Monitoring and Stochastic Analysis of Component-Based Camnol-Systems
Anders Mollef * Mikael Nolin** lan Peaké Heinz W. Schmidt

IMRTC, Malardalen University, Vasteras, Sweden
fMonash Univeristy, Melbourne, Australia
*CC Systems, Uppsala, Sweden

Ander s. Mol | er @dh. se

Abstract The-Shelf (COTS) Components) to develop various parts of
their computer system. This increases complexity of system

. . : . . analysis and jeopardises software system trust. Due to the
vanced analysis techniques in a software-engineeringexont y Jeop y

for embedded control-systems; a feat that has yet to be full)}3 Qtentlally high (economic and/_o r safety) |mpa_ct of softeva
accomplished failures (e.g., passenger safety in a car) — predictabteacd

This project is adopting a component-based approach to becomes increasingly important.
pro) ptng b bpro: The real-time systems of interest to us are distributed, and
control-system software development. We are extending an . . . :
L . o erefore require dealing with parallel behaviour (or aiste
combining methods from disparate disciplines, such as-prob . : :
. o L . : . communication of a sequential component with parallel com-
abilistic reliability predictions, stochastic scheduijlanalysis

. . onents in its deployment environment). Our work focuses
and software component technologies. We study theories and ... : .
o . . " initially on the sequential components and the behaviour of
methods for probabilistic modelling, analysis, and preidic

2) multiple components executing on the same embedded con-
of control-system software executing in resource-coinstih L .
troller. Therefore asynchrony and scheduling issues ardén
embedded computers.

.- . . the boundaries of our project while true parallelism is mlgs
Combining the behaviour models and the architectural prol P

model of a component assembly we are deriving stochasti@ Project Aims
properties, such as reliability, expected delays, and ues® In this project, we are studying theories and methods for

consumption. Using components as the fundamental unit Obrobabilistic modelling, analysis, and prediction of qoht
reuse, y\./e.employ run-time monitoring technjques to extraCtsystem software executing in resource-constrained engaedd
probabilistic models of the component behaviour. computers. The overall goal is to come up with methods that
. will resultin (1) a decrease in system life-cycle costs, @ét)d
1 Introduction an increase in system quality.
Using components as the fundamental unit of reuse, we
employ run-time monitoring techniques to observe the sys-

- - tems and extract probabilistic models of the component be-
requirements on lowered product cost, ai ort-) - .
(i) requi W produ 9 bupp haviour [24]. Combining the behaviour models and the ar-

ing many configurations, variants and suppliers. Computer hitectural del of N bl deri
systems offer the performance needed for the functions rel |etc u:]a ':_10 el o t{'ﬂ compcr:nen ell'ssb(?lr'? y, we ;;le erv-
guested, but at the same time product reliability and safety'ngdS ochastic proper 'ef_’ schas refia Itl y,dgxpec d ¥, bi
must not suffer. Unfortunately computers and software adqg3nd resource consumption. We are extending and combin-
new sources of failures, and therefore can cause lesseneldY mg_thods fr.om disparate d|5C|pI|ne_s, such as.probapms
product reliability. This yields a strong focus on the ajili rellab|I|ty—pred|ct|qns [L, 24] S.tOChaSt'C schedulingadysis
to mode] predict, andverify software functionality, reliabil- [12, 20, 26,[]} rur?—nrlne_mor;ltircl)ng [2, 24, 25], and software-
ity, and safety. However, many companies lack the techni-comﬁon;n ecb no oglis[, 10]. L h
cal support to verify their computer system behaviour (both The data obtaine rom monitoring t_ € component§ are
with respect to functional and extra-functional aspectthef ,USEd to address the following key areas in software engineer
software) - and black-box testing together with manual code'™d of embedded control-systems:
inspections are usually the only methods used to "confirm"e Model-extraction. By monitoring component-based soft-
system functionality and reliability. ware, information about the component properties can be
Also, in order to keep the software development costs extracted. This information can be used to describe the
within budget, more and more Original Equipment Manufac- components’ externally visible properties. These proper-
turers (OEMSs) use sub-contractors (and/or Commercial-Off ties provide a basis for trust in components and can be used

