
Licentiate Thesis Proposal

An Operational Semantics for Parallel

Execution of Re-entrant PLEX

Johan Erikson
Department of Computer Science and Electronics

Mälardalen University,Västerås, SWEDEN
johan.erikson@mdh.se

June 20, 2005

Abstract

A large class of legacy software systems, developed and main-
tained over many years, can also be termed sequential software
systems in that independent parts of the system requires exclusive
access to shared data during its entire execution. This requirement
originates from design decisions on non-preemptive execution, and
when the underlying architecture is a single-processor one, this is
sufficient to protect the shared data. The problem arises when this
architecture is to be replaced by a multi-processor ditto; since dif-
ferent tasks (still executed in a non-preemptive fashion, but on dif-
ferent processors) now may access, and update, the same data con-
currently, non-preemptive execution does not protect the shared
data any longer.

To the above problem, we propose a solution based on a pro-
gram analysis that can decide when parallel execution of the cur-
rent software is safe in the sense that the parallel execution does
not result in data interference. As a formal basis for such an analy-
sis, the formal semantics of the language in question has to be con-
sidered.

This thesis presents an operational semantics for the language
PLEX, used to program the AXE telephone exchange system, in
which the above mentioned properties are found: independent pie-
ces of software, executed in a non-preemptive fashion, together
with unprotected, shared data.

1

1 Background and Motivation

Sequential software consists of different, and independent, parts that
requires exclusive access to common data during its entire execution.
The exclusive access is due to early design decisions on that the inde-
pendent parts of the system should be executed in a non-preemptive
fashion, which means that there is no need to protect the shared data,
as long as a single-processor architecture, in which the independent
parts of the software are sequentially executed, is used. We can view
a real-time system in which tasks/processes, on the same priority level,
executes in a non-preemptive fashion, as an instance of a system that
contains sequential software (and according to this relation, we will use
the term task for the independent pieces of the system).

While complex legacy software systems, developed, and maintained,
over many years, (such as telecommunication systems) may consists of
large amounts of non-preemptive, sequential software, there is a de-
velopment towards different forms of parallel hardware. Examples of
such architectures are Symmetric Multiprocessors (SMP), Chip-Multi-
processors (CMP), and Simultaneous Multi-Threading processors (SMT),
i.e., CPU’s containing several processors (CMP), or processors that can
execute several threads in parallel (SMT).

Sequential software could be executed on serial, as well as on par-
allel hardware, as long as the execution (on the parallel hardware) is
restricted to sequential execution, see Fig. 1 (b), but problem arises
when one wants to release the restrictions and execute several tasks
with the same priority in parallel, thereby taking full advantage of the
parallel hardware. At this point, the non-preemtive execution does not
protect the shared data any more, since tasks that are executed on dif-
ferent processors may access and update the same data concurrently.
The question is now: How is the system to be parallelized? By simply
moving the software from the old architecture to the new, it is most
likely that programs will break due to concurrent access of shared data,
Fig. 1 (c).

A naive solution would be to re-design and re-implement the system,
but since a legacy software system usually contain several million lines
of code, this solution is infeasible due to the size of the system. How-
ever, since data is shared, access to it must be synchronized to avoid an

2

 ENTRY POINT
Code

 EXIT POINT

COMMON
DATA AREA

COMMON
DATA AREA

(a) (c)(b)

T
i

COMMON
DATA AREA

T4

T3

T2

T1
T1

T2

T1

T2

Figure 1: Independent tasks with some common data (a), sequentially
executed (b), or executed in parallel, where different tasks may access
the same data concurrently (c).

unpredictable behavior. A complication is that the use of synchroniza-
tion is rather costly, i.e., it takes time to synchronize, and this may (in
the worst case) decrease the performance of the system. A second com-
plication is that it may be hard to find all variables that may be shared,
which may come close to a re-implementation of the system by inserting
synchronization primitives on every variable in the system.

