
A component-based development framework for supporting
functional and non-functional analysis in control system design∗

Johan Fredriksson
Mälardalen University

Mälardalen Real-Time Research
Centre

Västerås, Sweden

johan.fredriksson@mdh.se

Massimo Tivoli
University of L’Aquila

Computer Science Department
L’Aquila, Italy

tivoli@di.univaq.it

Ivica Crnkovic
Mälardalen University

Mälardalen Real-Time Research
Centre

Västerås, Sweden

ivica.crnkovic@mdh.se

Abstract

The use of component-based development (CBD) is growing in the
software engineering community and it has been successfully ap-
plied in many engineering domains such as office applications and
in web-based distributed applications. Recently, the needof CBD is
growing also in other domains related to dependable and embedded
systems, namely, in the control engineering domain. Control sys-
tems constitute the core functionality of modern embedded systems
such as vehicles and consumer electronics. However, the widely
used commercial component technologies are unable to provide so-
lutions to the requirements of embedded systems as they require too
much resource and they do not provide methods and tools for de-
veloping predictable and analyzable embedded systems. There is a
need for new component-based technologies appropriate to devel-
opment of embedded systems.

In this paper we present a component-based development frame-
work called SAVEComp. SAVEComp is developed for safety-
critical real-time systems. One of the main characteristics of SAVE-
Comp is syntactic and semantic simplicity which enables a high
analyzability of properties important for embedded systems. By
means of an industrial case-study, we show how SAVEComp is
able to provide an efficient support for designing and implement-
ing embedded control systems by mainly focusing on simplicity
and analyzability of functional requirements and of real-time and
dependability quality attributes. In particular we discuss the typical
solutions of control systems in which feedback loops are used and
which significantly complicate the design process. We provide a
solution for increasing design abstraction level and stillbeing able
to reason about system properties using SAVEComp approach.Fi-
nally, we discuss an extension of SAVEComp with dynamic run-
time property checking by utilizing run-time spare capacity that is
normally induced by real-time analysis.

∗This work is an extended and revisited version of [18].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1 Introduction
The use of component-based development (CBD) is growing in the
software engineering community and it has been successfully ap-
plied in many engineering domains such as desktop environments,
office applications, e-business and in web-based distributed appli-
cations. To improve control systems analysability, reusability, flexi-
bility and to decrease thetime-to-market, the need of CBD is grow-
ing also in other domains related to dependable and embeddedsys-
tems (i.e., control engineering domain). Control systems constitute
the core functionality of modern embedded systems such as vehi-
cles and consumer electronics. One of the main issues in control
engineering domain is how to design control systems in such away
that functional requirements (safety and liveness properties) as well
as real-time attributes (end-to-end timing, freshness of data, simul-
taneity, jitter tolerances, WCET) can be analyzed already in an early
phase of the system life-cycle, namely during design-time.

Due to the increasing complexity of control systems, they are often
constructed performing a modular approach by means of libraries
of building blocks with high functionality and a high degreeof flex-
ibility. This has lead to a need of a component-based approach for
building control systems out of a set of already implemented“con-
trol modules” [15]. The control module concept has been imple-
mented inABB’s new control system, Control ITas a more reliable
andeasy-to-usegeneralization of a traditional IEC61131-3 function
block1 [1]. A control module might be considered a control system
component and hence it is the mean to build control systems by
adopting a component-based approach supported by a suitable com-
ponent technology. Unfortunately, commercial component tech-
nologies are too complex and unpredictable and hence, predictabil-
ity of the functional and non-functional behaviour of the system
would be weakly supported and in most cases not supported at all.
Moreover, although component models that support predictability
of the system behaviour exist, they are often not able to support the
requirements of embedded systems. For example, software com-
ponents for embedded systems should provide an interface specifi-
cation that points out specific resource requirements or other prop-
erties of interest for the target application, e.g., timing, memory
usage and dependability-related attributes such as reliability and
safety. Specific architectural constraints should be imposed on the
system design in such a way that predictability of properties that
are relevant for the domain can be supported. Even a component
framework for embedded systems should use predictable mecha-
nisms and be light weight. Thus, a component-based development
framework which supports the requirements of embedded systems

1In the reminder of the paper, we will use the term “function
block” to identify a “IEC61131-3 function block” and all itsfurther
extensions (e.g., IEC61499 function blocks [9]).

is highly needed in order to be able to predict functional andnon-
functional behaviour of control systems during design-time.

In this paper, we present a component-based development frame-
work, called SAVEComp2 that supports predictability of control
system behaviour during design-time. The main purpose of SAVE-
Comp is to provide efficient support for designing and implement-
ing embedded control applications by mainly focusing on simplic-
ity and analysability of functional requirements and real-time and
dependability properties. Our reference component model is Save-
Comp Component Model(SaveCCM) [8] which is designed for
safety-critical real-time systems. SaveCCM has been thought to
support predictability of the real-time behaviour of embedded sys-
tems. We show how to extend the current version of SaveCCM in
order to incorporate the control module concept in SAVECompin
such a way that we are able to predict the system behaviour. A
control module in SAVEComp is inherently able to correctly deal
with outer and inner control loops that are typical of control sys-
tems, where control flow feedbacks must be handled to deliverthe
response for the time-critical computation as fast as possible. By
exploiting the existent architectural elements of SaveCCM, we can
define a control module as a new composite architectural element
that - when composed with other control modules to build control
loops - satisfies requirements that are needed for the correct func-
tioning of the control system and to predict its behaviour. For ex-
ample, the SaveCCM control modules within a control loop satisfy
that the backwards flow is always executed only after the forwards
flow has been completely performed. Moreover, the design of a
SaveCCM control module can be enriched with information about
the module quality attributes by providing the ground support for
the system analysis. By means of both the extended capabilities
of SaveCCM and the analysis tools provided by SAVEComp, we
show how the developer is able to build control systems by com-
posing already implemented components in such a way that both
functional requirements and real-time attributes can be analyzed in
control systems design. We also discuss an extension of SAVE-
Comp with dynamic run-time property checking by utilizing run-
time spare capacity that is normally induced by real-time analysis.
We validate the applicability of SAVEComp and its appropriateness
for the domain of embedded systems by means of an industrial case
study.

The remainder of the paper is organized as follows. Section 2dis-
cusses related work and a brief comparison between SaveCCM and
other component-technologies. Section 3 discusses background no-
tions of our work by referring to control modules as a solution for
an “easy-to-make” component-based design of control systems. In
Section 4 the main features of SaveCCM are summarized. In Sec-
tion 5 we first outline the overall structure of SAVEComp and then
- by means of an explanatory example - we discuss its relevantas-
pects in more detail. Section 6 validates the applicabilityand ap-
propriateness of SAVEComp for the embedded systems domain by
means of an industrial case study that is concerned with an adaptive
cruise controller. Section 7 concludes and discusses future work.

2 Related Work
In addition to widely used component technologies, new compo-
nent technologies appear in different application domains, both in
industry and academia. We will refer to some of them: Koala
and Rubus used in industry and the research technologies PECT,
PECOS and ROBOCOP. We will also discuss smilarities with
ADLs like, e.g., Darwin.

2SAVEComp is developed in the projectSAfety critical compo-
nents for VEhicular systems - http://www.mrtc.mdh.se/SAVE.

