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Abstract

In any system with shared data and concurrent (or independent)
activities, there is a need to guarantee exclusive access to the shared
data. If the independent parts are executed in a non-preemptive fash-
ion, on a single-processor architecture, the exclusive access is automat-
ically guaranteed. The problem arises when the single-processor archi-
tecture is to be replaced by a multi-processor ditto; different parts, still
executed in a non-preemptive fashion, but on different processors, may
now access and update the same data concurrently.

Since re-implementation is an infeasible solution for a legacy sys-
tem, which usually contains several million lines of code, there is a need
for criteria that can ensure when functional equivalence, in some cen-
tral aspect, is preserved for parallel execution of the software. To ensure
the correctness of these criteria, the formal semantics of the language
in question has to be considered.

The AXE telephone exchange system from Ericsson exposes the above
properties: independent activities, shared data, non-preemptive execu-
tion, and a single-processor architecture. PLEX is used to program the
functionality in the system, and in this paper we develop an operational
semantics for the current single-processor architecture, as well as for an
experimental multi-threaded, shared-memory, architecture.

1 Introduction

In a system with independent activities and shared data, the issue of exclu-
sive access to the shared data need to be handled. If the system has been
designed for a multi-processor architecture, it is probable that the shared
data is protected by some form of synchronization, and the independent
parts are executed concurrently. But if parallel processing, and synchro-
nization, wasn’t an issue at the time of designing the system, the differ-
ent parts can be executed in a non-preemptive fashion (run to termination
without interruption) which, on a single-processor architecture, automati-
cally protects the shared data since independent activities are executed in
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sequence. We denote the software in the second case as ’sequential soft-
ware’.

While legacy software systems, developed and maintained over many
years, contains large amounts of sequential software (executed on single-
processor architectures), there is a development towards different forms
of parallel hardware. The problem arises when the single-processor archi-
tecture is to be replaced by a multi-processor ditto where the independent
parts are executed concurrently. At this point, the non-preemptive execu-
tion does not protect the shared data any longer, since independent parts
that are executed on different processors now may access and update the
same data concurrently. The question is: How is such a system to be paral-
lelized?

A naive solution would be to re-design and re-implement the system,
but since a legacy software system usually contains several million lines of
code, this solution is infeasible. However, when data is shared, access to
it must be synchronized to avoid an unpredictable behavior, but since the
use of synchronization is rather costly, i.e., it takes time to synchronize, we
also want to avoid this synchronization due to its cost. To keep the actual
number of inserted synchronizations at a minimum, we would need crite-
ria that could ensure when functional equivalence, in some central aspect,
is preserved for the sequential software when executed on parallel hard-
ware, and to be able to ensure the correctness of such criteria, the formal
semantics of the language in question has to be considered.

Our subject of study is the language PLEX, used to program the func-
tionality in the AXE telephone exchange system from Ericsson. The above
properties: independent activities, shared data, non-preemptive execution,
and a single-processor architecture are all present in the system. In this pa-
per, we describe an operational semantics for the current single-processor
architecture, as well as for an experimental multi-threaded, shared-memory,
architecture. We have modeled the most important parts of PLEX in a sim-
plified subset denoted Core PLEX, where some of the details in the original
language and its execution model has been omitted.

The rest of this paper is organized as follows: related work is covered
in Section 2, and the most important parts of PLEX in Section 3. Section 4
covers our subset of PLEX, Core PLEX, as well as the sequential semantics
for the same subset, whereas Section 5 briefly describes the experimental
shared-memory architecture, its execution model, and the extended seman-
tics for Core PLEX. The work is summarized in Section 6, where we also
discuss future work.

