
Modelling and Verification of Dependable Component-Based
Vehicular Control-System Architectures

Ian Peake1 Anders Möller2,3 Heinz Schmidt1

1Monash University, Melbourne, Australia
2MRTC, Mälardalen University, Västerås, Sweden

3CC Systems, Uppsala, Sweden

E-mail: Ian.Peake@infotech.monash.edu.au

May 30, 2005

(Research Paper)

Abstract

Domains such as vehicular control system design illustratethe need for component-based development methods
based on architectural component models, and formal, design-time verification of extra-functional requirements such
as schedulability. However, methods for verification and prediction of component-based systems are still impractical,
requiring improved performance and accuracy.

We show how usingdependent finite state machines(DFSMs) enables practical property prediction, through a case
study illustration of an automotive cruise control system,with varying behaviour depending on configuration choices,
represented in the SaveComp component model (SaveCCM). Variability is a hallmark of component-based design,
in particular of product line architectures in automotive control. The parameterised component protocol types in
DFSMs permit analysis of behaviour dependencies and allow refined predictions for improved accuracy in worst-case
execution time (WCET) bounds for particular configurations. Since task schedulability critically depends on WCET,
schedulability can be predicted more accurately. Many other approaches take a whole-of-system analysis approach,
requiring computation of a detailed behavioural model of the entire system. In contrast, hierarchical DFSMs permit
propagation of behaviour constraints through networks of mutually dependent state machine behaviour models. The
propagation operates on hybrids of protocol state machinesand simplified ”property” models – such as formulae or
table representations for WCET properties of state machines.

Combining SaveCCM and schedulability analysis with DFSM semantics and dependency analysis allows scalable
and accurate analysis of SaveCCM systems and extends the range of compositional extra-functional properties studied
and analysed in the context of DFSMs.

Keywords: Software quality, Evaluation of software products and components, Applications (component-based
systems), Modelling

1 Introduction

Developers of embedded vehicular control systems face challenges of (i) high demands on reliability and performance
(ii) requirements on lowered product cost, and (iii) supporting many configurations, variants and suppliers. To meet
these requirements, more and more electronics and softwareare introduced. In, e.g., BMW’s new 7-series luxury cars
there are more then 65 electronic control units (ECUs), eachof which includes its own CPU, RAM and communication
devices. In the Volvo XC90, the maximum configuration contains about 40 ECUs connected via two Controller Area
Networks [1], one MOST ring [2] and a set of Local Interconnect Networks [3].

However, whilst computer systems offer the performance needed for the functions requested, they also add new
sources of failures that might jeopardise product reliability and safety. Also, in order to keep the software develop-
ment costs within budget, more and more Original Equipment Manufacturers (OEMs) use sub-contractors (and/or

1

Commercial-Off-The-Shelf (COTS) components) to develop various parts of their computer system. This further in-
creases complexity of system analysis and jeopardises software system trust, and due to the potentially high (economic
and/or safety) impact of software failures (e.g., passenger safety in a car) – predictable software becomes increasingly
important.

This calls for new systematic engineering approaches to design, develop, and maintain vehicular control-system
software. Component-Based Software Engineering (CBSE) issuch a technique, successfully used in many Inter-
net/office applications. However, in order to be as successful in the area of dependable and safety-critical embedded
vehicular control-systems, CBSE must be equipped with tools and methods tomodel, predict, andverify both core
software functionality and extra-functional properties such as real-timeliness, reliability, and safety.

In this paper we combine a component model custom-made for safety-critical embedded control-systems [4] with
novel methods for architecture-based reasoning, modelling, and prediction [5, 6, 7]. We show how our approach,
based on dependent finite state machines (DFSMs), may be usedfor practical verification of extra-functional properties
expressed in the SaveComp component model.

By doing this we can, e.g., guide software system developersto put focus on the part of the application that is most
crucial in terms of extra-functional system properties such as real-timeliness or reliability.

We employ dependent finite state machines (DFSMs) [7] to facilitate in turn the modelling of protocols at compo-
nent interfaces, practical composable models of extra-functional properties, and, e.g., verification of system schedula-
bility under real-time constraints in distributed embedded real-time control-systems.