The Koala component technology [9] is designed and used by
Philips for development of software in consumer electronics. Koala
has passive components that interact through a pipes-and-filters
model, which is allocated to active threads. However, Koaladoes
not support analysis of run-time properties. The Robocop compo-
nent technology [Jon03] is a variant of the Koala component tech-
nology. A Robocop component is a set of models, each of which
provides a particular type of information about the component. An
example of such a model is the nonfunctional model that includes
modeling timeliness, reliability, memory use, etc. Robocop aims
to cover all aspects of a component-based development process for
embedded systems.

The Rubus Component Model [8] is developed by Arcticus systems
aimed for small embedded systems. It is used by Volvo Construc-
tion Equipment. The component technology incorporates tools, e.g.
a scheduler and a graphical tool for application design, andit is tai-
lored for resource constrained systems with realtime requirements.
In many aspects Rubus Component Model is similar to SaveCCM;
actually some of the basic approaches from Rubus are included in
SAVEComp. One difference is that SAVEComp is focused on mul-
tiple quality attributes and independences of underlying operating
system.

PECT (Prediction-enabled Component Technology) from Software
Engineering Institute at CMU [12] [13] focuses on quality attributes
specification and methods for prediction of quality attributes on sys-
tem level from attributes of components. The component model
enables description of some real-time attributes. Compared with
SAVEComp, PECT is a more generalpurpose component technol-
ogy and more complex. PECOS (PErvasive COmponent Systems)
[6], developed by ABB Corporate Research Centre and academia,
is designed for field devices, i.e. reactive embedded systems that
gathers and analyze data via sensors and react by controlling actu-
ators, valves, motors etc. The focus is on nonfunctional properties
such as memory consumption and timeliness, which makes PECOS
goals similar to SaveCCM.

Darwin is a general declarative ADL for distributed software ar-
chitectures. Differently form SaveCCM, Darwin provides one with
primitives of a“pure” structural language since the underlying con-
cepts of components and binding are independent from the interac-
tion mechanisms between components. Thus, Darwin is more gen-
eral and can be applied to more conventional program structures.
On the other hand, SaveCCM has been designed to represent a spe-
cific real-time component model. Although the domain-specific ap-
proach means loss of generality, it has the advantages of simpler and
precise expression of the design, better design comprehension, and
support of automatic analysis and verification. Moreover, Darwin
does not support the specification of non-functional properties and,
hence, real-time attributes analysis would be unfeasible in using the
Darwin component model without a applying a suitable extension
of it aimed at supporting real-time properties.

These examples show that there are many similar component tech-
nologies for development of embedded systems. One could askif
it would not be more efficient to use a single model. Experiences
have shown that for many embedded system domains efficiency in
run-time resources consumption and prediction of system behavior
are far more important than efficiency in the software development.
This calls for specialization, not generalization. Another argument
for specialization is the typically very close relation between soft-
ware and the system in which the software is embedded. Different
platforms and different system architectures require different solu-
tions on the infrastructure and interoperability level, which leads

to different requirements for component models. Also the nature
of embedded software limits the possibilities of interoperability be-
tween different systems. Despite the importance of pervasiveness,
dynamic configurations of interoperation between systems,etc. this
is still not the main focus of vast majorities of embedded systems.

These are the reasons why different application domains call for dif-
ferent component models, which may follow the same basic princi-
ples of componentbased software engineering, but may be different
in implementations. With that in mind we can strongly motivate a
need for a component technology adjusted for vehicular systems.

3 Background: Control Modules
In Section 1, we said that many modern control systems are de-
signed by using a modular approach in which its constituent func-
tion blocks are combined together.

Function blocks are very complex and have many configurationpa-
rameters because the rapid development of control algorithms has
lead to a tremendous increase of the function block’s functionali-
ties. There are two main disadvantages due to the increased com-
plexity of the function blocks. The first one is that there area lot
of parameters to be set and interface points to be connected and,
hence, the developer should have a deep knowledge of the differ-
ent function blocks. The second one is the obvious risk to make
mistakes when the developer has to deal with a large amount of
parameters and interface points. In [15], a component-based so-
lution to overcame these disadvantages has been proposed. The
main idea is to reduce the complexity of control systems by defin-
ing a standard interface for the signals between the building blocks.
This implies that the blocks have to be constructed according to
component-oriented principles (as we will see later each one of
them can be constructed as an aggregate component in our reference
component model). AControlConnection data structure which al-
lows one to connect these building blocks has been defined in [15].
This data structure contains all the signals that are sent between the
function blocks of the control system. Since real-scale control sys-
tems, often, have to deal with control loops, some of the signals are
sent forwards and some are sent backwards; thus, ControlConnec-
tion collects all the signal in two substructures calledForward and
Backward respectively.

In Figure 1.A we show an example of a control system made of a
cascade control loop [14] where its building blocks are traditional
function blocks. In Figure 1.B we show the same cascade control
loop where its building blocks are connected by means of a graphi-
cal connection of ControlConnection type. Note that a control sys-
tem is configured in a much simpler way if the blocks are con-
nected with a ControlConnection structure.As showed in thefigure,
we will hereafter refer to the simpler configuration as thetop-level
design of the control system and to the other one as itsinternal de-
sign. In order to deal with connections of ControlConnection type,
all the building blocks of the loop have to be able to transmitin-
formation forwards as well as backwards, with low delays. For this
reason, in [15], the concept of control module has been introduced
as a generalization of a traditional function block. The control mod-
ule contains two parts of code for transmitting informationforwards
and backwards respectively. Although the control module concept
considerably reduces the complexity of control loops by providing
a component-based approach, current component technologies do
not allow one to realize a control module in order to provide the
developer with facilities for supporting predictability of the control
system behaviour. This leads to a real need of a component-based
approach for designing and composing control modules in such a
way that such a support can be provided. Our aim is to provide a

mean that will make it possible to use a component-based approach
and predict the system behaviour.

4 The SaveCCM component model
In this section we briefly describe the main characteristicsof our
reference component model called SaveCCM. Refer to [8] for a
detailed description of it.

The SAVEComp Component Model (SaveCCM) [8, 2] is a restric-
tive component model for control software development. It con-
sists of the following main architectural elements: components,
switches, assemblies andrun-time framework, which provides a set
of services, such as communication between components, compo-
nent execution and control of sensors and actuators.
The interface of an architectural element is defined by a set of
ports, i.e., points of interaction between the element and its envi-
ronment. SaveCCM distinguishes between input and output ports,
and there are two complementary aspects of ports: the data that
can be transferred via the port and the triggering of component ex-
ecutions. SaveCCM distinguishes between these two aspects, and
allows three types of ports: (i)data-onlyports, (ii) triggering-only
ports, and (iii)data and triggeringports. An architectural element
emits trigger signals and data at its output ports, and receives trigger
signals and data at its input ports. Systems are built by composing
architectural elements. This composition is obtained by connecting
input ports to output ports.

Since predictability and analysisability are of primary concern for
the considered application domain, the SaveCCM execution model
is rather restrictive. The basis is a control-flow (i.e., pipes-and-
filter) paradigm in which executions are triggered by clocksor ex-
ternal events, and where components have finite, possibly variable,
execution time. At the beginning a component is in anidle state
where it waits for the activation of all its triggers. Once all com-
ponent triggers have been activated, the component reads its input
ports (reading state), performs its computations (executingstate)
based on the inputs read and its internal state, writes the result of
the execution on its output ports (writing state) and finally goes
back to theidle state. A list of quality attributes and (possibly) their
value and credibility (i.e., a measure of confidence of the expressed
value) is included in the specification of components and assem-
blies. In this paper we will only consider real-time attributes. We
will show how such attributes can be specified and used in analy-
sis. Component behaviour is defined by means of variables that
express internal states, and actions that describe the component ex-
ecution. Actions are abstract specifications of the externally visible
behaviour of the component. Components are specified by their
interfaces, behaviour and quality attributes.
A subset of the UML2 component diagrams3 is adopted as graph-
ical specification language4. The symbols showed in Figure 2 are
used.