A software component is a suitable vehicle to introduce ad-

Developers of embedded real-time control-system face
challenges ofi high demands on reliability and performance

for system-level predictions. for worst-case scenarios; it is not possible to motivate the

e System-level predictions By using models of the com- cost incurred by dimensioning and validating the system
ponent behaviour, key properties such as reliability, tim- for the worst-case scenario. Hence, our focus is on sto-
ing behaviour and resource consumption can be predicted. chastic methods that allow designers to make well founded
Early prediction of such properties can be used to guide trade-offs between, e.g., reliability and production cost
system designers and aid in dimensioning hardware re-
sources, hence reduce the development effort and increasd Component-Based Development
quality.

e System-level testing and debuggingBy monitoring in- Component-Based Development (CBD) for resource-

2 . . constrained embedded real-time systems usually diffen fro
dividual components and component interactions, errors . o) X
can be found and traced. Monitoring can also be used togenaral CB[.) fqr _Internet/ofﬁge applications, in which com-
support replay debugging [25], where erroneous System_ponents are individually compl!ed.and deployed. At rungjm
executions are recreated in a lab environment to allow trac_components are loaded and bindings between component are

ing of bugs. Testing and debugging of embedded system%jyr.]amlca”y created by a middleware. Figure 1 illustrakes t
! e . . . typical process when using CBD fembeddedystems. Sys-
are notoriously difficult and time-consuming. Hence, in-

i tems are developed by assembling components from a repos-
creased support for test and debug has great potential for, .
cost savings itory, or by using newly developed components. In the next

i i _ L step a system generator generates C source code where com-
e Run-time contract checking The run-time monitoring

) : ponent bindings are explicitly represented and conneétied.
allow surveillance of third party components. Both func- nally the C code is compiled and the system executed. Upon

tional (e.g. range of output values) and extra-functional y,q getection of bugs or undesired system properties, the sy
(e.g. memory usage) properties can be monitored. Duringg, designer goes back and modifies the system.
acceptance testing, the contract checking is used to vali-

date that a component does not violate its specification. In,re:g:n:_ -------- .
systems that fail after deployment, logs from the contract :

|
_ _ _ | (e
checking can be used in post-mortem analysis. The pos :

]

sibility for post-mortem assessment of contract breaches i - ———————-==-
likely to increase the willingness to deploy third-partyrco
ponents in critical systems, since such assessments can be

. . . apeys C Source Code
coupled to financial liabilities.

e Observability. Computer systems in general and embed-

ded systems in particular, are infamous for the difficulty
of observing their internal behaviour. This has drawbacks

throughout the debugging, testing and maintenance phases.
Systems that are unobservable become very difficult to
analyse and validate. Also after deployment, observabil-
ity is an important feature, allowing inspection and perfor
mance tuning of running systems.

New Component

—__—

—
Component
Repository

System Development

(Component Assembly) i
Architectural Model

System Generation

Figure 1. Traditional CBD Processes for Embedded
Systems

To realize the above goals, this project contains two main

strands of research: Using the results of this project, a much more attractive
o)) process can be obtained. Figure 2 illustrates the new pos-

v Development of monitoring techniques suitable for gjyjjities with highlighted activities. Firstly, using alysis,

resource-constrained embedded systems. Monitoring of rég511y assessments about system properties can be made, also
source constrained systems requires Ilghtwelght teclelslqu. — if the system is redesigned undesired properties can be de-
to be developed. Also, the number of metrics (and their jocteq. Secondly, the system generator can be augmented to
quality/granularity) should be limited. This presents a 5,1omatically insert the instrumentation code needed te pe
trade-off between achieved results of the monitoring and¢ym run-time monitoring. Finally, dynamic properties the
the resources consumed. components are extracted during run-time. These propertie

v Development of techniques to predict system propertiesare then stored together with the components in the repgsito

from component properties. We focus our research on stoand can be used in subsequent development cycles.
chastic methods such as reliability prediction and proba-

bilistic scheduling-analysis. Whether to deploy stochas- 4 Survey of the Field

tic or deterministic (worst-case) predictions is a strieteg

decision for each project. However, the majority of sys- This project will draw upon results from several estab-
tems (aerospace applications exempted) are not designelished research fields.