The contradictory conclusion is that the shared data must be pro-
tected by synchronization, while we want to avoid this synchronization
due to its cost (in time). To keep the actual number of inserted synchro-
nizations at a minimum, we propose the use of a program analysis that
can decide whether or not parallel execution of different parts of the
system is safe, or if synchronization has to be inserted. The analysis
should also be able to decide whether or not a given part of the system
is re-entrant, meaning that the same part can be executed in several
”instances” without the need for synchronization. To ensure the correct-
ness of the analysis, i.e., that the result of the analysis is consistent
with the semantics of the implementation language, the analysis must
be based on a formal semantics of the same language.

Our subject of study is the language PLEX, which is used to program
the functionality in the AXE telephone exchange system from Ericsson.
The decision to work with PLEX is motivated by the facts that the lan-

3

guage (and its execution model) (1) in its structure is pseudo-parallel
with independent tasks executed in a non-preemptive fashion in com-
bination with unprotected, shared data, which implies assumptions on
sequential execution, and (2) with the presence of a large amount of ap-
plications written in PLEX, as well as an experimental, shared-memory
architecture, we don’t have to restrict future evaluations to toy-like ex-
amples.

This thesis will present a small-steps operational semantics for PLEX,
both for a single-processor architecture, as well as for a multi-processor
ditto. The main motivation for the semantics, is the necessity for a fu-
ture program analysis, that can classify parallel execution as safe (or
unsafe), to be based on a formal semantics of the language.

The thesis will also propose ”guidelines”, in the form of informal cri-
teria, for how the existing code, by a minimum of changes, could be
transformed into suitable parallel code, something that further moti-
vates the development of a formal semantics: since we must be able
to guarantee that the proposed transformations does not introduce any
errors in the system, i.e., that we don’t change its behavior, our guide-
lines must be based on formal models of both sequential, and parallel
execution. This guarantee is necessary due to the very high availability
demands that exists for telephone exchange systems.

Finally, by introducing primitives for synchronization in the lan-
guage, as well as specifying its semantics, the thesis will propose a new
language, ”Parallel PLEX”, suitable for parallel processing.

2 Programming Language Semantics

Programming language semantics is concerned with rigorously speci-
fying the meaning, or the effect, of programs that are to be executed.
By effect we mean, for instance, the contents of the memory locations,
which parts of the program that is to be executed, or the behavior of
the hardware affected by the program. A semantic specification cap-
tures these things in a formal way, and while the standard literature
[18, 22] contains several arguments for defining formal semantics for
general programming languages, we claim that for languages used in

4

applications with very high demands on availability (such as telephone
exchanges) where it is important to guarantee the functionality of the
system, one of the most important is that ”the semantics can form the
basis for analysis and verification” [18].

We have chosen a small steps operational semantics (also denoted
structural operational semantics) for the specification of PLEX, and we
motivate our choice in the following way:

• Since we are modeling different run-time systems for PLEX, we
were keen on being able to model how different statements are
executed, which made operational semantics an obvious candidate
in that it captures both the result of a computation, as well as how
the result is produced.

• A small steps semantics, in opposite to a big step semantics, will
also tell us how the intermediate steps of the execution is per-
formed.

• Since PLEX is continuously updated, a second consideration was
that the semantics should be able to use as a reference manual for
future implementations.

• Other approaches (see the above references) could also be consid-
ered, but with the operational approach we could develop (what
we thought) the most straight-forward notation.

3 Related Work

Since PLEX is used in the telecom domain, it is natural to first look
at semantics for languages in the same domain since we believe that
the requirements and assumptions are the same, but also semantics
for imperative languages could be of interest since PLEX, if we look at
the structure of the syntax, is an imperative language. Automatic par-
allelization in general can also be of interest, since a final goal is to
automate the process of transforming sequential PLEX to its parallel
counterpart. Finally, due to data encapsulation and information hid-
ing, PLEX may also be seen as an early object based language, which
motivates a study of automatic parallelization of such languages.

5

3.1 Telecom languages

The telecom domain contains a number of different programming, and
specification languages, which have been formalized with different tech-
niques.

CHILL (the CCITT High Level Language), which is an object-oriented
language with support for concurrency [16, 21], was developed within a
denotational framework called the Vienna Development Method (VDM)
[15, 4], which is a specification method, that goes from abstract notation
to formal specification.