The distributed vehicular control-systems of interest to us require dealing with parallel behaviour (or at least
communication of a sequential component with parallel components in its deployment environment). However, our
work focuses initially on the sequential components and thebehaviour of multiple components executing on the same
embedded controller. Therefore asynchrony and schedulingissues are inside the boundaries of our project, whilst true
(distributed) parallelism is outside.

The paper is outlined as follows. Section 2 introduces the novel SaveCCM, and in Section 2.1 we present an
industrial prototype implementation of an adaptive cruisecontroller (implemented in SaveCCM). Section 3 presents
the scheduling analysis performed using a novel technique combining elements of SaveCCM and extended DFSMs.
Section 4 discusses related work.

2 The SaveComp Component Model

The SaveComp Component Model (SaveCCM) is for development of software for vehicular systems. The model is
restrictive compared to commercial component models for enterprise systems, like, e.g., Microsoft’s .NET or SUN’s
EJB. SaveCCM provides three main mechanisms for designing applications: (i) components which are encapsulated
units of behaviour, (ii) component interconnections whichmay contain data, triggering for invocation of components,
or a combination of both data and triggering, and (iii) switches which allow static and dynamic reconfiguration of
component interconnections.

The main architectural elements in SaveCCM are components,switches, and component assemblies. The interface
of an architectural element is defined by a set of ports, whichare points of interaction between the element and
its external environment. SaveCCM distinguish between input- and output ports, and there are two complementary
aspects of ports: the data that can be transferred via the port, and the triggering of component executions (for more
details, see [8]).

Components are the basic units of encapsulated behaviour, and are defined by an entry function, input and output
ports, and extra-functional properties. A component is notallowed to have any dependencies to other components, or
other external software (e.g. the operating system), except the visible dependencies through its input- and output-ports.
A switch provides means for conditional transfer of data and/or triggering between components. A switch specifies
a set of connection patterns, each defining a specific way of connecting the input and output ports of the switch.
Component assemblies allow composite objects to be defined,and make it possible to form aggregate components
from groups of components, switches, and assemblies.

The graphical syntax of SaveCCM, derived from UML 2.0 symbols but with additions to distinguish between
the different types of ports, is available in [4]. The textual syntax is XML-based, and available in [8]. The XML-
description, which contain no dependencies to the underlying system software or hardware, is used as input to the
compiler. The compilation is performed in four stages, explained below.

Task-allocation. During the task-allocation step, components are assigned to operating-system tasks (independently
of the execution platform). The algorithm strives to reducethe number of tasks by allocating components to the
same task whenever possible, i.e. (i) when the components execute with the same period-time, or are triggered
by the same event, and, (ii) when all precedence relations between interacting components are preserved. A
description of the algorithm is available in [8].

Attribute Assignment. Assigning attributes is dependent on the underlying platform and on the analysis goals. In the
current implementation, the task attributes are:period-time, priority, worst-case execution-time(WCET), and
(iv) deadline. The period time, deadline, and WCET are derived from the components included in each task.
Priority is assigned in deadline monotonic order, i.e., shorter deadline gives higher priority.

Analysis. The analysis step is dependent on the underlying platform, e.g., schedulability analysis is limited to the
algorithms available in the OS used. However, in the currentprototype implementation, schedulability analysis
according to FPS theory is performed.

Code Generation. The code generation module of the compile-time activities generates all source code that is depen-
dent on the underlying operating system.

2.1 An Adaptive Cruise Controller Application

To evaluate our ideas, we use a SaveCCM prototype implementation of an Adaptive Cruise Controller (ACC), first
presented in [8]. The ACC extends the regular cruise controller (typically used to keep a desired speed) in that it (i)
helps the driver keep a safe distance to a preceding vehicle,(ii) autonomously changes the speed depending on the
speed limit regulations, and (iii) helps the driver to slam the brake in extreme situations.

When implementing the ACC application using SaveCCM (see Figure 1), we distinguish between three different
sources of input to the ACC application: (i) the Human Machine Interface (HMI), (ii) the vehicular internal sensors,
and, (iii) the vehicular external sensors. The outputs can be divided in two categories, the HMI outputs, and the
vehicular actuators for controlling the speed of the vehicle. Furthermore, the application has two different trigger
frequencies, 10 Hz and 50 Hz. Logging and HMI output activities execute with the lower rate, and control related
functionality at the higher rate.

