore detailed
level of the analysis. Thus, the two methods are orthogonal.In fact, the
two approaches are complementary, in the sense that the mostgain of us-
ing precedence information is achieved when jitter is very high, whereas
the imposed interference method gives the most gain when jitter is low.
Hence, it is an attractive approach to combine them in a single approxi-
mate RTA method.

• RTA for earliest deadline first systems. The RTA method for EDF is
very similar to the one of FPS scheduled systems. The approximate me-
thod is defined the same way as for the FPS case. It seems that both the
approaches of fast and tight methods for FPS RTA could be straightfor-
wardly incorporated into the EDF variant. However, one mustensure
that the higher priority task interference exhibits a periodic pattern in or-
der to store that statically. If that can be done the fast method could have
an even greater impact on the analysis time of offset based RTA under
EDF since the number of calculations of interference is higher than in
the FPS case.

43

CHAPTER 6

Conclusions and future work

6.1 Conclusions

What distinguishes a real-time system from other computer systems, such as
desktop systems, is how one views and deals with the notion oftime. For real-
time systems, correct temporal behavior is a vital part of the system’s overall
correctness criteria. When developing hard real-time and safety critical sys-
tems, the worst case temporal behavior must be guaranteed atdesign time.

The trend in developing embedded real-time systems is an ever increasing
complexity in both the number of functions and the diversityof functionality
[HMTN05]. In order to meet the challenges of reliability andsafety require-
ments developers need to have supporting development methods and analysis
tools at their disposal.

Response-Time Analysis (RTA) is able to predict and guarantee a system’s
worst case temporal behavior at design time. RTA is a widely applicable me-
thod, since it provides a schedulability test which is performed as a repeated
step in several optimization problems. Examples include task allocation and at-
tribute assignment, where a schedulability test is performed for every possible
configuration.

In order for RTA to produce precise response times, the task model should
reflect requirements on task constraints together with the run-time system’s
possibilities and limitations, as accurately as possible.The task model with
offset aims at expressing temporal dependencies in task activations. Conse-
quently, the pessimism of the basic RTA is reduced since the traditional critical
instant of simultaneous release of all tasks is no longer possible. Tasks with
offsets is a general task model that has been extended in manyways, includ-
ing shared resources, jitter, arbitrary large or small taskattributes, and non-

44 CHAPTER 6. CONCLUSIONS AND FUTURE WORK I

preemptive tasks. Thus, tasks with offsets and it’s corresponding RTA is able
to accurately model many real situations, e.g., distributed and hybrid static and
dynamic systems.

This thesis provides contributions in the area of RTA by extending the ap-
plicability of RTA for tasks with offsets:

• By further reducing the pessimism of calculated response times. We en-
able this by revealing and exploiting a misconception concerning higher
priority task interference in the RTA formulae. A new concept, imposed
interference, is introduced which is able to produce typically 15% shorter
response times than previous approximate methods. A tight RTA has the
benefit of not overestimating resources, and thus, is attractive for use in
predicting the temporal behavior of embedded real-time systems.

• By introducing techniques that enable efficient implementations of the
RTA method. The essence of these techniques concerns higherpriority
task interference. We recognize that this interference exhibits a repetitive
and discretely increasing pattern that can be stored statically, and during
fix-point calculations simply perform an efficient table lookup. Another
technique which speeds up the analysis is to introduce pessimism when
modeling higher priority task interference. If the pessimism is intro-
duced in places where a fix-point cannot be reached, the fix-point cal-
culation will converge in fewer iterations. The complexityof RTA is
reduced, and thus, arbitrary large improvements over previous methods
can be obtained by scaling up the task set size.

However, with realistically sized task sets, simulations show that with
the techniques presented in this thesis, RTA will be at leasttwo orders
of magnitude faster than with previous implementations. This indicates
that RTA for tasks with offsets is efficient in being able to handle larger
task sets such as those in real industrial applications.

• By combining the two independent improvements of fast and tight RTA,
the traditional trade-off situation between a fast RTA on one hand, and
accurate response times on the other, is practically eliminated. The re-
sulting tight and fastmethod exhibits the most accurate response times
as well as the fastest analysis time among all comparable approximate
RTA methods.

• By illustrating how RTA for tasks with offset can be used in conjunction
with commercially available tools for analyzing hybrid scheduled safety

I 6.2 FUTURE WORK 45

critical and hard real-time industrial systems. Being ableto choose be-
tween static and dynamic scheduling on a per function basis instead of
an overall system level, simplifies this design trade-off, and consequently
the entire engineering process. Furthermore, the offset concept, viewed
as a modeling and design concept, facilitates simplification of the de-
velopment process, by modeling existing temporal dependencies, such
as precedence relations. Offsets as a design concept, together with run-
time support, extends the expressiveness and applicability of the task
model by being able to introduce temporal dependencies among tasks.
Thus, the offset concept extends the applicability of RTA for systems
with complex and mixed constraints. A system having tight respon-
siveness, as well as control performance constraints, is anexample of
a system with such complex and mixed constraints.

The RTA method allows the timing behavior of embedded real-time sys-
tems to be accurately assessed at the design time of the system. The contribu-
tions of this thesis consist of techniques that extend the applicability of RTA by
making them more eligible for integration in development tools for embedded
real-time systems. Furthermore, we show how these contributions, taken to-
gether with previous and related work, can be instrumental in the development
of predictable real-time systems.

6.2 Future work

Future work in the field of RTA can take many different directions. This section
outlines, what I believe are the two most important ones. Onerelates specifi-
cally to the work of this thesis, while the other one applies to RTA in general:

• Bring RTA for tasks with offsets into a real development context.
The work of this thesis has been verified, by simulation studies, on a
conceptual level only. In order to validate the claims of theindustrial
relevance of this thesis, the presented improvement techniques must be
implemented in commercially available development tools and used in
full scale development projects. An ongoing research project called
MultEx1, in collaboration with an operating system and development
tool vendor, Arcticus Systems [Arc], will address this issue. Arcticus
Systems focuses their efforts on dependable safety critical applications.

1MultEx URL: http://www.mrtc.mdh.se/projects/multex/

46 CHAPTER 6. CONCLUSIONS AND FUTURE WORK I

MultEx aims at providing development mechanisms and multiple exe-
cution models that relieve some of the specification burden of the devel-
oper. In achieving this, RTA plays a major part. With implementation
of RTA in Arcticus’ development tools, real industrial settings can be
set up. And hopefully, in the long run, apply RTA in a real, full scale,
development project.

• Further reducing the pessimism of RTA. The complexity of embedded
real-time applications is growing in both size and diversity. For RTA to
be useful for such applications, task models must be able to express the
requirements of functionality as well as the possibilitiesand constraints
of the run-time systems, as accurately as possible. Tasks with offsets,
and the corresponding RTA, reduce the pessimism by being able to ex-
press and introduce temporal dependencies among tasks. Thepessimism
is further reduced by techniques presented in this thesis. Other tech-
niques, reducing the pessimism, include best case responsetime analysis
[RS02, PGG98] and utilizing precedence information [Red04, PG99]
among tasks. However, Wallet al. recognize that traditional real-time
analysis models, such as RTA, are not applicable for large and complex
real-time systems. The existing models are too simple to accurately cap-
ture the systems temporal behavior, resulting in a too pessimistic analysis
[WAN+03].

We believe that in order for RTA to be useful for large systemsthat have
many mutual task dependencies, further studies of sources of pessimism
must be conducted. An example of such a study would be to identify and
express dependencies in WCETs of tasks belonging to the same transac-
tion, instead of assuming WCET for each an every one of them.

47

BIBLIOGRAPHY

[ABRW91] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings.
Hard Real-Time Scheduling: The Deadline Monotonic Approach.
In 8th IEEE Workshop on Real-Time Operating Systems and Soft-
ware, pages 127–132, May 1991.

[ABT+93] N.C. Audsley, A. Burns, K. Tindell, M.F. Richardson, andA.J.
Wellings. Applying New Scheduling Theory to Static Priority Pre-
emptive Scheduling.Software Engineering Journal, 8(5):284–
292, 1993.

[Arc] Arcticus Systems Home-Page. http://www.arcticus.se.

[Aud91] N.C. Audsley. Optimal Priority Assignment and Feasibility of
Static Priority Tasks with Arbitrary Start Times. Technical Report
YCS-164, Dept. of Computer Science, University of York, Eng-
land, November 1991. Available at ftp://ftp.cs.york.ac.uk/pub/-
realtime/papers/YCS164.ps.Z.

[BB99] I. Bate and A. Burns. An Approach to Task Attribute Assignment
for Uniprocessor Systems. InProc. of the 11th Euromicro Work-
shop of Real-Time Systems, June 1999.

[BNC03] I. Bate, P. Nightingale, and A. Cervin. Establishing timing re-
quirements and control attributes for control loops in real-time
systems. InProc. of the 15th Euromicro Conference on Real-Time
Systems, July 2003.

[BTW95] A. Burns, K. Tindell, and A Wellings. Effective Analysis for Engi-
neering Real-Time Fixed Priority Schedulers.IEEE Transactions
on Software Engineering, 22(5):475–480, May 1995.

48 BIBLIOGRAPHY I

[But97] G.C. Buttazzo.Hard Real-Time Computing Systems. Kluwer Aca-
demic Publishers, 1997. ISBN 0-7923-9994-3.

[Cer99] A. Cervin. Improved scheduling of control tasks. InProc. of the
11th Euromicro Workshop of Real-Time Systems, pages 4 – 10,
June 1999.

[EEN+03] Jakob Engblom, Andreas Ermedahl, Mikael Nolin, Jan Gustafs-
son, and Hans Hansson. Worst-case execution-time analysisfor
embedded real-time systems.Journal of Software Tool and Trans-
fer Technology (STTT), 4(4), 8 2003.

[EHS97] A. Ermedahl, H. Hansson, and M. Sjödin. Response-Time Guar-
antees in ATM Networks. InProc. 18th IEEE Real-Time Sys-
tems Symposium (RTSS), pages 274–284. IEEE Computer Soci-
ety Press, December 1997. URL: http://www.docs.uu.se/~mic/-
papers.html.

[Erm03] A. Ermedahl. A Modular Tool Architecture for Worst-Case Ex-
ecution Time Analysis. PhD thesis, Uppsala University, Uppsala
University, Department of Information Technology, 2003.

[Flx] FlexRay Home Page. http://www.flexray-group.org/.

[GG95] J.J. Gutiérrez García and M. González Harbour. Optimized prior-
ity assignment for tasks and messages in distributed hard real-time
systems. In3rd Workshop onParallel and Distributed Real-Time
Systems, April 1995.

[HMTN05] Kaj Hänninen, Jukka Mäki-Turja, and Mikael Nolin.Industrial
Requirements in Development of Embedded Real-Time Systems
– Interviews with Senior Designers. InWiP Session of 17th Eu-
romicro Conference on Real-Time Systems (ECRTS), July 2005.

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System.The Computer Journal, 29(5):390–395, 1986.

[KAS93] D.I. Katcher, H. Arakawa, and J.K. Strosnider. Engineering and
analysis of fixed priority schedulers.IEEE Transactions on Soft-
ware Engineering, 19(9):920–934, September 1993.

I B IBLIOGRAPHY 49

[KRP+99] M.H. Klein, T. Ralya, Bill Pollak, R. Obenza, and M.G. Harbour.
A Practitioners Handbook for Real-Time Analysis. Kluwer Acad-
emic Publishers, fifth edition, 1999. ISBN 0-7923-9361-9.

[Leh90] J. Lehoczky. Fixed priority scheduling of periodictask sets with
arbitrary deadlines. InProc. 11th IEEE Real-Time Systems Sym-
posium (RTSS), pages 201–212, December 1990.

[LL73] C. Liu and J. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment.Journal of the ACM,
20(1):46–61, 1973.

[Loc92] C.D. Locke. Software Architecture For Hard Real-Time Appli-
cations - Cyclic Executives vs. Fixed Priority Executives.The
Journal of Real-Time Systems, 4:37–53, 1992.

[NGS+01] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja, and
N. E. Bånkestad. Experiences from Introducing State-of-the-art
Real-Time Techniques in the Automotive Industry. InEigth IEEE
International Conference and Workshop on the Engineering of
Computer-Based Systems. IEEE Computer Society, April 2001.

[PG98] J.C. Palencia Gutiérrez and M. González Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. InProc. 19th

IEEE Real-Time Systems Symposium (RTSS), December 1998.

[PG99] J.C. Palencia Gutiérrez and M. González Harbour. Exploiting
Precedence Relations in the Schedulability Analysis of Distrib-
uted Real-Time Systems. InProc. 20th IEEE Real-Time Systems
Symposium (RTSS), pages 328–339, December 1999.

[PG03] J.C. Palencia Gutiérrez and M. González Harbour. Offset-Based
Response Time Analysis of Distributed Systems Scheduled under
EDF. In Proc. of the 15th Euromicro Conference on Real-Time
Systems, June 2003.

[PGG98] J.C. Palencia Gutiérrez, J.J. Gutiérrez García, and M. González
Harbour. Best-Case Analysis for Improving the Worst Case
Schedulability Test for Distributed Hard Real-Time Systems". In
Proc. of the 10th Euromicro Workshop of Real-Time Systems, June
1998.

50 BIBLIOGRAPHY I

[Pun97] S. Punnekkat.Schedulability Analysis for Fault Tolerant Real-
time Systems. PhD thesis, University of York, June 1997.

[Red04] O. Redell. Analysis of tree-shaped transactions indistributed real
time systems. InProc. of the 16th Euromicro Conference on Real-
Time Systems, June 2004.

[RS02] O. Redell and M. Sanfridsson. Exact Best-Case Response Time
Analysis of Fixed Priority Scheduled Tasks. InProc. of the 14th

Euromicro Conference on Real-Time Systems, June 2002.

[RSL88] R. Rajkumar, L. Sha, and J.P. Lehoczky. Real-time Synchronisa-
tion protocols for Multiprocessors. InProc. 9th IEEE Real-Time
Systems Symposium (RTSS), pages 259–269, December 1988.

[RT02] O. Redell and M. Törngren. Calculating Exact Worst-Case Res-
ponse Times for Static Priority Scheduled Tasks with Offsets and
Jitter. InProc. 8th IEEE Real-Time Technology and Applications
Symposium (RTAS), September 2002.

[SAr+04] L. Sha, T. Abdelzaher, K-E. Årzén, A. Cervin, T. Baker, A.Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real
Time Scheduling Theory: A Historical Perspective.Real-Time
Systems, 28(2/3):101–155, 2004.

[SH98] M. Sjödin and H. Hansson. Improved Response-Time Calcula-
tions. InProc. 19th IEEE Real-Time Systems Symposium (RTSS),
December 1998. URL: http://www.docs.uu.se/~mic/papers.html.

[Sjö00] Mikael Sjödin.Predictable High-Speed Communications for Dis-
tributed Real-Time Systems. PhD thesis, Uppsala University,
Dept. of Information Technology, May 2000.

[SN02] Kristian Sandström and Christer Norström. ManagingComplex
Temporal Requirements in Real-Time Control Systems. In9th
IEEE Conference on Engineering of Computer-Based Systems,
April 2002.

[SRL87] L. Sha, R. Rajkumar, and J.P. Lehoczky. Task scheduling in dis-
tributed real-time systems. InIEEE Industrial Electronics Con-
ference, 1987.

I B IBLIOGRAPHY 51

[SRL90] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Pro-
tocols: an Approach to Real Time Synchronization .IEEE Trans-
actions on Computers, 39(9):1175–1185, September 1990.

[TB94] K. Tindell and A. Burns. Fixed Priority Scheduling ofHard
Real-Time Multimedia Disk Traffic. The Computer Journal,
37(8):691–697, 1994.

[TC94] K. Tindell and J. Clark. Holistic Schedulability Analysis For Dis-
tributed Hard Real-Time Systems. Technical Report YCS197,
Real-Time Systems Research Group, Department of Computer
Science, University of York, November 1994. URL ftp://-
ftp.cs.york.ac.uk/pub/realtime/papers/YCS197.ps.Z.

[THW94] K. Tindell, H. Hansson, and A. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). InProc.
15th IEEE Real-Time Systems Symposium (RTSS), pages 259–
263. IEEE, IEEE Computer Society Press, December 1994.

[Tin92a] K. Tindell. An extendible approach for analyzing fixed priority
hard real-time tasks. Technical Report YCS189, Dept. of Com-
puter Science, University of York, England, 1992.

[Tin92b] K. Tindell. Using Offset Information to Analyse Static Priority
Pre-emptively Scheduled Task Sets. Technical Report YCS-182,
Dept. of Computer Science, University of York, England, 1992.

[Tur02] J. Turley. The two percent solution.Embedded systems Program-
ming (Embedded.com), December 2002. http://www.embedded.-
com/showArticle.jhtml?articleID=9900861.

[Vol] Volvo Construction Equipment. http://www.volvoce.com.

[WAN+03] A. Wall, J. Andersson, J. Neander, C. Norström, and M. Lembke.
Introducing temporal analyzability late in the lifecycle of complex
real-time systems. February 2003.

[XP00] J. Xu and D.L. Parnas. Priority Scheduling Versus Pre-Run-Time
Scheduling.The Journal of Real-Time Systems, 18(1):7–23, Jan-
uary 2000.

II

Included Papers

55

CHAPTER 1

Paper A:
Tighter Response-Times for Tasks
with Offsets

JUKKA MÄKI -TURJA AND M IKAEL NOLIN

In the proceedings of Real-Time and embedded Computing Sys-
tems and Applications conference (RTCSA).

GOTHENBURGSWEDEN, AUGUST 2004.

Abstract

We present an improvement to the analysis methods for calculating approxi-
mate response times for tasks with offsets. Our improvementcalculates tighter
(i.e. lower) response times than does earlier approximation methods, and sim-
ulations show that the method, under certain conditions, calculates the exact
worst-case response time.

We reveal, and exploit, a misconception in previous methodsconcerning
the interference a higher priority task poses on a lower priority task. In this
paper we show how the generally accepted concept of “released for execution”
interference produces unnecessary pessimistic response times for the approxi-
mate response-time analysis (RTA), presented by Tindell [Tin92] and Palencia
Gutiérrezet al. [PG98]. This concept of interference does not cause any pes-
simism in response-time analysis for tasks without offsets(neither in the exact
analysis with offsets), and has thus remained undetected over the years.

Instead, we propose the concept of “imposed” interference,which more ac-
curately captures the interference a task causes a lower priority task. We pro-
vide formal proofs that “imposed” interference is never higher than “released
for execution” interference and that it never underestimates the interference
caused by higher priority tasks. We also show, by simulations on randomly
generated task sets, that our improvement results in response times that outper-
form previous approximate methods. A typical improvement results in about
12% better admission probability (more than 30% under certain circumstances
can be obtained).

II 1.1 I NTRODUCTION 57

1.1 Introduction

A powerful and well established schedulability analysis technique is theRes-
ponse-Time Analysis(RTA) [ABD+95]. RTA is applicable to systems where
tasks are scheduled in priority order which is the predominant scheduling tech-
nique used in real-time operating systems today. RTA is a method to calculate
worst-case response times for tasks in hard real-time systems. Hence, RTA can
be used to perform schedulability tests, i.e., testing if tasks in a system will
meet their deadlines.

In this paper, we reveal and exploit a misconception concerning the interfer-
ence a task causes a lower prioritytask under analysis, one of the core concepts
of RTA. The essence of this misconception is that the amount of interference a
higher priority task is causing is occasionally overestimated. The misconcep-
tion has its origin in the original RTA presented by Joseph and Pandya [JP86]
for Liu and Layland’s classical task model [LL73]. In essence, Joseph and
Pandya’s RTA simulates the amount of execution-time queuedin the ready-
queue of an operating system, i.e. when a (higher priority) task is released for
execution, its execution time is added to the response time of the task-under
analysis. Hence, we call this concept for “released for execution” interference.
For traditional RTA, for tasks without offsets, this concept will not cause any
overestimation of calculated response times. However, as we will show in this
paper, this concept is an overestimation of the interference, and when perform-
ing approximate RTA for task with offsets, it results in unnecessary pessimistic
response times.

Accounting for offsets between tasks gives significantly tighter response
times than using the traditional notion of a critical instant where all tasks in
a system are considered to be released simultaneously [LL73]. In fact, many
systems that will be deemed infeasible by RTA without offsets will be feasi-
ble when taking offsets into account. The first RTA for tasks with offsets was
presented by Tindell [Tin92]. He provided an exact algorithm for calculating
response time for tasks with offsets. However, this algorithm becomes com-
putationally intractable for anything but small task sets due to its exponential
time complexity. In order to deal with this problem, Tindellprovided an ap-
proximation algorithm, with polynomial complexity, whichgives pessimistic,
but safe results (worst case response times are never underestimated).

Several researchers have extended the work provided by Tindell. In this pa-
per we focus on the approximate analysis, which was generalized and formal-
ized by Palencia Gutiérrezet al. [PG98]. They introduced dynamic offsets, al-
lowed offsets and deadlines larger than period, and made some improvement of

58 PAPER A II

the approximation algorithm. Palencia Gutiérrezet al. also provided improve-
ments in order to calculate tighter response times in certain situations [PG99].
Redell further improved their work by giving a method to calculate even lower
response times [Red03].

However, both improvements [PG99, Red03] are only useful invery special
circumstances where task priorities are chosen in a particular way and task jitter
is extremely high.1 Hence, their improvements are of limited generality. The
focus of their methods is on finding infeasible execution orders between tasks
and removing these execution orders from the set of possiblecritical instants.
The method we present in this paper is more general and can straight forwardly
be combined with the above described improvements. In fact,our approach
presented here is complementary to these approaches in the sense that the most
improvement for our method is achieved when jitter is low.

In this paper we present a novel interpretation of higher priority task inter-
ference: “imposed” interference, with corresponding changes to the response-
time formulae, which will result in less pessimistic response times for tasks
with offsets using the approximation algorithm. We formally prove that res-
ponse times obtained with this novel method are never greater than the method
presented by Palencia Gutiérrezet al. [PG98]. Furthermore, we also show that
our method does this without the risk of ever underestimating response times.

To quantify the improvements gained with our method we present an eval-
uation, showing that with our method presented in this paper, one can typically
gain about 15% lower response times in over 50% of the cases, resulting in a
12% higher admission probability, compared to existing approximate methods.
In more extreme cases (just one transaction) about 30% higher admission prob-
ability can be obtained.

Paper Outline: In section 1.2 we present the pessimistic “released for
execution” interference and introduce our novel concept of“imposed” inter-
ference. In section 1.3 we revisit and restate the original offset RTA [Tin92,
PG98]. In section 1.4 we modify this RTA to use the concept of “imposed”
interference instead, and show some consequences and proofs of correctness.
Section 1.5 presents evaluations of our method, and finally,section 1.6 con-
cludes the paper and outlines future work.

1Priority needs to be chosen so that transactions can “interlock” each other, and the jitter needs
to be in parity with, or greater than, the task’s periods. Otherwise the proposed improvements will
have little or no effect.

II 1.2 T HE CONCEPT OF I NTERFERENCE 59

1.2 The Concept of Interference

Classical response-time analysis for Liu and Layland’s periodic task model
[LL73] (where a taskτi has a periodTi and worst-case execution-timeCi),
presented first by Joseph and Pandya [JP86], states that the worst case response
time, for a task under analysis (τi), occurs when it is released at the same time
as all higher priority tasks. Under this assumption the worst case response time,
Ri is:

Ri = Ci +
∑

∀j∈hp(i)

interferencej(Ri) (1.1)

whereCi is the execution-time of taski, hp(i) is the set of higher priority tasks,
and interferencej(t) is the amount of interference taskj causes during time-
intervalt. The interference formula presented by Joseph and Pandya is[JP86]:

interferencej(t) =

⌈
t

Tj

⌉

Cj

where the ceiling expressions calculates the number of instances of taskj.
Here the full interference on each task instance (Cj) occurs immediately when
the task is released. We denote this concept of interferenceas “released for
execution” interference.

