
Component-based Development Process and Component Lifecycle
Ivica Crnkovic1, Stig Larsson2, Michel Chaudron3

1Mälardalen University, Västerås, Sweden, ivica.crnkovic@mdh.se
2ABB Corporate Research, Västerås, Sweden, stig.bm.larsson@se.abb.com

3Technical University Eindhoven, Eindhoven, The Netherlands

Abstract. In recent years component-based
development has in resent years become an
established approach. Component-based
Software Engineering (CBSE) that deals with the
entire lifecycle of component-based products has
been focused on technologies related to design
and implementation of software components and
systems built from software components. The
experience has shown that pure technologies
alone are not enough. A CBSE approach
requires certain changes in development and life
cycle processes. However very few CBSE works,
either research or practical, have addressed
these topics. This paper describes principle
differences of component-based and non-
component based processes. Also we an
overview of a case study from a company that
applies component-based approach.

Keywords. Component-based software
Engineering, Life cycle processes

1. Introduction

Component-based approach has in last years

shown considerable successes in many
application domains. Distributed and web-based
systems, desktop and graphical applications are
typical examples of domains in which
component-based approach has been very
successful. In these domains the general-purpose
component technologies, such as COM, .NET,
EJB, J2EE are used.

There is however very little knowledge about
development processes that is specific for the
component-based development.

This paper describes the characteristics of
component-based processes, the reasons for this,
and the differences from a non-component-based
development process. From a case study it shows
that component-based approach specific
solutions in organization of a company.

The rest of the paper is as follows. Section 2
gives an overview of development processes.
Section 3 discusses some basic characteristics of
component-based approach and illustrates
component-based activities in the “V”

development process model. We illustrate a
component-based development approach in an
industrial case study in section 4. Finally, section
5 concludes the paper.

2. Basic characteristic of lifecycle process
models

Lifecycle processes include all activities of a

product or a system during its entire life, from
the business idea for its development, through its
usage and its completion of use. Different
models have been proposed and exploit in
software engineering, and different models have
exhibit their (in)abilities to efficiently govern all
activities required for a successful development
and use of products. We can distinguish two
main groups of models: Sequential and
evolutionary. The sequential models define a
sequence of activities in which one activity
follow after a completion of the previous one.
Evolutionary models allow performance of
several activities in parallel without requirements
on a stringent completion of one activity to be
able to start with another one. Well known
example of sequential models are waterfall
model, or V model, and of evolutionary models,
iterative and incremental development, or spiral
model.

Independently of the type of the model we
can identify the basic activities present in any
lifecycle process model. These activities are the
following:

Requirements analysis and specification.
The system’s services, constraints and goals are
established (i.e. a specification what the system
is supposed to do).

System and software design. An overall
system and software architecture is established.
A detailed design follows the overall design.
Software design includes identifying and
describing the fundamental software systems
abstractions and their relationships.

Implementation and unit testing. The
formalization of the design in an executable way,
which can be composed of smaller units. Testing
of the units follows their implementation.

System Integration. The system units are
integrated.

System verification and validation. The
correctness of the complete system is verified,
and the system is validated in respect to the
requirements.

Operation support and maintenance. A set
of activates that are requited for the expected
performance of the system.

Disposal. A disposal activity, often forgotten
in many lifecycle models, includes the phasing-
out of the system, i.e. a possible replacement by
another system or a complete termination.

Not all models are suitable for all types of
system lifecycles. Usually large systems which
include many stakeholders and which
development last a long period prefer using
sequential models. The systems which use new
technologies, are smaller, and to which the time-
to market is important, usually explore
evolutionary models which are more flexible and
which can show some results much earlier than
sequential models. These models can be applied
in a component-based development, but require
adoption to the principles of component-based
approach.

3. Component-based lifecycle process
models

CBSE addresses challenges similar to those

encountered elsewhere in software engineering.
Many of the methods, tools and principles of
software engineering used in other types of
system will be used in the same or a similar way
in CBSE. There is however one difference;
CBSE specifically focuses on questions related
to components and in that sense it distinguishes
the process of “component development” from
that of “system development with components”.

3.1 Building systems from components

The main idea of the component-based

approach is building systems from pre-existing
components. This assumption has several
consequences for the system lifecycle. First, the
development processes of component-based
systems are separated from development
processes of the components; the components
should already been developed and possibly used
in other products when the system development
process starts. Second, a new separate process
will appear: Finding and evaluating the

components. Third, the activities in the processes
will be different from the activities in non-
component-based approach; for the system
development the emphasis will be on finding the
proper components and verifying them, and for
the component development, design for reuse
will be the main concern.