2 Related Work

Since PLEX is used in the telecom domain, we will focus on semantics for
languages in the same domain since we believe that the requirements and
assumptions are the same.
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CHILL (the CCITT High Level Language), an object-oriented language
with support for concurrency [8], is specified within a denotational frame-
work [7]. The concurrent and functional language ERLANG, developed by
Ericsson, and used to program the AXD switching system, has been speci-
fied by a structural operational semantics as part of a larger framework for
formally reasoning about ERLANG programs [5]. Estelle, LOTOS, and SDL
are specification languages proposed by, and used in, the telecom industry.
The languages, covered in [1], are used to specify the behavior within, and
between, different processes/components, and they range from a graphical,
flowchart based representation (SDL), to a more abstract, process algebraic
style (LOTOS). The semantics of the latest version of SDL, SDL-2000, is
based on abstract state machines [6], whereas the semantics for both Es-
telle, and LOTOS, is modeled by transition systems where the meaning is
given by their computations [11, 2].

3 Programming Language for EXchanges

PLEX is used to program the functionality in the AXE telephone exchange
system (developed in the 1970’s). Besides implementation of new function-
ality, there is also a large amount of existing PLEX code to maintain. Apart
from an asynchronous communication paradigm, PLEX is an imperative
language, with assignments, conditionals, goto’s, and a restricted itera-
tion construct (which only iterates between given start and stop values).
It lacks some common statements from other programming languages such
as WHILE loops, negative numeric values and real numbers.

A PLEX program file (called a block) consists of several, independent
sub-programs together with block wise scooped data. The sub-programs can
be executed in any order, and one or several sub-programs constitutes a Job,
which is a continuous sequence of statements executed in the processor.
Due to the independent sub-programs, it is more accurate to talk about
the execution of a number of independent and ”parallel” jobs, than of the
execution of the PLEX program file. However, the jobs are not executed
truly in parallel: rather, when spawned, they are buffered (queued), and
sequentially executed in a non-preemptive fashion according to a FIFO-
semantics, see Fig 1 (b). Because of the buffering of spawned jobs, we term
the language as ”pseudo-parallel”.

Jobs communicate and control other jobs through a kind of events called
signals; a job begins with a signal receiving statement and is terminated by
the use of an EXIT statement. Signals are classified through combinations
of different properties, where the main distinction, from a semantical point
of view, is between direct and buffered signals, see Figure 1. The difference
is that a direct signal continues an ongoing job, whereas a buffered signal
spawns off a new job. A direct signal is in this way similar to a jump (with
data) that retains control over the execution.

Until recently, the semantics for PLEX has been defined through its
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Figure 1: (a): a direct signal, ”similar” to a jump. (b):buffered signals: Block
A sends a buffered signal which is inserted at the end of the job buffer (1).
When Block A terminates, the control is transferred to the OS (2), which
fetches a new signal from the buffer (3) (Note: The signal fetched at (3) does
not have to be the same signal that was inserted at (1) since the buffers have
a FIFO-semantics.) The signal then triggers the execution of Block B (4).

implementation, but in previous work [4, 3], we have presented a sequen-
tial, as well as a parallel, structural operational semantics (in the style
used in [10]) for a substantial subset of PLEX. The meaning of the lan-
guage has thereby been given a formal specification, something that is
required for formal verification of the correctness of parallel implementa-
tions, both the one modeled in this paper, and more aggressive implemen-
tations/parallelizations based on program analysis.

4 Core PLEX, and a Sequential Semantics

We begin this section by defining the subset of PLEX that we, in Sec-
tion 1, denoted Core PLEX, before we discuss the sequential semantics for
this subset. The extensions to cope with the experimental multi-threaded,
shared-memory, architecture are discussed in Section 5. In both cases, we
assume that the modeled activities terminates.

Besides some ordinary imperative constructs, including the GOTO state-
ment, Core PLEX contains the statements: SEND signal, RECEIVE signal,
and EXIT, since these are the statements needed to control a job (see Sec-
tion 3). The syntactic categories, as well as the abstract syntax, are shown
in Table 1, and as could be seen in the table, we use a labeled program (as
in [9]) to identify the individual, ’atomic’ statements. To determine the pro-
gram label of a certain statement, we use the function Label, which returns
the label of the given statement (or, in case of a sequence of statements, the
label of the first statement in the sequence). We assume that the program is
label consistent, meaning that each label occurs only once. We will also take
advantage of the fact that a signal can only be received by a single (unique)
receiving statement, and according to this, assume a direct mapping from
the name of a signal to the label of its corresponding receiving statement.