5 The SAVEComp development framework
In this section we outline the overall structure of the SAVEComp
development framework5 (see Figure 3). SAVEComp implements
the approach we present in the following subsections as one part
of its overall structure. SAVEComp has been thought to be an ex-
tensible component-based development framework for design-time
analysis (both functional and non-functional) and development of

3UML2.0 specification - http://www.omg.org/technology/documents/
modelingspeccatalog.htm#UML.

4In [8], the complete textual syntax (i.e., BNF specification) of
the specification language is reported.

5The framework is under construction

(A) internal design

AI

AI AO

Master

AI

Slave Forward

Backward

Value
Status

Range.Min

Value
Backtracking
MaxReached
MinReached

Master

Slave

ControlConnection

Range.Max
Range.Min
Range.Max

(B) top-level design

Figure 1. Two different designs of the same control system

Input ports - The upper symbol is an input

port with a trigger, and no data. The middle

symbol is an input port with data and no

triggering, and the lower one is an input

port with data and triggering.

Output ports - Analogously to the input

ports, the upper symbol is an output port

with a trigger, and no data. The middle

symbol is an output port with data and no

triggering, and the lower one is an output

port with data and triggering.

Component - A component with the

stereotype changed to <<SaveComp>>

corresponds to a SaveCCM component.

Assembly - Components with the

stereotype <<Assembly>>, correspond to

assemblies in SaveCCM.

Delegation - A delegation is a direct

connection from an input to input or output

to output port, used within assemblies.

Symbol Interpretation

<<SaveComp>>

<name>

<<Switch>>

<name>

<<Assembly>>

<name>

Symbol Interpretation

Switch - Components with the stereotype

<<Switch>>, correspond to switches in

SaveCCM.

Figure 2. The SaveCCM graphical specification language

safety-critical embedded real-time systems. A part of it isthe Au-
toComp technology [17] which is intended only for predicting the
real-time behaviour of the system.

As showed in Figure 3, SAVEComp can be described by distin-
guishing three main phases of its utilization. During design-time,
developers may exploit the new capabilities of SaveCCM - we
present in the following subsections - to specify the top-level de-
sign of the control system by adopting a component-based software
engineering process Moreover, the extended version of SaveCCM
allows the developer to enrich the system design with: (i) functional
properties of the system expressed in terms of sequences of ac-
tions performed on component ports and/or possible values of data
ports of interest for the analysis (e.g., the set of possiblevalues of a
data port expressing different operational modes of the control sys-
tem); and (ii) high level temporal constraints in form of end-to-end
deadlines and jitter supplied with their credibility values. During
compile-time, SAVEComp automatically produces the SaveCCM
internal design corresponding to the top-level and derivesdiffer-
ent views of the designed system intended to support both different
kinds of specific functional/non-functional analysis and the map-
ping process to a real-time operating system (RTOS). In the figure,
we show two possible classes of system views/models: (i) behav-
ioural models (e.g., Process Algebras, LTSs, state machines, MSCs,
UML2 interaction diagrams); and (ii) real-time models (e.g., Worst-
case execution time analysis and Response-time analysis).The
first class is intended to perform functional analysis (i.e., checking
safety and liveness properties6), the second one to perform non-
functional analysis in the specific case of guaranteeing real-time
attributes. The plug-in based nature of SAVEComp allows us ei-
ther to add new classes of system models - whenever it is needed
to perform other specific kinds of analysis - or to extend an exis-
tent class to contain other model notations that are needed to sup-
port/integrate other processes for the same kind of analysis. For
example, as sketched in the figure, we might need to add a proba-
bilistic models view (e.g., Markov Chains, Stochastic Process Alge-
bras) to perform reliability analysis by taking into account, e.g., the
credibility value of each real-time attribute. Each specific kind of

6As usual, for safety and liveness we meannothing bad happens
andsomething good eventually happens, respectively.

analysis/transformation is supported by a plug-in based tool within
SAVEComp. Each “plug-in” might be either an existent tool suit-
ably integrated with SAVEComp or built from scratch. By looking
at the result of each particular analysis, the developer caneither
refine the top-level design since a functional or non-functional re-
quirement has not been met or - if the design matches every re-
quirement - execute a synthesis step. In each utilization phase, the
developer has the possibility to interact with a particularplug-in
based tool to set specific configuration parameters of it or toapply
refinements (that are dictated by the analysis results) directly on the
generated data/models rather than being forced to go back tothe
original design. We chooseEclipseplatform7 as implementation
environment since it provides us with all the integration features we
need to build SAVEComp. Eclipse facilitates the integration of dif-
ferent tools, that usually manipulate different content types. SAVE-
Comp is built on a XML-based core which isthe substrate provid-
ing an intermediate XML-based representation of system models
that may work as a common ground to apply functional and non-
functional analysis. To make SAVEComp as extensible as possible
the XML core is kept general enough to allow its further extensions
needed to manage new system model notations and new analysis
processes and tools. In the reminder, we will only focus on the
parts of SAVEComp that implement the approach presented in this
paper. We consider the following SAVEComp plug-ins:

SaveCCM Visual Editor. A visual editor supporting the
SaveCCM graphical specification language for designing the
system architecture and for specifying functional properties
and real-time attributes that must be analyzed. It is also
responsible for generating the XML code that represents
the SaveCCM textual specification of the designed system.
Moreover, it provides the developer with compiling func-
tionality to, e.g., perform a type-check on the component
connections (e.g., a port of a component can be connected to
a port of a different component only if these ports have the
same type).

SaveCCM top-level (to internal) Design Converter.We recall
that, control loops are often used to deliver the response for

7The Eclipse project. Eclipse platform technical overview.
Technical report, 2001 - http://www.eclipse.org.

SaveCCM top-level

design of the system

(design + quality

attributes + functional

properties)

SaveCCM internal

design of the system

(design + quality

attributes + functional

properties)

Forward = (check.a

-> check.a1 ->

read.a -> Forward).

||ControlLoop =

(master:Forward ||

master:Backward ||

sd Client_S1

:Client :Environment

PCheckOut

PCheckIn

sd Client_S2

:Client :Environment

SCheckOut

SCheckIn

sd Client_Overview

ref

Client_S1

ref

Client_S2

behavioral models

real-time models

other classes of models

e.g., probabilistic models

safety and

liveness

analyzer

real-time

attributes

analyzer

other kinds of

analyzer (e.g.,

reliability analyzer)

synthesizer

target application

compile-time run-time

design-

time

compile-

time

SaveCCM

visual editor

SaveCCM top-level

design converter

models

generator

data plugin-based tool
data flow (i.e., data elaboration

mechanically performed)

developer manual

intervention

possible developer

manual intervention

Figure 3. The SAVEComp development framework

the time-critical computation as fast as possible. Due to the
increasing complexity of control loops, it is hard to correctly
design them, and they might limit the predictability of the
control system. As we will see in the following sections,
to address these problems, control loops are designed - in
SaveCCM - by means of assemblies and connections ofCon-
trolComponentand ControlConnectiontype, respectively.
A ControlComponent implements the concept of control
module by providing the developer with a higher level of
abstraction in designing control loops. Thus, a control loop
in a SaveCCM control system has a top-level design. This
plug-in is responsible for automatically deriving from the
top-level design its corresponding internal design consistent
of SaveCCM components, switches and their connections.
Since top-level components, as SaveCCM assemblies, do
not reflect the execution model of a basic component, this
translation is required in order to perform functional and non-
functional analysis of the system. The translation algorithm
exploits the implicit internal structure and semantics of a
ControlComponent and a ControlConnection.