The application has three different operational modes:Off, ACC Enabled, andBrake Assist. In the Off mode,
none of the control related functionality is activated. During theACC enabledmode the control related functionality
is active. In theBrake Assistmode, braking support for extreme situations is enabled. The ACC system (Figure 1 a)
is built-up from four basic components, one switch, and one sub-assembly. The sub-assembly (ACC Controller) is in
turn implemented as shown in Figure 1 b.

(a)

<<Assembly>>
ACC Controllers

<<Assembly>>
Distance

Controller

<<Assembly>>
Speed

Controller

Distance

Control

Relative
Speed

Max
Speed

Current
Speed

(b)

<<Assembly >>
Distance

Controller

<<SaveComp >>

Calc Output

<<SaveComp >>

Update State

<<Assembly >>
Speed

Controller

<<SaveComp >>

Calc Output

<<SaveComp >>

Update State

Distance
Relative
Speed

Max
Speed

Current
Speed

Control

Road Signs Enabled

Current Speed

Road Sign Speed
ACC Max Speed

Distance

ACC Enabled

Brake Pedal Used

<<Assembly>>50 Hz

10 Hz

Brake Signal

Throttle

Brake Assist

<<SaveComp>>

Logger
HMI Outputs

<<SaveComp>>

Object
Recognition

<<SaveComp>>

Mode Switch

<<Switch>>

ACC
Controller

<<Assembly>>

Brake Assist

ACC

Max Speed

ACC Application
Speed Limit

<<SaveComp>>

Figure 1: Adaptive Cruise Controller (ACC) application

The Speed Limitcomponent calculates the maximum speed, based on input fromthe vehicle sensors and the
maximum speed of the vehicle (speed-limit regulation dependent). The component runs with 50 Hz and triggers the

Object Recognitioncomponent. TheObject Recognitioncomponent, in turn, is used to decide whether or not there is
a car in front of the vehicle. In case there is, it calculates the relative speed to this car. The component is also used to
triggerMode Switchand to provideMode Switchwith information indicating if there is a need to use the brake assist
functionality or not.Mode Switchis used to trigger the execution of theACC Controllerassembly and theBrake Assist
component, based on the current system mode and informationfrom Object Recognition. TheBrake Assistcomponent
is used to assist the driver, by slamming the brakes if there is an dangerous obstacle in front of the vehicle. TheLogger
HMI Outputscomponent is used to communicate the ACC status to the drivervia the HMI, and to log the internal
settings of the ACC. TheACC Controllerassembly is built up of two cascaded controllers (see Figure1 b), managing
the throttle lever of the vehicle. This assembly has two sub-level assemblies, the Distance Controller assembly and the
Speed Controller assembly. A control feedback solution is used between these two controllers, see [8] for details.

Figure 2 illustrates how the components in the ACC application are allocated to operating system (OS) tasks.Task
A is triggered at 50 Hz and, hence, executes every 20 msec.Task Atriggers taskTask B, Task C, a combination of both,
or neither of these depending on the system mode.Task Dis triggered at a frequency of 10 Hz, hence executes every
100 msec.

Task A

Task B

Task C

Task D

50 Hz

<<SaveComp>>

Speed
Limit

10 Hz
<<SaveComp>>

Logger

<<SaveComp>>

Object
Recogn

<<Switch>>

Mode
Switch

<<SaveComp>>

Distance
Output

<<SaveComp>>

Brake
Assist

<<SaveComp>>

Speed
Output

<<SaveComp>>

Update
Speed

<<SaveComp>>

Update
Distance

Figure 2: A control flow graph, including an illustration of the operating system tasks, of the ACC application
described in SaveCCM graphical syntax

3 Modelling and Analysing Schedulability

To illustrate how the ACC application can be used in analysisof timing properties (schedulability), for the sake of
brevity in this paper, we assume that the application executes on a single ECU and that the components are allocated
to operating system tasks as shown in Figure 2. We further assume that the tasks are executing under a fixed priority
real-time kernel, with zero execution time overhead. In Figure 3 we show how the extra-functional properties (only
WCET in this specific example) of the components are summed upin order to get the schedulability attributes ofTask
A - Task D. The WCET’s are obtained using the framework-based run-time monitoring technique described in [9].