4.1 Component-based Development

During the last decade, tremendous advancements have
been made in component-based development (CBD) for
desktop- and Internet-applications. A set of commercially
available techniques has transformed the way commodity'
software is developed. Some of the most well known tech-
nigues are Microsoft's COM and .NET, SUN'’s Enterprise
Java Beans, OMG's Corba Component Model (CCM). How-
ever, for embedded systems no readily available technique
exist [3, 16]. Within the research community a plethora of
component models and component techniques for embedded
systems exits, see e.g. Nobnal. for a survey [19].

Such techniques, like the well known Koala component
model from Phillips [28], often strive to generate resource
conservative systems. However, as outlined in section 2, de
signers of control-systems often have to pay attentionherot

Stochastic model extraction has been proposed by &Yall
al. [9, 29]. They are tackling the problem of extracting
models for complex real-time systems, not using any infor-
mation about architectural style or software structure.

The PECOS component technology [33] stands out by be-
ing, to the best of our knowledge, the only technology that
proposes a general approach to monitoring in order to ex-
tract component properties. PECOS enables support for in-
strumenting components during run-time, with respect to,
e.g., periodicity, memory consumption, and execution time
However, in PECOS, only worst-case figures are collected.

4.3 Reliability Predictions for Component-Based

Software

Mitzenmacher [15] gives a good introduction to probabilis-

tic analysis techniques. The stochastic behaviour of so#tw

properties, such as reliability and timeliness. To this,end can be modelled by using Markov chains, where the states are
many projects have come up with component models thatdefined by the software components. Markov processes are
should support analysable systems, e.g. [10, 23, 31, 33]. Aluseful when modelling random behaviours of software, e.g.,
these techniques are based upon static, worst-case anaflysi faults remaining at timeor failures experienced by the time

the system. Hence, they are dependent on the availability of The most relevant work in the area of reliability predicgon
models that bound the behaviour of the components. How-js:

ever, methods to statically and safely bound properties lik | Littlewood's "Littlewood model” [13, 14] is the first

execution-time, memory usage, and reliability are notitgad
availablé. Also, as discussed in section 2, in most projects it
is not feasible to design the system to sustain worst-case sc
narios. Unfortunately, no component technologies expjfici
address the issue of providing statistical metrics foresyst
behaviour.

Crnkovic and Larsson provides a good overview of the .
problems needed to be tackled when employing CBD for em-
bedded systems [4]. Mélleat al. [17], and Hammeket al.

[7] describes, specifically for embedded systems, whatare t
requirements to be met by a component technology.

4.2 Run-Time Monitoring and Model Extraction

In [24] we give an overview of the work done on moni-
toring software-components. Typically, existing compuatre
related monitoring techniques are not suitable for our goal |
of supporting test, debug, and model extraction (the exmept
being PECOS [33]). The most relevant work in this area is:

e Monitoring of real-time systems is covered by Chodrow et
al. [2]. And monitoring of distributed real-time systems is

presented by Tokuda et al. [27]. The generally conclusion
is that it is necessary to leave the software probes in th

target system at all time in order to eliminate probe-effect
Monitoring to support replay debugging [25], where logs

architecture-based software reliability model. It is de-
signed for continuously running systems, and is based on
continuous time Markov chains. Several extensions have
been made, e.g., by Ledoux [11] whom introduces failure-
process effects of the execution, and delays in recovering
after a failure.

Cheung [1] introduced a user-oriented model to predict re-
liability by using a Markov process to represent the control
flow between different software modules. Reussaeer
al. [21, 22] extended this work to component-based ar-
chitectures by introducing contractually specified compo-
nent contracts. Cheung’s work is further extended by, e.g.,
Wanget al. [32] whom presents a prediction model to es-
timate architecture-based software reliability for diffit
architectural patterns.

Musaet al. [18] gives an overview of software reliability in
general, and presents a generalised approach of relabilit
predictions using Markov processes. Mugaal. also put
forward a classification of finite-failure category models,
for Markovian models.