Functional behaviours Models Generator. A part of themodels
generatorplug-in based tool. It is responsible for generating
models of the functional behaviour of the designed system.
The kind of generated model (e.g., Process Algebras, LTSs,
state machines, MSCs, UML2 interaction diagrams) depends
on the XML template used - during design-time - to specify
the system’s functional properties that must be checked. Once
the kind of model that must be generated is established, the
model is generated by taking into account the system’s inter-
nal design, the execution model of the SaveCCM components
forming the system, the set of possible actions performableon
a SaveCCM port and its possible values. Furthermore, a con-
sistent model (with respect to both the notation used to model
the system’s functional behaviour and the analyzer that will
be used) of the functional properties is generated.

Safety and Liveness Analyzer.It is a plug-in based tool integrat-
ing an analyzer for each kind of model of the system’s func-
tional behaviour that can be generated. By exploiting the gen-
erated models of the system and of the properties that must be
checked, the developer can interact with the suitable analyzer
in order to mechanically verify the specified safety and live-
ness properties. For example, the developer can verify that
deadlocks do not occur or that the system always progresses
(i.e., can every action eventually be performed?) or other spe-
cific functional properties of the system (e.g., a specific com-
ponent must be disabled if the system is running in a specific

operational mode).
Component to Task Converter. A part of themodels generator

plug-in based tool. In cooperation with theTask Attribute As-
signment, it is responsible for generating a real-time model.
The algorithm strives to reduce the number of operating sys-
tem tasks by allocating components to the same task accord-
ing to a set of rules, e.g., when components execute with the
same period-time or are triggered by the same event. The task
allocation approach utilizes stochastic search techniques to
find allocations that are optimized considering user-specified
properties, e.g., low context-switch overhead or low memory
usage.

Task Attribute Assignment. It is part of themodels generator
plug-in based tool. In cooperation with theComponent to
Task Converter, it assigning attributes considering platform
and analysis goal.

Real-Time Analyzer. The analysis step is dependent on the un-
derlying platform, e.g., schedulability analysis is limited to
the algorithms available in the OS used. In the current pro-
totype implementation, response-time analysis accordingto
FPS theory is performed. If the response-time analysis fails,
the affected parts of the system are highlighted. For instance it
may be possible to find another allocation from components to
tasks that satisfies the given real-time constraints. Otherwise
the design may have to be revised.

Code Synthesizer.The code generation module of the compile-
time activities generates all source code that is dependent
on the underlying operating system. Each operating system
needs to have a transformation API where platform indepen-
dent system calls can be translated to OS specific. Such lay-
ers can easily be derived from reference manual of a specific
RTOS. Within this step the binary representation of the system
is created, often the operating system and the run-time frame-
work are also included with the application code in a single
bundle.

5.1 Extending SaveCCM to design and use
control modules

The control module concept can be implemented in SaveCCM by
means of a new type of assembly which composes two compo-
nents. We denote this new assembly type as “ControlComponent”
type. One component within a ControlComponent is denoted as
“Forward”, the other one is denoted as “Backward”. Forward and
Backward are for transmitting information forwards and backwards
(within a loop in a control system), respectively. In other words,
Forward is responsible - given input values and taking into account

the state of its ControlComponent - for calculating the output value
of the ControlComponent. Analogously, Backward is responsible
for updating the state of its ControlComponent depending onthe
feedback signals. Forward exports an interface made of input and
output data-and-triggering ports and, possibly, other ports explic-
itly specified by the developer for specific purposes depending on
the system functionality. The same is for Backward. ControlCom-
ponent, in turn, exports the same interface of Forward and Back-
ward. As it is usual in SaveCCM, the ports of ControlComponent
are connected to the corresponding ports of Forward and Backward
through delegation. In Figure 4, we show both the SaveCCM top-
level design of a ControlComponent (i.e., left-hand side) and its
internal design (i.e., right-hand side). In the figure we show also
labels that are used to refer the I/O ports. They model port names
and they are specified only internally and do not appear at design
level.

<<Assembly>>

<ControlModule>

<<SaveComp>>
<Forward>

<<SaveComp>>
<Backward>

(internal design)

(top-level design)

a b

ef

a a b b

c

eeff

g

d

h

Figure 4. Top-level and internal design of “ControlModule”

It is worth mentioning that Forward and Backward, as usual
SaveCCM components, respect the component execution model
mentioned in Section 4. Since a ControlComponent is an assembly
in SaveCCM, it is not subject to the rules of the execution model
of a SaveCCM component. In other words, a SaveCCM assembly
is only intended for design purposes8 (i.e., for modelling a collec-
tion of components and hiding the internal structure ratherthan for
component composition) and when we want to reason about its ex-
ecution model we have to refer to its internal structure. Thetype
of a data transmitted through a port of the ControlComponentis a
structured data type as defined by the ControlConnection structure.
The triggering data are used for activating a Forward or Backward
component depending on the control flow of the system. The infor-
mation required to update the state of all the ControlComponents
in a loop is not available until all the Forward components have ex-
ecuted their code. This is required for a correct functioning of the
control system. Note that a ControlComponent can handle outer
control loops as well as inner loops. An inner control loop can be
performed by means of the inner connections among Forward and
Backward (i.e., “c”, “g” and “h”, “d” port connections). These in-
ner connections are internally generated - after the generation of
Forward and Backward - by the“SaveCCM top-level design con-
verter” (see Figure 3). So far, we just have presented the structure
of a control module as it can be built in SaveCCM. To be able to
specify a top-level design, we have to be able to connect, e.g., two
ControlComponent by means of a connection of ControlConnection
type. Thus we have to show how to build a ControlConnection in
SaveCCM. The next subsection has been intended for this purpose.

5.2 Extending SaveCCM to compose control
modules

For our purposes, we extend the set of SaveCCM port types by
adding a port of “Control” type. A Control port is allowed only on
the functional interface of a ControlComponent. In the left-hand
side of Figure 5 we show both the top-level design of a Controlport
and its internal design.

8Assemblies are really useful, e.g., for identifying patterns of
aggregates of component instances that serve for providingsome
high-level functionality.

Output Control port

top-level design internal design

Input Control port

top-level design internal design <<Assembly>>

<ControlModule>

(top-level design)

Figure 5. Top-level and internal design of a Control port and
final top-level design of “ControlModule”

Note that - internally - a Control port is a bidirectional one. We
distinguish between input and output Control ports. When anin-
put Control port is attached to a ControlComponent - internally -
the “SaveCCM top-level design converter”produces: (1) an in-
put and an output data-and-triggering port on the ControlCompo-
nent (i.e., “a” and “f” in Figure 4); (2) an input data-and-triggering
port on Forward (i.e., “a”); and (3) an output data-and-triggering
port on Backward (i.e., “f”). Finally, the input data-and-triggering
port of the ControlComponent is associated - through delegation -
with the corresponding one of Forward. Analogously, the output
data-and-triggering port of the ControlComponent is associated to
the corresponding one of Backward. When an output Control port
is attached to a ControlComponent, the design converter behaves
analogously. By means of Control ports, the top-level design of
“ControlModule” (showed in Figure 4) looks as it is showed inthe
right-hand side of Figure 5.