This, however, is an overestimation of the interference that τi actually can
experience. In fact, the interferenceexperiencedby τi during a time interval
can never exceed the size of the time interval. Or more precisely, the interfer-
ence experienced can never grow faster than the considered interval. Formally,
the derivative of the interference cannot be greater than the derivative of the
time interval:

dinterferencej(t)

dt
≤

dt

dt
⇒

dinterferencej(t)

dt
≤ 1 (1.2)

THEOREM 1.1 Consider a taskτj , activated at time 0 and subsequently with
period Tj , having execution-timeCj (0 < Cj ≤ Tj). For a positive time-
interval t = kTj + t′ (wherek ∈ N and0 ≤ t′ < Tj), kCj + min(t′, Cj) is
an upper bound on the interferenceτj can impose on any lower priority task
during t.

PROOF OF THEOREM 1.1 During kTj , τj imposes an amount of interfer-
ence ofkCj (task instances are activated periodically), one instancefor every

60 PAPER A II

period. During the remaining time interval,t′, τj can, according to equa-
tion 1.2, never impose more interference than the length of the interval itself.
Hence,kCj + t′ is an upper bound on the interferenceτj , can impose duringt.

However, the last instance ofτj (when activatedt′ = 0), cannot contribute
with more interference than its execution timeCj . Hence,kCj + Cj is also an
upper bound on the interferenceτj can impose duringt.

Combining these upper bounds (by taking the minimum of them)we get
kCj + min(t′, Cj) as an upper bound on the interferenceτj can impose dur-
ing t.

in
te

rf
er

en
ce

j(t
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190 20
t

2

4

6

8

released for execution
imposed

Figure 1.1: Released for execution vs. imposed interference

We denote the concept of interference which is bounded byinterferencej(t)
and theorem 1.1 with “imposed” interference. As an example,consider a task
with Tj = 10 andCj = 4. Figure 1.1 illustrates the difference between “re-
leased for execution” and “imposed” interference fort ∈ 0 . . . 20. The released
for execution interference increases in astepped stairfashion, whereas the im-
posed interference increases in aslanted stairfashion (with a derivative of 1 in
the slants).

In figure 1.1 the shaded areas represent the overestimation made by the re-
leased for execution concept. For classical response-timeanalysis this overesti-
mation has no effect on the calculated response time, and Joseph and Pandya’s
equation does yield exact worst case response times. The reason for this is that
the response-time analysis calculation (which is done by fix-point iteration) has
no solutions in the shaded areas (as discussed further in section 1.4.3). Also
for exact RTA of task with offsets [Tin92] this overestimation does not yield
any pessimism in the calculated response times.

II 1.3 E XISTING OFFSET RTA 61

1.3 Existing offset RTA

This section revisits the existing response-time analysisfor tasks with offsets
[Tin92, PG98] and illustrates some intuition behind the analysis and the for-
mulae.

1.3.1 System model

The system model used is as follows: The system,Γ, consists of a set ofk trans-
actionsΓ1, . . . ,Γk. Each transactionΓi is activated by a periodic sequence of
events with periodTi (for non-periodic eventsTi denotes the minimum inter-
arrival time between two consecutive events). The activating events are mu-
tually independent, i.e., phasing between them is arbitrary. A transaction,Γi,
contains|Γi| tasks, and each task is activated (released for execution) when a
relative time,offset, elapses after the arrival of the external event.

We useτij to denote a task. The first subscript denotes which transaction
the task belongs to, and the second subscript denotes the number of the task
within the transaction. A task,τij , is defined by a worst case execution time
(Cij), an offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum block-
ing from lower priority tasks (Bij), and a priority (Pij). The system model is
formally expressed as follows:

Γ :={Γ1, . . . ,Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij , Oij ,Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jitter, i.e., they can each
be either smaller or greater than the period.

Event arrives

time

Erliest possible release Latest possible release

O ij J ij

Figure 1.2: Relation between an event arrival, offset, jitter and task release

The relation between event arrival, offset, jitter and taskrelease is graphi-
cally visualized in figure 1.2. After the arrival of the eventthe taskτij is never
released for execution until its offset (Oij) has elapsed. The release may be de-
layed by jitter (maximally untilOij + Jij) making its exact release uncertain.

62 PAPER A II

For a more extensive explanation of task parameters see [PG98]. Parameters
for an example transaction (Γi) with two tasks (τi1, τi2) are depicted in fig-
ure 1.3.

1 2 3 4 5 6 7 8 9 100

Oi1=2

Ci1=2

Oi2=5

Ti=10

Ji2=1

Ci2=1

Ji1=8

Time

Figure 1.3: An example transactionΓi

1.3.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for each task in the system
by calculating an upper bound on its worst case response time. We useτua

(taska, belonging to transactionΓu) to denote thetask under analysis, i.e., the
task who’s response time we are currently calculating.

In the classical RTA (without offsets) thecritical instant for τua is when it
is released at the same time as all higher (or equal) prioritytasks [JP86, LL73].
In a task model with offsets this assumption yields pessimistic response times
since some tasks can not be released simultaneously due to offset relations.
Therefore, Tindell [Tin92] relaxed the notion of critical instant to be:

At least one task in every transaction is to be released at thecrit-
ical instant. (Only tasks with priority higher or equal toτua are
considered.)

Since it is not known which task that coincides with (is released at) the critical
instant, every task in a transaction must be treated as acandidateto coincide
with the critical instant.

Tindell’s exact RTA tries every possible combination of candidates among
all transactions in the system. This, however, becomes computationally in-
tractable for anything but small task sets (the number of possible combinations
of candidates ismn for a system withn transactions and withm tasks per
transaction). Therefore Tindell provided an approximate RTA that still gives
good results but uses one single approximation function foreach transaction.
Palencia Gutiérrezet al. [PG98] formalized and generalized Tindell’s work.

II 1.3 E XISTING OFFSET RTA 63

We will in this paper use the more general formalism of Palencia Gutiérrezet
al., although our proposed method is equally applicable to Tindell’s original
algorithm.

1.3.3 Interference function

Central to RTA is to capture the interference a higher or equal priority task
(τij) causes the task under analysis (τua) during an interval of timet. Since a
task can interfere withτua multiple times duringt, we have to consider inter-
ference from possibly severalinstances. The interfering instances ofτij can be
classified into two sets:

Set1 Activations that occur before or at the critical instant andthat can be
delayed by jitter so that they coincide with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transactionΓi, we will consider
each task,τic ∈ Γi, as acandidatefor coinciding with the critical instant.

RTA of tasks with offsets is based on two fundamental theorems:

1. The worst case interference a taskτij causesτua is whenSet1activations
are delayed by an amount of jitter such that they all occur at the critical
instant and the activations inSet2 have zero jitter.

2. The task ofΓi that coincide with the critical instant (denotedτic), will
do so after experiencing its worst case jitter delay.

The phasing between a task,τij , and a critical instant candidate,τic, becomes
(slightly reformulated compared to [PG98], see Appendix 1.6):

Φijc = (Oij − (Oic + Jic)) mod Ti (1.3)

From the second theorem we get thatτic will coincide with the critical in-
stant after having experienced its worst case jitter delay,i.e., the critical instant
will occur at(Oic+Jic) mod Ti, relative to the start ofΓi. From this, the def-
inition of Φijc follows in order to keep the relative phasing (of releases) among
tasks withinΓi. An implication of this is that the first instance of a taskτij in
Set2will be released atΦijc time units after the critical instant, and subsequent
releases will occur periodically everyTi.

Figure 1.4 illustrates the four differentΦijc-s that are possible for our ex-
ample transaction in figure 1.3. The upward arrows denote task releases. The
height of the upward arrows denotes the amount of execution released.

64 PAPER A II

Figure 1.4(a) shows for the case thatτi1 coincides with the critical instant,
the invocations inSet1(arriving at time 0) and the first invocations inSet2.
Figure 1.4(b) shows the corresponding situation whenτi2 is the candidate to
coincide with the critical instant.

1 2 3 4 5 6 7 8 90 10

2iτ1iτ 1iτ
211 =Φ i

521 =Φi

(a) τic = τi1

1 2 3 4 5 6 7 8 90 10

612 =Φ i

922 =Φi

1iτ
2iτ 2iτ
1iτ

(b) τic = τi2

Figure 1.4:Φ-s for the two candidates inΓi

Given the two sets of task instances (Set1andSet2) and the corresponding
phase relative to the critical instant (Φijc), the interference caused by taskτij

can be divided into two parts:

1. The part caused by instances inSet1(which is independent of the time
intervalt), ISet1

ijc , and

2. the part caused by instances inSet2(which is a function of the time
intervalt), ISet2

ijc (t).

These are defined as follows:

ISet1
ijc =

⌊
Jij + Φijc

Ti

⌋

Cij ISet2
ijc (t) =

⌈
t − Φijc

Ti

⌉

Cij (1.4)

II 1.4 T IGHT OFFSET RTA 65

The interference transactionΓi poses onτua, during a time intervalt, when
candidateτic coincides with the critical instant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

(1.5)

Wherehpi(τua) denotes tasks belonging to transactionΓi, with priority higher
or equal to the priority ofτua.

1.3.4 Approximation function

Since we beforehand cannot know which task, in each transaction, coincides
with the critical instant, the exact analysis tries every possible combination
[Tin92, PG98]. However, since this is computationally intractable for any-
thing but small task sets, the approximate analysis defines one single, upward
approximated, function for the interference caused by transactionΓi [Tin92,
PG98]:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t) (1.6)

That is,W ∗
i (τua, t) simply takes the maximum of each interference function

(for each candidateτic).
As an example, consider again transactionΓi depicted in figure 1.3. Fig-

ure 1.5 shows the interference function for the two candidates (Wi1 andWi2),
and it shows howW ∗

i is derived from them by taking the maximum of the two
functions at everyt.

Given the interference (W ∗
i) each transaction causes, during a time interval

of lengtht, the response time ofτua (Rua) can be calculated. Appendix 1.6
shows how to perform these response-time calculations.

1.4 Tight offset RTA

We begin this section with an illustrative example of how theoriginal analysis
overestimates the response time. Consider a simple transaction Γi depicted in
figure 1.6 where jitter (Jij) and blocking (Bij) is zero.

Also consider a lower priority task,τua, which is the single task in transac-
tion Γu, with Cua = 2. For this simplified task model whereBij = Jij = 0,
Dua ≤ Tu only one instance of the task under analysis is active at any point in
time. This means that the response-time formulae, for the single lower priority

66 PAPER A II

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

*
iW

1iW

21 & ii WW

2iW

t t

tt

Figure 1.5:Wic(τua, t) andW ∗
i (τua, t) functions

time
0 105

Ci1=2 Ci2=4
Ti=12

Oi2=4Oi1=0

Figure 1.6: A simple example transaction

II 1.4 T IGHT OFFSET RTA 67

task, presented in appendix 1.6, can be reduced and simplified to:

Rua = Cua +
∑

∀i6=u

W ∗
i (τua, Rua) (1.7)

The response-time calculation is performed by means of fix-point iteration
(starting withRua = 0) as follows:

Iter# t Wi1 Wi2 W ∗

i Rua

0 0
1 0 0 0 0 2
2 2 2 4 4 6
3 6 6 4 6 8
4 8 6 4 6 8

Where column “Iter#” denotes the iteration number in the fix-point iterations,
“ t” the time interval, “Wi1” and “Wi1” denotesWic(τua, t) for the two candi-
date tasksτi1 andτi2 respectively. “W ∗

i ” denotes the value ofW ∗
i (τua, t), and

“Rua” the calculated response time for the iteration. In iteration number 4 the
fix-point iteration terminates (Rua has the same value as in the previous itera-
tion), and the calculated response time isRua = 8. However, it can easily be
seen that a task withCua = 2 can never be preempted by both tasksτi1 andτi2

since both tasks are separated by at least 2 units of idle time. Hence, the actual
worst case response time isRua = 6 and the response time is overestimated.

1.4.1 Using Imposed Interference

One property of the ceiling expression ofISet2
ijc (t) in equation 1.4 is that it re-

turns the amount of interference “released for execution” at time t. This result
in a stepped stairinterference function. If we modifyISet2

ijc (t) in equation 1.4
so that it returns the interference “imposed” onτua we get aslanted stairfunc-
tion (as proposed in section 1.2). The two slanted stair functions for our simple
example transaction from figure 1.6 are shown in figures 1.8(a) and 1.8(b).

The slanted stairs are obtained by modifyingISet2
ijc (t) defined in equation 1.4

so that the “last” task instance, of the periodically activated tasks inSet2, does
not interfere with its full execution time unless the interval t is sufficiently
large. Our redefined version ofISet2

ijc (t) is:

68 PAPER A II

ISet2
ijc (t) =

⌈
t∗

Ti

⌉

Cij − x

x =

{

Cij − (t∗ mod Ti) if t∗ > 0 ∧
(
0 < t∗ mod Ti < Cij

)

0 otherwise

t∗ = t − Φijc

(1.8)

whereΦijc is defined in equation 1.3 andx is used to generate the slants of the
“imposed” interference function. Figure 1.7(a) illustrates a sequence of task
releases, and figure 1.7(b) shows how the value ofx varies accordingly.

0 Ti
2Ti

3Ti

t
t* = 0

Cij

Cij

x

(a)

(b)

Φijc

Figure 1.7: Relation between task release andx

The slanted stair functions, generated by equation 1.8, aredepicted in fig-
ures 1.8(a) and 1.8(b). Figure 1.8(c) shows them overlaid. Using our new ver-
sion ofISet2

ijc (t) in equation 1.5 we get the maximized slanted stairs interference
function, representing the approximation functionW ∗

i , shown in figure 1.8(d).
With the new definition of interference in equation 1.8 we cannow use

equation 1.7 to calculate a new response timeRua for our example as follows:

Iter# t Wi1 Wi2 W ∗

i Rua

0 0
1 0 0 0 0 2
2 2 2 2 2 4
3 4 2 4 4 6
4 6 4 4 4 6

II 1.4 T IGHT OFFSET RTA 69

0 12

t

6

0

0 12

t

6

0

0 12

t

6

0

0 12

t

6

0

(d)(c)

(b)(a)

1iW 2iW

21 & ii WW *
iW

Figure 1.8: Interferenceimposedby our example transaction

We note that our new definition ofISet2
ijc (t) makes the analysis able to “see”

the empty slot between tasksτi1 andτi2, something the original analysis over-
looked.

Hence, the calculated response time (6) is lower than that ofthe original
analysis (8), and in section 1.5 we will quantify this improvement in more
general terms.

1.4.2 Correctness Criteria

For our proposed modification toISet2
ijc (t) in equation 1.8 to be correct, and not

produce greater response times than the original analysis,three criteria have to
be fulfilled:

• The new definition ofISet2
ijc (t) is not allowed to be greater than the old

definition (for anyt). If this condition holds, the analysis performed with
the new definition is guaranteed not to yield larger responsetimes than
the old definition does.

• The new definition ofISet2
ijc (t) must not underestimate the interference

caused bySet2-tasks. If the interference is underestimated, analysis per-
formed with the new definition could yield unsafe response-time esti-
mates.

70 PAPER A II

• The new definition ofISet2
ijc (t) must yield a monotonically increasing in-

terference functionW ∗
i (τua, t). Monotonicity is required to guarantee

that at least one solution to the response-time formula exists and that
fix-point iteration finds the smallest existing solution [SH98].

THEOREM 1.2 For a given task under analysis,τua, and one candidate task,
τic ∈ Γi, our new definition ofISet2

ijc (equation 1.8) is never greater than the old
definition (equation 1.4).

PROOF OF THEOREM 1.2 x, as defined in equation 1.8, is used to decrease
the calculated value ofISet2

ijc . Sincex, by definition, is never negative, it can
never contribute to making equation 1.8 greater than equation 1.4.

THEOREM 1.3 For any time intervalt ≥ 0 our new definition ofISet2
ijc (t)

(equation 1.8) never underestimates the interference caused by Set2 task in-
stances.

PROOF OF THEOREM 1.3 Set2 task instances arrive periodically (per defin-
ition) with periodTi, with the first instance arriving atΦijc.

We first treat the time before the first invocation in Set2, i.e. t < Φijc. Dur-
ing this time intervalt∗ < 0 and hencex = 0. Since,t < Φijc < Ti then
t∗ > −Ti and the ceiling expression in equation 1.8 evaluates to zero. Hence,
the whole equation 1.8 is also zero. Since the interference before the first invo-
cation obviously is zero, equation 1.8 does not underestimate the interference
before the first invocation.

For times at or after the first invocation, i.e.t ≥ Φijc, we havet∗ ≥ 0. Now,
assumet∗ = kTi + t′, wherek ∈ N and0 ≤ t′ < Ti (the relation betweent,
t∗ andt′ is graphically visualised in figure 1.9). If the interference calculated
by equation 1.8 is not below thesafe upper bounddefined by theorem 1.1:

safe upper bound= kCij + min(t′, Cij)

then the interference is not underestimated.
We divide the proof into three cases depending on the value oft′ for a time-

interval t (the three different cases are depicted graphically in figure 1.10):

• t′ ≥ Cij : The ceiling expression in equation 1.8 evaluates tok + 1 and
the interference is thus(k + 1)Cij − x. Further, whent′ ≥ Cij thent∗

mod Ti ≥ Cij resulting inx = 0, hence the interference is(k + 1)Cij ,
which is not belowsafe upper bound.

II 1.4 T IGHT OFFSET RTA 71

Time

Ti kT i (k+1)Ti0

t*
t

t'
ijcΦ ijcΦ

Figure 1.9: Relation betweent, t∗ andt′

t
C ij

ijcikT Φ+ ijciTk Φ++)1(

0'=t

ijCt << '0 'tCij ≤

Figure 1.10: Three proof cases fort′

• 0 < t′ < Cij : The ceiling expression in equation 1.8 evaluates tok + 1
and the interference is thus(k + 1)Cij − x = kCij + Cij − x. Further,
when0 < t′ < Cij then0 < t∗ mod Ti < Cij andx = Cij − t′, hence
the interference iskCij + Cij − (Cij − t′) = kCij + t′, which is not
belowsafe upper bound.

• t′ = 0: The ceiling expression in equation 1.8 evaluates tok and the
interference is thuskCij −x. Further, whent′ = 0 thent∗ mod Ti = 0
andx = 0, hence the interference iskCij , which is not belowsafe upper
bound(sincet′ = 0).

THEOREM 1.4 Our new definition ofISet2
ijc (t) (equation 1.8) is (non-strictly)

monotonically increasing with the time intervalt.

PROOF OF THEOREM 1.4 We prove this by showing that the derivative of
equation 1.8 is never negative. First, we conclude that a negative derivative
of x cannot contribute to make the derivative of equation 1.8 negative (since
x is subtractedin equation 1.8). We also conclude that ifx is disregarded (i.e.
assumed to be 0), then equation 1.8 does not have a negative derivative in any
point.

We divide the proof into three cases, depending on the value of t∗ mod Ti

for timest:

72 PAPER A II

• t∗ mod Ti ≥ Cij : In this casex is continuously 0, hence the derivative
of x is 0, and equation 1.8 cannot have a negative derivative.

• 0 < t∗ mod Ti < Cij : In this case the derivative ofx is -1, hence the
derivative of equation 1.8 cannot have a negative derivative.

• t∗ mod Ti = 0: For this case we conclude that equation 1.8 is continu-
ous, since at timet + ǫ (for an arbitrary small and positiveǫ) the ceiling
expression has increased withCij and x has increased withCij − ǫ,
hence equation 1.8 has increased with exactlyǫ. Thus, the derivative of
equation 1.8 at such timest is 1.

1.4.3 Discussion

At first glance, it is not directly obvious that lowering the interference func-
tion Wic(τua, t) should automatically give lower response times. In fact, the
stepped-stair interference function has been used for manyyears to represent
the interference in RTA [ABD+95, ABT+93], without introducing any pes-
simism.

The reason stepped stairs (in analysis without offsets) does not introduce
pessimism can be found in our previous work [SH98]. In short,the fix-point
iteration will terminate when the sum of all interference functions (demand)
meets the line from origin with slope 1 (supply). Hence, replacing stepped
stairs with slanted stairs (with slope 1) will not contribute to earlier fix-point
convergence.

However, in approximate response-time analysis with offsets, the interfer-
ence functions,Wic-s, are not used directly in the fix-point iterations. Instead
they are first subjected to a maximisation function (equation 1.6). This situation
can be compared to floating point addition: if you round up thefloating point
numbers at each calculation step, instead of just in the end,you will loose pre-
cision. This corresponds to passing released for executioninterference, instead
of more precise imposed interference, to the maximisation function. Another
view of this is that by using slanted-stair functions as input to the maximisa-
tion function, one essentially “delays” the time it takes for one low-interference
scenario to overtake a high-interference scenario.

Figure 1.11(a) shows our simple example transaction from figure 1.6 with
two arrows denoting the two possible scenarios for the critical instant (one
“dashed” scenario and one “dotted” scenario). Figures 1.11(b) and 1.11(c)
shows the stepped stairs and slanted stairs interference functions, respectively,

II 1.4 T IGHT OFFSET RTA 73

0 12

t

6

0

(c)

0 12

t

6

0

(b)

0 12

t(a)

t1

t1 t2

Figure 1.11: Stepped stairs vs. slanted stairs

74 PAPER A II

for both scenarios. For timest < t1, the dotted scenario is the one with high-
est interference. Timet1 corresponds to the release of the second task in the
dashed scenario. For the stepped stairs case, this means immediately adding
another 4 units of interference to the dashed scenario, hence immediately mak-
ing it the scenario with the highest interference. However,for the slanted stairs
case, the timet1 means that the dashed line starts to increase, but not until
time t2 it catches up with the dotted scenario. Hence, the interval betweent1
andt2 represents the time by which the slanted stairs “delay” the dashed sce-
nario to catch up with the dotted scenario. If fix-point convergence can be
achieved during this interval, then RTA with imposed interference will calcu-
late a lower response time than does RTA with released for execution interfer-
ence.

1.5 Evaluation

In order to evaluate and quantify our proposed improvement,we have imple-
mented the approximate response-time equations of appendix 1.6, using both
the original definition ofISet2

ijc (t) from section 1.3 and our tighter version of
ISet2
ijc (t) from section 1.4. Furthermore, we have also, as a comparison, imple-

mented the exact analysis.
Using these implementations and a task-generator we have performed sim-

ulations of all three approaches by calculating the response time for a single
low priority task, e.g., corresponding to an admission control situation.

1.5.1 Description of Task Generator

In our simulator we generate task sets that are used as input to the different im-
plementations. The task-set generator takes the followingparameters as input:

• Total system load (in % of total CPU utilization),

• The number of transactions to generate,

• The number of tasks per transaction to generate, and

• Jitter fraction (in % of the transaction periods).

Using these parameters a task set with the following properties is generated:

• The total system load is proportionally distributed over all transactions.

II 1.5 E VALUATION 75

• Periods (Ti) are randomly distributed in the range 1.000 to 1.000.000
time units (uniform distribution).

• Each offset (Oij) is randomly distributed within the transaction period
(uniform distribution).

