
Experiences from Industrial WCET Analysis Case Studies

Andreas Ermedahl, Jan Gustafsson and Björn Lisper
Dept. of Computer Science and Electronics, Mälardalen University

Box 883, S-721 23 Väster̊as, Sweden

Abstract

Static Worst-Case Execution Time (WCET) ana-
lysis is currently taking a step from research to indus-
trial use. We present a summary of three case studies
where static WCET analysis has been used to analyse
production code for embedded real-time systems. The
primary purpose has not been to test the accuracy of
the obtained WCET estimates, but rather to investi-
gate the practical and methodological difficulties that
arise when applying current WCET analysis methods
to these particular kind of systems.

In particular, we have been interested in how labor-
intensive the analysis becomes, for instance by estimat-
ing the efforts to study the analysed code in detail, and
measuring the number of manual annotations necessary
to perform the analysis. From these observations, we
draw some conclusions about what would be needed to
turn static WCET analysis into a useful tool for em-
bedded and real-time systems software development.

1 Introduction

To give timing guarantees for embedded and real-
time systems, a key parameter is the worst-case ex-
ecution time (WCET) of the executing tasks. Until
now, the common method (if any) in industry to de-
rive WCET values has been by measurements. A wide
variety of measurement tools are employed in indus-
try, including emulators, logic analyzers, oscilloscopes,
and software profiling tools [14]. This is labor-intensive
and error-prone work, and even worse, it is difficult to
guarantee that the WCET has been found.

Static WCET analysis is an alternative method to
determine the WCET of a program, relying on mathe-
matical models of the software and hardware involved.
The analysis avoids the need to run the program by
considering the effects of all possible inputs, including
possible system states, together with the program’s in-
teraction with the hardware. Given that the models

are correct, the analysis will derive a timing estimate
that is safe, that is greater than or equal to the actual
WCET. The static WCET analysis research commu-
nity has developed a number of prototype tools dur-
ing the last couple of years, for example SWEET [18]
and Heptane [10]. Recently also commercial WCET
tools, such as aiT from AbsInt GmbH, Germany [1] and
Bound-T from Tidorum, Finland [3], have appeared.

In this paper, we present experiences from three case
studies where WCET analysis tools have been used.
In the two first case studies, we analysed time-critical
parts in a real-time operating system (Sections 3, 4).
The third case study targeted code controlling automo-
tive data communication (Section 5). We also report
from two on-going case studies (Section 6).

All of these case studies have been performed as
MSc theses works. The students can spend about five
months on their work, and they are no experts on the
code at the beginning. This means that these results
can be seen as typical for WCET analysis made by
an well-educated but external person; the work should
probably have taken less time if an expert or the pro-
grammer had performed it.

We believe that doing case studies, with careful eval-
uations, provides valuable input both for WCET re-
search and WCET tool development. Our hypothesis
is that the studied software is representative for a large
class of industrial embedded real-time code, making
our results applicable to similar systems.

There are only a few other case studies of using
WCET analysis in practice known to us; reporting on
the use of Heptane [6], aiT [15], and Bound-T [11].

To make static WCET analysis industrially useful,
it is desirable to automate the process on a “one-click-
analysis” basis. Consequently, one of the main topics
has been to investigate how labour-intense practical
WCET analysis actually becomes.

We were also interested in the characteristics of the
obtained WCET values. Most scheduling theories as-
sume that each task has a single fixed WCET, and we
wanted to find out whether this assumption is valid in

1



real industrial settings.
The rest of the paper is organized as follows. In

Section 2, we present the used tools. In Section 3, we
describe a case study with our own research prototype,
SWEET (SWEdish Execution time Tool). Sections 4
and 5 describe two case studies where we used aiT to
analyse commercial code. Section 6 presents two on-
going case studies. In Section 7 we draw some conclu-
sions, and in Section 8, we point out further research.