5.3 Analyzing functional requirements
In this section we formalize the execution model of a ControlCom-
ponent. This formalization is intended to support functional analy-
sis of control systems during design-time. We are interested in
proving safety and liveness properties. To formalize the execution
model of a ControlComponent we look at (i) its internal design; (ii)
the execution model of a SaveCCM component; (iii) the set of pos-
sible actions performable on a SaveCCM port and, in some cases9,
(iv) its possible values. By referring to Section 4, the execution
model of a component may be expressed as a combination of ac-
tions that can be executed on its ports. The only action that can
be performed on an input (output) data port is a reading (writing)
action. We denote it as “read” (“write”). “read” and “write”are
non-blocking actions (i.e., there will always be a value on adata
port and it will always be possible to overwrite that value).On an
input (output) triggering port we can perform a checking (activat-
ing) action that we denote as “check” (“activate”). “check”is a
blocking action, that is it makes a component waiting for theacti-
vation of an input triggering port. “activate” simply activates the
trigger associated to an output triggering port. On an input(output)
data-and-triggering port a component executes “check” followed by
“read” (“write” followed by “activate”). These rules can becom-
bined in the obvious way in order to specify the execution behaviour
of a component, with an arbitrary number of ports of different type,
by means of a process algebra. Note only that if a componentC
hasp1, ..., pn input data-and-triggering ports then - during the ini-
tial part of its execution -C will execute a sequence ofn “check”
(each of them for eachpi) followed by a sequence ofn “read”.
We choose FSP [10] (Finite State Processes) as process algebra to
model the execution behaviour of components and assembliesat de-
sign level. FSP fits our purposes because it is notoriously easier to
use than other more expressive process algebras and it is supported
by LTSA [10] (Labelled Transition System Analyser). LTSA is a
plug-in based verification tool for concurrent systems. It mechan-
ically checks that the specification of a concurrent system satisfies

9This is required only for specific data ports of interest, e.g.,
boolean data ports used to set different operational modes of the
control system.

required properties of its behaviour. In addition, LTSA supports
simulation to facilitate the interactive exploration of the system be-
haviour. Thus the FSP specification of a SaveCCM system rep-
resents the mean to integrate SAVEComp with LTSA in order to
support functional analysis. In Figure 6.A we show the top-level
design of the control system - showed in Figure 1 - as specified
by the developer using the“SaveCCM visual editor”10, its inter-
nal design (Figure 6.B) as mechanically derived by the“SaveCCM
top-level design converter”, its FSP specification (Figure 6.C) and
an its liveness property (Figure 6.L3) that we want to verify.

The FSP specification has been mechanically derived by the“func-
tional behaviours model generator”taking into account the loop’s
internal design, the execution model of a SaveCCM componentand
by combining the above mentioned rules (defining the set of actions
that can be performed on a port) in the obvious way.L3 has been in-
cluded in the system top-level design (in a XML format) and ithas
been mechanically translated in the LTSA property notationby the
“functional behaviours model generator”. Integrating SAVEComp
with LTSA (i.e., a possible“safety and liveness analyzer”) allow
us to easily verify functional properties of the system’s FSP spec-
ification. For example, we can mechanically verify that deadlocks
do not occur in the execution of the control system (i.e., safety).
Moreover, we can also verify that the execution of the control sys-
tem holds the liveness property showed in the figure. In Figure 6.L3
we show the graphical notation used by LTSA to express a liveness
property. It is given in form of its Büchi Automaton [4]. Informally,
the Büchi Automaton is an operational description of the property
and specifies the set of system behaviours that hold it. 0 denotes the
initial state. 3 denotes the accepting state.E is an error state (i.e., a
non-accepting sink node). Each arc label denotes a possibleaction
of the system. To minimize the graphical view of the automaton,
LTSA might label one arc with more than one action. These actions
have an OR semantics, i.e., havingn actionsai , ...,an labelling one
arc is like havingn arcs each one of them labelled withai , ...,an
respectively. The“tau” action means all the possible complemen-
tary actions with respect to the actions that are explicitlyspecified
as performable from that node. By means ofL3 we specify - as
valid behaviours of the system - all the ones in which the Back-
ward component of the Master will always read from “e” only after
that the Forward component of the Slave has read from “a”.L3
expresses a requirement of the correct functioning of the control
loop. SatisfyingL3 assures that the information required to update
the state of all the ControlComponent in the control systemsloop is
not available until all the Forward components have executed their
code.

5.4 Analyzing Real-Time properties
In this section we will discuss the non-functional model of
SaveCCM. We will show how we can analyze SaveCCM consider-
ing real-time properties in an automated way, and discuss aresource
reclaiming-extension to SaveComp that utilizes spare capacities in-
troduced by pessimistic real-time predictions. Further, we will also
discuss analysis techniques and synthesis. In order to reason about
real-time behaviour we need to transform the design-time compo-
nents into tasks conforming to a real-time model. The tasks can
then be analyzed considering the design requirements. The process
is performed in the steps:
Model transformation: Model transformation involves the steps

(i) component to task allocationand(ii) attribute assignment
which are necessary in order to transit from the component
model, to a run-time model enabling verification of temporal
constraints and usage of efficient and deterministic execution

10For the sake of simplicity we omitted the AIs and the AO.

environments.
Real-Time Analysis: To show that the run-time tasks will meet

their stipulated timing constraints, schedulability analysis
must be performed. We assume a fixed-priority systems (FPS)
(the predominant scheduling method in today’s real-time op-
erating systems).

Synthesis: Synthesis involves mapping the tasks to operating sys-
tem specific entities, mapping data connections to an OS spe-
cific communication, generating glue code, compiling, link-
ing and bundling the program code.

5.4.1 Model transformation
When designing a control system with components, the designer is
not required to consider the schedulability of the system, but should
rather focus on the functionality. The components should beanno-
tated with non-functional information corresponding to the control
performance, e.g., periods and jitter constraints. Transformation of
components to tasks and scheduling the tasks on a real-time oper-
ating are automated processes.

In order to reason about, e.g., real-time each component must be an-
notated with appropriate quality attributes. These quality attributes
are; A finite worst-case execution time (WCET). A nominal period
(T), and in the case it is appropriate jitter constraint (Jitter). The
SaveCCM model also has transactions that can be used for defin-
ing timing constraints of data and/or control paths. Transactions
has end-to-end deadlines (E2ED), that define the longest allowed
latency between two components in the system.

The FPS model, which is used for analyzing the timeliness of the
systems, defines a system as a set of tasks with a set of attributes.
It is necessary to translate the components with their temporal con-
straints in to tasks The component to task converter performs two
separate steps; firstly a transformation from components totask
(task allocation), and secondlytask attribute assignment. To assign
the FPS model attributes in such a way that the high level tempo-
ral constraints on transactions are met is non-trivial and has been
addressed in research by e.g., [3], [16].

Attributes that are assigned during task attribute assignment are:
T (Period) - All periodic tasks have a period time that is assigned

during the task allocation. Sporadic tasks have a MINT that
analytically can be seen as a period time;

O (Offset) - The offset is an attribute that periodic tasks with jitter
constraints are assigned. The earliest start time is derived by
adding the offset to the period time.

P (Priority) - The priority is an attribute that indicates the impor-
tance of the task relative to other tasks in the system. In a FPS
system tasks are scheduled according to their priority, thetask
with the highest priority is always executed first. All tasksin
the system are assigned a priority.

WCET (execution time) - The worst case execution time is an at-
tribute that is used for schedulability analysis and dynamic
run-time scheduling, e.g., adaptive quality of service [6].