4.4 Stochastic Schedulability-Analysis of Real-

Time Systems

Different from traditional (worst-case) scheduling-

from a system are used to exactly recreate the executionyna\ysis; this research aims at predicting statisticaberiies

of the _system._TyplcaIIy th|§ is used to recreate the faulty 5 regl-time systems by using stochastic models of the
execution leading up to a failure of the system. executing tasks. Stochastic schedulability-analysis rats

yet been addressed for component-based systems. However,
there are some initial results within the real-time commuti
area:

1Even though good progress in static analysis areas sucleasti®n time
analysis has been made the last few years, one can hardly tai such
methods are readily available to the general public.

e Tiaetal.[26] present Probabilistic Time Demand Analysis ble if the component model makes explicit all data flows and
(PTDA) which is restricted to systems that are using fixed state variables, and this is the case for the component model
priorities. Gardneet al. [6] present Stochastic Time De- considered in this project [10].
mand Analysis (STDA) which is better than PTDA in the Some specific questions studied within this project are:

sense that it can cope with general deadlines. e Monitoring embedded systems require resource conserv-

o Another group of stochastic analysis methods is the Real- ative monitoring-techniques. Are current techniques good
Time Queueing theory by Lehoczky [12]. Real-Time enough? Can they be modified to better suitembedded real-
Queueing theory can provide stochastic guarantees. How- time systems?

ever, it requires high traffic load, thus not suitable for a ¢ Since resources are constrained, the number of metrics (and
general system configuration. Approaches using Markov theijr quality/granularity) should be limited. This preten
processes to scheduling analysis has been proposed by Diaz 5 trade-off between achieved results of the monitoring and
etal. [5]. the resources consumed. A key problem in this project is to
o Simulation-based predictions of execution-times has also identify the metrics that have the highest beneficial impact
been proposed [8, 30]. While difficult to quantify the relia- on the software engineering process.
bility of the results, these approaches have the potential t o |deally, metrics should be collected and refined through-
deal with highly complex models and system behaviour. oyt the life-cycle of a component. However, resource lim-
5 Research Topics it.ations may hinder_this ideal solgtion_since differentmet.
rics could be more important during different phases. This
This project draw upon existing results from several re- presents a trade-off of which metrics to obtain during what
search directions. The main challenges will include (1) to stage. A goal of this project s to identify which metrics are
identify suitable techniques, and (2) modify these teches most important during what stages.
to suit component-based development of embedded systemg. 1o roplem that arises with monitoring is the large num-

For each of the research directions we list some of the key o, of executions necessary to establish a reasonabke stati

research questions addressed within this project. tical confidence. Due to the complex behaviour of software
components, traditional statistical methods to estimtae t
statistical validity, such as confidence intervals, mayehav

to be used together with more domain specific validity met-

rics. We will investigate to what extent traditional sthtis

cal methods are suitable and, if needed, try to find methods

to complement them.

5.2 Reliability Predictions

System Development
(Component Assembly)

<

—
Architectural Model
Repository
System Generation

C Source Code

Binary load modules

System Execution

ff-'

Analysis

Instrumentation

We focus on reliability predictions using Markov models,
as described in, e.g., [1, 21]. However, such methods requir
that a system has a well-defined start and end state. Unfortu-
nately, this is not the case for reactive control-systemsd-
dition, the Markov behaviour of software components has to
be mapped to the execution histories and their stochastje pr
erties. This requires blending automata models with Markov
chains.