The concurrent and functional language ERLANG, developed by Er-
icsson, and used to program the AXD switching system [7], has been
specified by a structural operational semantics as part of a larger frame-
work for formally reasoning about ERLANG programs [12].

Estelle, LOTOS, and SDL are specification languages proposed by,
and used in, the telecom industry. The languages, covered in [1], are
used to specify the behavior within, and between, different processes/
components, and they range from a graphical, flowchart based repre-
sentation (SDL), to a more abstract, process algebraic style (LOTOS).
The semantics of the latest version of SDL, SDL-2000, is based on ab-
stract state machines [13], whereas the semantics for both Estelle, and
LOTOS, is modeled by transition systems where the meaning is given
by their computations [20, 5].

3.2 Semantics for imperative languages

To its syntax, PLEX is an imperative language with an asynchronous
communication paradigm, and it also contains the GOTO statement. The
GOTO may also be modeled in a continuation style semantics, which de-
scribes the effect of executing the remainder of the program [18], but
since continuations is usually described as part of a denotational frame-
work, and we have chosen an operational one (see Section 2), we have
not considered this further.

Even though an asynchronous communication paradigm can be mod-
eled by process algebra, we are not aware of any work that specifically
models sequential asynchronous communication through queues, which
is the paradigm used in the execution model for PLEX [10].

6

3.3 Automatic parallelization

The traditional area of application for an optimizing compiler (in which
automatic parallelization is performed) has been scientific applications,
where an increasing processor capacity has an major impact on the per-
formance since much of the work in these applications can be done
in parallel. The most important task for an optimizing compiler is to
find, and resolve, different types of dependencies, mainly in loops and
accesses of arrays, which means dependencies within the same pro-
grams/task as opposite to our situation where we want to resolve de-
pendencies between different programs/tasks. The literature contains
many surveys of optimizing compilers [14, 2, 3, 19]

3.4 Parallelization of OO languages

The only publication we are aware of that has managed to automati-
cally transform a sequential OOP into a parallel equivalent without
programmer annotations is [6]. Here, compile-time (static) analysis is
combined with a run-time analysis, where an asynchronous thread of
execution is started for every method invocation in a program.

4 Research Description

As we said in Section 1, the context of this work is to execute sequential,
legacy, software on parallel hardware, without re-implementing the en-
tire system. In order to specify a program analysis that can decide on
whether parallel execution of such software is possible or not, we will de-
fine an operational semantics for an imperative language called PLEX,
which is used in the telecom domain. The following is the approach of
developing this semantics, as well as the contributions of this work.

4.1 The approach

• We have already defined an operational semantics for sequential
execution of PLEX in its current single-processor architecture [8].

• As a first step towards a semantics for parallel execution, the se-
mantics in [8] has been adapted to an experimental shared-memory

7

architecture [9]. At this point, the language has not been extended
with any form of synchronization primitives, instead it executes
under a restricted execution model, which prevents some parts of
the programs to execute concurrently. This means that we model
the situation in Fig. 1 (b), i.e., ”sequential execution on parallel
hardware”.

• Before defining the semantics for ”parallel execution on parallel
hardware”, we will perform a study of some existing PLEX-code in
order to get an opinion on how well the existing code is suitable for
parallel execution, and if not, what transformations that could be
done.

• The final step will define the semantics for when the language is
extended with primitives for synchronization, and we denote this
language ”Parallel-PLEX”. In conjunction to this, we also intend
to propose ”guidelines” for how to transform existing PLEX-code
into ”Parallel-PLEX”.

4.2 The contributions

The main contributions of this thesis is the following:

• By using a labeled program (following the style in [17]) we show a
straight-forward operational semantics for an imperative, non-toy
like, language which includes the GOTO statement, and an asyn-
chronous communication paradigm.

• We also give an example on that formal semantics is not only of
theoretical interest, by taking operational semantics technology
to industry, and points to an application of formal semantics that
has considerable practical interest.