3.1 Context-free Schedulability Analysis

If we model or analyse extra-functional properties of a component-based system without regard to the deployment
context, we call this model (or the analysis, respectively)context-free. Context-free schedulability analysis typically
follows the hierarchical composition structure or the acyclic data-flow structure between components to assign WCET
and solve the schedulability problem utilisation this treeor dag structure.

For a set of independent periodic tasks, with deadlines within the period – the Deadline Monotonic priority assign-
ment model is optimal. However, for simplicity, we assume that deadlines equal the period. Hence, we use the Rate
Monotonic (RM) priority ordering, where tasks get priorities according to their periods. The task with the shortest
period gets the highest priority, and the task with longest period gets the lowest. Tasks with higher priority can pre-
empt lower priority tasks. Given this, together with the execution time attributes of the components, we can derive the
following tasks for the ACC application:

Tasks Period (ms) WCET (ms) Deadline (ms) Priority

Task A 20 6 20 4
Task B 20 8 20 3
Task C 20 2 20 2
Task D 100 4 100 1

Component WCET (ms)

Speed Limit 2

Object Recogn 3

Mode Switch 1

Distance Output 3

Speed Output 3

Update Speed 1

Update Distance 1

Brake Assist 2

Logger 4

Figure 3: Component attributes and task set information forthe ACC application

By applying, e.g., response-time analysis [10], it is easy to show that this task-set is schedulable.

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉Cj (1)

Solving the recurrences in Equation 1 on the task-set described in Figure 3 gives us,RTA
= 6, RTB

= 14,
RTC

= 16, andRTD
= 20. Since the conditionRTi

< Di is fulfilled for all tasks in the task-set, the ACC application
is schedulable. In the upcomming versions of the SaveComp Component Technology, we will deploy more advanced
schedulability tests, such as response-time analysis for tasks with offsets [11], which will allow high utilisation and
can cater for real-world phenomena such as jitter and OS-overheads.

Speed Limit LoggerACC
Controller

Brake
Assist

Mode
Switch

Object
Recogn

ACC Application

Speed
Controller

Distance
Controller

Update
Speed

Speed
Output

Update
Distance

Distance
Output

Figure 4: A component-wise hierarchical decomposition of the adaptive cruise controller

3.2 Context-dependent Schedulability

Component-based control systems architectures –and especially product-line architectures– aim at maximising reuse.
The units of reuse in this approach are software components,i.e., binary deployable, independently developed, black-
box entities (see e.g., [12]) and variable configuration units where variation point specifications describe dependent
behaviour or component choices. Design-for-reuse maximises the flexibility and reuse of such units, however,at the
price of including behaviours in most configurations that are used only in a few of them. Unlike dead-code elimination,
these behaviours cannot be removed because they are offeredby interfaces to the given deployment context of those
components - an intrinsic by-product of the openness of components.

Even if these behaviours remain unexecuted in all executioncontexts, or unexecuted with a very high probability,
they contribute to the WCET prediction, all adding up to WCETbounds that are deviating significantly from any
WCET observed in practice. Thus design-for-reuse tends to work against accurate WCET prediction in existing
WCET models and approaches, because they arecontext-free, i.e., defacto do not or cannot take into account the
deployment context of a set of components.

For example the ACC Controller in the Cruise Control case study includes four components: Distance Output,
Speed Output, Update Speed and Update Distance, each exhibiting several different behaviours. A configuration
which selects the regular ACC Control (non-adaptive behaviour) corresponds to a variation point choice that selects
mutually dependent component behaviours for all four components. Let us abbreviate the relevant WCETs of the
corresponding component behaviours by the component initials prefixed by ‘r’ for ‘regular’ and ‘a’ for ‘adaptive’. Let
us also assume the regular WCET of these components are0.5ms, 0.5ms, 1ms and1ms respectively and the adaptive
WCETs are3ms, 3ms, 0.5ms and0.5ms, respectively. Then implicitly the context-free schedulability analysis above
(cf. Sec. 3.1) uses the maximum of regular and adaptive timesfor all four ACC subcomponents and sums them to
arrive at the ACC component WCET.