2 Tools Used

SWEET is a prototype WCET tool developed at
Uppsala and Mälardalen University [18]. SWEET con-
sists of three main parts; a flow analysis which de-
tects program flow constraints, a low-level analysis,
and a final WCET calculation. The flow analysis
part of SWEET analyses intermediate code produced
by a research compiler. Our current focus is to de-
velop automatic flow analysis methods, such as ab-
stract interpretation-based methods [9].

The aiT tool is a commercial WCET analysis tool
from AbsInt GmbH [1]. In contrast to SWEET, aiT
does not rely on any specific compiler, but analyses ex-
ecutable binaries, with support for a number of target
architectures. The tool also includes an automatic loop
bound analysis, which can catch simple cases.

3 Case Study 1: Using SWEET to Find
Time Bounds For DI Regions

This case study was performed with the low-level
and calculation parts of an earlier version of SWEET.
The purpose was to find upper bounds of the execution
time for a number of Disable Interrupts (DI) regions in
the delta kernel (ARM9 version) of the Enea OSE op-
erating system [7]. The OSE operating system is a
real-time operating system used in embedded applica-
tions, for example in mobile phones and aircrafts. The
case study is described in closer detail in [4].

Having short DI regions is important, since the exe-
cution of these regions can potentially delay any other
activity in the system. The goal of the study was to
investigate if WCET analysis could provide a feasible
way to bound the execution times of the DI regions at
a reasonable cost.

The study was done in the following steps:

1. The DI regions was extracted from the binaries.
2. The control flow graph for these regions was con-

structed.
3. The WCET tool was used to calculate upper

bounds for the WCET of each region.

We identified 612 DI regions in the Delta OSE ker-
nel. Most of these were very simple. We selected ten
DI regions that were potentially challenging for WCET
analysis for a closer investigation. These regions had
a more complex control structure than the others, and
several contained loops. To find upper loop iteration
bounds sometimes posed a problem, since no automatic
loop bound analysis was available, and it was hard to
deduce loop bounds manually from the code.

Experiences and conclusions. A lot of effort was
used to identify DI regions and construct their con-
trol flow graphs. The tools developed to do this had
some shortcomings. Even with these problems, there
are some interesting conclusions we can draw:

• The problem of defining upper loop iteration bounds
depends on the special type of code analysed here.
Operating systems are often run in certain modes
which may affect loop bounds, and therefore the
WCET is typically mode-dependent. One would
thus like to have different, tight WCET bounds for
different modes, rather than a single WCET bound
valid for all modes.

• The usefulness of analyses such as WCET analysis
grows fast with the level of automation. In our ex-
periment, even simple means of automation made a
huge difference in the amount of engineering work.

4 Case Study 2: Using aiT to Find
Time Bounds For Time Critical Code

The Enea OSE operating system for the ARM pro-
cessor was studied also here. Some of the tools devel-
oped in the first case study were re-used in this case
study. 180 of the previous DI regions were analysed,
as well as four system calls. In this study, we used the
aiT tool [1]. This commercial tool has a richer set of
processor timing models, and a better user interface,
than our prototype tool. The case study is described
in closer detail in [13].

The aiT ARM7 tool analyses executables. This in-
formation is, however, often not sufficient to yield a
good WCET bound for the analyzed code. In partic-
ular, information about program flow, such as bounds
to loop iteration counts not caught by the loop bounds
analysis, and knowledge of infeasible paths, has to be
provided by the user. Therefore, aiT supports a set
of user annotations to provide external information to
the analysis [8]. Some of the more important annota-
tions are: loop bounds, maximal recursion depth, dead
code, and (static) values of conditions.

2



Experiences and conclusions. We soon discovered
that the execution time of the system calls depended on
many parameters. A global WCET bound, valid for all
possible parameter values, could become very poor for
for actual configurations and standard running modes.

We dealt with this problem in our experiments by
assuming some “typical” scenarios for parameters af-
fecting the WCET (after correspondance with the OSE
designers). We also excluded uninteresting execution
paths from the analysis by manual annotations.

We made the following observations:
• A significant amount of annotations were required

for each system call; for the analysed routines of
sizes between 78 and 143 instructions, the number
of annotations were between 10 and 33.