There is a difference in requirements and
business ideas in these two cases and different
approaches are necessary. Components are built
to be used and reused in many applications, some
possibly not yet existing, in some possibly
unforeseen way

System development with components is
focused on the identification of reusable entities
and relations between them, beginning from the
system requirements and from the availability of
components already existing [1][2]. Much
implementation effort in system development
will no longer be necessary but the effort
required in dealing with components; locating
them, selecting those most appropriate, testing
them, etc. will increase [3].

We do not only recognize different activities
in the two processes, but also find that many of
these activities can be performed independently
of each other. In reality the processes are already
separate as many components are developed by
third parties, independently of system
development. Even components being developed
internally in an organization which uses these
very same components, are often treated as
separate entities developed separately.

 Let us discuss these differences in more
detail. Figure 1 shows a V development model
adopted to component-based approach.

We use V model as this model is widely used
in many organizations – typically large
organization building complex long-life
products, such as cars or robots. In this model the
process starts in a usual way by requirements
engineering and requirements specification,
followed by system specification. In a non-
component-based approach the process would
continue with the unit design, implementation
and test. Instead of performing this activities that
often are time and efforts consuming, we simply
select appropriate components and integrate
them in the system. However, two problems
appear here which break this simplicity: (i) It is
not obvious that there is any component to select,
and (ii) the selected component only partially fits
to our overall design. The first fact shows that we
must have a process for finding components.
This process includes activities for finding the

components, and then the component evaluation.
The second fact indicates for a need of
component adoption and testing before it can be
integrated into the system. And of course there
must be a process of component development,
this being independent of the system
development process.

Figure 1. V development process for CBD

Figure 1 still shows a simplified and an

idealized process. Its assumption is that the
components selected and used are sufficiently
close to the units identified in the design process,
so that the adaptation process requires
(significantly) less efforts then the units’
implementation. Further it does not consider
what happens in the maintenance process; what
happens if a system malfunctions due to a
problem occurred in a component, or due to
incompatibilities of the components. This
indicates that the component-based approach is
not only limited to the development process, or
part of the development process, but to the entire
life cycle. Already in the very early phase, in the
Requirements and Design phases the system
requirements engineers and system architects
must be aware about availability of the existing
components.

A more realistic process is shown on Figure
2. Let us look at the activities at different phases
of the development process in more detail.

 Requirements analysis and specification.

In this phase one important activity is to analyze
the possibility of realizing the solutions that will
meet these requirements. In a component-based
approach this implies that it is necessary to
analyze whether these requirements can be
fulfilled by available components. This means
that the requirements engineers must be aware of

components that can possibly be used. Since it is
not likely that appropriate components can
always be found, there is a risk that the new
components have to be implemented. To keep
with component-based approach (and utilize its
advantages) one possibility is to negotiate the
requirements and modify them to be able to use
the existing components.

System and software design. Similar to the
requirements specification phase the system
specification and design is strongly related to the
availability of the components. The potential
components are complying with a particular
component model. One could assume that it
would be possible to used components
implemented in different component
technologies, but in practice it is very difficult to
achieve interoperability between different
component models. Particular component model
requires a particular architectural framework, and
the application is supposed to use this
framework. This directly has impact on
architectural decisions. For example if the
component model requires a client-server
architecture style, it is obvious that the
application will use that style and not another
(for example pipe-filter). This will put
limitations on the system design. Also, other
properties of components can have a direct
influence on the design decisions. For this reason
the design process is tightly connected to the
availability of the components.

Implementation and unit testing. When
building component-based system, an ideal case
is to build an application by direct integration of
components, i.e. directly connecting components.
The “glue code” is a code that specifies this
connection. In practice the role of the glue code
will also include adaptation of the components,
and even implementation of new functions. In
an ideal case the components themselves are
already built and tested. However the component
tests in isolation are not sufficient. Often design
units will be implemented as assemblies of
several components and possibly a glue code.
These assemblies must be tested separately, since
an assembly of correct components may be
incorrect although the components themselves
are correct [5].

System Integration. The integration process
includes integration of standard infrastructure
components that build a component framework
and the application components. The integration
of a particular component into a system is called
a component deployment. In difference to the

Requirements

System Design

Unit Design

Unit
Implementation

Unit Test

System Test

System Integration

Operation &
Maintenance

TestAdaptSelect

Find Evaluate

System development

Component development

Requirements

System Design

Unit Design

Unit
Implementation

Unit Test

System Test

System Integration

Operation &
Maintenance

TestAdaptSelect

Find Evaluate

System development

Component development

entire system integration a component
deployment is a mechanism for integration of
particular components – it includes download
and registering of the component.