• The execution times (Cij) are chosen as a fraction of the time between
two consecutive offsets in the transaction. The fraction isthe same
throughout one transaction, and is selected so that the transaction load
(as defined by the first property) is obtained.

• The jitter is set to the jitter fraction of the period (Jij = f ∗ Ti).

• Blocking (Bij) is set to zero.

• The priorities are assigned in rate monotonic order [LL73].

1.5.2 Description of Simulation Setup

The heart of the improvement made to the approximate response-time anal-
ysis is a new definition ofISet2

ijc (t). We have implemented the response-time
equations of appendix A which will show the effects of our improvements in
a realistic scenario. However, neither interference from other tasks inΓu nor
interference from previous instances ofτua comes into play in the admission
control situation that we simulate. Taking interference from other tasks ofΓu

into account would yield less improvement of our methods, sinceW ∗
i is not

used for them (see appendix 1.6).
The setup of the simulation is as follows: a task set is generated according

to input parameters (system load, number of tasks within a transaction, number
of transactions, jitter). To simulate an admission controlsituation, we calculate
the response time for a low priority task subjected to admission control.

We have calculated and compared the response times for our tighter anal-
ysis (Tight), Palencia Gutiérrezet al.’s original analysis (Orig) and the exact
analysis (Exact). The results in section 1.5.3 have been obtained by taking
the mean value from 1000 generated task-sets for each point in each graph.
The graphs in the left and in the right columns also show the 95% confidence
interval for these mean values.

We have measured three metrics from the simulations:

• “Admission probability (%)” — This metric measures the fraction of
cases, out of the 1000 generated task sets, the admission control task
passes the admission test (its response time is lower than its deadline).

76 PAPER A II

• “Response-time improvement (%)” — This metric measures theaverage
and maximum improvement (over Original) in response time for the task
subjected to admission control. Improvement in response time for the
tight analysis,RTight

ua , is defined as1 − RTight
ua /ROrig

ua (and analogous for
the Exact analysis). Note that for this metric the original acts as baseline
and thus only maximum and average improvement of (Tight) and(Exact)
(over (Orig)) are plotted. Also note that the maximum value is one value
(the maximum) out of 1000, which makes the behavior in these graphs
statistically uncertain (they show what is possible without quantifying
probability of occurrence).

• “Fraction of tasks with improvement (%)” — This metric measures the
fraction of admission control tasks that results in a lower response time,
compared to the original analysis (Orig). As for previous metric, the
original approximate analysis is used as a baseline, hence no curve is
plotted for that method. Note that this metric says nothing about the size
of the improvements.

The first metric is to show what effect an improvement in response time
could have in a realistic situation. The purpose of the last two metrics is to
quantify the difference in response time between the three analysis methods.

1.5.3 Simulation Results

In the simulations we have varied our four task-generator parameters in differ-
ent ways. Figures 1.12 to 1.15 show a subset of the simulationresults. The
exact analysis can only be run on small task sets; hence it is not present for
larger tasks sets. For every parameter that is varied we showall three metrics
described in the previous section, corresponding to top, middle, and bottom-
most graph respectively, in each figure. (Note that, in the figures, “Tasks =x”
denotes “x tasks/transaction”.)

In all figures we start out at a base configuration where the number of tasks
per transaction is 6, the number of transactions is 3, systemload is 80% and
the load of task under admission control is 2%. From this baseconfiguration
we vary the number of tasks/transaction (figure 1.12), number of transactions
(figure 1.13), jitter (figure 1.14), while keeping the other parameters constant.

Figure 1.12 show the results when the number of tasks is varied between
1 and 13. For more than 5 tasks we can see, in the topmost graph,that the
admission probability for (Tight) is around 12% higher thanfor (Orig). In
middle graph we see that the average response-time improvement of (Tight)

II 1.5 E VALUATION 77

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

A
dm

is
si

on
 p

ro
pa

bi
lit

y
(%

)

No. of tasks/transaction

Trans. = 3, Load = 80%, Jitter = 0

Exact
Tight
Orig

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

R
es

po
ns

e-
tim

e
im

pr
ov

em
en

t (
%

)

No. of tasks/transaction

Trans. = 3, Load = 80%, Jitter = 0

Exact (Max)
Tight (Max)
Exact (Avg)
Tight (Avg)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

Fr
ac

tio
n

of
 ta

sk
s

w
ith

 im
pr

ov
em

en
t (

%
)

No. of tasks/transaction

Trans. = 3, Load = 80%, Jitter = 0

Exact
Tight

Figure 1.12: Varying the number of tasks per transaction

78 PAPER A II

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

A
dm

is
si

on
 p

ro
pa

bi
lit

y
(%

)

No. of transactions

Tasks =6, Load = 80%, Jitter = 0

Exact
Tight
Orig

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12

R
es

po
ns

e-
tim

e
im

pr
ov

em
en

t (
%

)

No. of transactions

Tasks =6, Load = 80%, Jitter = 0

Exact (Max)
Tight (Max)
Exact (Avg)
Tight (Avg)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

Fr
ac

tio
n

of
 ta

sk
s

w
ith

 im
pr

ov
em

en
t (

%
)

No. of transactions

Tasks =6, Load = 80%, Jitter = 0

Exact
Tight

Figure 1.13: Varying the number of transactions

II 1.5 E VALUATION 79

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
dm

is
si

on
 p

ro
pa

bi
lit

y
(%

)

Jittter/Period ratio

Trans. = 3, Tasks =6, Load = 80%

Exact
Tight
Orig

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
es

po
ns

e-
tim

e
im

pr
ov

em
en

t (
%

)

Jittter/Period ratio

Trans. = 3, Tasks =6, Load = 80%

Exact (Max)
Tight (Max)
Exact (Avg)
Tight (Avg)

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fr
ac

tio
n

of
 ta

sk
s

w
ith

 im
pr

ov
em

en
t (

%
)

Jittter/Period ratio

Trans. = 3, Tasks =6, Load = 80%

Exact
Tight

Figure 1.14: Varying the amount of jitter

80 PAPER A II

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

A
dm

is
si

on
 p

ro
pa

bi
lit

y
(%

)

No. of tasks/transaction

Trans. = 1, Load = 80%, Jitter = 0

Exact
Tight
Orig

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16 18 20

R
es

po
ns

e-
tim

e
im

pr
ov

em
en

t (
%

)

No. of tasks/transaction

Trans. = 1, Load = 80%, Jitter = 0

Exact (Max)
Tight (Max)
Exact (Avg)
Tight (Avg)

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

Fr
ac

tio
n

of
 ta

sk
s

w
ith

 im
pr

ov
em

en
t (

%
)

No. of tasks/transaction

Trans. = 1, Load = 80%, Jitter = 0

Tight
Exact

Figure 1.15: Hybrid scheduling scenario

II 1.5 E VALUATION 81

is for 10 tasks over 15%, and that there are task sets (although rare) where
improvement of more than 50% can be obtained. In the bottommost graph we
see that when the number of tasks grows, so does the probability of a response-
time improvement.

For figure 1.13, where the number of transactions is varied, aquite differ-
ent picture emerges. The difference between (Orig) and (Tight) gets smaller
as the number of transactions grows. This is not surprising,since in the case
where the tasks/transaction ratio approaches 1, there are very few offset rela-
tions among tasks and the analysis approaches the analysis for tasks without
offsets.

Figure 1.14 show what happens when jitter is varied. Not onlydoes the
admission probability decrease drastically, but also the relative improvement
of (Tight) over (Orig). This is mainly due to the fact that jitter contributes to
ISet1
ijc , whereas our improvement only affectsISet2

ijc (t). As ISet1
ijc account for an

increasingly larger fraction of the total response time, the relative improvement
of (Tight) decreases. However, the absolute response-timeimprovement (not
shown) and the number of improvements (bottommost graph) isnot noticeably
affected by the jitter. As the jitter grows larger than the period (or larger than
several periods) the effects of our improvements diminish further. However,
systems with such large jitter are rare in control-systems (which constitute the
majority of real-time systems), where the jitter is typically only allowed to be a
few percent of the period. Also, for system with such large jitters (such as mul-
timedia applications), other methods [PG99, Red03] to reduce the estimated
response time can be used.

Finally, figure 1.15 corresponds to a configuration where thenumber of
transactions is 1, system load 80%, and load of the task underadmission con-
trol is 2%. This type of scenario would occur in a system usinga hybrid sched-
uling method, supporting both static cyclic scheduled tasks (corresponding to
the single high priority transaction) and priority scheduled tasks running in the
background of the static schedule [MTS02]. This situation shows where our
method excels. All tasks have offset relations among them, resulting in well
over 30% better admission probability (4–9 tasks) over (Orig) and an average
improvement of over 50% when the number of tasks/transaction is more than
8. Another interesting thing is that (Exact) and (Tight) always yield exact res-
ponse times. This comes from the fact that when considering atransaction in
isolation (no interference among several transactions) the slanted stair interfer-
ence function captures the worst case interference exactly.

82 PAPER A II

1.6 Conclusions and Future Work

We have presented an improvement that calculates tighter (lower) response
times than does earlier approximation methods. We prove that our method
never calculates greater response times than the method in [PG98]. Further-
more we prove that our method never underestimates the interference caused
by higher priority tasks. Hence, it calculates a safe and tight approximation of
the actual worst-case response time.

We exploit a misconception in previous methods concerning the interfer-
ence a task poses on a lower priority one. The concept “imposed” interfer-
ence is introduced, and is shown to more accurately capture this interference
compared to the previously accepted concept of “released for execution” in-
terference. This situation is analogous to floating point addition where “re-
leased for execution” interference corresponds to calculations with integer val-
ues (rounded up) whereas “imposed” interference corresponds to calculations
with the more accurate floating point values (resulting in a lower total sum).

Simulations show that the improvement is significant (especially when ta-
sks/transaction ratio is high), typically about 15% tighter response times in
50% of the cases, resulting in 12% higher admission probability for low priority
task subjected to admission control. In certain circumstances the improvement
is much greater, and with just one transaction (correspondsto a static schedule)
our proposed method calculates exact response times.

Our tighter analysis is noticeably slower than the originalanalysis (even
slower than the exact for small task sets). This is a natural effect of using tighter
interference functions since it gives slower fix-point convergence. However, we
have previously proposed a method to speed up the original analysis [MTN04].
In our future work we will adapt that method to our tight analysis. We will also
incorporate complementary improvements to RTA for tasks with offsets such
as [PG99, Red03].

II R EFERENCES 83

References

[ABD+95] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Perspective.
Real-Time Systems, 8(2/3):173–198, 1995.

[ABT+93] N.C. Audsley, A. Burns, K. Tindell, M.F. Richardson, andA.J.
Wellings. Applying New Scheduling Theory to Static Priority
Pre-emptive Scheduling.Software Engineering Journal, 8(5):284–
292, 1993.

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System.The Computer Journal, 29(5):390–395, 1986.

[LL73] C. Liu and J. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment.Journal of the ACM,
20(1):46–61, 1973.

[MTN04] Jukka Mäki-Turja and Mikael Nolin. Faster ResponseTime Anal-
ysis of Tasks With Offsets. InProc. 10th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS), May 2004.

[MTS02] J. Mäki-Turja and M. Sjödin. Combining Dynamic and Static
Scheduling in Hard Real-Time Systems. Technical Report MRTC
no. 71, Mälardalen Real-Time Research Centre (MRTC), October
2002.

[PG98] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. InProc. 19th

IEEE Real-Time Systems Symposium (RTSS), December 1998.

[PG99] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Exploiting
Precedence Relations in the Schedulability Analysis of Distributed
Real-Time Systems. InProc. 20th IEEE Real-Time Systems Sym-
posium (RTSS), pages 328–339, December 1999.

[Red03] O. Redell. Accounting for Precedence Constraints in the Analysis
of Tree-Shaped Transactions in Distributed Real-Time Systems.
Technical Report TRITA-MMK 2003:4, Dept. of Machine Design,
KTH, 2003.

84 PAPER A II

[SH98] M. Sjödin and H. Hansson. Improved Response-Time Calcula-
tions. InProc. 19th IEEE Real-Time Systems Symposium (RTSS),
December 1998. URL: http://www.docs.uu.se/~mic/papers.html.

[Tin92] K. Tindell. Using Offset Information to Analyse Static Priority
Pre-emptively Scheduled Task Sets. Technical Report YCS-182,
Dept. of Computer Science, University of York, England, 1992.

II A PPENDIX A: C OMPLETE RTA FORMULAE 85

Appendix A: Complete RTA formulae

In this appendix we provide the complete set of formulae to calculate the worst
case response time,Rua, for a task under analysis,τua, as presented in Palencia
Gutiérrezet al. [PG98].

The interference transactionΓi poses on a lower priority task,τua, if τic

coincides with the critical instant, is defined by (see equation 1.5 in this paper):

Wic(τua, t) =
∑

∀j∈hpi(τua)

(⌊
Jij + Φijc

Ti

⌋

+

⌈
t − Φijc

Ti

⌉)

Cij

(26 in [PG98])

where the phase between taskτij and the candidate critical instant taskτic is
defined as (see equation 1.3 in this paper):

Φijc = Ti − (Oic + Jic − Oij) mod Ti (17 in [PG98])

The approximation function for transactionΓi which considers all candi-
dateτic-s simultaneously, is defined by (see equation 1.6 in this paper):

W ∗
i (τua, w) = max

∀c∈hpi(τua)
Wic(τua, w) (27 in [PG98])

The length of a busy period, forτua, assumingτuc is the candidate critical
instant, is defined as (Note that the approximation functionis not used forΓu):

Luac =Bua + (pL,uac − p0,uac + 1)Cua+

Wuc(τua, Luac) +
∑

∀i6=u

W ∗
i (τua, Luac)

(30 in [PG98])

wherep0,uac denotes the first, andpL,uac the last, task instance, ofτua, acti-
vated within the busy period. They are defined as:

p0,uac = −

⌊
Jua + Φuac

Tu

⌋

+ 1 (29 in [PG98])

and

pL,uac =

⌈
Luac − Φuac

Tu

⌉

(31 in [PG98])

86 PAPER A II

In order to get the worst case response time forτua, we need to check the
response time for every instance,p ∈ p0,uac . . . pL,uac, in the busy period.
Completion time of thep’th instance is given by:

wuac(p) =Bua + (p − p0,uac + 1)Cua

+ Wuc(τua, wuac(p)) +
∑

∀i6=u

W ∗
i (τua, wuac(p)) (28 in [PG98])

The corresponding response time (for instancep) is then:

Ruac(p) = wuac(p) − Φuac − (p − 1)Tu + Oua (32 in [PG98])

To obtain the worst case response time,Rua, for τua, we need to consider
every candidate critical instant ,τuc (including τua itself), and for each such
candidate every possible instance,p, of τua:

Rua = max
∀c∈hpu(τua)∪a

[max
p=p0,uac,...,pL,uac

(Ruac(p))] (33 in [PG98])

87

CHAPTER 2

Paper B:
Efficient Response-Time Analysis
for Tasks with Offsets

JUKKA MÄKI -TURJA AND M IKAEL NOLIN

In the proceedings of the 10th IEEE Real-time Technology and
Applications Symposium (RTAS).

TORONTOCANADA , MAY 2004.

Abstract

We present a method that enables an efficient implementationof the approxi-
mate response-time analysis (RTA) for tasks with offsets presented by Tindell
[Tin92] and Palencia Gutiérrezet al. [PG98].

The method allows for significantly faster implementationsof schedula-
bility tools using RTA. Furthermore, reducing computationtime, from tens of
milliseconds to just a fraction of a millisecond, as we will show, is a step to-
wards on-line RTA in for example admission control systems.

We formally prove that our reformulation of earlier presented equations is
correct and allow us to statically represent parts of the equation, reducing the
calculations during fix-point iteration. We show by simulations that the speed-
up when using our method is substantial. When task sets grow beyond a trivial
number of tasks and/or transactions a speed-up of more than 100 times (10
transactions and 10 tasks/transaction) compared to the original analysis can be
obtained.

II 2.1 I NTRODUCTION 89

2.1 Introduction

A powerful and well established schedulability analysis technique is theRes-
ponse-Time Analysis(RTA) [ABD+95]. RTA is applicable to systems where
tasks are scheduled in strict priority order which is the predominant scheduling
technique used in real-time operating systems today. In this paper, we present
a method that enables an efficient implementation of the approximate RTA for
tasks with offsets presented by Tindell [Tin92] and Palencia Gutiérrezet al.
[PG98].

RTA is a method to calculate worst-case response times for tasks in hard
real-time systems. In essence RTA is used to perform a schedulability test,
i.e., checking whether or not tasks in the system will satisfy their deadlines.
Traditionally, industrial use of schedulability tests hasbeen limited. However,
with recent advancements in software development and synthesis tools, such
as UML-based tools [IL, Rat, Tel], schedulability tests canbe integrated in the
normal workflow and tool-chains used by real-time engineers.

This kind of tools can be used, for instance, to perform automatic allo-
cation of tasks to nodes in a distributed real-time system orto automatically
derive task priorities (priority assignment) so that task deadlines are guaran-
teed to be met. To be able perform such allocation and/or assignment tasks,
tools need to be able to perform schedulability tests. Typically, such automatic
allocation/assignment methods are based on optimization or search techniques,
during which numerous possible configurations are evaluated. (There can eas-
ily be tens or hundreds of thousands of possible configurations even for small
systems.) For each configuration a schedulability test is performed in order to
evaluate different solutions. Hence, schedulability tests must be fast in order to
be suitable for such systems.

Dynamic real-time systems, with on-line admission controlof real-time
tasks, needs to be able to quickly evaluate whether a dynamically arriving task
can be admitted to the system. In these cases the tolerance for delays in the
scheduling analysis is even less than in the case of softwareengineering tools.

Accounting for offsets between tasks gives significantly tighter analysis re-
sults than using the traditional notion of a critical instant where all tasks in the
system are considered to be released simultaneously [LL73]. Hence, tools for
automatic configuration (as well as on-line schedulabilitytests) would benefit
from using this extension; it becomes easier to find feasibleconfigurations. In
fact, many systems that will be deemed infeasible by RTA without offsets will
be feasible when taking offsets into account. However, the price of taking off-
sets into account is increased execution time of the analysis. Existing methods

90 PAPER B II

for RTA with offsets have all been focused on modeling capabilities while ig-
noring issues of computational complexity, e.g., [PG98, PG99, Red03, Tin92].

The first RTA for tasks with offsets was presented by Tindell [Tin92]. He
provided an exact algorithm for calculating response time for tasks with offsets.
However, this algorithm becomes computationally intractable for anything but
small task sets due to its exponential time complexity. In order to deal with
this problem, Tindell also provided an approximation algorithm, polynomial
in time, which gives pessimistic but safe (worst case response time is never
underestimated) results. Later, Palencia Gutiérrezet al. [PG98] formalized,
generalized and improved Tindell’s work.

In this paper we present a method that enables an efficient implementa-
tion of the approximate offset analysis given by Tindell [Tin92] and Palencia
Gutiérrezet al. [PG98]. The correctness of our method is formally proven by
demonstrating algebraic equivalence with the original methods. The method
significantly speeds up the calculation of response times, as we will show by
simulations.

Paper Outline: In section 2.2 we revisit and restate the original offset
RTA [PG98, Tin92]. In section 2.3 we present our new method. Section 2.4
presents evaluations of our method, and finally, section 2.5concludes the paper
and outlines future work.

2.2 Existing offset RTA

This section revisits the existing response-time analysisfor tasks with offsets
[PG98, Tin92] and illustrates the intuition behind the analysis and the formulae.

2.2.1 System model

The system model used is as follows: The system,Γ, consists of a set ofk
transactionsΓ1, . . . ,Γk. Each transactionΓi is activated by a (periodic) se-
quence of events with periodTi (for non-periodic eventsTi denotes the mini-
mum inter-arrival time between two consecutive events). The activating events
are mutually independent, i.e., phasing between them is arbitrary. A transac-
tion, Γi, contains|Γi| tasks, and each task is activated (released for execution)
when a time,offset, has elapsed after the arrival of the external event.

We useτij to denote a task. The first subscript denotes which transaction
the task belongs to, and the second subscript denotes the number of the task
within the transaction. A task,τij , is defined by a worst case execution time

II 2.2 E XISTING OFFSET RTA 91

(Cij), an offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum block-
ing from lower priority tasks (Bij), and a priority (Pij). The system model is
formally expressed as follows:

Γ :={Γ1, . . . ,Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij , Oij ,Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jitter, i.e., they are al-
lowed to be both smaller or greater than the period. Parameters for an example
transaction (Γi) with two tasks (τia, τib) is visualized in figure 2.1. The offset
denotes the earliest release time of a task relative to the start of its transaction
and jitter denotes the variability in the release of the task. (In figure 2.1 the
jitter is not graphically visualized.)

1 2 3 4 5 6 7 8 9 100

Oia=2

Cia=2

Oib=5

Ti=10

Jib=1

Cib=1

Jia=8

Time

Figure 2.1: An example transactionΓi

2.2.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for each task in the system
by calculating an upper bound on its worst case response time. We useτua

(taska, belonging to transactionΓu) to denote thetask under analysis, i.e., the
task who’s response time we are currently calculating.

In the classical RTA (without offsets) thecritical instant for τua is when it
is released at the same time as all higher (or equal) prioritytasks [JP86, LL73].
In a task model with offsets this assumption yields pessimistic response times
since some tasks can not be released simultaneously due to offset relations.
Therefore, Tindell [Tin92] relaxed the notion of critical instant to be:

At least one task in every transaction is to be released at thecrit-
ical instant. (Only tasks with priority higher or equal toτua are
considered.)

92 PAPER B II

Since it is not known which task that coincides with (is released at) the critical
instant, every task in a transaction must be treated as acandidateto coincide
with the critical instant.

Tindell’s exact RTA tries every possible combination of candidates among
all transactions in the system. This, however, becomes computationally in-
tractable for anything but small task sets (the number of possible combinations
of candidates ismn for a system withn transactions and withm tasks per
transaction). Therefore Tindell provided an approximate RTA that still gives
good results but uses one single approximation function foreach transaction.
Palencia Gutiérrezet al. [PG98] formalized and generalized Tindells work.
We will in this paper use the more general formalism of Palencia Gutiérrezet
al., although our proposed method is equally applicable to Tindell’s original
algorithm.

2.2.3 Interference function

Central to RTA is to capture the interference a higher or equal priority task
(τij) imposes on the task under analysis (τua) during an interval of timet.
Since a task can interfere withτua multiple times duringt we have to consider
interference from possibly severalinstances. The interfering instances ofτij

can be classified into two sets:

Set1 Activations that occur before or at the critical instant andthat can be
delayed by jitter so that they coincide with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transactionΓi, we will consider
each task,τic ∈ Γi, as acandidatefor coinciding with the critical instant.

RTA of tasks with offsets is based on two fundamental theorems [PG98,
Tin92]:

1. The worst case interference a taskτij imposes onτua is whenSet1acti-
vations are delayed by an amount of jitter such that they all occur at the
critical instant and the activations inSet2 have zero jitter.

2. The task ofΓi that coincide with the critical instant (denotedτic), will
do so after experiencing its worst case jitter delay.

The phasing between a task,τij , and a critical instant candidate,τic, becomes
(slightly reformulated compared to [PG98], see Appendix 2.5):

II 2.2 E XISTING OFFSET RTA 93

Φijc = (Oij − (Oic + Jic)) mod Ti (2.1)

From the second theorem we get thatτic will coincide with the critical in-
stant after having experienced its worst case jitter delay (i.e., the critical instant
will occur at(Oic +Jic) mod Ti, relative to the start ofΓi). This implies that
the first instance of a taskτij in Set2will be released atΦijc time units after
the critical instant, and subsequent releases will occur periodically everyTi.