Components can be mapped to tasks in numerous ways. Common
approaches are to map each component to one task, or all compo-
nents to one single task. These two approaches may have obvious
drawbacks, in the former, there may be extensive overhead interms
of, e.g., cpu-overhead (context-switches). In the latter,where all
components are mapped to one task, the flexibility for the sched-
uler is lower and the timing requirements might not be fulfilled.
Furthermore, when constructing systems the developer is often re-
quired to manually set task attributes such as priorities. Since the
priorities directly decides how the tasks are scheduled, this is a hard
task. In our approach this process is automated in the task attribute
assignment plug-in.

Forward = (check.a -> check.a1 -> read.a -> read.a1 -> read.d -> write.b -> activate.b -> write.c -> activate.c -> Forward).

Backward = (check.g -> check.e -> read.g -> read.e -> write.h -> write.f -> activate.f -> write.f1 -> activate.f1 -> Backward).

InnerConnectionCG = (write.c -> activate.c -> check.g -> read.g -> InnerConnectionCG).

InnerConnectionHD = (write.h -> InnerConnectionHD | read.d -> InnerConnectionHD).

OuterConnectionBA = (master.write.b -> master.activate.b -> slave.check.a -> slave.read.a -> OuterConnectionBA).

OuterConnectionFE = (slave.write.f -> slave.activate.f -> master.check.e -> master.read.e -> OuterConnectionFE).

||ControlLoop = (master:Forward || master:Backward || master:InnerConnectionCG || master:InnerConnectionHD ||

 slave:Forward || slave:Backward || slave:InnerConnectionCG || slave:InnerConnectionHD ||

 OuterConnectionBA || OuterConnectionFE) \ {master.write.c, master.activate.c, master.check.g, master.read.g,

 master.write.h, master.read.h, slave.write.c, slave.activate.c, slave.check.g, slave.read.g, slave.write.h, slave.read.h}.

<<Assembly>>

<Master>

(top-level design)

<<Assembly>>

<Slave>

<<SaveComp>>
<Forward>

<<SaveComp>>
<Backward>

a

b

c

ef
g

Master

<<SaveComp>>
<Forward>

<<SaveComp>>
<Backward>

a
b

c

e

f
g

Slave

(internal design)(A) (B)

(C)

d

h

d

h

a1

f1

a1

f1

Figure 6. FSP Specification of a cascade control loop and an its liveness property

The context-switch time is increasing with the number of tasks,
and the ideal mapping considering stack usage and task switch-
overhead is to map all components to one task. However, in most
cases this is not feasible due to the real-time constraints of the sys-
tem. The task allocation strategy aims at increasing efficiency and
dependability of the system since it is important to keep resources
at a minimum in most embedded systems. It also strives at main-
taining traceability and testability. Hence, the notion ofcomponents
must be maintained both during development and after deployment.
If the notion of components is lost, then traceability and testability
are compromised.

A common approach to preserve the notion of components also af-
ter deployment is to use a one-to-one mapping between compo-
nents and tasks, i.e., map one component to one task. However, the
one-to-one mapping often implies worse resource usage thannec-
essary. By using a stochastic state-space search techniquewe can,
given certain criteria, find optimized mappings considering differ-
ent properties, e.g., performance or dependability. By framing com-
ponents during run-time by adding component-information on the
stack (similar to a stack-frame), the notion of components is pre-
served when several components are mapped to one task.

In [7] a framework is proposed to facilitate the mapping between
components and tasks by setting up mapping rules and exploitGe-
netic Algorithms(GA) to find feasible mappings that is optimized
considering stack usage and context-switch overhead. Thisframe-
work also constitutes the proposed plug-insComponent to Task
Converter, Task Attribute AssignmentandReal-Time Analyzer.

5.4.2 Real-Time Analysis
An important issue in obtaining high resource utilization is to de-
ploy an efficient and tight schedulability analysis. The analy-
sis need to faithfully model the complex execution behaviour that
arises in control systems. Especially, the analysis shouldbe able
to handle arbitrary large jitter and deadlines , task synchronization
and shared resources, and operating systems overhead.

For fixed-priority systems (the predominant scheduling method
in today’s real-time operating systems), the recent fast and tight
response-time analysis (RTA) for tasks with offsets provides a suit-
able efficient and tight analysis [11]. This technique can model the
precedence relations between tasks and hence gives a very accurate
model of the system behaviour. Furthermore, the execution speed
of this technique widely outperforms previous methods and is hence
highly suitable for deployment in an optimization algorithm.

An efficient schedulability analysis requires an efficient prediction
of WCET. Developers often use manual instrumentation methods
in order to obtain WCET estimates. However, the accuracy is often
low, hence to be safe the WCETs are often heavily overestimated.

Current work on SaveCCM includes adding context-dependentand
stochastic methods to predict WCET of SaveCCM components.
[13, 12].

5.4.3 Synthesis
For synthesizing an assembly, platform specific API calls have
to be inserted in the code. SaveCCM uses a general API and
an API-translator (Code generator) The code generator resolves
communication within and between tasks by translating platform-
independent system calls with platform-specific system calls and
adds platform specific glue code.

To maintain traceability and testability, it is important to maintain
the notion of components, also after task allocation, code genera-
tion and deployment. Hence, we propose that the code generation
module should be extended to add frames to components, similar
to stack-frames. In other words,enter component xandleave com-
ponent xcan be pushed and pop on the stack. This leads, e.g., to
easier debugging.

5.4.4 Resource Reclaiming Extension
Real-Time Analysis is based on worst-case behaviour in order to
guarantee correct behaviour in all situations. Due to this,the analy-
sis often becomes pessimistic because the worst-case scenario does
not always reflect the actual case. Thus, when the worst case does
not occur, there are left over resources in terms of processing time,
i.e., residual time. The residual can be dynamically reclaimed and
used for, e.g., dynamic property checking or other types of moni-
toring in low priority tasks.

The resource-reclaiming strategy is performed with an on-line ser-
vice scheduler that uses hybrid scheduling to choose appropriate
actions considering a residual time and. Low priority monitoring-
tasks can use the residual time. The residual time can also beused
for scheduling higher quality versions of the normal tasks as de-
scribed in [6].

6 The ACC case study
We use an Adaptive Cruise Controller (ACC) prototype, imple-
mented in SaveCCM [2], to evaluate our ideas (see Figure 7).
The ACC extends the regular cruise controller in that it helps the
driver to keep a safe distance to a preceding vehicle, autonomously
changes the speed depending on the speed limit regulations,and
helps the driver to slam the brake in extreme situations.

The application has three different operational modes:Off, ACC
Enabled, and Brake Assist. In the Off mode, none of the con-
trol related functionality is activated. During theACC enabled

Road Signs Enabled

Current Speed

Road Sign Speed
ACC Max Speed

Distance

ACC Enabled

BrakePedal Used

<<Assembly>>
50 Hz

10 Hz

BrakeSignal

Throttle

Brake
Assist

<< SaveComp >>

Logger
HMI Outputs

<< SaveComp >>

Object
Recognition

<< SaveComp >>

Mode Switch

<< Switch >>

ACC
Controller

<< Assembly >>

BrakeAssist

ACC

Max Speed

ACC ApplicationSpeed Limit

<< SaveComp >>

Figure 7. SaveCCM top-level design of the ACC application

mode the control related functionality is active. In theBrake As-
sist mode, braking support for extreme situations is enabled. The
application (Figure 7) is based on four components, one switch,
and one component assembly. To deliver the response for the time-
critical computation as fast as possible, the assembly (ACCCon-
troller, Figure 7) is, in turn, implemented as a cascade controller
using two control modules as showed in Figure 8.(a). The two con-
trol modules Distance Controller and Speed Controller are two as-
semblies of ControlComponent type and they represent the master
and the slave of the ACC Controller, respectively. They are con-
nected through a connection among their Control ports (i.e., a Con-
trolConnection). In Figure 8.(b) we show the internal design of
ACC Controller as automatically derived by theSaveCCM top-level
Design Converterplug-in in our framework. CalcOutput1 (Cal-
cOutput2) and UpdateState1 (UpdateState2) represent the forward
and the backward components of Distance Controller (Speed Con-
troller), respectively.