System verification and validation. The
standard test and verification techniques are used
here. The specific problem for component-based
approach is location of error, especially when
components are of “black box” type and
delivered from different vendors. Typically a
component can exhibit an error, but the cause of
the malfunction lies in another component.
Contractual interfaces play an important role in
checking the proper input and output from
components. These interfaces enable a
specification of input and output and checking
the correctness of data.

Operation support and maintenance. The
maintenance process includes some steps that are
similar to the integration process: A new or
modified component is deployed into the system.
Also it may be necessary to change the glue
code. In most of the cases an existing component
will be modified or a new version of the same
component will be integrated into the system.
Once again new problems caused by
incompatibility between components, or by
broken dependencies may occur. This means,
one again that the system must be verified (either
formally, or by simulation, or by testing).

Figure 2. A Detailed V development process

for CBD

In comparison with a non-component-based
approach, in a component-based development
process there are significantly less efforts in
programming, but the verification and testing
require considerably more efforts. The
verification activity repeats in several phases,
with slightly different goals:
• Verifying component in an isolation;
• Verifying components in an assembly;

• Verifying the systems when a component has
been deployed into the system.

3.2 Building reusable components

The process of building components can

follow an arbitrary development process model.
However any model will require certain
modification to achieve the goals; in addition to
the demands on the component functionality, a
component is built to be reused. Reusability
implies generality and flexibility, and these
requirements may significantly change the
component characteristics. For example there
might be a requirement for portability, and this
requirement could imply a specific imple-
mentation solution (like choice of programming
language, implementation of an intermediate
level of services, programming style, etc.). The
generality requirements imply often more
functionality and require more design and
development efforts and more qualified
developers. The component development will
require more efforts in testing and specification
of the components. The components should be
tested in isolation, but also in different
configurations. Finally the documentation and
the delivery will require more efforts since the
extended documentation is very important for
increasing understanding of the component. An
example of extended component specification
can be found in ROBOCOP component model
[6]; a component is specified by a row of
modules: executable model, functional model,
simulation model, resource model, etc. Each
model includes a corresponding documentation.

4. Industrial Case of component-based
process model

We give here a short overview of a case

study: a process model used in a large
international company in consumer electronics.
The case study was performed by four
researchers in intensive interviews with different
stakeholders of the development projects:
System architects, component architects,
developers, project leaders, the management, the
quality assurance and test people, and principal
specialist.

The development divisions of the company
are placed in four different countries and they
produce numerous products with different
variants and models. The company has adopted
component-based development using product-

Requirements

System Design

System Test

System Integration
& Component Deployment

Test

Adapt

Component pool

inspect Select

Adapt

Operation & Maintenance

component
deployment

TestSelect
inspect

Requirements

System Design

System Test

System Integration
& Component Deployment

Test

Adapt

Component pool

inspect Select

Adapt

Operation & Maintenance

component
deployment

TestSelect
inspect

line architecture. The component model is
internally developed and most of the tools are
internally developed. The reason for that are the
specific requirements of the domain: low
resource usage, high availability, and soft real-
time requirements.

The component model follows the basic
principles of CBSE: The components are
specified by interfaces which distinguish
“require” from “provide” interfaces. In addition
to functional specification, the interface includes
additional information; the interaction protocols,
the timeliness properties, and the memory usage.
The component model enables a smooth
evolution of the components as it allows
existence of multiple interfaces. The model has
a specific characteristic; it allows a hierarchical
compositions: a composite component is treated
as a standard component and in can further be
integrated in another component. The
components are also developed internally, but
their development is separated from the
development of the products.

The product-line architecture identifies the
basic architectural framework. The product
architecture is shown on Figure 3.

Figure 3. Product Software Architecture

The product architecture is a layered

architecture which includes (i) operating system,
(ii) the component framework which is an
intermediate level between domain-specific
services and operating, (iii) core components
which are included in all product variants, and
(iv) application components that usually are
different for different product variants.

Complementary to this horizontal layering
there is a vertical structuring in form of
subsystems. Subsystems are also related to the
organizational structures; they are responsible for
development and maintenance of particular
components. The overall process is designed as
follows as shown on Figure 4.

Figure 4. Overall development process

In the overall process there area three sets of

the independent parallel processes: (i) An overall
architecture and platform development process
responsible for delivering new platforms and
basic components, (ii) Subsystem development
processes which deliver a set of components that
provide different services, and (iii) the product
development process which is basically an
integration process. This process arrangement
makes it possible to deliver new products every
six months, while the development of subsystem
components takes typically between 12 and 18
moths. The specifics of these projects are that all
deliverables have the same form. A deliverable is
a software package defined as a component. The
two main documents belong to every deliverable:
Component interface specification and
Component sheet; the first document describing
the interconnection, the second describing the
component internals.