• In order to capture the differences between the possible sequen-
tial, and the possible parallel, executions, we show how to model
both a sequential run-time system, as well as a parallel one. This
will also provide us with the necessary theoretical ground for fu-
ture criteria for correct parallel execution.

8

• We will also provide ”guidelines”, in the form of informal criteria,
for when PLEX-code can be classified as re-entrant and by that
executed in parallel.

• A study of existing PLEX-code, and possible propositions on how
the existing code, by a minimum of changes, could be transformed
into suitable parallel code.

• The design of a new language, ”Parallel PLEX”, suitable for paral-
lel execution.

4.3 Published and planned papers

A first paper (in the form of an extended abstract) that summarized
the first technical report [8], was presented at APPSEM’04, a workshop
on applied semantics [11]. A second paper, that describes the opera-
tional semantics developed in the two reports [8, 9] is planned for the
summer/autumn 2005. A third paper will describe the semantics for an
extended language, a language where synchronization primitives has
been added. Whether or not this third paper is written before or af-
ter the thesis is defended depends on the time it takes to develop this
semantics.

5 Thesis Outline

A proposed title of the thesis is ”An Operational Semantics for Parallel
Execution of Re-entrant PLEX”, and its table of contents would be the
following:

1. Introduction
In this section, we will introduce the problem with sequential soft-
ware on parallel hardware, as well as stating the relevance of this
work, and its contributions.

2. AXE and PLEX
This section will introduce the AXE telephone exchange system,
as well as the language PLEX, and it summarizes the technical
report by Erikson and Lindell [10].

9

3. Architecture, and execution paradigms
The shared memory architecture, and the different execution par-
adigms that is assumed by the parallel semantics will be consid-
ered in this section. We will also discuss the term re-entrant code
in this section.

4. Existing source code
In this section, we will summarize our studies of (some set of) ex-
isting PLEX-code, and discuss the possibilities of executing it in
parallel, or if parallel execution is not suitable, possible transfor-
mations.

5. Operational semantics
This section is intended to give the reader not familiar with se-
mantic notation the necessary background before approaching the
operational semantics for PLEX. We will also argue on why we
chose an operational semantics to describe the language.

6. Core-PLEX and its operational semantics
For readability and simplicity, we have defined a subset of PLEX
denoted Core-PLEX, which will be defined in the beginning of this
section. In the following subsections we will define the formal se-
mantics, which is a conventional structural operational semantics
in the style used in [18], for this subset.

(a) Sequential execution on sequential hardware
This subsection defines the operational semantics for Core-
PLEX when the language executes on a single-processor ar-
chitecture.

(b) Sequential execution on parallel hardware
This subsection defines the semantics when the language,
without any synchronization, executes on an experimental
shared-memory architecture. At this point, the language exe-
cutes under a restricted execution model which prevents some
parts of it to be executed concurrently.

(c) Parallel execution on parallel hardware
The last subsection defines the semantics for ”Parallel-PLEX”,

10

i.e., the same subset as in the previous sections, but extended
with primitives for synchronization.

We also intend to discuss how PLEX, by manual changes,
could be turned into its parallel counterpart, ”Parallel-PLEX”,
and thereby be classified as re-entrant.

7. Related Work
This section will give an overview of related work, mainly in the
area of formal descriptions for implementation, and specification,
languages used in the telecom domain, but also semantics for im-
perative languages that contains the GOTO statement and an asyn-
chronous communication paradigm (if such work can be found).
We also intend to discuss some general works in the area of (auto-
matic) parallelization.

8. Conclusions and future work
This section will summarize the contribution of this thesis, and
also discuss the future work of the project.

6 Time-Plan

This sections contains the proposed time plan for the remaining parts
of the licentiate thesis project. The sequential semantics has already
been developed [8], and the semantics for parallel execution under a
restricted execution model is about to be finished [9]. The licentiate
degree requirement on 30 credits will be fulfilled with the course in
Program Analysis.