Furthermore, the application has two different trigger frequencies,
10 Hz and 50 Hz. Logging and HMI output activities execute with
the lower rate, and control related functionality at the higher rate.

<<Assembly>>

Distance

Controller

<<Assembly>>

Speed

Controller

ThrottleACC

MaxSpeed CurrentSpeedDistanceRelativeSpeed

<<SaveComp>>

<<SaveComp>>
UpdateState1

out1

in1

in1

out1

CalcOutput1
out2

in2

<<SaveComp>>

<<SaveComp>>
UpdateState2

in1

in1

out1

CalcOutput2
in2

out2

out1

ACC

DistanceRelativeSpeed

Throttle

MaxSpeed CurrentSpeed

(a)

(b)

out in

Figure 8. SaveCCM (a) top-level and (b) internal design of the
ACC Controller assembly

For a detailed presentation of the ACC application functionality, we
refer to [2].

6.1 Checking safety and liveness properties of
the ACC application

We are interested in checking safety and liveness properties of the
ACC application. On one hand, we want to check implicit (i.e., they
do not have to be specified but can be directly observed by exploit-
ing the model of the system) safety and liveness properties such
as deadlock-freeness and livelock-freeness (i.e., progress). In other

words, we are interested in checking that deadlocks do not occur
and that every action can be eventually performed. Moreover, we
want to also check specified safety properties such asSafety1: “if
the ACC Enabled (Brake Assist) mode is disabled then also thecom-
ponent ACC Controller (Brake Assist) must be disabled”or liveness
ones such asLiveness1: “the information required to update the
state of all the components in the ACC Controller is not available
until all the output values have been calculated”.

Validating the first property allows us to state that the ACC applica-
tion is safe with respect to the different operational modes. Validat-
ing the second one allows us to state the correctness of the control
loop performed by the ACC Controller with respect to updating its
state based on the feedback signals. The assumption, here, is that
each basic component in SAVEComp is a black-box one whose be-
haviour (in terms of the entry function that it performs) hasbeen
already validated with, e.g., unit testing.

For the purposes of our case study, we consider LTSA asSafety and
liveness analyzer. Thus, we also consider FSP notation as specifi-
cation language used by the developer to enrich the system design
with safety and liveness properties that must be checked.

To check deadlock-freeness and progress, we only need to derive
the model of the functional behaviour of the system in form ofa
FSP process (i.e., a LTS) without considering a property specifica-
tion. We do this by exploiting theFunctional behaviours Models
Generator, which - analogously to what we have showed in Sec-
tion 5.3 - derives the FSP model of the system’s functional behav-
iour. This is done by taking into account the ACC applicationde-
sign as derived by the converter, the underlining executionmodel
of the components forming it (as imposed by the SaveCCM seman-
tics), the set of possible actions performable on the component ports
and the possible values of the input ports ACC Enabled and Brake
Pedal Used. These ports handle boolean values (i.e., they have a
ON/OFF semantics) and they allow to enable the three different op-
erational modes of the ACC application.

Once the generator has derived this model, the developer caneasily
interact with LTSA to verify that deadlocks do not occur or every
action is eventually performed during the execution of the ACC ap-
plication. For space reasons, here, we do not report the automati-
cally derived specification of the ACC application11.

Although LTSA exploitspartial order reductionto efficiently per-
form the deadlock-freeness and liveness check, it suffers of the well
known state explosion problem. It is worth noticing that, when
building the model of the system requires too much memory, wecan
exploit the architectural constraints imposed by the pipe-and-filter
style (SaveCCM is based on) to efficiently analyze the systemby
following a compositional reasoning. That is, we can analyze only
parts of the system (i.e., its subsystems) by composing themwith
an “efficient” (with respect to memory consumption) environment
that is semantically equivalent to the actual environment.In this
way we obtain a minimized model of the system that is equivalent
to the original one. This“efficient” environment can be automati-
cally derived by taking into account the interface of the components
forming the subsystem selected - by the developer - for the analysis.
In fact, due to the execution model imposed by the pipe-and-filter
style, it is the environment that provides the considered subsystem
with the input and output data expected on its ports. After checking
a functional property against the parallel composition of the con-
sidered subsystem with the“efficient” environment, the latter must
be checked as functional property of the subsystem constituted by
the actual environment. This is required to correctly carryon the

11It is available at the following URL:
http://www.di.univaq.it/tivoli/ACCApplication.lts

analysis by following a compositional reasoning.

The previous compositional approach can be adopted to efficiently
verify that bothSafety1andLiveness1hold during the execution
of the ACC Application.

To checkSafety1, from the derived FSP specification of the system,
the developer extracts the one of the subsystem formed by Mode
Switch, ACC Controller and the connection among them. Then,
by using themodels generator, the developer can mechanically de-
rive an“efficient” environment for the considered subsystem. This
environment simply provides Mode Switch with the data expected
on the input ports ACC Enabled and Break Pedal Used. It also
provides ACC Controller with the data expected on the input ports
Distance and Current Speed and gets the data sent on the output port
Throttle. It is worth mentioning that, as showed in Section 5.3, the
derived FSP specification contains also the model of the connec-
tion among the output and the input data-and-triggering ports (i.e.,
RelativeSpeed) of Mode Switch and ACC Controller, respectively.
Safety1 is specified in terms of the actions that can be performed
on the ports ACC Enabled, Break Pedal Used and RelativeSpeed.
For ACC Enabled and Break Pedal Used the reading actions have
different names based on the possible operational modes. This is
a possible way, in FSP, to exploit the boolean values of ACC En-
abled and Break Pedal Used in order to model whether a specific
operational mode is enabled or not.

To checkLiveness1it is enough to extract only the FSP specifi-
cation of ACC Controller, since this property is alocal one and it
is not related to the interaction with other components. Analyzing
Liveness1, as property of ACC Controller, is done analogously to
what we have done to analyzeL3 as property of the cascade control
loop discussed in Section 5.3. Thus, for space reasons, we donot
further discuss the analysis ofLiveness1.

6.2 Real-time analysis of the ACC application
In this section we are interested in analyzing the real-timebehav-
iour of the application and prove that the constraints imposed on
the system will hold. The ’ACC Application’ constitutes 9 compo-
nents. All components except one is triggered by a 50 Hz external
periodic trigger. The last component is triggered by an 10 Hzexter-
nal periodic trigger.

For the simplicity we assume that each component has a WCET
of 1 ms. We assume that the context-switch time is 0.1 ms, and
we also constrain the system with four transactions, denoted tr i <

(components);E2ED >

tr1 <(Speed unit,Object rec.,Mode Switch,ACC Con.);10 ms>

tr2 <(Speed unit, Mode Switch, ACC Con.);10 ms>

tr3 <(Speed unit,Object rec.,Mode Switch,Break Assist);5 ms>

tr4 <(Logger Unit);20 ms>

We will briefly demonstrate how the system is transformed from
components to tasks and the resulting task properties derived from
the components. The process is tools oriented and the detailed
workflow of each tool is not described due to space limitations.