4



a ∈ AExp arithmetic expressions
b ∈ BExp boolean expressions
S ∈ Stmt statements
l ∈ Lab labels

x, y ∈ Var variables
n ∈ Num numerals

opa ∈ arithmetic operators
opr ∈ relational operators
a ::= x | n | a1 opa a2

b ::= a1 opr a2

S ::= [x := a]l | S1; S2 | [GOTO label]l | [IF b THEN S1 ELSE S2]l |
[SEND signal]l | [ENTER signal]l | [EXIT]l

Table 1: The abstract syntax for ”Core PLEX”.

Since we have assumed a labeled consistent program, there is a 1:1 map-
ping between labels and statements, and we can assume the inverse of the
Label function, Label−1, which takes a program label as input and returns
the corresponding statement.

The execution of statements is modeled by state transitions, where the
state that we model is determined by the current implementation of PLEX,
as well as by the underlying architecture/execution model, but with some
of the details in the original language, and the execution model, omitted
(as said in Section 1). Since the language allows different kinds of jumps,
we have introduced a virtual statement counter, VSC, which maps to the
program label of the statement to be executed, and for convenience, we use
VSC++ to denote VSC = VSC+1. Apart from this counter, the state is defined
by the contents in the memory, and the job buffer. A state s is thus a tuple:

s := 〈VSC, RM, DS, JBB〉
where Table 2 explains each component of the state. Now, the transition
rules, defining the semantics, are quite straightforward. Assignments will
affect the proper memory component of the state; explicit jumps the virtual
statement counter. Compound statements (conditionals, and sequenced
statements) have standard transition rules defined inductively over the
structure of the statement. The resulting semantics is summarized in Ta-
ble 4, and to denote the value of any of the components in s (for instance
the VSC) in a new state s′, we have used the notation VSC ′ which is to be
interpreted as s′(VSC). In order to manipulate the job buffer, which is mod-
eled as a list of signals, we use the notation signal : JBB to denote a list
with the head signal, and the tail JBB, and JBB : signal to denote that we
append signal to the list JBB.

The functions that are used both in Table 4 and Table 6 (or only in Table
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4) are defined in Table 3. The functions A and B have standard definitions,
i.e., to evaluate an arithmetic, and a boolean expression respectively, and
are omitted in the table.

Item Explanation Set of values
VSC Virtual Statement Counter labels
RM Register Memory (Temporary data) x → N
DS Data Store (Shared data) x → N

JBB Job Buffer list of signals

Table 2: The different items in the (single-pro) state of the system.

P : Var → {RM, DS}
SD : signal → {DIRECT, BUFFER}
Label : Stmt → Lab
APZ : state ↪→ signal

Table 3: Functions that are used both in the sequential (Table 4), and the
parallel (Table 6) semantics. APZ, which is a partial function due to the
possibility of an empty job buffer, is re-defined in Table 5.

5 Shared Memory, and a Parallel Semantics

In Section 4, we said that the state that was modeled by the sequential
semantics was determined by the current implementation of PLEX and of
the underlying execution model. This holds for the parallel semantics as
well, where the new state, with k concurrently executing threads, is deter-
mined by an experimental multi-threaded, shared-memory, architecture.
The new state s contains one part, sG, that can be modified by any of the k
threads (including the shared data, DS), and k local parts (si) that are local
to thread Ti (including the storage for temporary data, RMi):

s := 〈s0, . . . , sk, sG〉 where si := 〈VSCi, RMi, JBBi, Locksi〉, 0 ≤ i ≤ k

and sG := 〈DS, L0, . . . , Lβ〉 where β ∈ {N}
The architecture, and its execution model, is designed to be ’functionally

equivalent’ with the single-processor system. This is achieved by restrict-
ing parallel execution to jobs from different Job-Trees (informally defined as
the set of jobs originating from the same external signal), whereas jobs from
the same Job-Tree executes in the same sequential order as in the single-
processor architecture. Exclusive access to the shared data is ensured by
the run-time system, which utilizes a number of binary locks, L0, . . . , Lβ,
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[assRM ] 〈[x := a]l, s〉 ⇒ s[VSC++, RM(x) �→ A[[a]]s] if P(x) = RM