Figure 2.2 illustrates the four differentΦijc-s that are possible for our ex-
ample transaction in figure 2.1. The upward arrows denote task releases (the
height of the corresponding arrow denotes amount of execution released, i.e.,
Cia andCib respectively). Figure 2.2(a) depicts the situation whenτia acts as
the candidate critical instant. Shown is the phasing between τia (2) andτib (5)
for this situation. Furthermore, figure 2.2(a) also shows activations for each
task in the transaction. Task instances belonging toSet1are released at time
0, and the first instance belonging toSet2is also depicted (subsequent activa-
tion occur periodically). Figure 2.2(b) shows the corresponding situation ifτib

happens to coincide with the critical instant.

1 2 3 4 5 6 7 8 90 10

ibτiaτiaτ
2=Φiaa

5=Φiba

(a) τic = τia

1 2 3 4 5 6 7 8 90 10

6=Φiab

9=Φ ibb

iaτ
ibτ ibτiaτ

(b) τic = τib

Figure 2.2:Φ-s for the two candidates inΓi

Given the two sets of task instances (Set1andSet2) and the corresponding
phase relative to the critical instant (Φijc), the interference imposed by taskτij

94 PAPER B II

can be divided into two parts:

1. the part imposed by instances inSet1(which is independent of timet),
ISet1
ijc , and

2. the part imposed by instances inSet2(which is a function of the consid-
ered time intervalt), ISet2

ijc (t).

These are defined as follows:

ISet1
ijc =

⌊
Jij + Φijc

Ti

⌋

Cij ISet2
ijc (t) =

⌈
t − Φijc

Ti

⌉

Cij (2.2)

The interference transactionΓi poses onτua, during a time intervalt, when
candidateτic coincides with the critical instant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

(2.3)

Wherehpi(τua) denotes tasks belonging to transactionΓi, with priority higher
or equal to the priority ofτua.

2.2.4 Approximation function

Since we beforehand cannot know which task in each transaction coincides
with the critical instant, the exact analysis tries every possible combination
[PG98, Tin92]. However, since this is computationally intractable for anything
but small task sets the approximate analysis, presented in [PG98, Tin92], de-
fines one single, upward approximated, function for the interference caused by
transactionΓi:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t) (2.4)

That is,W ∗
i (τua, t) simply takes the maximum of each interference function

(for each candidateτic).
As an example consider again transactionΓi depicted in figure 2.1. Fig-

ure 2.3 shows the interference function for the two candidates (Wia andWib),
and it shows howW ∗

i is derived from them by taking the maximum of the two
functions at everyt.

Given the interference (W ∗
i) each transaction imposes on the task under

analysis (τua), during a time interval of lengtht, its response time (Rua) can
be calculated. Appendix 2.5 shows how to perform these response-time calcu-
lations.

II 2.2 E XISTING OFFSET RTA 95

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

*
iW

iaW

ibia WW &

ibW

t t

tt

Figure 2.3:Wic(τua, t) andW ∗
i (τua, t) functions

96 PAPER B II

2.3 Fast offset RTA

When calculating response times, the functionW ∗
i (τua, t) (equation 2.4 on

page 94) will be evaluated repeatedly. For each task and transaction pair (τua

andΓi) many different time-values,t, will be used during the fix-point calcu-
lations. However, sinceW ∗

i (τua, t) has a pattern that is repeated everyTi time
units (see theorem 2.2 in this section), a lot of computational effort could be
saved by representing the interference function statically, and during response-
time calculation use a simple lookup function to obtain its value. This section
shows how the functionW ∗

i (τua, t) changes using such pre-computed infor-
mation and how to calculate and store that information.

2.3.1 Approximation function with lookup

The key to make a static representation ofW ∗
i (τua, t) is to recognisee that it

contains two parts:

• A jitter induced part, denotedJ ind
i (τua). This part corresponds to the

task instances belonging toSet1. Note that the amount of interference of
these instances does not depend ont.

• A time induced part, denotedT ind
i (τua, t). This corresponds to task

instances inSet2. The time induced part has a cyclic pattern that repeats
itself everyTi units of time (as we will prove below).

We redefine equation 2.4 using our new notation as:

W ∗
i (τua, t) = J ind

i (τua) + T ind
i (τua, t) (2.5)

This partitioning ofW ∗
i (τua, t) is visualized in figure 2.4.J ind

i (τua) is the
maximum starting value of each of theWic(τua, t) functions (i.e. maximum of
all Wic(τua, 0), see equation 2.3) which is calculated by:

J ind
i (τua) = max

∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc (2.6)

The time induced part,T ind
i (τua, t), represents the maximum interference,

duringt, from tasks activated after the critical instant, and is algebraically de-
fined as:

T ind
i (τua, t) = max

∀c∈hpi(τua)
W+

ic (τua, t) (2.7)

II 2.3 FAST OFFSET RTA 97

1 2 3 4 5 6 7 8 90

2

4

6

10

ind
iT

t

J
ind

i

*
iW

Figure 2.4:W ∗
i (τua, t), J ind

i (τua), andT ind
i (τua, t)

where

W+
ic (τua, t) =

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)
− J ind

i (τua) (2.8)

The correctness of our method requires that the definition ofW ∗
i (τua, t) in

equation 2.5 is functionally equivalent to the definition inequation 2.4.

THEOREM 2.1 W ∗
i (τua, t) as defined in equation 2.4 andW ∗

i (τua, t) as de-
fined in equation 2.5 are equivalent.

PROOF REFERENCE. The theorem is proved by algebraic equivalence in Ap-
pendix 2.5.

Further, in order to be able to make a static representation of W ∗
i (τua, t),

we need to ensure that we store enough information to correctly reproduce
W ∗

i (τua, t) for arbitrary large values oft. SinceT ind
i (τua, t) is the only part of

W ∗
i (τua, t) that is dependent ont, the following theorem gives that it is enough

to store information for the firstTi time units:

THEOREM 2.2 Assumet = k ∗ Ti + t′ (wherek ∈ N and0 ≤ t′ < Ti), then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t′)

PROOF REFERENCE. The theorem is proved by algebraic equivalence in Ap-
pendix 2.5.

98 PAPER B II

We representT ind
i (τua, t) for the firstTi time units using the concave cor-

ners of the functionT ind
i (τua, t) (marked with crosses in figure 2.4). The rep-

resentation uses two arraysT c
i andT t

i . T c
i [x] represents the maximum amount

of time induced interferenceΓi will pose on a lower priority task during inter-
val lengths up toT t

i [x] (x ∈ 1 . . . |T c
i |). Using these two arrays we redefine

T ind
i (τua, t) as follows:

T ind
i (τua, t) =k ∗ T c

i [|T c
i |] + T c

i [x]

k =t ÷ Ti

t′ =t remTi

x = min{y : t′ ≤ T t
i [y]}

(2.9)

For our example transaction, the time induced interference(represented in
figure 2.4 by crosses) is stored in the arraysT c

i andT t
i as follows:

T c
i = [0, 1, 2, 3]

T t
i = [2, 5, 9, 10]

Using equation 2.5 and equation 2.9 instead of equation 2.4 to compute the
interference functionW ∗

i (τua, t) will significantly reduce the time to compute
response times as we will show in section 2.4.

2.3.2 Pre-computingT c
i and T t

i

To computeT c
i andT t

i we will first calculate the pattern for eachW+
ic (τua, t)

from which we will later extract the maximum. Hence, we have to consider
each taskτic in Γi as a candidate to coincide with the critical instant. For each
candidate task,τic, we define a set of pointspic. Each pointpic[k] has anx and
ay coordinate, describing how the time induced interference grows over time if
the correspondingτic coincides with the critical instant. The points inpic cor-
responds to the convex corners ofW+

ic (τua, t) of equation 2.8.W+
ia andW+

ib ,
for our example transaction, are depicted in figure 2.5 and the corresponding
pia andpib are illustrated by black and white circles respectively.

To calculate the setpic, we (without loss of generality) assume that tasks
are enumerated according to their first activation after thecritical instant, i.e.,

II 2.3 FAST OFFSET RTA 99

1

3

10

+
ibW

t
5

+
iaW

2

Figure 2.5: Visual representation ofpic sets

according toΦijc values. The following equations define the arraypic:

pic[1].x =0

pic[1].y =
∑

∀j∈hpi(τua)

ISet1
ijc − J ind

i (τua)

k ∈ 2 . . . |Γi|

{

pic[k].x = Φikc

pic[k].y = pic[k − 1].y + Cik

Eachpic set represents how the time induced interference grows, forcritical
instant candidateτic, during one period (Ti). For our example transaction of
figure 2.1, we get the following twopic-s (corresponding to the black and white
circles in figure 2.5):

pia = [〈0,−1〉, 〈2, 1〉, 〈5, 2〉] black circles
pib = [〈0, 0〉, 〈6, 2〉, 〈9, 3〉] white circles

Now, we have the information generated by allW+
ic (τua, t)-functions, sto-

red in thepic-sets. These stepwise functions are represented by one point per
step. In order to get a representation ofT ind

i (τua, t) in equation 2.7, we extract
the points that represents the maximum of allW+

ic (τua, t)-s. Thus, we will
obtain the convex corners ofT ind

i (τua, t).
Next, we calculate the set of points,pi, as the union of allpic-s:

pi =
⋃

τic∈Γi

pic

In order to determine what points inpi that corresponds the the convex
corners ofT ind

i (τua, t), we define the relationsubsumesthat says: A point
pi[a] subsumes a pointpi[b] (denotedpi[a] ≻ pi[b]) if the presence ofpi[a]

100 PAPER B II

x

y pi[a]

Subsumed

Not subsumed

Figure 2.6: Removing points frompi

implies thatpi[b] is not a convex corner. Figure 2.6 illustrates the subsumes
relation graphically, and the formal definition is:

pi[a] ≻ pi[b] iff pi[a].y ≥ pi[b].y ∧ pi[a].x ≤ pi[b].x

Given the subsumes relation the convex corner are found by removing all
subsumed points:

Frompi removepi[b] if ∃a 6= b : pi[a] ≻ pi[b] (2.10)

Now, pi contains the convex corners of the functionT ind
i (τua, t). For our

example transaction we now have:

pi = [〈0, 0〉, 〈2, 1〉, 〈5, 2〉, 〈9, 3〉]

All we have to do now is to find the concave corners (illustrated by crosses
in figure 2.5) and store them in the arraysT c

i andT t
i . This is done by the

following algorithm:

for k := 1 to |pi| do
T c

i [k] := pi[k].y
if k < |pi| then

T t
i [k] := pi[k + 1].x

else
T t

i [k] := Ti

done

For our example transaction this gives the followingT c
i and T t

i (corre-
sponding to crosses in figure 2.5):

T c
i = [0, 1, 2, 3]

T t
i = [2, 5, 9, 10]

II 2.4 E VALUATION 101

In the special case that some taskτij hasΦijc = 0, the first element ofT c
i

may not be zero. However, sinceT ind
i (0) = 0, we need to have at least one

element inT c
i that is zero. In such cases we prepend both the arraysT c

i andT t
i

with a zero (stating that there will be 0 time induced interference for any time
interval of length up to 0).

2.3.3 Space and Time Complexity

The number of points to calculate (pi) is quadratic with respect to the number
of tasks in the transactionΓi (|Γi| points for each candidate task). Thus, storing
T c

i andT t
i results in a quadratic space complexity since, in the worst-case, no

points frompi will be removed.
The method presented in this paper divides the calculation of W ∗

i into a
pre-calculation and a fix-point iteration phase. A naive implementation of the
removal procedure in equation 2.10 requires comparison of each pair of points;
resulting in cubic time-complexity (O(|Γi|

3)) for pre-calculatingT c
i andT t

i .1

During the fix-point iteration phase, a binary search through a quadratically
sized array is performed (equation 2.9), resulting inO(log |Γi|

2) time com-
plexity for calculatingW ∗

i according to equation 2.5. The original complexity
for calculatingW ∗

i according to equation 2.4 isO(|Γi|
2).

In a complete comparison of complexity, the calculation ofW ∗
i (τua, t)

must be placed in its proper context (see the response-time formulae in appen-
dix A). AssumeX denotes number of fix-point iterations needed, then the over-
all complexity for the original approach (equation 2.4) is (O(X|Γi|

2)), whereas
our method (equation 2.5 and equation 2.9) yields (O(|Γi|

3 + X log |Γi|
2)).

2.4 Evaluation

In order to evaluate the effectiveness of our method we have implemented the
response-time equations in appendix 2.5, using both the original definition of
W ∗

i from section 2.2 (Old RTA) and our faster version ofW ∗
i from section 2.3

(Fast RTA). Using these implementations and a synthetic task-generator we
have performed an evaluation, by simulations, of both approaches by calculat-
ing the response times for all tasks in the system.

1In section 2.4 we use anO(|Γi|
2logN) implementation based on sorting the points and mak-

ing a single pass through the sorted set.

102 PAPER B II

2.4.1 Description of Simulation

In our simulator we generate task sets that are used as input to the different
RTA implementations. The task-set generator takes the following parameters
as input:

• Total system load (in % of total CPU utilization),

• the number of transactions to generate, and

• the number of tasks per transaction to generate.

Using these parameters a task set with the following properties is generated:

• The total system load is proportionally distributed over all transactions
in the system.

• Transaction periods (Ti) are randomly distributed in the range 1.000 to
1.000.000 (uniform distribution).

• Each offset (Oij) is randomly distributed within the transaction period
(uniform distribution).

• The execution times (Cij) are chosen as a fraction of the time between
two consecutive offsets in the transaction. The fraction isthe same
throughout one transaction. The fraction is selected so that the the tran-
saction load (as defined by the first property) is obtained.

• The jitter (Jij) is randomly distributed between zero and 1.2 times the
transaction period (0..1.2Ti, uniform distribution).

• Blocking (Bij) is set to zero.

• The priorities are assigned in rate monotonic order [LL73].

We have measured execution times for performing RTA (for alltasks in the
system) using both methods (Old RTA and Fast RTA). The execution times are
obtained from a laptop with a Pentium III CPU. For Fast RTA theexecution
times include the time to calculateT c

i andT t
i . The results in section 2.4.2 have

been obtained by taking the mean values of 50 simulated task-sets for each
point in each graph. The 95% confidence intervals are shown for all execution
times (although difficult to see due to their small size).

II 2.4 E VALUATION 103

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

Se
co

nd
s

Tasks/Transaction

(a) Comparison Fast RTA and Old RTA

Fast RTA
Old RTA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7 8 9 10

Se
co

nd
s

Tasks/Transaction

(b) The overhead for pre-calculation

Fast RTA
Pre-Calculation

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 1 2 3 4 5 6 7 8 9 10

Se
co

nd
s

Tasks/Transaction

(c) Complexity of pre-calculation

Pre-Calculation

Figure 2.7: Execution time

104 PAPER B II

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 3 4 5 6 7 8 9 10

Fr
ac

tio
n

Tasks/Trans., Transactions, Load

Transakts.=10, Load=9/10
Tasks/Trans.=10, Load=9/10

Transakts.=10, Tasks/Trans.=10

Figure 2.8: Relative execution time

2.4.2 Simulation Results

Figure 2.7(a) shows the execution times for Fast RTA and Old RTA when the
number of tasks/transaction is varied from 1 to 10 (while keeping the system
load at 9/10 (90%) and the number of transactions at 10). When the number
of tasks/transaction is 10, the execution time is less than 0.40 seconds for Fast
RTA, and about 20 seconds for Old RTA. This amounts to a speedup of 50
times. Similar execution times are obtained both when varying the number of
transactions between 1 and 10 and when varying load between 1/10 (10%) and
9/10.

In figure 2.7(b) the complexity of Fast RTA is shown, and by comparison
with figure 2.7(a) it can be seen that Fast RTA has a less steep curve than does
Old RTA. Also, in figure 2.7(b) the amount of time spent pre-calculating the
arraysT c

i andT t
i is plotted, and it is apparent that the overhead is negligible.

For the larger task sets, about 0.3% of the total time of Fast RTA, is spent on
pre-computingT c

i andT t
i .

Figure 2.7(c) shows the execution-time of the pre-calculation only. Since
we use aO(N2 log N) implementation of the pre-calculation the slope is sligh-
tly less than what could be expected from a naive implementation (O(N3)).

In figure 2.8 we show the relative execution time of Fast RTA compared to
Old RTA, calculated bytFast/tOld, wheretFast is the execution time for Fast
RTA andtOld for Old RTA. The first plot (+) shows how the relative execution
time changes when the number of tasks/transaction is variedfrom 3 to 10.

II 2.4 E VALUATION 105

When the number of tasks/transaction is 1 the relative execution time is 0.58
and it rapidly decreases to the values visible in the graph.

The second plot (×) in figure 2.8 illustrates when the number of trans-
actions is varied between 2 and 10. When the number of transactions is 1,
the relative execution time is 1.01, which means that Fast RTA is slower than
Old RTA. When performing RTA for a single transaction, the overhead of pre-
computingT c

i and T t
i outweighs the benefits obtained during the RTA (the

pre-computedW ∗
i is never used). However, as seen in the plot, when the num-

ber of transactions is higher than 1, the overhead is well justified since the total
RTA is significantly faster.

The third plot (∗) in figure 2.8 illustrates when the load is varied between
1/10 (10%) and 9/10 (90%). In this plot we see that the relative execution time
is not highly dependent on the system load, only a small decrease in relative
execution time is obtained as the system load grows.

In order to compare Old RTA and Fast RTA, in the context of on-line ad-
mission control, we generated task sets with 9/10 load, 10 transactions with 10
tasks/transaction and performed the RTA for a single task (corresponding to a
dynamically arriving task to the system) at lowest priority. We generated 100
different tasks sets using execution times for the single task between 1000 and
6000. The result was that the average execution time for FastRTA was 0.33ms
and 44ms for Old RTA. The speedup for admission control is about 130 times,
which is noticeable greater than in the previous simulations. The reason is that
the new task is the only task in its transaction, which means thatW ∗

i is used
for all interference computations andWic is never used (see Appendix 2.5) and
hence our improvement toW ∗

i is isolated. In fact, in the preliminary work for
this paper [MTN03] a speedup of over 600 times was observed for a simplified
task-model where fix-point iteration only requiredW ∗

i to be computed.

Our conclusions from this simulation study are that: (1) Fast RTA performs
significantly better than Old RTA. For anything but trivially small task sets the
speedup is at least in the order of a magnitude, (2) Fast RTA brings down
execution times for whole scenarios from the order of seconds to fractions of
seconds, and (3) Fast RTA brings down execution times for single tasks from
the order of some 100ms to the microsecond range. This decrease is important
in order to make RTA a feasible technique to include in, e.g.,on-line scheduling
algorithms performing RTA on-line (admission control being an example) and
optimizing allocation or configuration tools.

106 PAPER B II

2.5 Conclusions and Future Work

In this paper we have presented a novel method that allows foran efficient
implementation of the approximate Response-Time Analysis(RTA) for tasks
with offsets presented by Tindell [Tin92] and Palencia Gutiérrezet al. [PG98].

The main effort in performing RTA for tasks with offsets is tocalculate how
higher (or equal) priority tasks interfere with a task underanalysis. The essence
of our method is to calculate and store this information statically and during
response-time calculations (fix-point iteration), use a simple table lookup. We
have formally proved that the RTA-equations can be reformulated to allow such
static representation of task interference.

We have, by simulations, shown that the speedup for our method compared
to [PG98] is substantial. For realistically sized task sets(100 tasks), perform-
ing schedulability analysis gives a speedup of about 50 times. And from our
evaluation we can conjecture that the relative improvementwill be even higher
for larger task sets. In an on-line RTA context, e.g., on-line admission control
systems, our method outperforms previous methods by at overa factor of 100
and reducing the actual time to the micro second range.

Faster RTA have several positive practical implications: (1) Engineering
tools (such as those for task allocation and priority assignment) can feasible
rely on RTA and use the task model with offsets, and (2) on-line scheduling
algorithms, e.g., those performing admission control, canuse accurate on-line
schedulability tests based on RTA.

We have earlier provided a tighter version of the RTA for tasks with offsets
[MTS03]. Our next step is to extend our method of static representation of
task interference to our tighter RTA, yielding a RTA that is both significantly
faster and provides less pessimistic response times than previous techniques.
Further, we are currently starting a project where RTA for tasks with offsets
will be used in software engineering tools. The RTA will be used both to
perform schedulability tests and for automatic allocationof software to nodes
in a distributed system.

II R EFERENCES 107

References

[ABD+95] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Perspective.
Real-Time Systems, 8(2/3):173–198, 1995.

[IL] I-Logix. Rhapsody. http://www.ilogix.com/products/rhapsody.

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System.The Computer Journal, 29(5):390–395, 1986.

[LL73] C. Liu and J. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment.Journal of the ACM,
20(1):46–61, 1973.

[MTN03] Jukka Mäki-Turja and Mikael Nolin. Faster ResponseTime An-
alysis of Tasks With Offsets. In24th IEEE Real-Time Systems
Symposium (RTSS) Work In Progress Proc., December 2003.

[MTN04] Jukka Mäki-Turja and Mikael Nolin. Speeding Up the Response-
Time Analysis of Tasks with Offsets. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-154/2004-1-SE, MRTC Report,
Mälardalen Real-Time Research Centre, Mälardalen University,
February 2004.

[MTS03] J. Mäki-Turja and M. Sjödin. Improved Analysis for Real-Time
Tasks With Offsets – Advanced Model. Technical Report MRTC
no. 101, Mälardalen Real-Time Research Centre (MRTC), May
2003.

[PG98] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. InProc. 19th

IEEE Real-Time Systems Symposium (RTSS), December 1998.

[PG99] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Exploiting
Precedence Relations in the Schedulability Analysis of Distributed
Real-Time Systems. InProc. 20th IEEE Real-Time Systems Sym-
posium (RTSS), pages 328–339, December 1999.

[Rat] Rational. Rational Rose RealTime. http://www.rational.com/-
products/rosert.

108 PAPER B II

[Red03] O. Redell.Response time analysis for implementation of distrib-
uted control systems. PhD thesis, KTH, Department of Machine
Design, 2003. Series: TRITA-MMK 2003:17.

[Tel] TeleLogic. Telelogic tau. http://www.telelogic.com/products/tau.

[Tin92] K. Tindell. Using Offset Information to Analyse Static Priority
Pre-emptively Scheduled Task Sets. Technical Report YCS-182,
Dept. of Computer Science, University of York, England, 1992.

II A PPENDIX A: C OMPLETE RTA FORMULAE 109

Appendix A: Complete RTA formulae

In this appendix we provide the complete set of formulae to calculate the worst
case response time,Rua, for a task under analysis,τua, as presented in Palencia
Gutiérrezet al. [PG98].

