
Probabilistic Analysis and Predictions of Component-Based Real-Time Systems

Anders Möller‡? Mikael Nolin‡? Ian Peake† Heinz W. Schmidt†

‡MRTC, Mälardalen University, Västerås, Sweden
†Monash University, Melbourne, Australia

?CC Systems, Uppsala, Sweden

E-mail:Anders.Moller@mdh.se

Abstract

Software components are suitable vehicles to introduce
advanced analysis techniques in a software-engineering
context for embedded control software; a feat that has yet
to be fully accomplished.

We are adopting a component-based approach to con-
trol software development. We are extending and combining
methods from disparate disciplines, such as probabilisticre-
liability predictions, stochastic scheduling analysis and soft-
ware component technologies. We study theories and meth-
ods for probabilistic modelling, analysis, and predictionof
control software executing in resource-constrained embed-
ded computers.

Combining the behaviour models and the architectural
model of a component assembly we are deriving stochastic
properties, such as reliability, expected delays, and resource
consumption. Using components as the fundamental unit of
reuse, we employ run-time monitoring techniques to extract
probabilistic models of the component behaviour.

1 Introduction
Developers of embedded real-time control-system face

challenges of (i) high demands on reliability and per-
formance (ii ) requirements on lowered product cost, and
(iii ) supporting many configurations, variants and suppli-
ers. Computer systems offer the performance needed for the
functions requested, but at the same time product reliabil-
ity and safety must not suffer. Unfortunately computers add
new sources of failures, and therefore can cause lessened
product reliability. This yields a strong focus on the ability
to model, predict, andverify software functionality, reliabil-
ity, and safety. However, many companies lack the technical
support to verify their system behaviour (both with respect
to functional and extra-functional aspects of the software)
- and black-box testing together with manual code inspec-
tions are usually the only methods used to “confirm” system
functionality and reliability.

Also, in order to keep the software development costs
within budget, more and more Original Equipment Manu-
facturers (OEMs) use sub-contractors (and/or Commercial-
Off-The-Shelf (COTS) Components) to develop various
parts of their systems. This increases complexity of sys-
tem analysis and further jeopardises software system trust.
Due to the potentially high (economic and/or safety) impact
of software failures (e.g., passenger safety in a car) – pre-
dictable software becomes increasingly important.

The real-time systems of interest to us are distributed,
and therefore require dealing with parallel behaviour (or at
least communication of a sequential component with paral-
lel components in its deployment environment). Our work
focuses initially on the sequential components and the be-
haviour of multiple components executing on the same em-
bedded controller. Therefore asynchrony and scheduling is-
sues are inside the boundaries of our project while true par-
allelism is outside.

2 Project Aims

In this project, we study theories and methods for prob-
abilistic modelling, analysis, and prediction of control soft-
ware executing in resource-constrained embedded comput-
ers. The overall goal is to come up with methods that will re-
sult in a decrease in system life-cycle costs, and an increase
in system quality.

Using components as the fundamental unit of reuse, we
employ run-time monitoring techniques to observe the sys-
tems and extract probabilistic models of the component
behaviour [9]. Combining the behaviour models and the
architectural model of a component assembly, we derive
stochastic properties, such as reliability, expected delays,
and resource consumption. We are extending and combin-
ing methods from disparate disciplines, such as probabilistic
reliability-predictions [1, 7] stochastic scheduling-analysis
[5, 6, 11], run-time monitoring [2, 9, 10], and software-
component technologies [3, 4].

The data obtained from monitoring the components are

1



used to address the following key areas in software engi-
neering of embedded control-systems:

• Model-extraction. By monitoring component-based
software, information about the component properties can
be extracted. The properties are used to annotate the com-
ponent models. In this way, extra-functional component
properties are obtained and refined without engineering
effort. These model properties provide a basis for trust in
components and can be used for system-level predictions.

• System-level predictions. By using models of the com-
ponent behaviour, key properties such as reliability, tim-
ing behaviour and resource consumption can be pre-
dicted. Early prediction of such properties can be used
to guide system designers and aid in dimensioning hard-
ware resources, hence reduce the development effort and
increase quality.