Also, since reusable components are intrinsically open -
they have to interact with a range of different external comp
nents in different deployment environments, each eximigiti

Current approaches rely on software instrumentation todifferent extra-functional properties. A single fixed omeo
produce the logs. Part of this instrumentation can be placedstant model for their behaviour or extra-functional praiesr
from operating system functions, which minimises the man- results in hopelessly inaccurate predictions. This is bsea
ual effort for instrumentation. However, not all data nestde the extra-functional properties of interest agestem proper-
for the logs can be extracted in operating system calls, andiesemerging from a system model (deploymentenvironment)
manual instrumentation of application code is required- Fu thatis the result of composing (partial) component-levetim
thermore, this manual instrumentation requires expenkno els of those properties developed (in isolation) and reustd
edge of the application code and about replay debugging, tahe component themselves.
make sure that all the needed data is collected. Our prior research, e.g. [21, 22], has shown that rea-

Using a component-based approach gives us the opportusonably accurate prediction of these system properties can
nity to automatically add code instrumentation. This isgpos be achieved by parameterisation. Component-level, extra-

Model Extraction

Figure 2. Our proposal to CBD for Embedded Sys-
tems

5.1 Software Component Monitoring

functional, models are variable with formal parametergfan
ing over different behaviours or different extra-functbn
variations.

Interesting research questions include:

e How can the modelling techniques be adapted/extended ire

order to fit reactive systems, without start and end states?
One possible solution could be to introduce additional

super-states, defining the start and end states. This, how-
ever, needs to be combined with a way of finding recurrent o

states in the reactive control-system, i.e. system stagds t
will re-occur during execution.

¢ To facilitate architecture-based reliability predictspsoft-
ware components need to be equipped with reliability fig-
ures. These figures depend on the context in which the

component is used (often called the components usage-

profile), e.g., what input ports of the component are used
and what output is required. The usage-profile of a spe-
cific component in a certain application, of course, has in-

On the other hand, if the representation of the execution-

times and their probabilities is too detailed, statistanadlysis
becomes infeasible due to the combinatorial explosionén th
number of possible combinations of execution times.

We investigate histogram-based schedulability-analysis
histogram can be adapted to provide the desired level of
detail, thus it gives the possibility to reduce complexity o
the analysis.

When performing stochastic schedulability-analysis eher
are two major sources of errors: (1) errors in the mod-
els used (e.g. due to not monitoring the component long
enough), and (2) errors due to simplifications/abstrastion
made during the analysis. The effect of both these errors
needs to be quantified and bounded. This means that it
is not enough to calculate the result of the schedulability
analysis, but also a level of confidence that account for both
error source is needed.

fluence on the reliability. What type of reliability measure 6 Conclusion

best suits the control-system domain, and what does this
imply in terms of changes in the analysis techniques?

This project will provide novel models, theories and tech-

nigues to monitor and predict the behaviour of embedded, re-

e When the component is deployed with its extra-functional source constrained, control-systems. This class of system

model, the parameters are actualised and the model is ingonstitutes an increasing fraction of value in many prosiuct
stantiated to reflect more accurately key properties of thegch as in vehicles and automation robotics.

environment components it relies upon, such as the relia-

We fuse scientific methods from disparate disciplines, such

bility of services it requests from the underlying system or 45 propabilistic reliability-predictions, stochastihieduling-

another used component.

analysis, run-time monitoring, and software-componetttte

e Is it possible to extend the parameterisation techniques inmnologies. This will result both in novel methods and exten-
order to enhance the prediction accuracy. Is it possiblesions to existing, well established, methods.

to extend the parameterisation technique to other extra-
functional models, such as schedulability.

e One basic idea is to transfer the architecture description o

the component-based system into a Finite State Automata

(FSA), and use reliability figures of the components to rep-
resent system reliability. Is it possible to adapt this rodth

in order to be more fine-grained, e.g., by representing also
the actual components with FSAs? In this case, reliability

used components.

e By using component impact analysis, software developers
can be guided to put focus on the part of the application
that is most crucial in terms of reliability and usage. How
can the architecture-based reliability predictions, gsin

methods can be used to find the weakest part of each of thé/

This project takes a unique approach:

v compared to other component-technology projects, we do

not focus on developing our own component technology.
Rather we focus on the ability to use the architectural- and
component-models to facilitate system-level analysist Ou

goal is to automate the whole process, thus we do not in-
troduce additional burdens for the software-engineers.

compared to other analysis-techniques project, we do not
focus on generally applicable methods. Rather we con-
strain our research to methods suitable for component-
based systems. Since component models provides strict
rules on component-interaction this significantly simp#fi

our task.