The interference transactionΓi poses on a lower priority task,τua, if τic

coincides with the critical instant, is defined by (see equation 2.3 in this paper):

Wic(τua, t) =
∑

∀j∈hpi(τua)

(⌊
Jij + Φijc

Ti

⌋

+

⌈
t − Φijc

Ti

⌉)

∗ Cij

(26 in [PG98])

where the phase between taskτij and the candidate critical instant taskτic is
defined as (see equation 2.1 in this paper):

Φijc = Ti − (Oic + Jic − Oij) mod Ti (17 in [PG98])

The approximation function for transactionΓi which considers all candi-
dateτic-s simultaneously, is defined by (see equation 2.4 in this paper):

W ∗
i (τua, w) = max

∀c∈hpi(τua)
Wic(τua, w) (27 in [PG98])

The length of a busy period, forτua, assumingτuc is the candidate critical
instant, is defined as (Note that the approximation functionis not used forΓu):

Luac =Bua + (pL,uac − p0,uac + 1)Cua+

Wuc(τua, Luac) +
∑

∀i6=u

W ∗
i (τua, Luac)

(30 in [PG98])

wherep0,uac denotes the first, andpL,uac the last, task instance, ofτua, acti-
vated within the busy period. They are defined as:

p0,uac = −

⌊
Jua + Φuac

Tu

⌋

+ 1 (29 in [PG98])

and

pL,uac =

⌈
Luac − Φuac

Tu

⌉

(31 in [PG98])

110 PAPER B II

In order to get the worst case response time forτua, we need to check the
response time for every instance,p ∈ p0,uac . . . pL,uac, in the busy period.
Completion time of thep’th instance is given by:

wuac(p) =Bua + (p − p0,uac + 1)Cua

+ Wuc(τua, wuac(p)) +
∑

∀i6=u

W ∗
i (τua, wuac(p)) (28 in [PG98])

The corresponding response time (for instancep) is then:

Ruac(p) = wuac(p) − Φuac − (p − 1)Tu + Oua (32 in [PG98])

To obtain the worst case response time,Rua, for τua, we need to consider
every candidate critical instant ,τuc (including τua itself), and for each such
candidate every possible instance,p, of τua:

Rua = max
∀c∈hpu(τua)∪a

[max
p=p0,uac,...,pL,uac

(Ruac(p))] (33 in [PG98])

II A PPENDIX B: PROOF OF THEOREMS 111

Appendix B: Proof of Theorems

In this appendix we provide proofs of theorems 2.1 and 2.2. Wewill perform
all proofs by algebraic manipulation and use braces to highlight the expression
that is manipulated in each step. We also annotate braces with the equations,
properties, lemmas, or assumptions referred to when performing some manip-
ulations. These proofs are also available in [MTN04].

When performing the manipulations we will, e.g., rely on the following
properties:

(max) — Themaxv operator allows terms that are constant with respect to the
maximization variable (v) to be moved outside the maximization opera-
tion:

max
v

(Xv + Y) = max
v

(Xv) + Y.

(sum) — Summation over a set of terms can be divided into two separate sum-
mations: ∑

v

(Xv + Yv) =
∑

v

Xv +
∑

v

Yv

(ceil) — When taking the ceiling (⌈ ⌉) of a set of terms, terms that are known
to be integers can be moved outside of the ceiling expression:

X ∈ N ⇒ ⌈X + Y ⌉ = X + ⌈Y ⌉

112 PAPER B II

THEOREM 2.1 W ∗
i (τua, t) as defined in equation 2.4 andW ∗

i (τua, t) as
defined in equation 2.5 are equivalent.

PROOF OF THEOREM 2.1

W ∗
i (τua, t)

︸ ︷︷ ︸

Eq.2.5

= J ind
i (τua) + T ind

i (τua, t)
︸ ︷︷ ︸

Eq.2.7

=

J ind
i (τua) + max

∀c∈hpi(τua)
W+

ic (τua, t)
︸ ︷︷ ︸

Eq.2.8

=

J ind
i (τua)+

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)
− J ind

i (τua)
)

︸ ︷︷ ︸

(max)

=

J ind
i (τua)

︸ ︷︷ ︸
+ max

∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
))

−

J ind
i (τua)

︸ ︷︷ ︸
=

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

︸ ︷︷ ︸

Eq.2.3

=

max
∀c∈hpi(τua)

Wic(τua, t)

︸ ︷︷ ︸

Eq.2.4

= W ∗
i (τua, t)

In proving theorem 2.2 we will use some lemmas.

L EMMA 2.1 Regardless of candidate critical instantc: ISet2
ijc (Ti) = Cij

PROOF OF L EMMA 2.1

ISet2
ijc (Ti)

︸ ︷︷ ︸

Eq.2.2

=

⌈
Ti − Φijc

Ti

⌉

︸ ︷︷ ︸

0 ≤ Φijc < Ti (Eq.2.1)

Cij = Cij

II A PPENDIX B: PROOF OF THEOREMS 113

L EMMA 2.2 Assumet = k ∗ Ti + t′ (wherek ∈ N and0 ≤ t′ < Ti), then
ISet2
ijc (t) = k ∗ ISet2

ijc (Ti) + ISet2
ijc (t′)

PROOF OF L EMMA 2.2

ISet2
ijc (t)

︸ ︷︷ ︸

Eq.2.2

=

⌈
t − Φijc

Ti

⌉

︸ ︷︷ ︸

Assumption

Cij =

⌈
k ∗ Ti + t′ − Φijc

Ti

⌉

︸ ︷︷ ︸

Cij =

⌈
k ∗ Ti

Ti
+

t′ − Φijc

Ti

⌉

︸ ︷︷ ︸

(ceil)∧k ∈ N

Cij =

(

k +

⌈
t′ − Φijc

Ti

⌉)

Cij

︸ ︷︷ ︸

=

k Cij
︸︷︷︸

Lem.2.1

+

⌈
t′ − Φijc

Ti

⌉

Cij

︸ ︷︷ ︸

Eq.2.2

= k ∗ ISet2
ijc (Ti) + ISet2

ijc (t′)

L EMMA 2.3 T ind
i (τua, Ti) =

∑

∀j∈hpi(τua)

Cij

PROOF OF L EMMA 2.3

T ind
i (τua, Ti)

︸ ︷︷ ︸

Eq.2.7

= max
∀c∈hpi(τua)

W+
ic (τua, Ti)

︸ ︷︷ ︸

Eq.2.8

=

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (Ti)
)

︸ ︷︷ ︸

(sum)

−J ind
i (τua)

)

=

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

ISet1
ijc +

∑

∀j∈hpi(τua)

ISet2
ijc (Ti)

︸ ︷︷ ︸

Lem.2.1

−J ind
i (τua)

)

=

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

ISet1
ijc +

∑

∀j∈hpi(τua)

Cij − J ind
i (τua)

)

︸ ︷︷ ︸

(max)

=

∑

∀j∈hpi(τua)

Cij + max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc

︸ ︷︷ ︸

Eq.2.6

−J ind
i (τua) =

∑

∀j∈hpi(τua)

Cij + J ind
i (τua) − J ind

i (τua)
︸ ︷︷ ︸

=
∑

∀j∈hpi(τua)

Cij

114 PAPER B II

THEOREM 2.2 Assumet = k ∗Ti + t′ (wherek ∈ N and0 ≤ t′ < Ti), then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t′)

II A PPENDIX B: PROOF OF THEOREMS 115

PROOF OF THEOREM 2.2

T ind
i (τua, t)

︸ ︷︷ ︸

Eq.2.7

= W+
ic (τua, t)

︸ ︷︷ ︸

Eq.2.8

=

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
︸ ︷︷ ︸

Lem.2.2

)
− J ind

i (τua) =

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + k ∗ ISet2

ijc (Ti)
︸ ︷︷ ︸

Lem.2.1

+ISet2
ijc (t′)

)
−

J ind
i (τua) =

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + kCij + ISet2

ijc (t′)
)
− J ind

i (τua)

︸ ︷︷ ︸

(sum)

=

max
∀c∈hpi(τua)(∑

∀j∈hpi(τua)

kCij +
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua)
)

︸ ︷︷ ︸

(max)

=

∑

∀j∈hpi(τua)

kCij

︸ ︷︷ ︸

+ max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua) =

k ∗
∑

∀j∈hpi(τua)

Cij

︸ ︷︷ ︸

Lem.2.3

+ max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
−

J ind
i (τua) =

k ∗ T ind
i (τua, Ti)+

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua)

︸ ︷︷ ︸

Eq.2.8

=

k ∗ T ind
i (τua, Ti) + max

∀c∈hpi(τua)
W+

ic (τua, t′)

︸ ︷︷ ︸

Eq.2.7

=

k ∗ T ind
i (τua, Ti) + T ind

i (τua, t′)

117

CHAPTER 3

Paper C:
Fast and Tight Response-Times for
Tasks with Offsets

JUKKA MÄKI -TURJA AND M IKAEL NOLIN

To appear in the proceedings of the 17th Euromicro Conference
on Real-Time Systems (ECRTS).

PALMA DE MALLORCA SPAIN, JULY 2005.

Abstract

In previous work, we presented a tight approximate response-time analysis for
tasks with offsets. While providing a tight bound on responsetimes, the tight
analysis exhibits similarly long execution times as does the traditional methods
for calculating response-times for tasks with offsets. Theexisting method for
fast analysis of tasks with offsets is not applicable to the tight analysis.

In this paper we extend the fast analysis to handle the distinguishing trait
of the tight analysis; continuously increasing interference functions. Further-
more, we provide another speedup; by introducing pessimismin the modeling
of interference at certain points, we speed up the convergence of the numerical
solving for response-times without increasing the pessimism of the resulting
response-times.

The presented fast-and-tight analysis is guaranteed to calculate the same
response-times as the tight analysis, and in a simulation study we obtain speed-
ups of more than two orders of magnitude for realistically sized tasks sets com-
pared to the tight analysis. We also demonstrate that the fast-and-tight analysis
has comparable execution time to that of the fast analysis. Hence, we conclude
that the fast-and-tight analysis is the preferred analysistechnique when tight
estimates of response-times are needed, and that we do not need to sacrifice
tightness for analysis speed; both are obtained with the fast-and-tight analysis.

II 3.1 I NTRODUCTION 119

3.1 Introduction

Response-Time Analysis(RTA) [ABD+95] is a powerful and well established
schedulability analysis technique. RTA is a method to calculate upper bounds
on response-times for tasks in hard real-time systems. In essence RTA is used
to perform a schedulability test, i.e., checking whether ornot tasks in the sys-
tem will satisfy their deadlines. RTA is applicable for, e.g., systems where tasks
are scheduled in priority order which is the predominant scheduling technique
used in real-time operating systems today.

Fast RTA has several practical implications, e.g., facilitating the use of res-
ponse time calculations in an iterative workflow including automatic priority
assignment and/or task allocation, or for admission control in on-line sched-
uling algorithms. Tighter response time allow for more efficient hardware uti-
lization. Consequently, analysis speed and tight responsetime are desirable
features in engineering resource constrained real-time systems.

To be able to calculate less pessimistic response times in systems where
tasks may have dependencies in their release times, Tindellintroduced RTA
for a task model with offsets [Tin92]. Palencia and Harbour formalized and
extended the work of Tindell in [PG98]. In [MTN04b] we have shown that
the RTA for task with offset presented in their work calculates unnecessarily
pessimistic response-times. As a remedy, we presented our tight analysis. The
main source for this improvement comes from more accurate modeling of inter-
task interference. In [PG98, Tin92] the interference only increases at discrete
points in time, whereas in our tight analysis the interference can increase con-
tinuously over time. There is, however, a slight price to payfor this accuracy,
slower fix-point convergence which can result in longer analysis time.

In this paper we extend our previous fast analysis for tasks with offsets
[MTN04a] to enable its application to the tight analysis, providing a new me-
thod that calculates tight response times at fast analysis speed. The fast analysis
has been shown to achieve two orders of magnitude speedup forrealistically
sized task sets [MTN04a]. The essence of this approach is to statically store the
discrete points in time during the first period where the interference increases,
and during equation solving use a simple and fast table lookup.

However, the approach taken in [MTN04a] is not directly applicable to the
tight analysis since it uses a more accurate interference model where interfer-
ence does not increase at discrete points in time. As a consequence, this intro-
duces an additional problem; the interference does no longer exhibit a simple
periodic pattern. Hence, the basic assumption of the fast analysis does not hold
for the interference model of the tight analysis. One of the main contributions

120 PAPER C II

of this paper is to extend the fast analysis to cope with thesetraits of the tight
analysis, enabling a fast-and-tight analysis.

Another main contribution is that we introduce, for the tight analysis, a me-
thod to speed up the numerical convergence during equation solving when cal-
culating response-times. The method is based upon the insight that response-
time equations cannot have solutions at arbitrary points intime (which we for-
mally prove). At such points we modify the interference functions in such a
way that numerical convergence is accelerated. Since the modifications are
done only at times where no response-time solutions exist, they do not affect
the final calculated response-time. Hence, the resulting analysis will calculate
exactly the same response-times as does the tight analysis.This method is
incorporated into the fast-and-tight analysis method.

Our third main contribution is a simulation study where we show that ap-
plying above methods to our tight method, the execution times of the resulting
fast-and-tight analysis are comparable to those of the fastanalysis. That is, we
conclude that one does not have to sacrifice analysis speed toachieve accuracy,
or vice versa, when using fast-and-tight analysis.

Paper Outline: Section 3.2 revisits our tight offset RTA [MTN04b]. In
section 3.3 we present our tight and fast RTA. Section 3.4 presents an evalua-
tion study, followed by conclusions in section 3.5.

3.2 Tight offset RTA

This section revisits our existing tight response-time analysis for tasks with
offsets [MTN04b] and illustrates the intuition behind the analysis and the for-
mulae.

3.2.1 System model

The system model used is as follows: The system,Γ, consists of a set ofk trans-
actionsΓ1, . . . ,Γk. Each transactionΓi is activated by a periodic sequence
of events with periodTi (For non-periodic eventsTi denotes the minimum
inter-arrival time between two consecutive events). The activating events are
considered mutually independent, i.e., phasing between them are arbitrary. A
transactionΓi contains|Γi| number of tasks, and each task is activated (re-
leased for execution) when a relative time,offset, elapses after the arrival of the
external event.

II 3.2 T IGHT OFFSET RTA 121

We useτij to denote a task. The first subscript denotes which transaction
the task belongs to, and the second subscript denotes the number of the task
within the transaction. A task,τij , is defined by a worst case execution time
(Cij), an offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum block-
ing from lower priority tasks (Bij), and a priority (Pij). The system model is
formally expressed as:

Γ :={Γ1, . . . ,Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij , Oij ,Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jitter, e.g., they can
each be either smaller or greater than the period. In [PG98] dynamic offsets are
introduced, however they are modelled with the static offset and jitter parame-
ters, and therefore the analysis technique presented here also straightforwardly
applies to tasks with dynamic offsets. We assume that the load of the system,
and each of the transactions, is less than 100%.1

Parameters for an example transaction (Γi) with two tasks (τi1, τi2) are
depicted in figure 3.1. The offset denotes the earliest release time of a task
relative to the start of its transaction and jitter (illustrated by the shaded region)
denotes the variability in the release of the task. The upward arrows denote
earliest possible release of a task and the size of the arrow corresponds to the
released tasks execution time.

0

O i1=2

Oi2=5

C i2=1 Time

1 2 3 4 5 6 7 8 9 10

Ti=10
C i1=2

J i1=8

J i2=1

Figure 3.1: Example transaction

1This can easily be tested, and if not fulfilled some response-times may be infinite; rendering
the system unschedulable.

122 PAPER C II

3.2.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for each task in the system
by calculating an upper bound on its worst case response-time. We useτua

(taska, belonging to transactionΓu) to denote thetask under analysis, i.e., the
task whose response time we are currently calculating.

In the classical RTA (without offsets) thecritical instant for τua is when it
is released at the same time as all higher (or equal) prioritytasks [JP86, LL73].
In a task model with offsets this assumption yields pessimistic response-times
since some tasks can not be released simultaneously due to offset relations.
Therefore, Tindell [Tin92] relaxed the notion of critical instant to be:

At least one task in every transaction is to be released at thecrit-
ical instant. (Only tasks with priority higher or equal toτua are
considered.)

Since it is not known which task coincides with (is released at) the critical
instant, every task in a transaction must be treated as acandidateto coincide
with the critical instant.

Tindell’s exact RTA tries every possible combination of candidates among
all transactions in the system. This, however, becomes computationally in-
tractable for anything but small task sets. Therefore Tindell provided an ap-
proximate RTA that still gives good results but uses a singleapproximation
function for each transaction. Palencia Gutierrezet al. [PG98] formalized and
generalized Tindell’s work.

3.2.3 Interference function

Central to RTA is to capture the interference a higher or equal priority task
(τij) causes the task under analysis (τua) during an interval of timet (where
t = 0 at the critical instant). Since a task can interfere withτua multiple times
duringt we have to consider interference from possibly severalinstances. The
interfering instances ofτij can be classified into two sets:

Set1 Activations that occur before or at the critical instant andthat can be
delayed by jitter so that they coincide with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transactionΓi, we will consider
each task,τic ∈ Γi, as acandidatefor coinciding with the critical instant.

RTA for tasks with offsets is based on two fundamental theorems:

II 3.2 T IGHT OFFSET RTA 123

1. The worst case interference a taskτij causesτua is whenSet1 activa-
tions are delayed by an amount of jitter such that they all occur at the
critical instant and the activations inSet2 have zero jitter.

2. The task ofΓi that coincide with the critical instant (denotedτic), will
do so after experiencing its worst case jitter delay.

The phasing between a task,τij , and a critical instant candidate,τic, becomes:

Φijc = (Oij − (Oic + Jic)) mod Ti (3.1)

This definition implies that the first instance of a taskτij in Set2 will be re-
leased at timet = Φijc, and subsequent releases will occur periodically every
Ti.

Figure 3.2 illustrates the four differentΦijc-s that are possible for our ex-
ample transaction of figure 3.1. The upward arrows denote task releases (the
height of the corresponding arrow denotes amount of execution released, i.e.,
Ci1 or Ci2 respectively). Figure 3.2(a) the case thatτi1 coincides with the criti-
cal instant, where the phasing toτi1 is 2 and toτi2 is 5. Figure 3.2(b) shows the
corresponding situation whenτi2 is the candidate to coincide with the critical
instant.

1 2 3 4 5 6 7 8 90 10

2iτ1iτ1iτ
211 =Φ i

521 =Φ i

t

(a) τic = τi1

1 2 3 4 5 6 7 8 90 10

612 =Φ i

922 =Φ i

1iτ
2iτ 1iτ

2iτ t

(b) τic = τi2

Figure 3.2:Φ-s for the two candidates inΓi

124 PAPER C II

Given the two sets of task instances (Set1 andSet2) and the corresponding
phase relative to the critical instant (Φijc), the worst-case interference during a
time-intervalt caused by taskτij can be divided into two parts:

1. The part caused by instances inSet1 (which is independent of the time
intervalt), ISet1

ijc .

2. The part caused by instances inSet2 (which is a function of the time
intervalt), ISet2

ijc (t).

These are defined as follows:

ISet1
ijc =

⌊
Jij + Φijc

Ti

⌋

Cij

ISet2
ijc (t) =

⌈
t∗

Ti

⌉

Cij − x

t∗ =t − Φijc

x =

{

Cij − (t∗ mod Ti) if t∗ > 0 ∧
(
0 < t∗ mod Ti < Cij

)

0 otherwise

(3.2)

Note that,ISet2
ijc (t) is redefined compared to [PG98], resulting in lower (but still

safe) response times. For more details and correctness proofs see [MTN04b].
The total interference transactionΓi imposes onτua, during a time interval

t, when candidateτic coincides with the critical instant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

(3.3)

Wherehpi(τua) denotes tasks belonging to transactionΓi, with priority higher
or equal to the priority ofτua.

3.2.4 Approximation function

Since we beforehand cannot know which task in each transaction coincides
with the critical instant, the exact analysis tries every possible combination
[Tin92, PG98]. However, since this is computationally intractable for anything
but very small task sets the approximate analysis defines onesingle, upward
approximated, function for the interference caused by transactionΓi:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t) (3.4)

II 3.3 FAST AND T IGHT ANALYSIS 125

W ∗
i (τua, t) simply takes the maximum of each interference function (onefor

each candidateτic). As an example consider again transactionΓi depicted in
figure 3.1. Figure 3.3 shows the interference function for the two candidates
(Wi1 and Wi2), and it shows howW ∗

i is derived from them by taking the
maximum of the two functions at everyt.

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

*
iWicW

tt

2iW
1iW

Figure 3.3:Wic(τua, t) andW ∗
i (τua, t) functions for example transaction

Given the interference (W ∗
i) each transaction causes the task under anal-

ysis (τua), during a time interval of lengtht, its response time (Rua) can be
calculated. The complete response time formulas provided by [PG98] can also
be found in appendix 3.5.

3.3 Fast and Tight Analysis

When calculating response times, the functionW ∗
i (τua, t) in equation 3.4 will

be evaluated repeatedly. For each task and transaction pair(τua andΓi) many
different time-values,t, will be used during the fix-point calculations. For
the traditional response-times analysis for tasks with offsets, a repetitive and
periodic pattern forW ∗

i (τua, t) can easily be found, and a lot of computational
effort is saved by representing the interference function statically, and during
response-time calculations using a simple lookup functionto obtain its value
[MTN04a].

However, since the tight analysis deals with continuously increasing inter-
ference functions which do not exhibit a simple periodic pattern, the frame-
work of [MTN04a] is not directly applicable to the tight analysis. This section
shows how to find, calculate and store the periodic interference information for
the tight RTA method. We also present how the functionW ∗

i (τua, t) changes
using such pre-computed information.

126 PAPER C II

Furthermore, the continuous nature of interference in the tight analysis
gives the tight analysis a computational disadvantage compared to the origi-
nal analysis [PG98, Tin92]. In this section we will show how to remove this
computational disadvantage by replacing the continuous interference functions
with discretely increasing functions without introducingany pessimism in re-
sulting response times.

3.3.1 The Periodicity of the Interference

The fundamental pre-requisite to statically represent theinterference for a tran-
saction, is that a repetitive pattern can be found (such thatit suffices to store
that pattern and use it to calculate the amount of interference for any time in-
tervalt). In our previous fast analysis [MTN04a], the full interference of each
task within the transaction occurs within the first period (each task is released
exactly once during each period). Hence, we could straight-forwardly repre-
sent the interference during the first period and reuse it forlater periods.

However, in the tight analysis, the imposed interference ofa task released
towards the end of the period may not be fully included withinthe period. Even
though the task is released within the period, the slanted interference function
causes some of the interference to occur in the subsequent period. Figure 3.4
shows an example critical instant candidate where the interference from taskz
spills into next period.

2 4 6 8 10 12
t

20 2214 16 24

T i=10

3226 28 3018

2

4

Task C ij �ijc

x 1 2
y 1 5
z 2 9

∑)(2 tI Set
ijc

10

8

6

Figure 3.4: Interference spilling into the next period

As seen in figure 3.4, the interference for the first period differs from that
of later periods. Obviously, there can be no spill during thefirst period, since

II 3.3 FAST AND T IGHT ANALYSIS 127

tasks arriving before the critical instant (i.e. whent < 0) are accounted for in
ISet1
ijc . For subsequent periods, however, the effect of a task spilling over period

boundaries will be identical. This means that fort > Ti the interference is
repetitive (with period =Ti) and allows for a static representation. The con-
sequence of this is that we have to represent the interference for the first and
subsequent periods separately.

3.3.2 Preliminaries

To prepare for subsequent calculations, we define three operations (order, me-
rge, and split) that will be performed for each critical instant candidate be-
fore we proceed with calculation of a transactions’ interference pattern. These
transformations will not change the load or the timingbehavior of the interfer-
ence, they only help us to restructure the information within a transaction.

Operation: Order Tasks are enumerated according to their first activation
after the critical instant, i.e., according to increasingΦijc values.