WCETACC = max(aDO, rDO) + max(aSO, rSO) + max(aUS, rUS) + max(aUD, rUD) = 8ms.

However, clearly

8ms = WCETACC > max(aDO + aSO + aUS + aUD, rDO + rSO + rUS + rUD) = 7ms.

I.e. the maximum of the modelled regular and adaptive behaviors is actually smaller. Moreover in a deployment
context selecting the regular behaviour only, the relevanttime is considerably smaller:

WCETr = rDO + rSO + rUS + rUD = 3ms.

In large-scale control systems such differences are considerably more pronounced. Thus, a refined analysis is
necessary to arrive at accurate WCET predictions at the level of tasks to which several hierarchical components are
allocated. Furthermore, such a refined analysis requires context-dependent reasoning.

Some approaches to WCET prediction propose such context-dependent analysis using data flow techniques known
from compiler construction. By means of so-called scope trees, they incorporate the subcomponent models, flatten
the hierarchy and then analyse the compound model of the entire product bottom-up (see for example, [13]). This
white-box approach to components, obviously does not scaleand also requires access to the complete source code,
which is not always available. Small incremental extensions of a product by a single component may require repeated
full flattening, expansion and recalculation of the WCET, which can be prohibitive in large-scale component-based
software development.

3.3 Dependency networks of component protocol types

Elsewhere we have described an alternative architecture description language RADL [refs], and a semantics for
RADL expressed in terms of Dependent Finite State Machines (DFSMs) allowing a compositional approach to extra-
functional properties such as WCET, reliability and others- provided the properties themselves or approximate and
still accurate models are reasonably compositional.

DFSMs provide a formal mechanism for describing the allowedinteractions between a given component and its
environment, i.e., protocols, and provide ways of talking about the structure of and relationships between protocols,by
modelling a network of interface protocol dependencies. Known usage profiles and deployment environment models
can be modeled as protocol types themselves, then fed into the given network as constraints which propagate through
the network and (conceptually) eliminate non-executing behavioural alternatives. The process can be likened to dead-
code elimination, except that it is performed at the level ofthe property model, and the component code itself is not
affected at all.

DFSMs are defined in terms of finite state machines extended togenerate trace languages, which capture notions
of true concurrency. A (regular) trace language, analogously to a regular language, gives a set of traces. A trace
is a set of strings, which are equivalent up to arbitrary permutation of pairs of symbols which are not ordered with
respect to each other. A core notion provided by DFSMs is thatof a component’sabstract machine, that is, a model
of the component that expresses how it implements its interactions with its environment. (The abstract machine is a
white-box notion: it may reveal internal structure of the component, i.e., dependence on subcomponents through the
use ofhidden symbolsin the language it generates.)

3.3.1 Towards DFSM semantics for SAVECOMP

Below we give a simple semantics for SaveCCM in the form of a regular trace language. We restrict ourselves, without
loss of generality, to modelling features which impact on task assignment and schedulability, by modelling control, but
not data, signals. The goal is to give a compositional semantics, where models of component assemblies are derivable
from models of subcomponent assemblies via “simple” (i.e. local) composition.

For the sake of simplicity, we consider only tasks to be “true” components, and we assume that the assignment of
components to tasks (based on inter-component triggers anddata flow) has been performed already by the SaveCCM
compiler. Ideally, an extension to the semantics would demonstrate how the task assignment algorithm could itself be
specified and implemented compositionally.

The semantics is defined as follows:

• An entire system has a protocol which accepts a “ticking” language. The system accepts repeated “system tick”
symbols in the trace language corresponding to trigger events occuring at the greatest common multiple of all
trigger frequencies;

• Individual trigger frequencies have their own protocols which accept (hidden) repeated “trigger tick” symbols
corresponding to their own trigger frequency;

• A system synchronisation protocol accepts both repeated system ticks and various trigger ticks, and restricts both
the rate and ordering of the trigger ticks with respect to system ticks, so that trigger ticks occur at the appropriate
integral fractions of the system tick rate. This includes making trigger ticks and system ticksdependent;

• Individual tasks (considered atomic for the purpose of thissemantics) are represented by protocols which ac-
cept repeated instances of a unique corresponding task symbol, which are mutually dependent on the trigger
tick corresponding to their invocation frequency. (This correctly leaves certain behaviour nondeterministic, for
example the ordering of multiple tasks coincidentally scheduled for the same real time instant in the absence of
other constraints);

• Where tasks invoke each other, this is represented by mutualdependence of their respective symbols, and ap-
propriate ordering within the trace language;

• Where tasks may only optionally invoke another task, this isfurther represented by optionality of the invoked
task in the trace language;

• Where one task has priority over another, an additional special synchronisation protocol which respects.