• Another observation is that excluding the error
handling code in the OSE system calls yielded sig-
nificantly smaller code to analyze.

• Many loops in the OSE kernel depends on dynamic
data structures. This had the consequence that the
aiT loop bound analysis did not perform well for
these loops.

• Providing upper bounds manually for these loops
required a deep understanding of the code. Con-
sequently, the analysis was quite labor-consuming,
even if the analyzed code was small. Also, the ana-
lysis relied on information from the OSE designers.

We conclude that the usefulness of WCET analysis
would improve with a higher level of automation and
support from the tool. Especially, it would be impor-
tant be to develop advanced flow analysis methods,
that could find complex loop bounds automatically.
Another important conclusion made is that absolute
WCET bounds are not always appropriate for real-time
operating system code. The reason is, as mentioned,
that the WCET often depends on dynamic system pa-
rameters. An absolute WCET bound, covering all pos-
sible situations, will provide a gross overapproximation.

5 Case Study 3: Using aiT for Time-
Critical Parts of Automotive Code

This case study targeted automotive code, namely
the Volcano Tool Suite for design and implementation
of in-vehicle communication over CAN and/or LIN net-
works. The company Volcano Communications Tech-
nologies AB (VCT) [16] provides tools for embedded
network systems, principally used within the car indus-
try. The Volcano LIN Target package (LTP) was se-
lected as a suitable part of the Volcano LIN tool suite
to analyse. The work is described in closer detail in
[12].

The microcontroller used in this study was a

MC9S12DP256 from Motorola, which includes a 16-bit
Star12 CPU of the MC68HC12 family.

Results from analysis of nine different LIN API func-
tions were presented. We were able to obtain WCET
values for all analyzed functions. However, these values
were often not a constant single value, but depended
on some system parameters. Also, all functions needed
manual annotations to be analysed. The number of
annotations ranged between 6 and 14 for functions of
sizes between 2 kb and 14 kb.

Experiences and conclusions. As for the OSE
code, the WCET for the studied LIN functions often
depends on some specific system configuration parame-
ters and modes. Similarly, a single WCET bound valid
for all parameter values would provide a very poor es-
timate in most situations. A mode- and input-sensitive
WCET analysis would obtain a better resource utiliza-
tion and provide better understanding of the system’s
timing characteristics.

For many parts of the LIN API it was possible
to manually create parametrical WCET formulas. It
seems interesting to develop methods to automatically
derive these parametrical formulas.

Much work was required to set annotations manu-
ally. To do this required an understanding of the mean-
ing of the code.

There is a need for ways to automate the analysis.
For example, better flow analysis methods would be
useful to avoid manual calculation of loop bounds.

After discussions with the VCT employees it turned
out that not only the WCET, but also the jitter of a
piece of code, is of large interest. (The jitter is the
largest execution time variation a function can experi-
ence, that is the difference between the best-case exe-
cution time (BCET) and the WCET.)

6 On-going work

We are currently performing two case studies which
are summarized below.

Comparison of Different Methodologies for Ob-
taining WCET Values. Two MSc students are cur-
rently studying real-time embedded systems code from
CC-Systems [5], using aiT for the Infineon C167 pro-
cessor. CC-Systems develops embedded software and
hardware for welding machinery, as well as for trucks,
ships, trains and other vehicles. This case study will
compare the different methodologies for obtaining tim-
ing values, that is static analysis and measurement-
based methods.

3



Evaluation of static WCET Analysis Methods
for Time-Critical Real-Time Embedded Code.
We have also just started a new case study at Volvo
Construction Equipment (Volvo CE) [17]. Volvo CE
uses the Rubus real-time operating system from Arcti-
cus [2] in their embedded, time-critical systems for
trucks and other vehicles. The target processor will
be Infineon C167 and (if possible) Infineon XC161.
The precision of the WCET analysis will be evaluated
against the measurements which are performed regu-
larly by Volvo CE.