Operation: Merge Each taskj′ that is released before a previous taskj has
a chance to finish its execution, i.e.(Φijc +Cij) mod Ti ≥ Φij′c, are merged
into one task with execution timeCij + Cij′ and offset ofΦijc. This operation
is performed until all possible tasks have been merged (and since the load of a
transaction is less than 100% the process is guaranteed to converge).

Operation: Split When splitting a task, we definespill of a taskj, belonging
to transactionΓi for the critical instant candidate taskc (c ∈ Γi), denotedSijc,
as the amount of execution time that “spills over” into the next period. Since
taskj is released at timeΦijc, the amount of spill is:

Sijc =

{

0 if Φijc + Cij ≤ Ti

Φijc + Cij − Ti otherwise
(3.5)

To make the spill explicit, we split each taskj with a positive spill into 2
new tasks, denotedj′ andj′′. j′ represents the amount of interference of taskj
that occurs within and at the end of the current period.j′′ is called aspill task
and represents the amount of interference that occurs at thebeginning of the
subsequent period. The definitions are:

Cij′ = Cij − Sijc Cij′′ = Sijc

Φij′c = Φijc Φij′′c = 0
(3.6)

128 PAPER C II

3.3.3 Jitter and time induced interference

The key to make a static representation ofW ∗
i (τua, t) is to recognisee that it

contains two parts:

• A jitter induced part, denotedJ ind
i (τua). This part corresponds to task

instances belonging toSet1. Note that this interference is not dependent
on t.

• A time induced part, denotedT ind
i (τua, t). This corresponds to task

instances ofSet2. With exception for the first period, the time induced
part has a cyclic pattern that repeats itself everyTi (as proved below).

We redefine equation 3.4 using our new notation as:

W ∗
i (τua, t) = J ind

i (τua) + T ind
i (τua, t) (3.7)

This partitioning ofW ∗
i (τua, t) is visualized in figure 3.5.J ind

i (τua) is
the maximum starting value of each of theWic(τua, t) functions (i.e. max of
Wic(τua, 0), see equation 3.3) which is calculated by:

J ind
i (τua) = max

∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc (3.8)

1 2 3 4 5 6 7 8 90

2

4

6

10

*
iW

tt

ind
iTind

iJ

Figure 3.5:W ∗
i (τua, t), J ind

i (τua), andT ind
i (τua, t)

The time induced part,T ind
i (τua, t), represents the maximum interference,

during t, from tasks activated after the critical instant.T ind
i (τua, t) is alge-

braically defined as:

T ind
i (τua, t) = max

∀c∈hpi(τua)
W+

ic (τua, t) (3.9)

II 3.3 FAST AND T IGHT ANALYSIS 129

where

W+
ic (τua, t) =

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)
− J ind

i (τua) (3.10)

Correctness criteria for our method requires that our new definition of
W ∗

i (τua, t) in equation 3.7 is functionally equivalent to the definitionin equa-
tion 3.4.

THEOREM 3.1 W ∗
i (τua, t) as defined in equation 3.4 andW ∗

i (τua, t) as de-
fined in equation 3.7 are equivalent.

PROOF REFERENCE. Proved by syntactic equivalence to Theorem 2.1 and cor-
responding proof.

Further, in order to be able to make a static representation of W ∗
i (τua, t),

we need to ensure that we store enough information to correctly reproduce
W ∗

i (τua, t) for arbitrary large values oft. SinceT ind
i (τua, t) is the only part

of W ∗
i (τua, t) that is dependent ont, the following theorem gives that a peri-

odicity of Ti exists in the interference:

THEOREM 3.2 Assume spill tasks are accounted for, andt = k ∗ Ti + t′

(wherek ∈ N and0 ≤ t′ < Ti), then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t′)

PROOF REFERENCE. The theorem is proved by algebraic equivalence in Ap-
pendix B.

3.3.4 Representing time induced interference

In this section we show how the interference pattern ofT ind
i (τua, t) can be

calculated and represented statically. Since the first period should not account
for any spill task, but subsequent periods should, we dividethe presentation
into two cases, one where spill task are not accounted for andone case where
they are.

130 PAPER C II

Spill task not accounted for

For each critical instant candidate,τic, tasks are ordered, merged, and split ac-
cording to section 3.3.2. Spill tasks are removed. We define aset of points
pic, where each pointpic[k] has anx (representing time) and ay (representing
interference) coordinate, describing how the time inducedinterference grows
over time whenτic acts as the critical instant candidate. The points inpic cor-
respond to the convex corners ofW+

ic (τua, t) of equation 3.10. The following
equations define the arraypic:

pic[1].x = 0

pic[1].y =
∑

∀j∈hpi(τua)

ISet1
ijc − J ind

i (τua)

pic[k].x =Φikc + Cik k ∈ 2 . . . |Γi|

pic[k].y =pic[k − 1].y + Cik k ∈ 2 . . . |Γi|

(3.11)

pic[1].y gives the initial relation (i.e. vertical distance at time 0) between
different critical instant candidates, and is given by the difference in jitter-
induced interference. Furthermore, the time-induced interference should be
zero at time zero (illustrated in figure 3.5) which is achieved by subtracting the
maximum of all jitter-induced interference (stored inJ ind

i (τua)) when initial-
izing pic[1].y in equation 3.11.

2

4

10

+
2iW

t
5

+
1iW

Figure 3.6: Visual representation ofpic sets

TheW+
i1 andW+

i2 , for our example transaction, are depicted in figure 3.6
and the correspondingpi1 andpi2 sets are illustrated by black and white circles
respectively. For this example transaction we get the following twopic-s:

pi1 = [〈0,−1〉, 〈4, 1〉, 〈6, 2〉] black circles
pi2 = [〈0, 0〉, 〈8, 2〉, 〈10, 3〉] white circles

II 3.3 FAST AND T IGHT ANALYSIS 131

Now, the information generated by allW+
ic (τua, t)-functions is stored in

thepic-sets. To obtain the convex corners ofT ind
i (τua, t), we need to extract

the points that represent the maximum of allW+
ic (τua, t)-s. To this end, we

calculate the set of points,pi, as the union of allpic-s:

pi =
⋃

τic∈Γi

pic

In order to determine the points inpi corresponding to the convex corners
of T ind

i (τua, t), we define asubsumesrelation: A pointpi[a] subsumes a point
pi[b] (denotedpi[a] ≻ pi[b]) if the presence ofpi[a] implies thatpi[b] is not
a convex corner. Figure 3.7 illustrates this relation graphically with a shaded
region, and the formal definition is:

pi[a] ≻ pi[b] iff

pi[a].y ≥ pi[b].y ∧
(
pi[a].x − pi[a].y ≤ pi[b].x − pi[b].y

)

x

y pi[a]

Subsumed

Not subsumed

Figure 3.7: The subsumes relation

Given the subsumes relation, the convex corners are found byremoving all
subsumed points:

Frompi removepi[b] if ∃a 6= b : pi[a] ≻ pi[b]

For our example transaction of figure 3.1 we have:

pi = [〈0, 0〉, 〈4, 1〉, 〈6, 2〉, 〈10, 3〉]

Spill task accounted for

Computing the set of points when accounting for spill tasks,denotedp′i, is
analogous to computingpi, with the following differences:

• Spill tasks from the split operation are not removed. Note that including a
spill task might require an additional merge and order operation.

132 PAPER C II

• In equation 3.11 on page 130pic[1].y defines the initial relation (difference
in ISet1

ijc) between different critical instant candidates. Sincep′i represents
the time induced interference,T ind

i (τua, t), for t ≥ Ti, p′ic[1].y should
reflect this relation at the end of the first period. The interference for a
critical instantc at the end of the first period is represented bypic[|Γi|].y,
consequently we get the following modification to equation 3.11:2

p′ic[1].y = pic[|Γi|].y − max
x∈Γi

pix[|Γi|].y

3.3.5 Increasing performance by removing slants

Assume that a set of pointspi (with or without spill tasks) has been calcu-
lated, representing the convex corners of the time induced interference function
T ind

i (τua, t) during one periodTi. The points for our example transaction is
illustrated in figure 3.8. Note that in the absence of spill tasks, the setspi and
p′i are identical.

2

4

10
t

5

Figure 3.8: Remaining points and removal of slants

It can be proven that the fix-point iterative solution to Eq. 28 in [PG98]
(see Appendix A), which is the equation where the interference function is
used, cannot have any solution during the slants.

THEOREM 3.3 Equation 28 in [PG98] cannot have a solution at a timet
where any approximate interference function has a derivative greater than or
equal to one.

PROOF REFERENCE. The theorem is proved in Appendix C.

2Analogous to equation 3.11, we normalize the points to start at 0, hence we subtract the
maximum of allpix[|Γi|].y.

II 3.3 FAST AND T IGHT ANALYSIS 133

No solutions to the response-time equation can exist duringthe slant of any
interference function. Furthermore, the closest possiblesolution will be when
the derivative of the interference function becomes zero. Hence, we can re-
move the slants and replace them with a stepped stair function, as illustrated
by the grey areas of figure 3.8, without introducing any pessimism in the result-
ing response times. However, progress in the fix-point iteration is proportion-
ally increased with any overestimation of the interference. Hence, by adding
overestimation in the grey areas of figure 3.8 we will speed upthe fix-point
convergence without modifying the calculated response-times.

We will remove the slants by transforming the convex cornersto concave
corners (illustrated by crosses in figure 3.83). The rules for finding the concave
corners,vi, from a set of convex corners,pi, is as follows:

vi[k].y =pi[1].y

vi[k].x =

{

pi[k + 1].x − (pi[k + 1].y − pi[k].y) if k < |pi|

pi[k].x if k = |pi|

k ∈1 . . . |pi|

The interpretation ofvi is as follows: Fort ≤ Ti, vi[k].y represents the
maximum amount of time induced interferenceΓi will impose on a lower pri-
ority task during interval lengths up tovi[k].x (k ∈ 1 . . . |vi|). For our example
transaction of figure 3.1,vi becomes (indicated by crosses in figure 3.8 on the
preceding page):

vi = [〈3, 0〉, 〈5, 1〉, 〈9, 2〉, 〈10, 3〉]

Note, especially that the final point (denotedvi[|vi|]) contains the sum of all
interference during the periodTi.

In the special case that some taskτij hasΦijc = 0 (e.g. in the case for spill
tasks),vi[1].x will not be zero. However, sinceT ind

i (0) = 0 (follows from
equation 3.9), the first element ofvi needs to havex-value that is zero. In such
cases we add the point〈0, 0〉 to vi (stating that there will be 0 time induced
interference for any time interval of length up to 0).

3While the last point in the set does not strictly represent a concave corner, it is still necessary
for us to keep track of the amount of interference at the end of the period, hence that point will be
included among the concave corners and is thus marked with a cross in the figure.

134 PAPER C II

Discussion: Removal of slants

By removing the slants, we essentially revert to the stepped-stair interference
functions used in the original analysis [PG98, Tin92]. Thiscould seem sur-
prising, since the tight analysis is based on the insight that stepped-stair inter-
ference functions are overly pessimistic. However, as theorem 3.3 states, there
could be no response-time solutions during a slant. Hence, using slantsduring
fix-point equation solvingdoes not increase the precision of the analysis.4

However, whenderiving the interference function it is imperative to use a
faithful model (using slants) for the different sources of interference. Hence,
once we have derived the interference function (as done whencreating the point
setpi), we no longer need to represent the slants and can revert to astepped-
stair interference function.

An analogy could be made to calculations using floating-point values. If
rounding values up before each calculation step, the resulting error will be
greater than if the calculation is done using floating-pointvalues, and only the
final result is rounded up.

3.3.6 T ind
i (τua, t) using lookup

Since we need to represent the interference for the two first periods separately
we will calculate the two point setspi (first period) andp′i (second period) ac-
cording to section 3.3.4. Next we will remove the slants for both these point
sets as described in section 3.3.5 and store the new points invi andv′

i respec-
tively.

Using the point setsvi andv′
i we can calculate the interference fromΓi

for an arbitrary timet. For the first period the interference invi is used, and
whent > Ti we will start using the interference inv′

i. Using these point sets
T ind

i (τua, t) can be reduced to fast lookup function, as follows:

4This is why the original response-time analysis [JP86] and exact analysis for tasks with offsets
[PG98, Tin92] does not overestimate response times.

II 3.3 FAST AND T IGHT ANALYSIS 135

T ind
i (τua, t) =

{

v[n].y if k < 1

V if k ≥ 1

V =vi[|vi|].y + (k − 1) ∗ v′
i[|v

′
i|].y + v′

i[n
′].y

k =t ÷ Ti

t′ =t remTi

n =min{m : t′ ≤ vi[m].x}

n′ =min{m : t′ ≤ v′
i[m].x}

(3.12)

wherek represents the number of whole periods (Ti) in t, andt′ is the part of
t that extends into the final period. It could be noted thatvi[|vi|].y contains the
sum of all interference during the first period, andv′

i[|v
′
i|].y contains the sum

of all interference during the length of one period for subsequent periods.

3.3.7 Space and Time Complexity

The number of points to calculate (pi) is quadratic with respect to the num-
ber of tasks in the transactionΓi (2|Γi| points for each of the|Γi| candidate
tasks). Thus, storingvi andv′

i results in a quadratic space complexity since,
theoretically, no points from thepic sets will be removed when calculatingpi.

The method presented in this paper divides the calculation of W ∗
i into a

pre-calculation and a fix-point iteration phase. A naive implementation of
the removal procedure in equation 3.12 requires comparisonof each pair of
points; resulting in cubic time-complexity (O(|Γi|

3)) for pre-calculatingvi and
v′

i.
5 During the fix-point iteration phase, a binary search through a quadrati-

cally sized array is performed (eithervi or v′
i in equation 3.12), resulting in

O(log |Γi|
2) time complexity for calculatingW ∗

i according to equation 3.7.
The original complexity for calculatingW ∗

i (equation 3.4) isO(|Γi|
2).

In a complete comparison of complexity, the calculation ofW ∗
i (τua, t)

must be placed in its proper context (see the response time formulas in ap-
pendix 3.5). AssumeX denotes number of fix-point iterations needed, then
the overall complexity for the original approach (equation3.4) is (O(X|Γi|

2)),
whereas our method (equations 3.7 and 3.12) yields (O(|Γi|

3 + X log |Γi|
2)).

Typically the size of a transaction (|Γi|) is small (less than 100) and the number

5In section 3.4 we use anO(|Γi|
2log|Γi|) implementation based on sorting the points and

making a single pass through the sorted set.

136 PAPER C II

of fix-point iterations (X) is large (tens or hundreds of thousands), hence our
method results in a significant reduction in complexity.

3.4 Evaluation

In order to evaluate and quantify the efficiency (with respect to execution time
of RTA) of our proposed method, we have implemented a set of approximate
response-time techniques, using the complete set of response-times equations
in appendix 3.5. We use these implementations to perform an extensive simu-
lation study. We compare five RTA methods:

• fast-tight, presented in this paper and is the method that is optimized the
farthest with respect to both analysis speed and tightness.The goal of
this simulation study is to quantify its efficiency with respect to execution
time of the analysis.

• fast-slanted, presented in this paper but without removing the slants (see
section 3.3.5). The reason for including it in the analysis is to investi-
gate the impact of reverting back to a stepped stair interference function
during response time calculations.

• tight, presented in section 3.2 and [MTN04b]. It is only optimizedto-
wards tightness. These three methods all produce the exact same tight
response times.

• orig, presented by Palencia Gutierrezet al. [PG98], which is not opti-
mized either for tightness nor for analysis speed. It is included in the
evaluation to see if the relative performance degradation of tight, com-
pared toorig, remains infast-tightwhen compared tofast-orig.

• fast-orig, our speed-up method oforig presented in [MTN04a]. It is the
fastest known RTA for tasks with offsets. It yields the same response
times asorig. It is included to see if the performance gain offast-tightis
comparable to those offast-orig

3.4.1 Description of Simulation Setup

In our simulator, we generate task sets that are used as inputto the different
RTA implementations. The generated task-sets have the following characteris-
tics:

II 3.4 E VALUATION 137

• Total system load is 90%.

• The number of transactions is 10.

• Jitter (Jij) for each task is 20% of its transaction period.

• Blocking (Bij) is zero.

• The number of tasks/transaction is a variable parameter.

• The priorities are assigned in rate monotonic order.

• Transaction periods (Ti) are randomly distributed in the range 1,000 to
1,000,000 time units (uniform distr.).

• Each offset (Oij) is randomly distributed within the transaction period
(uniform distribution).

• The execution times (Cij) are chosen as a fraction of the time between two
consecutive offsets in the transaction. The fraction is thesame throughout
one transaction. The fraction is selected so that the transaction load of 9%.

The execution time for performing the RTA in section 3.4.2 have been ob-
tained by taking the mean value from 50 generated task-sets for each point
in each graph. We have measured the execution time on a Pentium 4 laptop.
The execution times are plotted with 95% confidence intervalfor the mean val-
ues. Note that, forfast-orig, fast-slanted, and fast-tight the execution times
also include the time to perform the pre-calculations presented in Sects. 3.3.4
and 3.3.5.

3.4.2 Simulation Results

Figure 3.9(a) shows how the execution time of the five (although the 3 fast me-
thods are indistinguishable) RTA analysis varies with varying tasks/transaction
(all methods are listed in decreasing execution time order). When the number
of tasks/transaction is 20,tight takes about 86 seconds whereasfast-tighttakes
around 0.63 seconds, which is a speed up of well over two orders of magnitude.
Note also that,tight has a slight penalty to pay, compared toorig, due to more
accurate interference modeling.

Zooming in on the three fast analysis methods in figure 3.9(b), we see
that fast-tight and fast-orig are quite comparable in execution times. There
are two, mutually opposing, factors that affect their relative timing: Thefast-
tight method shortens its execution time since it sometimes calculates lower
response-times than thefast-orig method (and hence terminate in fewer fix-
point iterations). On the other hand thefast-tightmethod has to spend more
time performing pre-calculations and also perform lookup in two different ar-

138 PAPER C II

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

No. of tasks/transaction

Comparing analysis time of all 5 methods

tight
orig

fast-slanted
fast-tight
fast-orig

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

No. of tasks/transaction

Zooming in on analysis time of the 3 fast methods

fast-slanted
fast-tight
fast-orig

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

No. of tasks/transaction

Comparing pre-calculations

fast-tight & fast-slanted pre
fast-orig pre

Figure 3.9: Simulation results

II 3.4 E VALUATION 139

rays during each fix-point iteration. In figure 3.9(b) we see that fast-tighthas
consistently slightly longer execution time.

In figure 3.9(b) we also see thatfast-slantedpays a price of slower fix-point
convergence due to the slanted interference function as didtight overorig. We
conclude from figure 3.9(a) and 3.9(b) that the main contribution of speeding
up the response times comes from static representation and lookup, but that
reverting back to a stepped stair function gives an additional speedup of over
20%.

In figure 3.9(c) we compare the pre-calculations of the threefast methods.
Here we can see that the pre-calculations offast-tightand fast-slantedis ap-
proximately twice that offast-orig. This is expected since they calculate two
sets of arrays as opposed to a single set infast-orig. Comparing with fig-
ure 3.9(b) one can see that the pre-calculations constituteless than 1% of the
total analysis time. One can also discern the complexity of the pre-calculations,
and the slope is less steep than what would be expected of a naive implemen-
tation with worst-case complexity ofO(|Γi|

3), this is partly due to our (sorting
based)O(|Γi|

2log|Γi|) implementation of the pre-calculations, and partly be-
cause the worst (theoretical) case, with|Γi|

2 elements in the pre-calculated
arrays, never occurs.

We have also simulated an admission control situation. In anadmission
control situation, a single (low priority) task is added to an (otherwise schedu-
lable) set of already admitted tasks, and its response-timeis calculated and
compared with its deadline (to decide if the task can be admitted to the sys-
tem or not). In the admission control the pre-calculation ofthe already ad-
mitted tasks is not included in the execution time. In these simulations, for
20 tasks/transaction, thetight method takes about 92 milliseconds whereas the
fast-tight takes 0.19 milliseconds, which is a speedup with a factor of almost
500. When performing admission control, the speed up in our method is iso-
lated due to two factors: (1) pre-calculations are already done, and (2) no inter-
ference from other tasks in the same transaction needs to be accounted for. As
can be seen in appendix 3.5, the exact interference-function is used to account
for interference from tasks in the same transaction. Sincefast-tightonly im-
proves the approximate interference-function, we isolateour improvement by
not needing to account for interference from tasks in the same transaction.

This evaluation shows that combining fast and tight methodsfor response
time analysis, one gets the best of two worlds; a response time analysis method
that is both fast and tight, outperforming previous methodsby several orders of
magnitude.

140 PAPER C II

3.5 Conclusions

In this paper we have presented a novel method that calculates approximate
worst-case response times for tasks with offsets. Distinguishing feature of the
method is that it calculates tight response times in a short analysis time. We
have successfully extended our framework of fast RTA [MTN04a] to be able
to apply it to our tight method [MTN04b]. Our improvements are orthogonal
and complementary to other proposed extensions to the original offset analysis
such as [PG99, Red03].

The main effort in performing RTA for tasks with offsets is tocalculate
how higher priority tasks interfere with a task under analysis. The essence
to calculate fast response times is to find a repetitive pattern and store that
pattern statically, and during response time calculations(fix-point iteration),
use a simple table lookup. Our tight analysis [MTN04b] exploits the fact that
the interference imposed by higher priority tasks is overestimated in traditional
RTA. By removing this overestimation, significantly tighter response-times can
be calculated. The fast-and-tight analysis presented in this paper successfully
does both, resulting in a fast and tight RTA.

Faster RTA has several positive practical implications: (1) Engineering
tools (such as those for task allocation and priority assignment) can feasibly
rely on RTA and use the task model with offsets, and (2) on-line scheduling
algorithms, e.g., those performing admission control, canuse accurate on-line
schedulability tests based on RTA. Tighter RTA has the practical implications
to allow more efficient hardware utilization. Either more functions can be fit-
ted into the same amount of hardware, or less powerful (cheaper) hardware
can be used for the existing functions. Hence, our fast-and-tight analysis is a
very attractive choice to include in engineering tools and/or admission control
software for resource constrained embedded real-time systems.

In a simulation study we see that our novel analysis has very similar com-
putational requirements to that of the fast analysis. Especially we notice that
the computational disadvantage of the tight analysis (compared to the original
analysis) is completely removed when comparing the fast-and-tight with the
fast analysis. Example benchmarks include a speedup of over100 times for
response-time analysis of entire task-sets and a speedup ofalmost 500 times
for single tasks, e.g., corresponding to an admission control situation.

II R EFERENCES 141

References

[ABD+95] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Perspective.
Real-Time Systems, 8(2/3):173–198, 1995.

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System.The Computer Journal, 29(5):390–395, 1986.

[LL73] C. Liu and J. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment.Journal of the ACM,
20(1):46–61, 1973.

[MTN04a] Jukka Mäki-Turja and Mikael Nolin. Faster Response Time Anal-
ysis of Tasks With Offsets. InProc. 10th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS), May 2004.

[MTN04b] Jukka Mäki-Turja and Mikael Nolin. Tighter Response-Times for
Tasks with Offsets. InProc. of the 10th International conference
on Real-Time Computing Systems and Applications (RTCSA’04),
August 2004.

[PG98] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. InProc. 19th

IEEE Real-Time Systems Symposium (RTSS), December 1998.

[PG99] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Exploiting
Precedence Relations in the Schedulability Analysis of Distributed
Real-Time Systems. InProc. 20th IEEE Real-Time Systems Sym-
posium (RTSS), pages 328–339, December 1999.