3.3.2 The ACC model in DFMSs

To illustrate the semantics, we give an abstract machine forthe Adaptive Cruise Controller (ACC) without distin-
guishing adaptive versus regular behaviour. Even using a relatively simple, coarse-grained characterisation of this
component, the abstract machine is surprisingly complex—indeed, it is not practical to show a complete finite state
machine because of the state explosion which occurs when considering all the possible valid ordering of events occur-
ing within its implementation.

The trace language generated by the abstract machine is as a regular trace expression as follows:

L = (a(b|c|bc|t1)
∗||(dt2)

∗||(t1t)
∗||(ttttt2t)

∗ (2)

Σ = {a, b, c, t1, t2, t} (3)

D = {a, b}2 ∪ {a, c}2 ∪ {b, t1}
2 ∪ {c, t1}

2 ∪ {d, t2}
2 ∪ {t1, t}

2 ∪ {t2, t}
2 (4)

While the trace language semantics uses restricted shuffle products, the DFSM semantics cited avoids the associ-
ated state space explosion by using Petri nets in which independent behaviours (actions or entire components) remain
unordered.

In addition, our approach keeps the state space explosion incheck, which could result from flattening a large
hierarchy of component models, by treating components as black boxes and associating approximate and simplified
property models with them. At higher levels in the hierarchythe simpler models are propagates without recursing

to the details from which they were derived. We call this compositional modeling ’property-enriched component
models’.

For WCET we use formulae and tables in our implementation that describe worst case times or reliability condi-
tional upon classes of deployment contexts. These compositional DFSM semantics are currently being evaluated in
large-scale real-world case studies in collaboration withindustry partners.

4 Related Work

During the last decade, tremendous advancements have been made in component-based development (CBD) for
desktop- and Internet-applications, e.g., Microsoft’s COM and .NET, SUN’s EJB. However, for embedded systems
no readily available technique exist [14, 15]. To this end, many projects have come up with component models that
should support analysable systems, e.g. [8, 16, 17]. All these techniques are based upon static, worst-case analysis of
the system. Crnkovic and Larsson provides a good overview ofthe problems needed to be tackled when employing
component-based development for embedded systems [18], and Möller et al. [19] describes industrial requirements to
be met by a component technology for embedded systems.

While traditional WCET approaches such as that of [?] are reaching maturity in the research community, our work
is novel in that it seeks to address the need for a true component-based WCET analyser which, while still accurate,
is also scalable to large systems for which complete source analysis may not be feasible due to sheer size or even the
unavailable of source code for third party components.

In collaboration with ABB Corporate Research Center in Germany, the Monash authors are applying DFSM-
based techniques to the “Extra-functional Consistency AndPrediction of Component-Based Control Systems” (eCAP)
project, developing a commercial prototype for the analysis of controller designs deployed using ABB’s IndustrialIT

suite, which supports notations compliant with IEC 6 1131-3including procedural code (“structured text”), dataflow-
style “function block diagrams”, and some proprietary extensions.

5 Conclusions

In this paper we described an extension of the SaveCCM schedulability analysis to context-dependent WCET mod-
elling. To this end we based the models on dependent finite state machines (described elsewhere). The paper con-
tributes refined and more accurate schedulability analysis—again, for SaveCCM. It also extends DFSMs to multi-task
analysis; they have so far only been used for single-task WCET analysis.

The combination of SaveCCM and schedulability analysis with the DFSM semantics and dependency analysis
allows scalable and improved schedulability analysis of SaveCCM systems and extends the range of compositional
extra-functional properties studied and analysed in the context of DFSMs to date.