• System-level testing and debugging. By monitoring in-
dividual components and component interactions, errors
can be found and traced. Monitoring can also be used to
support replay debugging [10], where erroneous system-
executions are recreated in a lab environment to allow
tracing of bugs. Testing and debugging of embedded
systems are notoriously difficult and time-consuming.
Hence, increased support for test and debug has great po-
tential for cost savings.

• Run-time contract checking. The run-time monitoring
allows surveillance of third party components. Both func-
tional (e.g. range of output values) and extra-functional
(e.g. memory usage) properties can be monitored. During
acceptance testing, the contract checking is used to vali-
date that a component does not violate its specification. In
systems that fail after deployment, logs from the contract
checking can be used in post-mortem analysis. The pos-
sibility for post-mortem assessment of contract breaches
is likely to increase the willingness to deploy third-party
components in critical systems, since such assessments
can be coupled to financial liabilities.

• Observability. Computer systems in general and em-
bedded systems in particular, are infamous for the dif-
ficulty of observing their internal behaviour. This has
drawbacks throughout the debugging, testing and main-
tenance phases. Systems that are unobservable become
very difficult to analyse and validate. Also after deploy-
ment, observability is an important feature, allowing in-
spection and performance tuning of running systems.

To realize the above goals, this project contains two main
strands of research:

X Development of monitoring techniques suitable for
resource-constrained embedded systems. Monitoring
these systems require lightweight techniques to be de-
veloped. Also, the number of metrics (and their qual-
ity/granularity) should be limited. This presents a trade-

off between achieved results of the monitoring and the
resources consumed.

X Development of techniques to predict system proper-
ties from component properties. We focus our research
on stochastic methods such as reliability prediction and
probabilistic scheduling-analysis. Whether to deploy
stochastic or deterministic (worst-case) predictions is a
strategic decision for each project. However, the majority
of systems are not designed for worst-case scenarios; it is
not possible to motivate the cost incurred by dimension-
ing and validating the system for the worst-case scenario.
Hence, our focus is on stochastic methods that allow de-
signers to make well founded trade-offs between, e.g., re-
liability and production cost.

System Development
(Component Assembly)

Architectural Model Component 
Repository

System Generation

C Source Code

Compilation

Binary load modules

System Execution

New ComponentLedgend:

Process

Artefact

Figure 1. Traditional CBD Processes for Em-
bedded Systems

3 Component-Based Development
Component-Based Development (CBD) for resource-

constrained embedded real-time systems differs from gen-
eral CBD for Internet/office applications where components
are individually compiled and deployed. These components
are loaded at run-time, and bindings between components
are dynamically created by a middleware. Figure 1 illus-
trates the typical process when using CBD forembedded
systems. Systems are developed by assembling components
from a repository, or by using newly developed components.
In the next step a system generator generates source code
(typically C code) where component bindings are explicitly
represented and connected. Finally the code is compiled and
the system executed. Upon the detection of bugs or unde-
sired system properties, the system designer goes back and
modifies the system.

Using the results of this project, a much more attractive
process can be obtained. Figure 2 illustrates the new pos-
sibilities with highlighted activities. Firstly, using analysis,
early assessments about system properties can be made, also
– if the system is redesigned undesired properties can be de-
tected. Secondly, the system generator can be augmented to
automatically insert the instrumentation code needed to per-



form run-time monitoring. Finally, dynamic properties for
the components are extracted during run-time. These prop-
erties are then stored together with the components in the
repository and can be used in subsequent development cy-
cles.

4 Research Topics
This project draws upon existing results from several re-

search directions. The main challenges will include the iden-
tification of suitable techniques and a modification of these
techniques in order to better suit component-based develop-
ment of embedded systems.

4.1 Software Component Monitoring

Current approaches rely on software instrumentation to
produce logs. Part of this instrumentation can be placed
from operating system functions, which minimises the man-
ual effort for instrumentation. However, not all the data re-
quired can be extracted in operating system calls, and man-
ual instrumentation of application code is required. Further-
more, to make sure that all the needed data is collected –
expert knowledge of the application is required.