Markov chain representation, be extended in order to guideReferences

control-system developers during the design-phase?
5.3 Stochastic Schedulability Analysis

Traditional methods for stochastic schedulability-asily

assume that execution-times can be described by known prob-

ability functions. However, such a description is often-mis
leading since execution times cannot take on arbitraryesalu
Typically, execution times are clustered around a smalbbet
“probability peaks” which is not easy to represent with gen-
eral probability functions.

[1] R. C. Cheung. A User-Oriented Software Reliability Mbde
IEEE Transactions on Software Engineering(2):118-125,
1980. Special collection from COMPSAC 1978.

S. Chodrow. Run-time monitoring of real-time system# |
Proc. of IEEE 12" Real-Time Systems Symposipages 74—
83, December 1991. San Antonio, USA.

I. Crnkovic. Componet-Based Approach for Embedded Sys-
tems. InProceedings of @ International Workshop on
Component-Oriented Programmindune 2004. Oslo, Nor-
way.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

I. Crnkovic and M. Larsson.Building Reliable Component-
Based Software Systendstech House publisher, 2002. ISBN
1-58053-327-2.

J. L. Diaz, D. F. Garcia, K. Kim, C. G. Lee, L. LoBello,
J. M. Lépez, S. L. Min, and O. Mirabella. Stochastic Analysis
of Periodic Real-Time Systems. Proceedings of the 23
IEEE Real-Time Systems Symposipages 289-300, Decem-
ber 2002. Austin, Texas, USA.

M. K. Gardner and J. W. Liu. Analyzing Stochastic Fixed-
Priority Real-Time Systems. IRroceedings of th&'" Inter-
national Conference on Tools and Algorithms for the Cortstru
tion and Analysis of Systerrdarch 1999.

D. K. Hammer and M. Chaudron. Component-Based Software
Engineering for Resource-Constraint Systems: What are the
Needs? InProceedings of the'8 Interntational Workshop
on Object-Oriented Real-Time Dependable Systems (WQRDS)
January 2001. Rome, Italy.

H. Hansson, T. Nolte, C. Norstrém, and S. Punnekkat girate

ing Reliability and Timing Analysis of CAN-based Systems.
IEEE Transaction on Industrial Electronic49(6), 2002.

J. G. Huselius and J. Andersson. Model Synthesis for -Real
Time Systems. IrProc. of the 8" European Conference on
Software Maintenance and Reengineering (CSNIRges 52—
60, March 2005.

M. Akerholm, A. Méller, H. Hansson, and M. Nolin. Toward

a Dependable Component Technology for Embedded System
Applications. InProceedings of the 10 IEEE International
Workshop on Object-oriented Real-Time Dependable Systems
(WORDSO05)February 2005. Sedona, Arizona, USA.

J. Ledoux. Availability model of modular softwarelEEE
Trans. on Reliability48(2):159-168, 1999.

J. P. Lehoczky. Real-Time Queuing Network Theory. In
Proceedings of thé8!" IEEE Real-Time Systems Symposium
(RTSS'97)pages 58-67, San Francisco, CA, USA, December
1997. IEEE Computer Society.

B. Littlewood. A Reliability Model for Systems with M&ov
Structure.Applied Statistics24(2):172-177, 1975.

B. Littlewood. Software Reliability Model for ModuldPro-
gram StructurelEEE Transactions on Reliabilify28(3):241—
246, 1985.

M. Mitzenmacher and E. UpfalProbability and Computing

- Randomized Algorithms and Probabilistic Analysi€am-
bridge University Press, 2004. ISBN 0521835402.

A. Méller, M. Akerholm, J. Fredriksson, and M. Nolin. B
uation of Component Technologies with Respect to Industria
Requirements. IfEuromicro Conference, Component-Based
Software Engineering Traglugust 2004.

A. Mdller, J. Fréberg, and M. Nolin. Industrial Requinents

on Component Technologies for Embedded System®ron
ceedings of the'? International Symposium on Component-
Based Software Engineerin8004 Proceedings Series: Lec-

ture Notes in Computer Science, Vol. 3054, May 2004. Edin- [32]

burgh, Scotland.