References
[1] International Standards Organisation (ISO). Road Vehicles – Interchange of Digital Information – Controller AreaNetwork

(CAN) for High-Speed Communication, November 1993. vol. ISO Standard 11898.

[2] MOST. Specification framework rev 1.1. MOST Coopertion,http://www.mostnet.de, November 1999.

[3] LIN. – Protocol, Development Tools, and Software for Local Interconnect Networks. In 9th International Conferenceon
Electronic Systems for Vehicles, October 2000. Baden-Baden, Germany.

[4] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM - a Component Model for Safety-Critical Real-Time Sys-
tems. InProceedings of 30th Euromicro Conference, Special Session Component Models for Dependable Systems, September
2004.

[5] H. W. Schmidt, I. Peake, J. Xie, et al. Modelling Predictable Component-Based Distributed Control Architectures. In
Proceedings of the Ninth IEEE International Workshop on Object-Oriented Real-Time Dependable Systems, January 2004.
Anacapri, Italy.

[6] H. W. Schmidt. Trustworthy components: compositionality and prediction.Journal of Systems and Software, Elsevier Science
Inc, 65(3):215–225, 2003.

[7] H W Schmidt, B J Krämer, I Poernomo, and R Reussner. Predictable Component Architectures Using Dependent Finite
State Machines.Lecture Notes in Computer Science, 2941:310–324, 2004. (Proceedings of the 9th International Workshop
in Radical Innovations of Software and Systems Engineeringin the Future, Venice, Italy; revised version of the paper ofthe
same title in the Sep/2002 proceedings published as a TR by Universita Ca Foscari di Venezia).

[8] M. Åkerholm, A. Möller, H. Hansson, and M. Nolin. Towardsa Dependable Component Technology for Embedded System
Applications. InProceedings of the 10th IEEE International Workshop on Object-oriented Real-TimeDependable Systems
(WORDS05), February 2005. Sedona, Arizona, USA.

[9] D. Sundmark, A. Möller, and M. Nolin. Monitored SoftwareComponents – A Novel Software Engineering Approach –. In
Proceedings of the 11th Asia-Pasific Software Engineering Conference, Workshop onSoftware Architectures and Component
Technologies, November 2004. Pusan, Korea.

[10] L. Sha, T. Abdelzaher, K-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok.
Real Time Scheduling Theory: A Historical Perspective.Real-Time Systems, 28(2/3):101–155, 2004.

[11] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability Analysis for Tasks with Static and Dynamic Offsets. In
Proc. 19th IEEE Real-Time Systems Symposium (RTSS), December 1998.

[12] C. Szyperski.Component Software – Beyond Object-Oriented Programming. Addison-Wesley, ISBN: 0201745720, 1998.

[13] Jakob Engblom, Andreas Ermedahl, and Friedhelm Stappert. A worst-case execution-time analysis tool prototype for embed-
ded real-time systems. InWorkshop on Real-Time Tools (RT-TOOLS 2001) held in conjunction with CONCUR 2001, Aalborg,
Denmark, Aug 2001.

[14] I. Crnkovic. Componet-Based Approach for Embedded Systems. In Proceedings of 9th International Workshop on
Component-Oriented Programming, June 2004. Oslo, Norway.

[15] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin. Evaluation of Component Technologies with Respect to Industrial
Requirements. InEuromicro Conference, Component-Based Software Engineering Track, August 2004.

[16] K. C. Wallnau. Volume III: A Component Technology for Predictable Assembly from Certifiable Components. Technical
report, Software Engineering Institute, Carnegie Mellon University, April 2003. Pittsburg, USA.

[17] M. Winter, T. Genssler, et al. Components for Embedded Software – The PECOS Apporach. InThe 2nd International
Workshop on Composition Languages, in conjunction with the16th ECOOP, June 2002. Malaga, Spain.

[18] I. Crnkovic and M. Larsson.Building Reliable Component-Based Software Systems. Artech House publisher, 2002. ISBN
1-58053-327-2.

[19] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Component Technologies for Embedded Systems. InPro-
ceedings of the 7th International Symposium on Component-Based Software Engineering. 2004 Proceedings Series: Lecture
Notes in Computer Science, Vol. 3054, May 2004. Edinburgh, Scotland.