Although the overall development and
production is successful, the process suffers from
several problems. The most serious is late
discovery of errors, due to interface or
architectural mismatches, insufficient
specifications of semantics of the components, or
due to inappropriate interfaces. Also the
problems related to encapsulation of a service in
components often occur; due to functional
overlaps, or some requirements that affect the
architecture, it is difficult to decide in which
components a particular function will be
implemented. All these problems point out that it
is difficult to perform the processes
independently; negotiation between different
subsystems and agreements in many technical
details between different teams are necessary.

Operating system

Platform – component framework

Core components

application components

Operating system

Platform – component framework

Core components

application components

Overall architecture development

Subsystems development

Product development

Overall architecture development

Subsystems development

Product development

For this reason the processes are not completely
separated. The processes are distributed among
several projects and there is an overall project
that coordinates these projects.

The processes have a strong support in the
project and organization structure (see Figure 5).

Figure 5. Project organization structure

The system architect and management have

overall responsibilities for requirements, policies,
product line architecture, products visions, and
long term goals. The project architect has a
responsibility for the overall project which
results in a line of products. He/she coordinates
the architectural design of the product family and
subsystems. The test and quality-assurance (QA)
managers have similar role in their domains: to
ensure coordination and compatibility of tests
and quality processes. The subsystem architects
provide with the designs of their subsystems and
coordinate the design decisions with other
subsystems. Each subsystem has a test team and
a QA manager which responsibility is the quality
of the delivered subsystem components. The
integration team which work in the delivery
projects is represented by a product architect, QA
and test managers who coordinate the activities
with other projects. We can observe that the
project teams have many “non-productive”
stakeholders. This is in line of the component-
based approach – more efforts must be put on
overall architecture and test, and less on the
implementation itself. The development
processes in our case is manly of an evolutionary
model. The platform, the subsystems and the
products are developed in several iterations until
the desired functionality and quality is achieved.
This requires synchronizations of iterations.

5. Conclusion

A component-based approach cannot be fully

utilized if the development processes and even
the development organizations are not adopted
according to basic principles of CBSE. Since this
approach aims for increased reusability of
existing components, the efforts for the
implementations decrease, and the efforts for
system verification increase. This requires
adjustments of the development processes.

By an industrial case study we have pointed
out the difficulties to achieve a complete
separation of the development processes of
systems from the components, as well as the
need for a project organization which puts a
more important role on the architectural issues,
and system and components verification.

6. Acknowledgements

The authors would like to thank to Chritiene

Aarts for his enormous help in organizing the
interviews and to all interviewees which took
their valuable time for the interviews.

7. References

[1] Bass L., Clements P., and Kazman R.,

Software Architecture in Practice, Addison-
Wesley, 1998.

[2] Garlan D., Allen R., and Ockerbloom J.,
Architectural Mismatch: Why Reuse is so
hard, IEEE Software, Vo.12, issue 6, 1995.

[3] Morisio M., Seaman C. B., Parra A. T., Basil
V. R., Kraft S. E., and Condon S. E.,
"Investigating and Improving a COTS-Based
Software Development Process", In
Proceedings , 22nd ICSE, ACM Press, 2000.

[4] Borghoff V, Paresi R, editors. Information
Technology for Knowledge Management.
New York: Springer Verlag; 1998.

[5] Ivica Crnkovic and Magnus Larsson
(editors), Building Reliable Component-
Based Software Systems, Artech House
Publishers, ISBN 1-58053-327-2, 2003

[6] ITEA project, ROBOCOP- Robust Open
Component Based Software Architecture for
Configurable Devices Project
http://www.hitech-
projects.com/euprojects/robocop

Project Manager
Project Architect
Test Manager
QA Manager

System Architect
Manager

Subsystem Project Manager
Subsystem Architect
Subsystem Test Manager
QA Subsystem Manager

Designers
Developers
Testers

Product Project Manager
Product Architect
Product Test Manager
QA Subsystem Manager
Product Validation Manager

Integrators
Testers

Project Manager
Project Architect
Test Manager
QA Manager

System Architect
Manager

Subsystem Project Manager
Subsystem Architect
Subsystem Test Manager
QA Subsystem Manager

Designers
Developers
Testers

Product Project Manager
Product Architect
Product Test Manager
QA Subsystem Manager
Product Validation Manager

Integrators
Testers