Component-based development gives us the opportunity
to automatically add code instrumentation. This is possible
if the component model makes explicit all data flows and
state variables, and this is the case for the component models
considered in this project [4].

System Development
(Component Assembly)

Architectural Model Component 
Repository

System Generation

C Source Code

Compilation

Binary load modules

System Execution

New Component

Analysis

Instrumentation

Model Extraction

Figure 2. Our proposal to CBD for Embedded
Systems

Some specific questions studied within this project are:

• Monitoring embedded systems require resource conser-
vative monitoring techniques. Are current techniques
good enough? Can they be modified to better suit em-
bedded real-time systems?

• Since resources are constrained, the number of metrics
(and their quality/granularity) should be limited. This
presents a trade-off between achieved results of the mon-
itoring and the resources consumed. A key problem in

this project is to identify the metrics that have the highest
beneficial impact on the software engineering process.

• Ideally, metrics should be collected and refined through-
out the life-cycle of a component. However, resource
limitations may hinder this ideal solution since different
metrics could be more important during different phases.
This presents a trade-off of which metrics to obtain dur-
ing what stage. A goal of this project is to identify which
metrics are most important during what stages.

• The problem that arises with monitoring is the large num-
ber of executions necessary to establish a reasonable sta-
tistical confidence. Due to the complex behaviour of soft-
ware components, traditional statistical methods to esti-
mate the statistical validity, such as confidence intervals,
may have to be used together with more domain specific
validity metrics. We will investigate to what extent tradi-
tional statistical methods are suitable and, if needed, try
to find methods to complement them.

4.2 Reliability Predictions

We focus on reliability predictions using Markov models,
as described in, e.g., [1, 7]. However, such methods require
that a system has a well-defined start and end state. Unfor-
tunately, this is not the case for reactive control-systems. In
addition, the Markov behaviour of software components has
to be mapped to the execution histories and their stochas-
tic properties. This requires blending automata models with
Markov chains.

Our prior research, e.g. [7, 8], has shown that reason-
ably accurate prediction of these system properties can
be achieved by parameterisation. Component-level, extra-
functional, models are variable with formal parameters rang-
ing over different behaviours or different extra-functional
variations.

Interesting research questions include:

• How can the modelling techniques be adapted/extended
in order to fit reactive systems, without start and end
states? One possible solution could be to introduce addi-
tional super-states, defining the start and end states. This,
however, needs to be combined with a way of finding re-
current states in the reactive control-system, i.e. system
states that will re-occur during execution.

• To facilitate architecture-based reliability predictions,
software components need to be equipped with reliabil-
ity figures. These figures depend on the context in which
the component is used. The usage-profile of a specific
component in a certain application has influence on the
reliability. What type of reliability measure best suits the
control-system domain, and what does this imply in terms
of changes in the analysis techniques?

• One basic idea is to transfer the architecture description of
the component-based system into a Finite State Automata



(FSA), and use reliability figures of the components to
represent system reliability. Is it possible to adapt this
method, in order to be more fine-grained, e.g., by repre-
senting also the actual components with FSAs? In this
case, reliability methods can be used to find the weakest
part of each of the used components.

• By using component impact analysis, software develop-
ers can be guided to put focus on the part of the appli-
cation that is most crucial in terms of reliability and us-
age. How can the architecture-based reliability predic-
tions, using a Markov chain representation, be extended
in order to guide control-system developers during the
design-phase?

4.3 Stochastic Schedulability Analysis

Traditional methods for stochastic schedulability-
analysis assume that execution-times can be described by
known probability functions. However, such a description
is often misleading since execution times cannot take on
arbitrary values. Typically, execution times are clustered
around a small set of “probability peaks” which is not easy
to represent with general probability functions.

On the other hand, if the representation of the execution-
times and their probabilities is too detailed, statisticalanaly-
sis becomes infeasible due to the combinatorial explosion in
the number of possible combinations of execution times.

• We investigate histogram-based schedulability-analysis.
A histogram can be adapted to provide the desired level
of detail, thus it gives the possibility to reduce complexity
of the analysis.