[assDS ] 〈[x := a]l, s〉 ⇒ s[VSC++, DS(x) �→ A[[a]]s] if P(x) = DS

[seq] 〈S1; S2, s〉 ⇒ 〈S′
1; S2, s′〉 if 〈S, s〉 ⇒ 〈S′, s′〉

[seq] 〈S1; S2, s〉 ⇒ 〈S2, s′〉 if 〈S, s〉 ⇒ s′, and
VSC′ = Label(S2)

[jmp] 〈[GOTO label]l, s〉 ⇒ 〈S, s[VSC �→ label]〉 if S = Label−1(label)

[condtt] 〈[IF b THEN S1 ELSE S2]l, s〉 ⇒ 〈S1, s〉 if B[[b]]s = tt

[condff ] 〈[IF b THEN S1 ELSE S2]l, s〉 ⇒ 〈S2, s〉 if B[[b]]s = ff

[senddir] 〈[SEND signal]l, s〉 ⇒ if SD(signal)
〈S, s[VSC �→ signal, RM �→ UNDEF]〉 = DIRECT, and

S = Label−1(signal)

[sendbuf ] 〈[SEND signal]l, s〉 ⇒ if SD(signal)
〈S, s[VSC++, JBB : signal]〉 = BUFFER, and

where s = 〈. . . , JBB, . . .〉 S = Label−1(VSC++)

[enterdir] 〈[ENTER signal]l, s〉 ⇒ if SD(signal)
〈S, s[VSC++, RM �→ UNDEF]〉 = DIRECT, and

S = Label−1(VSC++)

[enterbuf ] 〈[ENTER signal]l, s〉 ⇒ if SD(signal)
〈S, s[VSC++, JBB, RM �→ UNDEF]〉 = BUFFER, and

where s = 〈. . . , signal : JBB, . . .〉 S = Label−1(VSC++)

[exit] 〈[EXIT]l, s〉 ⇒ if S =
〈S, s[VSC �→ APZ(s), RM �→ UNDEF]〉 Label−1(APZ(s))

Table 4: The operational semantics for sequential ”Core PLEX”
.
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to prevent simultaneous access to the same block. BLK returns the lock
associated with a given block, and the number of locks that a job ”collects”
during its execution, are collected in the set Locksi. Possible deadlock situ-
ations are resolved by the run-time system. Without any formal proof, we
intuitively say that the parallel semantics, from a Job-Tree point of view,
is equivalent with the sequential semantics based on the following obser-
vations: (1) jobs in the same Job-Tree are executed in the same sequential
order in both cases, (2) a job is still ensured exclusive access to the shared
data in a block since the run-time system prevents other jobs from simulta-
neous access to the block (and its data), and (3) since external signals (from
which a Job-Tree originates) may arrive in arbitrary order, the Job-Trees
may be executed in different orders both in the sequential, as well as in the
parallel case.

To distinguish between the threads when we look at their concurrent
execution, we change the configurations from 〈S, s〉 to 〈S, i, s〉 to capture
the execution of S by thread Ti. The resulting semantics is shown in Table
6, whereas Table 5 summarizes the functions introduced in Table 6.

APZ : {0, 1, . . . , k} × state ↪→ state
BLK : state × signal → Blk

Table 5: The functions that are introduced in (Table 6).

To denote a state with k numbers of concurrently executing threads,
we use the notation Si to denote the execution of statement S by thread Ti,
which together with | as our parallelizing operator, leads to the following de-
scription of a running system (with k concurrently executing threads, and a
state s): 〈S0 | S1 | . . . | Sk, s〉 and we say that there will be a change in
the global state of the form 〈. . . | Si | . . . , s〉 ⇒ 〈. . . | S′

i | . . . , s′〉 if there
is a valid, local transition of the form 〈S, i, s〉 ⇒ s′, or 〈S, i, s〉 ⇒ 〈S′, i, s′〉,
which leads to the last two rules in Table 6, valid for any i.