[Red03] O. Redell. Accounting for Precedence Constraints in the Analysis
of Tree-Shaped Transactions in Distributed Real-Time Systems.
Technical Report TRITA-MMK 2003:4, Dept. of Machine Design,
KTH, 2003.

[SH98] M. Sjödin and H. Hansson. Improved Response-Time Calcula-
tions. InProc. 19th IEEE Real-Time Systems Symposium (RTSS),
December 1998. URL: http://www.docs.uu.se/~mic/papers.html.

[Tin92] K. Tindell. Using Offset Information to Analyse Static Priority
Pre-emptively Scheduled Task Sets. Technical Report YCS-182,
Dept. of Computer Science, University of York, England, 1992.

142 PAPER C II

Appendix A: Complete RTA formulae

In this appendix we complete the set of formulas to calculatethe worst case
response time,Rua, for a task under analysis,τua, as presented in Palencia
Gutierrezet al. [PG98].

The length of a busy period, forτua, assumingτuc is the candidate critical
instant, is defined as (Note that the approximation functionis not used forΓu):

Luac =Bua + (pL,uac − p0,uac + 1)Cua+

Wuc(τua, Luac) +
∑

∀i6=u

W ∗
i (τua, Luac)

(30 in [PG98])

wherep0,uac denotes the first, andpL,uac the last, task instance, ofτua, acti-
vated within the busy period. They are defined as:

p0,uac = −

⌊
Jua + Φuac

Tu

⌋

+ 1 (29 in [PG98])

and

pL,uac =

⌈
Luac − Φuac

Tu

⌉

(31 in [PG98])

In order to get the worst case response time forτua, we need to check the
response time for every instance,p ∈ p0,uac . . . pL,uac, in the busy period.
Completion time of thep’th instance is given by:

wuac(p) =Bua + (p − p0,uac + 1)Cua

+ Wuc(τua, wuac(p)) +
∑

∀i6=u

W ∗
i (τua, wuac(p)) (28 in [PG98])

The corresponding response time (for instancep) is then:

Ruac(p) = wuac(p) − Φuac − (p − 1)Tu + Oua (32 in [PG98])

To obtain the worst case response time,Rua, for τua, we need to consider
every candidate critical instant ,τuc (including τua itself), and for each such
candidate every possible instance,p, of τua:

Rua = max
∀c∈hpu(τua)∪a

[max
p=p0,uac,...,pL,uac

(Ruac(p))] (33 in [PG98])

II A PPENDIX B: PROOF OF THEOREM 3.2 143

Appendix B: Proof of Theorem 3.2

We will perform the proof by algebraic manipulation and use braces to high-
light the expression that is manipulated in each step. We also annotate braces
with the equations, properties, lemmas, or assumptions referred to when per-
forming some manipulations.

When performing the manipulations we will, e.g., rely on the following
properties:

(max) — The maxv operator allows terms that are constant with respect to
the maximization variable (v) to be moved outside the maximization
operation:

max
v

(Xv + Y) = max
v

(Xv) + Y.

(sum) — Summation over a set of terms can be divided into two separate
summations: ∑

v

(Xv + Yv) =
∑

v

Xv +
∑

v

Yv

(ceil) — When taking the ceiling (⌈ ⌉) of a set of terms, terms that are known
to be integers can be moved outside of the ceiling expression:

X ∈ N ⇒ ⌈X + Y ⌉ = X + ⌈Y ⌉

In proving Theorem 3.2 we will use some lemmas.

L EMMA 3.1 Assume spill tasks are accounted for, then regardless of candi-
date critical instantc: ISet2

ijc (Ti) = Cij

PROOF OF L EMMA 3.1 For a given critical instantc, perform split accord-
ing to equation 3.6.

For an unsplit taskτij thenΦijc + Cij ≤ Ti (equation 3.5). For each
task τij′ and τij′′ that is the result of splitting thenΦij′c + Cij′ ≤ Ti and
Φij′′c + Cij′′ ≤ Ti (equation 3.6)

For any taskτij whereΦijc + Cij ≤ Ti then

ISet2
ijc (Ti)

︸ ︷︷ ︸

Eq.3.2

=

⌈
Ti − Φijc

Ti

⌉

︸ ︷︷ ︸

0 ≤ Φijc < Ti (Eq.3.1)

Cij − x
︸︷︷︸

Ti − Φijc mod Ti ≥ Cij

= 1Cij − 0 = Cij

144 PAPER C II

Hence, for an unsplit taskτij thenISet2
ijc (Ti) = Cij . For each taskτij that

is split toτij′ andτij′′ , thenISet2
ijc (Ti) = Cij′ + Cij′′ = Cij

Since this holds for each critical instantc, the lemma holds. �

L EMMA 3.2 Assume spill tasks are accounted for, andt = k ∗ Ti + t′ (where
k ∈ N and0 ≤ t′ < Ti), thenISet2

ijc (t) = k ∗ ISet2
ijc (Ti) + ISet2

ijc (t′)

PROOF OF L EMMA 3.2

ISet2
ijc (t)

︸ ︷︷ ︸

Eq.3.2

=

⌈
t − Φijc

Ti

⌉

︸ ︷︷ ︸

Assumption

Cij − x =

⌈
k ∗ Ti + t′ − Φijc

Ti

⌉

︸ ︷︷ ︸

Cij − x =

⌈
k ∗ Ti

Ti
+

t′ − Φijc

Ti

⌉

︸ ︷︷ ︸

(ceil)∧k ∈ N

Cij − x =

(

k +

⌈
t′ − Φijc

Ti

⌉)

Cij

︸ ︷︷ ︸

−x =

k Cij
︸︷︷︸

Lem.3.1

+

⌈
t′ − Φijc

Ti

⌉

Cij − x

︸ ︷︷ ︸

Eq.3.2

=

k ∗ ISet2
ijc (Ti) + ISet2

ijc (t′) �

L EMMA 3.3 Assume spill tasks are accounted for fromt = 0, then

T ind
i (τua, Ti) =

∑

∀j∈hpi(τua)

Cij

II A PPENDIX B: PROOF OF THEOREM 3.2 145

PROOF OF L EMMA 3.3

T ind
i (τua, Ti)

︸ ︷︷ ︸

Eq.3.9

= max
∀c∈hpi(τua)

W+
ic (τua, Ti)

︸ ︷︷ ︸

Eq.3.10

=

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (Ti)
)

︸ ︷︷ ︸

(sum)

−J ind
i (τua)

)

=

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

ISet1
ijc +

∑

∀j∈hpi(τua)

ISet2
ijc (Ti)

︸ ︷︷ ︸

Lem.3.1

−J ind
i (τua)

)

=

max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

ISet1
ijc +

∑

∀j∈hpi(τua)

Cij − J ind
i (τua)

)

︸ ︷︷ ︸

(max)

=

∑

∀j∈hpi(τua)

Cij + max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc

︸ ︷︷ ︸

Eq.3.8

−J ind
i (τua) =

∑

∀j∈hpi(τua)

Cij + J ind
i (τua) − J ind

i (τua)
︸ ︷︷ ︸

=
∑

∀j∈hpi(τua)

Cij �

146 PAPER C II

THEOREM 3.2 Assume spill tasks are accounted for, andt = k ∗ Ti + t′

(wherek ∈ N and0 ≤ t′ < Ti), then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t′)

II A PPENDIX B: PROOF OF THEOREM 3.2 147

PROOF OF THEOREM 3.2

T ind
i (τua, t)

︸ ︷︷ ︸

Eq.3.9

= W+
ic (τua, t)

︸ ︷︷ ︸

Eq.3.10

=

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
︸ ︷︷ ︸

Lem.3.2

)
− J ind

i (τua) =

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + k ∗ ISet2

ijc (Ti)
︸ ︷︷ ︸

Lem.3.1

+ISet2
ijc (t′)

)
−

J ind
i (τua) =

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + kCij + ISet2

ijc (t′)
)
− J ind

i (τua)

︸ ︷︷ ︸

(sum)

=

max
∀c∈hpi(τua)(∑

∀j∈hpi(τua)

kCij +
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua)
)

︸ ︷︷ ︸

(max)

=

∑

∀j∈hpi(τua)

kCij

︸ ︷︷ ︸

+ max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua) =

k ∗
∑

∀j∈hpi(τua)

Cij

︸ ︷︷ ︸

Lem.3.3

+ max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
−

J ind
i (τua) =

k ∗ T ind
i (τua, Ti)+

max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua)

︸ ︷︷ ︸

Eq.3.10

=

k ∗ T ind
i (τua, Ti) + max

∀c∈hpi(τua)
W+

ic (τua, t′)

︸ ︷︷ ︸

Eq.3.9

=

k ∗ T ind
i (τua, Ti) + T ind

i (τua, t′) �

148 PAPER C II

Appendix C: Proof of Theorem 3.3

In proving Theorem 3.3, we will use eq. 28 in [PG98] (see Appendix 3.5),
definition ofwuac(p), the worst case response time ofτua with τuc as the one
coinciding with the critical instant, simplified and rewritten as a function of
time,f(t):

f(t) = K1 + Wuc(τua, t) +
∑

∀i6=u

W ∗
i (τua, t) (28’)

whereK1 is some constant value. We note that a solution to eq. 28’ exists,
and fix-point convergence is reached, whenf(t) = t, for somet. Since both
exact (Wuc) and approximate (W ∗

i) interference functions are monotonically
increasing, we conclude thatf(t) is also monotonically increasing.

L EMMA 3.4 The smallest solution to eq. 28’, denoteds, cannot exist where
f(t) has a derivative greater than or equal to 1 (i.e. wheref ′(t) ≥ 1).

t

y

y=t

f(s)=s

p

f(p)

y=f(t)

s

Figure 3.10: Fix-Point Iteration whenf ′(t) ≥ 1

PROOF OF L EMMA 3.4 From [SH98] we know that:

1. For any monotonically increasing response-time equation, for anyp < s,
f(p) > p holds.

2. We can start fix-point iteration from any pointp < s and still find the
smallest fix-points.

3. At a pointp < s wheref ′(p) ≥ 1, consider figure 3.10, the liney = f(p)
cannot be converging with liney = p (which has a derivative of 1).

II A PPENDIX C: PROOF OF THEOREM 3.3 149

Assume thats is a point wheref ′(t) ≥ 1 then (by the continuousness of
f(t)) there exists a pointp = s − ǫ (for some smallǫ) wheref ′(p) ≥ 1. Then
by 1 f(p) > p, and by 3 the lines will not be converging. However, by 2 it
should be possible to start fix-point iteration atp and converge intos.

A contradiction has been reached and the assumption does nothold. Hence
the lemma holds. �

THEOREM 3.3 Equation 28 in [PG98] cannot have a solution at a timet
where any approximate interference function has a derivative greater than or
equal to one.

PROOF OF THEOREM 3.3 None of the terms inf(t) has a negative deriv-
ative. Hence, if for a timet any of the approximate interference functions
W ∗

i (τua, t) has a derivative of one6, then the functionf(t) has a derivative
greater than or equal to one. Then, by lemma 3.4, the theorem holds. �

6The derivative of an approximation functionW ∗

i
(τua, t) is either one (for a slant) or zero (for

a stair).

151

CHAPTER 4

Paper D:
Efficient Development of
Real-Time Systems Using Hybrid
Scheduling

JUKKA MÄKI -TURJA, KAJ HÄNNINEN , AND M IKAEL NOLIN

To appear in the proceedings of the international conference on
Embedded Systems and Applications (ESA).

LAS VEGAS USA, JUNE 2005.

Abstract

This paper will show how advanced embedded real-time systems, with func-
tionality ranging from time-triggered control functionality to event-triggered
user interaction, can be made more efficient. Efficient with respect to develop-
ment effort as well as run-time resource utilization. This is achieved by using
a hybrid, static and dynamic, scheduling strategy. The approach is applicable
even for hard real-time systems since tight response time guarantees can be
given by the response time analysis method for tasks with offsets.

An industrial case study will demonstrate how this approachenables more
efficient use of computational resources, resulting in a cheaper or more com-
petitive product since more functionality can be fitted intolegacy, resource
constrained, hardware.

II 4.1 I NTRODUCTION 153

4.1 Introduction

As the complexity of embedded real-time systems keeps growing, both by in-
creases in size and in diversity, the developers are faced with the increasing
challenge of modeling, analyzing, implementing and testing both the functional
as well as the temporal behavior of these systems. This paperwill present ways
to simplify some of that complexity by introducing methods to verify the tem-
poral correctness for a larger class of such systems.

Traditionally, one of the design parameters has been what execution model
to choose. Two common and widespread execution models are the static and
dynamic execution models:

• Static scheduling, where a schedule is produced off-line. The schedule
contains all scheduling decisions, such as when to execute each task or
to send each message. During run-time a simple dispatcher dispatches
tasks according to the schedule. Static scheduling is sometimes referred
to as time-triggered scheduling.

• Dynamic scheduling, where scheduling decisions are made on-line by
a run-time scheduler. Typically some task attribute (such as priority or
deadline) is used by the scheduler to decide what task to execute. The
scheduler implements some queueing discipline, such as fixed priority
scheduling or earliest deadline first. Dynamic scheduling is sometimes
referred to as event-triggered scheduling.

Since both models have their pros and cons, the design decision of which
one to use is not simple. A few trade-offs when choosing execution model are:

• Overhead– Since all scheduling and synchronization decision are made
off-line in the static approach, the run-time overhead for scheduling is
kept low. In dynamic scheduling these decisions are made on-line, often
resulting in a larger overhead.

• Responsiveness– Statically scheduled systems are inflexible and have
therefore limited possibility in responding to dynamic events, resulting
in poor responsiveness. Dynamically scheduled systems, onthe other
hand, handles dynamic events naturally and can provide highdegree of
responsiveness.

• Resource usage– In order to provide some degree of responsiveness for
dynamic events in the environment, statically scheduled systems tend to

154 PAPER D II

waste resources on redundant polling, whereas event-triggered dynamic
schedulers only handle the actual events, enabling better service to soft
or non-real time functionality when events do not occur at their maxi-
mum rate.

• Overload – In static scheduling the effects of overload are highly pre-
dictable. The exact capacity, e.g. in terms of number of inputs handled,
is known and the effect of lost events, e.g. due to slow polling, can be
predicted. In dynamic scheduling, no natural overload control is inher-
ent. Instead, ad-hoc mechanisms are used to prevent, e.g., faulty sensors
from flooding the systems with interrupts. A dynamically scheduled sys-
tem which becomes overloaded is unpredictable, it is often difficult to
assess which buffer will overflow and thus which tasks will miss their
deadlines.

• Determinism – A statically scheduled system is highly deterministic,
it executes according to the pre-defined schedule each time.A dynami-
cally scheduled system, on the other hand, may exhibit different behavior
each time the system is run, due to, e.g., race conditions on shared re-
sources. This has a major impact on reproducibility, and thus also on
the functional testability, of the system. Determinism also simplifies the
verification process which is a major part when certifying safety critical
applications.

• Complex constraints– Statically scheduled systems can handle more
complicated inter-task relation constraints. For example, control sys-
tems, where control performance is important, need to have small (input
and/or output) jitter, which is easier to accommodate in a static scheduler
than with simpler dynamic scheduling parameters.

• Adding new functionality – Once a static schedule has been constructed
it can be very hard to add new functionality in the system, a completely
new schedule has to be constructed. For a dynamically scheduled sys-
tem, new functions can be added with a minimum of impact on other
parts of the system.

For further discussions on these trade-offs see [Loc92] which advocates cyclic
scheduling), and [XP00] which advocates dynamic, fixed priority, scheduling.

As can be seen, both approaches have their virtues and one often wishes to
have both approaches available when developing embedded real-time applica-
tions. This desire is clearly illustrated by the last few years of development in

II 4.1 I NTRODUCTION 155

the area of field busses for automotive applications. The Controller Area Net-
work (CAN) [CAN92] has been predominant in the automotive industry. CAN
provides dynamic scheduling (using fixed priority scheduling). However, the
automotive industry felt a need for a more dependable and predictable bus ar-
chitecture. So when Kopetz brought attention to his Time Triggered Protocol
(TTP) [KG94], which provides static scheduling, many automotive manufac-
turers and their sub-contractors embraced the new technology. It was soon
recognized that TTP was a bittoo static. Hence, a consortium of automotive
manufacturers and sub-contractors started the development of FlexRay [Flx],
which provides both static and dynamic scheduling. Also, onthe operating-
system side, products that support both static and dynamic scheduling have
emerged. For instance, Arcticus Systems’ operating systemRubus [Arc], and
the open source real-time operating system Asterix [Ast]. In fact, most priority
driven operating systems can implement hybrid static and dynamic scheduling
by letting a dispatcher (a time-table) execute at highest priority.

Thus, we see that the need to combine static and dynamic scheduling have
led to some practical solutions available today. However, one problem with
systems that tries to combine static and dynamic schedulingis that they often
consider the dynamic part as non real-time, e.g. [Arc, Flx].That is, dynamic
scheduled tasks/messages are not given any response-time guarantees, only
best-effort service is provided. However, in order to fullyutilize the potential
of combining static and dynamic scheduling in hard real-time systems, both
the dynamic and the static parts need to be able to provide response-time guar-
antees. A recent study of industrial needs recognizes that one of the key issues
for embedded systems is analyzability [MFN04].

This paper presents a method to model hybrid, statically anddynamically,
scheduled systems with the task model with offsets [MTN04].With this model,
and the corresponding response time analysis, tight response time guarantees
can be given also for dynamically scheduled tasks. The modelled system can be
realized with commercially available operating systems support. Furthermore,
in a case study we show how a legacy system at Volvo Construction Equipment
could benefit from this approach by migrating functionalityfrom the resource
demanding statically scheduled part to the dynamically scheduled part, freeing
system resources while still fulfilling original temporal constraints.

Paper Outline: Next, section 4.2 describes the type of systems studied in
this paper. Section 4.3 shows how these systems can be modelled using the task
model with offsets. Section 4.4 discusses related work. Section 4.5 illustrates,
through a case study, how this approach can be applied to a legacy system,
migrating functions from a static schedule, freeing systemresources. Finally,

156 PAPER D II

section 4.6 presents our conclusions.

4.2 System description

In this paper, we address the issue of providing tight response-time guaran-
tees to dynamically scheduled tasks running “in the background” of a static
schedule. The system model contains:

• Interrupts . There may be multiple interrupt levels, i.e., an interruptmay
be preempted by higher level interrupts.

• A static cyclic schedule.

– A set of periodic static tasks (functions) are scheduled in the sched-
ule. Each task has a known worst case execution time (WCET).

– The schedule has a length (a duration) that is equal to the LCM
(least common multiple) of all statically scheduled function peri-
ods. The schedule is constructed off-line by a scheduling tool.

– Each function is scheduled at an offset relative to the startof the
schedule. This is also referred to as a function’srelease time.

– The static cyclic scheduler activates each function in the schedule
at its release time. When the whole schedule has been executedthe
schedule is restarted from the beginning.

Interrupts may preempt the execution of statically scheduled functions.

• A set dynamically dispatched tasks. We call each such task adynamic
task. These tasks executes in the time slots available between interrupts
and statically scheduled functions. Dynamic tasks are scheduled by a
fixed priority preemptive scheduler. They are assumed to be periodic or,
at least, to have a known minimum time between two invocations.

We assume that a static cyclic schedule has been constructedprior to the
analysis of dynamic tasks. Furthermore, we assume that the schedule is valid
even if its functions are preempted by interrupts. How a scheduler can generate
a feasible schedule, with interfering interrupts, is described in [SEF98].

II 4.2 SYSTEM DESCRIPTION 157

0 2015105

Figure 4.1: Example of static cyclic schedule

4.2.1 Example system

Figure 4.1 shows a static cyclic schedule of length 20, with 4functions released
at times 0, 5, 10 and 15, with WCETs 4, 1, 1 and 3 respectively.

In figure 4.2 we see an example execution scenario when executing the
schedule from figure 4.1, with one interfering interrupt source and one dynam-
ically scheduled task (two instances of that task are activated). We make the
observation that both interrupts and the static schedule act like higher priority
tasks from the dynamic tasks’ point of view.

0 2015105

Interrupt

Static Schedule

Dynamic Task

Execution Pattern

A
rr

iv
al

s
an

d
E

xe
cu

tio
n

T
im

es

Figure 4.2: Example execution scenario

One of the main objectives of this paper is to enable response-time calcula-
tions for dynamic tasks. The goal is to model static schedules (and interrupts)
so as to incur as little interference on dynamic tasks execution as possible.
Thus, modeling both functions’ WCETs as well as their releasetimes as accu-
rately as possible.

158 PAPER D II

4.3 Modeling the system

Classical response-time analysis (see e.g. [ABD+95, BW96, JP86]), assumes
that a critical instant1 occurs when all tasks are released simultaneously. Using
this model, the static schedule described in section 4.2, can be modelled as
4 tasks. These tasks would have a period of 20 and WCETs of 4, 1, 1, and
3 respectively. However, this approach is overly pessimistic since it assumes
that all four static tasks can be released for execution at the same time. In
our example, assuming no interrupt interference, a dynamictask with a WCET
of 1, would have a response time of 10 (4+1+1+3+1). However, looking at
figure 4.1 one can see that the actual worst possible response-time is 5 (if the
dynamic tasks coincides with the static function scheduledat time 0).

In static schedules it is impossible for all static tasks to start at the same
time. The task model with offset introduced by [PG98, Tin92]is able to cap-
ture the time separation in static schedules, and thus reduce the pessimism.
In [MTN04] we further reduced the pessimism in the corresponding response
time formulae.

4.3.1 Task model with offsets

The task set,Γ, in [MTN04] consists of a set ofk transactions,Γ1, . . . ,Γk.
Each transactionΓi is activated by a periodic sequence of events with periodTi.
A transactionΓi, contains|Γi| number of tasks, and each task is activated when
a relative time,offset, elapses after the arrival of the event.

τij is used to denote a task. The first subscript denotes which transaction the
task belongs to, and the second subscript denotes the numberof the task within
that transaction. A taskτij is defined by a worst case execution time (Cij), an
offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum blocking from
lower priority tasks (Bij), and a priority (Pij). The task setΓ is formally
expressed as follows:

Γ :={Γ1, . . . ,Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij , Oij ,Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jitter. The maximum
blocking time for a task,τij , is the maximum time it has to wait for a resource

1Point in time, where the task under analysis is released for execution, resulting in the longest
possible response-time.

II 4.3 M ODELING THE SYSTEM 159

which is locked by a lower priority task. In order to calculate the blocking
time for a task, usually, a resource locking protocol like priority ceiling or
immediate inheritance is needed. Algorithms to calculate blocking times for
different resource locking protocols are presented in [But97]. Priorities can be
assigned with any method (e.g. rate monotonic, deadline monotonic, or user
defined priorities). One must assume that the load of the taskset is less than
100%.2

0

O i1=2

Oi2=5

C i2=1 Time

1 2 3 4 5 6 7 8 9 10

Ti=10
C i1=2

J i1=8

J i2=1

Figure 4.3: Example transaction

Parameters for an example transaction (Γi) with two tasks (τi1 andτi2) is
depicted in figure 4.3. The offset denotes the earliest possible release time of
a task relative to the start of its transaction and jitter (illustrated by the shaded
region) denotes maximum possible variability in the actualrelease of a task.
The upward arrows denotes earliest possible release of a task and the height
of the arrow corresponds to the amount of execution released. The end of the
shaded region represents the latest possible release of a task.