• When performing stochastic schedulability-analysis there
are two major sources of errors: (1) errors in the mod-
els used (e.g. due to not monitoring the component long
enough), and (2) errors due to simplifications/abstractions
made during the analysis. The effect of both these errors
needs to be quantified and bounded. This means that it
is not enough to calculate the result of the schedulability
analysis, but also a level of confidence that account for
both error source is needed.

5 Conclusion

This project will provide novel models, theories and tech-
niques to monitor and predict the behaviour of resource-
constrained embedded control-systems. This class of sys-
tems constitutes an increasing fraction of value in many
products, such as in vehicles and automation robotics. We
fuse scientific methods from disparate disciplines, such as
probabilistic reliability-predictions, stochastic scheduling-
analysis, run-time monitoring, and software-component
technologies. This will result both in novel methods and
extensions to existing, well established, methods.

This project takes a unique approach in that we, (i) com-
pared to other component-technology projects not focus on
developing our own component technology. Rather we fo-
cus on the ability to use the architectural- and component-
models to facilitate system-level analysis. Our goal is to
automate the whole process, thus we do not introduce ad-
ditional burdens for the software-engineers. And, (ii ), com-
pared to other analysis-techniques project, we do not focus
on generally applicable methods. Rather we constrain our
research to methods suitable for component-based systems.

References

[1] R. C. Cheung. A User-Oriented Software Reliability Model.
IEEE Transactions on Software Engineering, 6(2):118–125,
1980. Special collection from COMPSAC 1978.

[2] S. Chodrow. Run-time monitoring of real-time systems. In
Proc. of IEEE 12th Real-Time Systems Symposium, pages
74–83, December 1991. San Antonio, USA.

[3] I. Crnkovic. Component-Based Approach for Embedded
Systems. Inthe 9th International Workshop on Component-
Oriented Programming, June 2004. Oslo, Norway.

[4] M. Åkerholm, A. Möller, H. Hansson, and M. Nolin. To-
wards a Dependable Component Technology for Embedded
System Applications. InProceedings of the 10th IEEE Inter-
national Workshop on Object-oriented Real-Time Depend-
able Systems, February 2005. Sedona, Arizona, USA.

[5] J. P. Lehoczky. Real-Time Queuing Network Theory. In
Proceedings of the18th IEEE Real-Time Systems Symposium
(RTSS’97), pages 58–67, San Francisco, CA, USA, Decem-
ber 1997. IEEE Computer Society.

[6] T. Nolte, A. Möller, and M. Nolin. Using Components to Fa-
cilitate Stochastic Schedulability. InProceedings of the 24th

Real-Time System Symposium – Work-in-Progress Session.
IEEE Computer Society, December 2003. Cancun, Mexico.

[7] R. H. Reussner, I. H. Poernomo, and H. W. Schmidt. Reason-
ing about Software Architectures with Contractually Spec-
ified Components. Component-Based Software Quality.
LNCS 2693, Springer-Verlag, pages 287 – 325, 2003.

[8] H. W. Schmidt. Trustworthy components: compositionality
and prediction. Journal of Systems and Software, Elsevier
Science Inc, 65(3):215–225, 2003.

[9] D. Sundmark, A. Möller, and M. Nolin. Monitored Software
Components – A Novel Software Engineering Approach –.
In Proceedings of the 11th Asia-Pasific Software Engineering
Conference, Workshop on Software Architectures and Com-
ponent Technologies, November 2004. Pusan, Korea.

[10] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson.
Replay Debugging of Real-Time Systems Using Time Ma-
chines. InProceedings of Parallel and Distributed Systems:
Testing and Debugging, pages 288 – 295. ACM, April 2003.

[11] T. S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. C. Wu,
and J. S. Liu. Probabilistic Performance Guarantee for Real-
Time Tasks with Varying Computation Times. InProceed-
ings of the1st IEEE Real-Time Technology and Applications
Symposium (RTAS’95), pages 164–173, Chicago, IL, USA,
May 1995. IEEE Computer Society.