6 Summary

This paper presents two operational semantics for Core PLEX, a subset of
PLEX, used to program functionality in the AXE system; one that mod-
els execution on the current single-processor architecture, and one for an
experimental multi-threaded, shared-memory, architecture. The parallel
semantics models a restricted execution model where related activities are
prevented from being executed in parallel. A more aggressive paralleliza-
tion would allow these activities to execute in parallel, but parallel exe-
cution also means that the language has to be extended with primitives
for synchronization to protect the shared data. To keep the actual number
of inserted synchronizations at a minimum, we need criteria that ensures
when parallel execution of the current software is safe in the sense that
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[assRM ] 〈[x := a]l, i, s〉 ⇒ s[VSCi++, RMi(x) �→ A[[a]]s] if P(x) = RM

[assDS ] 〈[x := a]l, i, s〉 ⇒ s[VSCi++, DS(x) �→ A[[a]]s] if P(x) = DS

[seq] 〈S1; S2, i, s〉 ⇒ 〈S′
1; S2, i, s′〉 if 〈S, i, s〉 ⇒ 〈S′, i, s′〉

[seq] 〈S1; S2, i, s〉 ⇒ 〈S2, i, s′〉 if 〈S, i, s〉 ⇒ s′, and
VSC′

i = Label(S2)

[jmp] 〈[GOTO label]l, i, s〉 ⇒ 〈S, i, s[VSCi �→ label]〉 if S = Label−1(label)

[condtt] 〈[IF b THEN S1 ELSE S2]l, i, s〉 ⇒ 〈S1, i, s〉 if B[[b]]s = tt

[condff ] 〈[IF b THEN S1 ELSE S2]l, i, s〉 ⇒ 〈S2, i, s〉 if B[[b]]s = ff

[senddir] 〈[SEND signal]l, i, s〉 ⇒ if SD(signal)
〈S, i, s[VSCi �→ signal, RMi �→ UNDEF, = DIRECT,
Locksi := Locksi ∪ {Lγ}, Lγ �→ 1]〉 Lγ = 0, and

where Lγ = BLK(s, signal) S = Label−1(signal)

[sendbuf ] 〈[SEND signal]l, i, s〉 ⇒ if SD(signal)
〈S, i, s[VSCi++, JBBi : signal]〉 = BUFFER, and

where s = 〈. . . , JBB, . . .〉 S = Label−1(VSCi++)

[enterdir] 〈[ENTER signal]l, i, s〉 ⇒ if SD(signal)
〈S, i, s[VSCi++, RMi �→ UNDEF]〉 = DIRECT, and

S = Label−1(VSCi++)

[enterbuf ] 〈[ENTER signal]l, i, s〉 ⇒ if SD(signal)
〈S, i, s[VSCi++, JBBi, Locksi := = BUFFER, and
Locksi ∪ {Lγ}, RMi �→ UNDEF]〉 S = Label−1(VSCi++)

where s = 〈. . . , signal : JBBi, . . .〉

[exit] 〈[EXIT]l, i, s〉 ⇒ 〈S, i, s′〉 if s′ = APZ(i, s), and,
S = Label−1(VSC′

i)

[par]
〈S, i, s〉 ⇒ s′

〈... | Si| ... , s〉 ⇒ 〈... | S′
i
| ... , s′〉 if S′

i = Label−1(VSC′
i)

[par]
〈S, i, s〉 ⇒ 〈S′, i, s′〉

〈... | Si| ... , s〉 ⇒ 〈... | S′
i| ... , s′〉

Table 6: The operational semantics for the multi-threaded Core PLEX.
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functional equivalence is preserved. To ensure the correctness of such cri-
teria, the formal semantics of the language has to be considered. Future
work will add primitives for synchronizations to PLEX, as well as specify-
ing the semantics for this extended language. We will also formally define
’functional equivalence’, and prove that the property holds between the dif-
ferent semantics.
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