The components and transactions are transformed into FPS tasks by
applying the model-transformation, response-time analysis (RTA)
and synthesized iteratively, giving feedback to the designer consid-
ering fulfilled constraints, and/or possible failures.

Thecomponent to task converterplug-in searches for an optimized
mapping from components and tasks considering context-switch
overhead, stack size and the stipulated real-time constraints, i.e.,
the end-to-end deadlines of the transactions. Thetask attribute as-
signmentplug-in assigns the tasks the derived attributes period, off-
set, priority and WCET. Thereal-time analyzerplug-in performs

response-time analysis to ensure that the constraints are met.

In this example, with the above stated constraints, the system is di-
vided into three tasks as depicted in figure 9. Task A maps the com-
ponentsSpeed Unit, Object Recognition, Mode SwitchandBreak
Assist. Task B maps the assembly’ACC controller’ and task C
maps theloggercomponent. The derived attributes assigned to the
resulting tasks are:

Task A: Period 20 ms, Offset 0, Priority High, WCET:4 ms
Task B: Period 20 ms, Offset 0, Priority Mid, WCET: 4 ms
Task c: Period 100 ms, Offset 0, Priority Low, WCET: 1 ms

The response-time analysis shows that the transactionstr1−tr4 will
have the worst case response-times, 8.1 ms, 8.1 ms, 4 ms and 9.2 ms
respectively. By comparing these values to the end-to-end deadline
(E2ED) constraints we can see that all transactions will be met and
the system is correct considering timing.

Task A

Task BTask C

50 Hz

<<SaveComp>>

Speed
Limit

10 Hz
<<SaveComp>>

Logger

<<SaveComp>>

Object
Recogn

<<Switch>>

Mode
Switch

<<SaveComp>>

Distance
Output

<<SaveComp>>

Brake
Assist

<<SaveComp>>

Speed
Output

<<SaveComp>>

Update
Speed

<<SaveComp>>

Update
Distance

Figure 9. Resulting task set after model transformation

Considering the systems different modes, we see that some modes
will not require all components to be run, leaving some of thetasks
with a significantly shorter execution-time than WCET. In this case
an on-line scheduler can use the residual (left over) time toschedule
either low priority monitoring tasks or higher quality versions of the
standard tasks. In both cases increasing the quality of the system in
some way.

7 Conclusion and future work
Although component models that support predictability of the sys-
tem behaviour there exist, they are found to be inappropriate for the
control systems application domain since they do not support the
requirements of embedded systems and, hence, are not able topre-
dict the behaviour of control systems. The approach presented in
this paper represents a possible solution to this problem. By means
of it, we can build/compose control systems components (i.e., in
designing the control system we can use a component-based ap-
proach by exploiting all its notorious advantages) and - in the same
time - predict the functional/non-functional behaviour ofthe com-
posed system. Although extending SaveCCM with the possibility
to specify a top-level design of the system considerably simplify
the developer tasks, it internally adds complexity at levelof system
implementation. To validate the real feasibility of our approach, as
future work, we plan to apply SAVEComp to real-scale case stud-
ies. Moreover, SAVEComp, as it is currently structured, still lacks
of integration between functional and non-functional analysis. That
is, functional and non-functional analysis are separatelyperformed.
We also plan to incorporate SAVEComp into TOOL•ONE frame-
work [5] which supports functional and non-functional analysis in-
tegration, and implement the SAVEComp parts that go beyond the
approach presented in this paper.

Acknowledgements
This work is supported by SSF within both SAVE
(SAfety critical components for VEhicular systems -
http://www.mrtc.mdh.se/SAVE/) and FLEXCON (FLEXible em-
bedded CONtrol systems - http://www.control.lth.se/FLEXCON/)
project.

8 References

[1] International Electrotechnical Commission, IEC 61131 Pro-
grammable Controllers. Part 1 - 5, January 1992.

[2] M. Akerholm, A. Möller, H. Hansson, and M. Nolin. Towards
a Dependable Component Technology for Embedded System
Applications. InProceedings of the 10th IEEE International
Workshop on Object-oriented Real-Time Dependable Systems
(WORDS05), February 2005. Sedona, Arizona, USA.

[3] A. Bate and I. Burns. An approach to task attribute assign-
ment for uniprocessor systems. InProceedings of the 26th An-
nual International Computer Software and Applications Con-
ference. IEEE, 2002.

[4] J. Buchi. On a decision method in restricted second order
arithmetic. InInternational Congress on Logic, Method and
Philosophical Sciences, 1960.

[5] V. Cortellessa, A. Marco, P. Inverardi, F. Macinelli, and P. Pel-
liccione. A framework for the integration of functional and
non-functional analysis of software architectures. InTACoS,
2004.

[6] J. Fredriksson, M. Akerholm, K. Sandström, and R. Do-
brin. Attaining flexible real-time systems by bringing to-
gether component technologies and real-time systems theory.
In Proceedings of the 29th Euromicro Conference, Component
Based Software Engineering Track, September 2003. Belek,
Turkey.

[7] J. Fredriksson, K. Sandström, and M. Akerholm. Calculat-
ing resource trad-offs when mapping components to real-time
tasks. InIn the 8th International Symposium on Component-
Based Software Engineering (CBSE8), St.Louis, USA, May
2005.

[8] H. Hansson, M. Akerholm, I. Crnkovic, and M. Törngren.
SaveCCM - a Component Model for Safety-Critical Real-
Time Systems. InProceedings of 30th Euromicro Conference,
Special Session Component Models for Dependable Systems,
September 2004.

[9] B. Lewis. IEC 61499 Function Blocks: A new way to design
control systems?Control Engineering Europe, April 2002.

[10] J. Magee and J. Kramer.Concurrency: State Models and Java
Programs. John Wiley and Sons, 1999.

[11] J. Mäki-Turja and M. Nolin. Fast and Tight Response-Times
for Tasks with Offsets. In17th EUROMICRO Conference on
Real-Time Systems. IEEE, July 2005. Accepted for publica-
tion.

[12] A. Möller, J. Fredriksson, I. Peak, M. Nolin, and H. Schmidt.
Context Dependent Predictions of Component-Based Control
Software. InSubmitted to ERCIM Workshop on Dependable
Software Intensive Embedded systems. IEEE Computer Soci-
ety, Septembed 2005.

[13] T. Nolte, A. Möller, and M. Nolin. Using Components to
Facilitate Stochastic Schedulability. InProceedings of the
24th Real-Time System Symposium – Work-in-Progress Ses-
sion. IEEE Computer Society, December 2003. Cancun, Mex-
ico.

[14] E. Parr. Programmable Controllers - An Engineer’s Guide
(2nd Edition). Butterworth-Heinemann Ltd, 2001.

[15] L. Pernebo and B. Hansson. Plug and play in control loop
design. InPreprints Reglermöte 2002, Linköping, Sweden,

May 2002.

[16] C. Sandström, K. and Norström. Managing complex tempo-
ral requirements in real-time control systems. InIn 9th IEEE
Conference on Engineering of Computer-Based Systems Swe-
den. IEEE, April 2002.

[17] K. Sandström, J. Fredriksson, and M. Akerholm. Introduc-
ing a component technology for safety critical embedded real-
time systems. InSpringer - LNCS 3054, May 2004.

[18] M. Tivoli, J. Fredriksson, and I. Crnkovic. A component-
based approach for supporting functional and non-functional
analysis in control loop design. Malardalen University,
Malardalen Real-Time Research Centre. Technical Report,
May 2005.