J. D. Musa, A. lannino, and K. Okumot8oftware Reliability:
Measurement, Prediction, ApplicatiorMcGraw-Hill, Series

in Software Engineering ant Technology, 1987. ISBN 0-07-
044093-X.

M. Nolin et al. Component-Based Software for Embedded
Systems - A Literature Survey. Technical report, MRTC Re-
port No 104, ISSN 1404-3041, ISRN MDH-MRTC-104/203-

[20]

[21]

[22]

[24]

[25]

[26]

[27

(28]

[29]

[30]

[31]

[33]

1-SE, Mélardalen Real-Time Reseach Centre, Mélardalen Uni
versity, June 2003. Véasterds, Sweden.

T. Nolte, A. Méller, and M. Nolin. Using Components to
Facilitate Stochastic Schedulability. Froceedings of the
24" Real-Time System Symposium — Work-in-Progress Ses-
sion IEEE Computer Society, December 2003. Cancun, Mex-
ico.

R. H. Reussner, |. H. Poernomo, and H. W. Schmidt. Rea-
soning about Software Architectures with ContractuallgSp
ified ComponentsComponent-Based Software Quality. LNCS
2693, Springer-Verlagpages 287 — 325, 2003.

H. W. Schmidt. Trustworthy components: compositidtyal
and predictionJournal of Systems and Software, Elsevier Sci-
ence In¢ 65(3):215-225, 2003.

] J. A. Stankovic. VEST — A toolset for constructing andan

lyzing component based embedded systebesture Notes in
Computer Scienc211:390, 2001.

D. Sundmark, A. Mdller, and M. Nolin. Monitored Softvear
Components — A Novel Software Engineering Approach —.
In Proceedings of the 11 Asia-Pasific Software Engineering
Conference, Workshop on Software Architectures and Compo-
nent TechnologieNovember 2004. Pusan, Korea.

H. Thane, D. Sundmark, J. Huselius, and A. Petterssepldy
Debugging of Real-Time Systems Using Time Machines. In
Proceedings of Parallel and Distributed Systems: Testing a
Debugging (PADTAD)pages 288 — 295. ACM, April 2003.

T. S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. C. Wu,
and J. S. Liu. Probabilistic Performance Guarantee for-Real
Time Tasks with Varying Computation Times. Broceedings

of the1** IEEE Real-Time Technology and Applications Sym-
posium (RTAS'95)pages 164-173, Chicago, IL, USA, May
1995. IEEE Computer Society.

H. Tokuda, M. Kotera, and C. Mercer. A Real-Time Monitor
for a Distributed Real-Time Operating System. Rroceed-
ings of ACM Workshop on Parallel and Distributed Debugging
May 1988. Madison, USA.

R. van Ommering et al. The Koala Component Model for Con-
sumer Electronics SoftwarelEEE Computer 33(3):78-85,
March 2000.

A. Wall, J. Andersson, J. Neander, C. Norstrom, and Mnkte
bke. Introducing Temporal Analyzability Late in the Lifedg

of Complex Real-Time Systems. Rroc. of the 9 Interna-
tional conference on Real-Time Computing Systems and-Appli
cations (RTCSA'03R003.

A. Wall, J. Andersson, and C. Norstrdom. Probabilistic
Simulation-based Analysis of Complex Real-Times Systems.
In 6% IEEE International Symposium on Object-oriented
Real-time distributed Computiniylay 2003.

K. C. Wallnau. Volume Ill: A Component Technology fordR?r
dictable Assembly from Certifiable Components. Technical
report, Software Engineering Institute, Carnegie Mellami-U
versity, April 2003. Pittsburg, USA.

W.-L. Wang, Y. Wu, and M.-H. Chen. An Architecture-Base
Software Reliability Model. IrProceedings of the 1999 Pa-
cific Rim International Symposium on Dependable Computing
1999. Hong Kong, China.

M. Winter, T. Genssler, et al. Components for Embeddeft-S
ware — The PECOS Apporach. Tine 2'¢ International Work-
shop on Composition Languages, in conjunction with th& 16
ECOOPR June 2002. Malaga, Spain.