2005-06-22 Licentiate proposal
2005-07-31 Course in Program Analysis finished
2005-07-31 Second technical report [9] finished
2005-08-31 Literature survey on parallelization finished
2005-10-31 Study of existing PLEX-code finished
2005-12-31 Third step of the semantics completed (including a

technical report)
2006-02-15 Thesis draft ready for review
2006-03-31 Licentiate thesis finished and defended

11

7 Futute Work

Future work includes developing a program analysis that states if par-
allel execution of different PLEX programs is safe or not, or if synchro-
nization primitives has to be inserted. The semantics developed in this
thesis will provide the formal basis for this analysis in that the seman-
tics is used to ensure that the result from the analysis is consistent with
the semantics of the language.

References

[1] M. A. Ardis. Formal Methods for Telecommunication System Re-
quirements: A Survey of Standardized Languages. Annals of Soft-
ware Engineering, 3:157–187, 1997.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transforma-
tions for high-performance computing. ACM Computing Surveys,
26(4):345–420, 1994.

[3] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Auto-
matic program parallelization. Proceedings of the IEEE, 81(2):211–
243, 1993.

[4] D. Bjørner and C. B. Jones. Formal Specification and Software
Development. Prentice-Hall, 1982.

[5] M. Calder and C. Shankland. A Symbolic Semantics and Bisim-
ulation for Full LOTOS. In Proceedings of the 21st International
Conferenence on Formal Techniquess for Networked and Distrib-
uted Systems, pages 185–200. IFIP, 2001.

[6] B. Chan and T. S. Abdelrahman. Run-Time Support for the Auto-
matic Parallelization of Java Programs. The Journal of Supercom-
puting, 28(1):91–117, 2004.

[7] B. Däcker. Concurrent Functional Programming for Telecommuni-
cations: A Case Study of Technology Introduction. Licentiate the-
sis, Royal Institute of Technology, KTH, Sweden, 2000.

12

[8] J. Erikson. A Structural Operational Semantics for PLEX.
MRTC Report, ISSN 1404-3041 ISRN MDH-MRTC-166/2004-1-
SE, Mälardalen University, 2003.

[9] J. Erikson. An Operational Semantics for the Execution of PLEX
in a Shared Memory Architecture. Technical report, Mälardalen
University, To be published, 2005.

[10] J. Erikson and B. Lindell. The Execution Model of the APZ/PLEX -
An Informal Description. Technical report, Mälardalen University,
2002.

[11] J. Erikson and B. Lisper. A Formal Semantics for PLEX. In Pro-
ceedings of the 2nd APPSEM II Workshop, APPSEM’04, Tallin, 14-
16 April 2004.

[12] L. Fredlund. A Framework for Reasoning About ERLANG Code.
PhD thesis, Royal Institute of Technology, KTH, Sweden, 2001.

[13] U. Glässer, R. Gotzhein, and A. Prinz. The Formal Semantics of
SDL-2000: Status and Perspectives. Computer Networks - The
International Journal of Computer and Telecommunications Net-
working, 3(42):343–358, June 2003.

[14] R. Gupta, S. Pande, K. Psarris, and V. Sarkar. Compilation Tech-
niques for Parallel Systems. Parallel Computing, 25(13-14):1741–
1783, 1999.

[15] ITU-T. CHILL: Formal Definition, 1982. International Telecom-
munication Union, Volume 1, Part 1, 2, 3.

[16] ITU-T. CHILL: The ITU-T Programming Language, 11 1999. In-
ternational Telecommunication Union, Geneva, (Recommendation
Z.200).

[17] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis, 2nd Edition. Springer, 2005.

[18] H. R. Nielson and F. Nielson. Semantics with Applications: A For-
mal Introduction. John Wiley & Sons, 1992.

13

[19] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for
supercomputers. Communications of the ACM, 29(12):1184–1201,
1986.

[20] J. Thees and R. Gotzhein. A Formal Syntax and a Formal Se-
mantics for Open Estelle. Technical Report 292/97, University of
Kaiserslautern, 1997.

[21] J. F. H. Winkler. CHILL 2000. Telektronikk, 96(4):70–77, 2000.

[22] G. Winskel. The Formal Semantics of Programming Languages:
An Introduction. MIT Press, 1993.

14