4.3.2 System model

The system in section 4.2 can be modelled, and dynamic tasks subsequently
analyzed for response times, with the above task model as follows (subscripts
i, s, andd denote a generic interrupt, static, and dynamic transaction respec-
tively):

• Each interrupt will be modelled as a transaction,Γi, containing one
single task (i.e.,|Γi| = 1) with Ti set to minimum inter-arrival time of
the corresponding interrupt. These interrupt tasks will have the highest

2This can easily be tested, and if not fulfilled some response-times may be infinite; rendering
the task set unschedulable.

160 PAPER D II

priorities in the system. If there are several interrupt levels, priorities are
assigned accordingly, i.e., highest priority to highest interrupt level.

• The static scheduleis modelled as one transaction,Γs, where each re-
lease time in the schedule is modelled as one task,τsj , where the offset
,Osj , is set to the corresponding release time. The worst case execution
time,Csj , is set to the corresponding functions WCET. The priority, one
suffices, for static tasks must be lower than for any interrupt, but higher
than those for dynamic tasks.

Our example schedule of figure 4.1 will be modelled as a transaction
(Ts = 20) with 4 tasks, with offsets 0, 5, 10, 15 and worst case execution
time of 4, 1, 1, 3 respectively.

• Dynamic taskswill have the most variability on how they are modelled.
In the simplest case they are modelled exactly the same way asinterrupts
but with lower priorities. This situation corresponds to simple periodic
(or sporadic) dynamic tasks with no jitter, no time separation (offsets),
and no blocking. However depending on the nature of the dynamic tasks
their corresponding transaction can be extended by:

– jitter if there is variability in their periodicity,

– by blocking if they share resources and providing the run-time sys-
tem supports an analyzable resource sharing protocol, and

– offsets if there are temporal dependencies, such as precedence,
among dynamic tasks.

Note that dynamic tasks cannot communicate with static tasks, via loc-
ked resources, since they must not affect their temporal behavior. How-
ever, there exist methods to communicate between these two systems that
will not affect the temporal behavior of static tasks, see e.g. [NNT+04].

Assuming the dynamic task of figure 4.2 is a sporadic task withmin-
imum inter-arrival time of 10 time units and a release jitterof 3 time
units, it is modelled as a transaction withTd = 10 containing one task
with Jdj = 3. The execution time is 2 and since it is the lowest priority
task the blocking is zero (Cdj = 2 andBdj = 0).

The formulae to calculate the response times rely on a relaxed critical in-
stant assumption stating that only one task out of every transaction has to coin-
cide with the critical instant. The complete formulae can befound in [MTN04],

II 4.4 R ELATED WORK 161

and would, for our example system of figure 4.2, result in a response time of 5
time units for a dynamic task withCdj = 1, assuming no interrupt interference.

Since all type of tasks, interrupt, static, and dynamic, canbe analyzed for
responsiveness, the inability of providing response time guarantees will no
longer be a basis for rejecting an execution model for a function, thus making
hybrid static and dynamic scheduling suitable even for hardreal-time systems.

4.4 Related work

There has been number of research projects addressing the issue of combining
several execution models [RS01, SRLK02, BBLB03]. These provide reser-
vation-based guarantees where task characteristics are not fully known in ad-
vance. Furthermore, no commercially available real-time operating system
support exist for them. Our approach is to model existing systems, supported
by commercial RTOSes, where task attributes are fully knownat design time.
However, [RRW+03] aims at modeling real situations through hierarchically
modeling different schedulers. They cover preemptive and non-preemptive pri-
ority schedulers and do not model static schedulers. In fact, the work presented
in this paper could extend their more general framework withthe ability to
model also static schedulers.

4.5 Case Study

A case study [HR03] conducted at Volvo Construction Equipment (VCE) [Vol],
with the objective of finding a way to use available resourcesin a more efficient
way has studied the design trade-offs between static and dynamic scheduling.

VCE has a tradition in statically scheduled systems. This ismainly due to
the safety critical nature of their control systems in theirheavy machinery, e.g.,
articulated haulers, trucks, wheel loaders and excavators. Rubus OS by Arcti-
cus [Arc], used by VCE, has run-time support for the system model described
in section 4.2.

Currently at VCE, all safety critical functionality is implemented in the sta-
tic part and only soft real-time or non real-time activity resides in the dynamic
part. In recent interviews (in an ongoing research project)they state that about
20-25% of their applications are considered safety critical, mainly residing in
transmission and engine control. However, some operational modes, have sta-
tic schedule utilization as high as 74%.

162 PAPER D II

The demand on more functionality in next generation machinery is grow-
ing. However, the static schedule is getting close to full utilization, leaving
little or no room for new functionality. This can either be addressed with new
and more expensive hardware or to find a better way of utilizing the current
hardware resources.

Demand on responsiveness (i.e. deadlines) for functionality in the static
part ranges from a few milliseconds up to several seconds. This could po-
tentially result in very large schedules (with corresponding high memory con-
sumption). VCE’s solution to this has been to fix the schedulelength at 100ms,
which result in waste of computing resources due to redundant polling for any
function with a responsiveness demand higher than 100ms (even functions with
responsiveness demand within 100ms but associated with events that occur sel-
dom will in this case waste computing resources). A solutionthat could get rid
of this redundant polling, while still guaranteeing the responsiveness and with-
out increasing the schedule length, would be highly desirable.

4.5.1 An example system

Here we will present an example system that can be viewed as a simplified
version of one of the systems constructed by VCE. A complete system would
consists of several hundreds of tasks [HR03] and would be toocomplex to
present in this paper. We will show how functions currently residing in the
static part can be moved to the dynamic part and, by using the response-time
analysis of [MTN04], still guarantee that the function deadlines will be met.
Type of functionality that could be moved, according to [HR03], consists of
events that by nature are event-triggered, visual interaction with driver, and
logging of operational statistics. Another example of functionality that may be
moved to the dynamic part is control functionality that is not part of sampling
or actuation. Control performance is often sensitive to jitter in sampling and
actuation and therefore often placed in a static schedule [Cer99]. However,
the control calculation and updating of control state do nothave these strict
requirements on jitter and their responsiveness requirement is only restricted by
the corresponding output action and sampling in the next period respectively.
Therefore control and updating control state functionality could be moved to
the dynamic part.

For our example, the task specification in table 4.1 on the next page will
be used. (For simplicity we will in this example ignore interrupt interference.)
Tasks F and G handle events that may occur once every 2000ms, and with a res-
ponse time requirement of 100ms. Placing tasks F and G in a static schedule,

II 4.5 C ASE STUDY 163

Taski Ti Ci Di U100 UT

A 10 2 10 20% 20%
B 20 2 5 10% 10%
C 50 1 2 2% 2%
D 50 6 50 12% 12%
E 100 8 100 8% 8%
F 2000 7 100 7% 0.35%
G 2000 8 100 8% 0.4%
H 2000 8 2000 8% 0.4%

Table 4.1: The set of tasks in the Static system

means that they would have to be polled at the rate of their deadline (100ms)
instead of their period (2000ms) (since we do not know exactly when the events
are going to occur). Task H, however, could be polled at the rate of its period
(2000ms), however, the resulting schedule would become toolarge and mem-
ory consuming (it would have to extend for 2000ms and thus consume over
20kb of ROM). Setting the schedule length to 100ms would be adequate for all
tasks except task H. Hence, the schedule length is set to 100ms, and a resulting
schedule can be seen in figure 4.4.

In table 4.1,U100 represents the task utilization when scheduled in a static
schedule with a period of 100ms, andUT represents the utilization when tasks
are scheduled with their period.

0 40302010 50 90807060 100

ABc DG FE c D BBBB AAAAAAAA A H

Figure 4.4: Static schedule for table 4.1 task set

The total utilization of the static schedule is 75%. Adding new functional-
ity, requiring some kind of temporal guarantee, to this system can be difficult,
there are not many free time-slots in the schedule, especially if there has to be
room also for interrupts and non-real-time functionality.

Improving the system

However if tasks F, G, and H could be made event triggered, by placing them
in the dynamic part of the Rubus OS, some resources could be freed. The

164 PAPER D II

resulting static schedule can be seen in figure 4.5. The utilization for the static
schedule now becomes 52%. The utilization for the three dynamic tasks are
1,15%, resulting in a total utilization of just above 53%. Thus, by moving these
three tasks from the static schedule we free nearly 22%3 of the CPU resources.

0 40302010 50 90807060 100

ABc DE c D BBBB AAAAAAAA A

Figure 4.5: Schedule without tasks F, G and H

Now, it remains to see whether the three tasks will meet theirdeadlines
when running as dynamic tasks. To be able to calculate response times for
tasks F, G, and H we model the static schedule as a transactionwith Ts = 100.
WCETs and offsets are set as follows:

Csj = (5, 10, 4, 2, 10, 3, 10, 2, 4, 2)

Osj = (0, 10, 20, 30, 40, 50, 60, 70, 80, 90)

Assuming that F, G, and H have priorities high, medium, and low respec-
tively, we can calculate the response times for the three tasks according to
[MTN04]. And the result is:

RF = 26 RG = 44 RH = 64

We see that all three tasks will meet their deadlines of table4.1. In fact,
their responsiveness is considerably increased compared to being statically
scheduled every 100ms. It could be mentioned that by removing tasks F, G
and H from the schedule we have enabled shorter response times for other dy-
namic tasks, that might have existed in the system, as well. The schedule in
figure 4.4 has a longest busy period of 54ms (between 30–84), whereas the
new schedule in figure 4.5 has a longest busy period of 14ms (between 10–24).
Since any dynamic task (in the worst case) will have to wait for the longest
busy period, we now have significantly reduced that time.

With the approach presented in this paper the static schedule could be kept
small (with respect to memory consumption as well as utilization). By model-
ing the static schedule as one transaction, response time analysis for task with
offsets can be used to evaluate timeliness for the dynamic part.

3Increase in overhead for tasks F, G, and H as dynamic tasks willbe marginal, hence not
considered here.

II 4.6 C ONCLUSIONS 165

Our solution reduce utilization by moving functionality, previously polled
excessively, from the static schedule to the dynamic part. Our method also
gives a possibility to shrink the static schedule since functions with long peri-
ods can be moved from the static schedule. It should be mentioned however,
that all tasks in the static schedule share a common stack, whereas moving
tasks from the schedule to the dynamic part may require them to have sep-
arate stacks, hence increasing the memory consumption for dynamic tasks.
However, using a resource locking protocol such as the immediate inheritance
allows also dynamic tasks to share a single stack [But97, Nor99].

The possibility to selectively migrate functions from static scheduled le-
gacy systems to dynamic scheduled systems will substantially facilitate for
companies to gradually move into the area of dynamic scheduling, and thus,
in the long run, help companies to use cheaper hardware for, or fit more func-
tions into, their products. Also the development process becomes easier be-
cause event triggered functionality does not have to be force-fitted into a static
model.

4.6 Conclusions

As stated in [MFN04] analyzability is one of the major concern for embedded
systems development. We have in this paper shown how a hybrid, static and
dynamic, scheduling model can be modelled and dynamic tasksanalyzed for
responsiveness. The type of system presented can be realized by commercially
available OS support, e.g., Rubus OS by Arcticus [Arc]. In fact, any fixed
priority OS complemented with an external static schedulercan implement this
type of system with the static schedule as a task at highest priority.

A hybrid, static and dynamic, scheduling model simplifies the design trade-
offs of which scheduling model to choose. Appropriate scheduling model can
be chosen on function level instead of system level. Since temporal guaran-
tees can be provided, this approach will also be applicable for hard real-time
systems. Choosing the most appropriate model for each function, instead of
force-fitting it to an overall model, not only simplifies the design choices but
also gives the possibility to save system resources and improve responsiveness.
This is demonstrated in a case study [HR03] at Volvo Construction Equipment
using the commercial real-time operating system Rubus by Arcticus [Arc].

166 PAPER D II

References

[ABD+95] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Perspec-
tive. Real-Time Systems, 8(2/3):173–198, 1995.

[Arc] Arcticus Systems Web-Page. http://www.arcticus.se.

[Ast] The Asterix Real-Time Kernel. http://www.mrtc.mdh.se/projects/-
asterix/.

[BBLB03] Scott Brandt, Scott Banachowski, Caixue Lin, and Timothy Bis-
son. Dynamic Integrated Scheduling of Hard Real-Time, Soft
Real-Time, and Non-Real-Time Processes. InProc. 24th IEEE
Real-Time Systems Symposium (RTSS). IEEE Computer Society,
December 2003.

[But97] G.C. Buttazzo.Hard Real-Time Computing Systems. Kluwer Aca-
demic Publishers, 1997. ISBN 0-7923-9994-3.

[BW96] A. Burns and A. Wellings.Real-Time Systems and Programming
Languages. Addison-Wesley, second edition, 1996. ISBN 0-201-
40365-X.

[CAN92] Road Vehicles – Interchange of Digital Information– Controller
Area Network (CAN) for High Speed Communications, February
1992. ISO/DIS 11898.

[Cer99] A. Cervin. Improved scheduling of control tasks. InProc. of the
11th Euromicro Workshop of Real-Time Systems, pages 4 – 10,
June 1999.

[Flx] FlexRay Home Page. http://www.flexray-group.org/.

[HR03] K. Hänninen and T. Riutta. Optimal Design. Master’s thesis,
Mälardalens Högskola, Dept of Computer Science and Engineer-
ing, 2003.

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System.The Computer Journal, 29(5):390–395, 1986.

[KG94] H. Kopetz and G. Grünsteidl. TTP – A Protocol for Fault-Tolerant
Real-Time Systems.IEEE Computer, pages 14–23, January 1994.

II R EFERENCES 167

[Loc92] C.D. Locke. Software Architecture For Hard Real-Time Appli-
cations - Cyclic Executives vs. Fixed Priority Executives.The
Journal of Real-Time Systems, 4:37–53, 1992.

[MFN04] Anders Möller, Joakim Fröberg, and Mikael Nolin. Industrial Re-
quirements on Component Technologies for Embedded Systems.
In 7th International Symposium on Component-based Software
Engineering (CBSE7). IEEE Computer Society, May 2004.

[MTN04] Jukka Mäki-Turja and Mikael Nolin. Tighter Response-Times for
Tasks with Offsets. InProc. of the 10th International conference
on Real-Time Computing Systems and Applications (RTCSA’04),
August 2004.

[NNT+04] Dag Nyström, Mikael Nolin, Aleksandra Tesanovic, Christer
Norström, and Jörgen Hansson. Pessimistic Concurrency-Control
and Versioning to Support Database Pointers in Real-Time Data-
bases. InProc. of the 16th Euromicro Conference on Real-Time
Systems, June 2004.

[Nor99] Northern Real-Time Applications. SSX5 True RTOS, 1999.

[PG98] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. InProc. 19th

IEEE Real-Time Systems Symposium (RTSS), December 1998.

[RRW+03] J. Regher, A. Reid, K. Webb, M. Parker, and J. Lepreau. Evolv-
ing real-time systems using hierarchical scheduling and concur-
rency analysis. InProc. 24th IEEE Real-Time Systems Symposium
(RTSS). IEEE Computer Society, December 2003.

[RS01] J. Regher and J.A. Stankovic. HLS: A framework for composing
soft real-time schedulers. InProc. 22th IEEE Real-Time Systems
Symposium (RTSS). IEEE Computer Society, December 2001.

[SEF98] K. Sandström, C. Eriksson, and G. Fohler. Handling Interrupts
with Static Scheduling in an Automotive Vehicle Control System.
In Proc. of the 5th International conference on Real-Time Com-
puting Systems and Applications (RTCSA’98), 1998.

[SRLK02] S. Saewong, R. Rajkumar, J.P. Lehoczky, and M.H. Klein. Anal-
ysis of hierarchical fixed priority scheduling. InProc. of the 14th

168 PAPER D II

Euromicro Conference on Real-Time Systems. IEEE Computer So-
ciety, June 2002.

[Tin92] K. Tindell. Using Offset Information to Analyse Static Priority
Pre-emptively Scheduled Task Sets. Technical Report YCS-182,
Dept. of Computer Science, University of York, England, 1992.

[Vol] Volvo Construction Equipment. http://www.volvoce.com.

[XP00] J. Xu and D.L. Parnas. Priority Scheduling Versus Pre-Run-Time
Scheduling.The Journal of Real-Time Systems, 18(1):7–23, Janu-
ary 2000.

III

Appendicies

171

APPENDIX A

RTA Formulae

This appendix presents RTA formulae for some of the extensions made to the
basic RTA presented by [JP86]. The task model for basic RTA isas follows. A
taskτi is specified by:

• A period,Ti.

• Worst case execution time,Ci.

• Deadline,Di.

• Priority, Pi.

The followingassumptionsmust hold in order for the analysis to be valid:

• There can be no synchronization between tasks.

• Tasks must not suspend themselves.

• Deadlines must be less or equal to corresponding periods, i.e.,Di ≤ Ti.

• Tasks must have unique priorities.

The response time for taskτi, Ri, consists ofτi-s own worst case execution
time and higher priority task interference:

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉

Cj

Wherehp(i) denotes the set of tasks having higher priority thanτi.
The extensions presented in this appendix aim at increasingthe applicabil-

ity of RTA either by extending the task model or lifting some of the restrictions
in the assumptions.

172 APPENDIX A. RTA F ORMULAE III

Adding blocking

Assuming the blocking factor, the time a task has to wait for ashared resource
held by a lower priority task, can be bound toBi, the response time, forτi, can
then be obtained by:

Ri = Ci + Bi +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉

Cj

Adding jitter

Assuming there is a uncertainty of the periodic release of a task, jitter, by an
amount ofJi, the response time can be obtained by:

wi = Ci +
∑

∀j∈hp(i)

⌈
wi + Jj

Tj

⌉

Cj

Ri = wi + Ji

Adding offsets – approximate approach

Adding offset relations to the basic model means that all tasks can no longer
be released for execution at the same time. Tasks with mutualoffset relations
are grouped into transactions (Γi), each with their own period time (Ti). The
definition of critical instant is relaxed to: One task out of every transaction is
released at the critical instant. This means that there onlycan be a simultaneous
release of some tasks. Taskτij denotes taskj of transactionΓi. OffsetOij

denotes the release of a task relative to the start of the transaction.
Assuming one knows what task out of every transaction coincides with the

critical instant, let us call such a task a critical instant task τic, the phasing
between the critical instant task and any other task can be calculated as:

Φijc = (Oij − Oic) mod Ti

That is,Φijc denotes the time of a subsequent (or perhaps simultaneous) release
of τij , relative to the release ofτic at the critical instant.

With τic as the critical instant task ofΓi, the interferenceΓi poses on a task
under analysis,τua, during timet, is:

III C OMMUNICATIONS DEVICE – CAN 173

Wic(τua, t) =
∑

∀j∈hpi(τua)

⌈
t − Φijc

Ti

⌉

Cij

Wherehpi(τua) denotes the set of tasks with higher priority toτua and
which belongs to transactionΓi.

Since one can not know which task coincides with the criticalinstant be-
forehand, the exact approach must examine every possible combination of crit-
ical instant tasks in the different transactions. This becomes computationally
intractable for anything but small task sets. Therefore an approximate interfer-
ence ofΓi, considering each transaction in isolation, is given by:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t)

With this exact and approximate interference, the responsetime for a task
under analysis (Rua) can calculated as:

Rua = Cua + max
∀c∈hpu(τua)∪a

(∑

∀i6=u

W ∗
i (τua, Rua) + Wic(τua, Rua)

)

With this definition we see that the approximate interference function is
used for all butτua-s own transactionΓu. ForΓu the exact interference is used
and thus one must examine each task (includingτua) in Γu as coinciding with
the critical instant.

Communications device – CAN

CAN is a non-preemptive fixed priority resource where a message can only be
interrupted during the time it takes to send one bit,τbit, over the communica-
tion channel. The response-time formulae thus becomes:

wi = τbit +
∑

∀j∈hp(i)

⌈
wi

Tj

⌉

Cj

Ri = wi + Ci − τbit

174 APPENDIX A. RTA F ORMULAE III

Response time larger than period

Assuming the response time is allowed to be greater than the period for τi,
implies that there can be several active task instances ofτi active simultane-
ously. In calculating the response time, another iterativestep is added. First,
the length of level-i busy period (processor is busy executing tasks with priority
higher or equal toτi) is determined. The response time for each task instance,
in that busy period, has to be calculated, and the maximum of them constitutes
the worst case response time forτi:

Length of level-i busy period:

BPi =

⌈
BPi

Ti

⌉

Ci +
∑

∀j∈hp(i)

⌈
BPi

Tj

⌉

Cj

Obtaining the worst case response time:

Ri = max
k∈1...

⌈
BPi
Ti

⌉ Ri,k where

Ri,k = kCi +
∑

∀j∈hp(i)

⌈
Ri,k

Tj

⌉

Cj − (k − 1)Ti

175

APPENDIX B

Table of concepts

Concept Meaning

Activation time The time of the event occurrence triggering a task.
Blocking time The time a task under analysis must wait for a lower

priority task to release a shared resource.
Critical instant (c.i.) Point in time leading to maximum response time for a

task under analysis.
Imposed interference Interference actually imposed on a task during a time

interval.
Jitter Difference between earliest and latest possible release of

a task.
Offset Time difference between the earliest and latest possible

release of a task.
Released for execution Interference of tasks released for execution, i.e., sum of
interference WCET of tasks placed in the ready queue.
Release time The time the task is released for execution, i.e., placed

in the ready queue.
Response time Time from activation to completion of a task.
Self suspension A task voluntarily suspending itself, e.g., by a delay call.
Set 1 task instances Task instances released before c.i. and delayed by jitter

to be released at c.i.
Set 2 task instances Task instances released after the c.i.
Worst case Longest possible execution time of a task if it could run
execution time uninterrptedly on the CPU.

177

APPENDIX C

Table of abbreviations

Abbreviation Meaning

BCRT Best case response time
c.i. Critical instant
EDF Earliest deadline first
ET Event-triggered
FPS Fixed-priority scheduling
LCM Least Common Multiple
MRTC Mälardalen Research and Technology Centre
RM Rate Monotonic
RTA Response-time analysis
TT Time-triggered
TTP Time-Triggered Protocol
VCE Volvo Construction Equipment
WCRT Worst case response time
WCET Worst case execution time

179

APPENDIX D

Table of symbols

Symbol Meaning

Bij Blocking factor of taskτij

Cij WCET of taskτij

Dij Deadline of taskτij

Γi Transactioni
ISet1

ijc Amount of interference of task instances in Set 1
ISet2

ijc (t) Amount of interference of task instances in Set 2 duringt

Jij Jitter of taskτij

J ind
i (τua) Jitter induced part of the approximate interference ofΓi

Oij Offset of taskτij

Pij Priority of taskτij

Φijc Relative phasing between critical instant taskτic andτij

Rij Response time of taskτij

Rk
i Thekth fix-point iteration in calculatingRi

Ti Period of taskτi or transactionΓi

T c
i , T t

i Arrays representingT ind
i (τua, t) up toTi. T c

i [n] is the maximum
amount of interference up to time intervals of lengthT t

i [n]

τua Generally: Taska of transactionΓu. Also, taskunder analysis
τic Critical instant task, i.e., the task inΓi that coincides with the c.i.
T ind

i (τua, t) Time induced part of the approximate interference ofΓi

vi Point set representingT ind
i (τua, t) up toTi. v[n].y is the

amount of interference up to time intervals of lengthv[n].x

v′

i Point set representingT ind
i (τua, t) for Ti < t ≤ 2Ti

W ∗

i (τua, t) Approximate interference imposed onτua by Γi duringt

Wic(τua, t) Exact interference imposed onτua by Γi duringt,
assumingτic coincides with the critical instant