7 Conclusions

Sections 3 to 5 provided a number of detailed results
and experiences. Some common conclusions can be
drawn from our case studies.

It is possible to apply static WCET analysis to code
with properties similar to the analysed code. The
tools used performs well, once the necessary prepara-
tory work, such as defining annotations, has been done.
However, the WCET analysis process is not automated
on a ’one-click-analysis’ basis. Much manual interven-
tion, and detailed knowledge of the analyzed code, is
required to perform the analysis.

A higher degree of support from the tool, for exam-
ple with automatic loop bounds calculation, would be
desirable. A graphical interface is also valuable, to ob-
tain an overview of the analysed code and see how it
executes.

Absolute WCET bounds are not always sufficient.
Support for some type of parametrical WCET calcula-
tion is sometimes needed.

8 Future Work

We intend to continue with WCET analysis case
studies. One direction is to use the flow analysis devel-
oped in our own tool, SWEET, both as a stand-alone
tool and used in cooperation with the commercial tools.
We are members of the Compilers and Timing Analysis
cluster in the ARTIST2 Network of Excellence on Em-
bedded Systems Design. One of the aims of the work in
this group is to define common formats for cooperation
between different parts of WCET tools.

Acknowledgements

This work was performed within the ASTEC com-
petence center, www.astec.uu.se, supported by the
Swedish Agency for Innovation Systems (VINNOVA),
www.vinnova.se. We thank AbsInt GmbH for giving
us access to their WCET analysis tool. We are also

grateful to the ENEA, CC-Systems, Volcano, Volvo
CE, and Arcticus companies for their support.

References

[1] AbsInt company homepage, 2005. www.absint.com.

[2] Arcticus Systems homepage.
URL: http://www.arcticus.com, 2005.

[3] Bound-T tool homepage, 2005. www.tidorum.fi/bound-t/.

[4] M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and
B. Lisper. Worst-case Execution Time Analysis of Disable
Interrupt Regions in a Commercial Real-Time Operating
System. In Proc. 2nd International Workshop on Real-
Time Tools (RT-TOOLS’2002), 2002.

[5] CC-Systems AB homepage.
URL: http://www.cc-systems.com, 2004.

[6] A. Colin and I. Puaut. Worst-Case Execution Time Anal-
ysis for the RTEMS Real-Time Operating System. In
Proc. 13th Euromicro Conference of Real-Time Systems,
(ECRTS’01), June 2001.

[7] Enea. Enea Embedded Technology homepage, 2004.
URL: http://www.enea.com.

[8] C. Ferdinand, R. Heckmann, and H. Theiling. Convenient
User Annotations for a WCET Tool. In Proc. 3rd Interna-
tional Workshop on Worst-Case Execution Time Analysis,
(WCET’2003), 2003.

[9] J. Gustafsson. Analyzing Execution-Time of Object-
Oriented Programs Using Abstract Interpretation. PhD the-
sis, Department of Computer Systems, Information Tech-
nology, Uppsala University, May 2000.

[10] Homepage for the Heptane WCET analysis tool, 2005.
www.irisa.fr/

aces/work/heptane-demo/heptane.html.

[11] M. Rodriguez, N. Silva, J. Esteves, L. Henriques, D. Costa,
N. Holsti, and K. Hjortnaes. Challenges in Calculating the
WCET of a Complex On-board Satellite Application. In
Proc. 3rd International Workshop on Worst-Case Execu-
tion Time Analysis, (WCET’2003), 2003.

[12] S. Byhlin, A. Ermedahl, J. Gustafsson, B. Lisper. Applying
Static WCET Analysis to Automotive Communication Soft-
ware. In Proc. 17th Euromicro Conference of Real-Time
Systems, (ECRTS’05), July 2005.

[13] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper.
Static Timing Analysis of Real-Time Operating System
Code. In Proc. 1st International Symposium on Leveraging
Applications of Formal Methods (ISOLA’04), Oct 2004.

[14] D. B. Stewart. Measuring Execution Time and Real-Time
Performance. In Proceedings of the Embedded Systems Con-
ference (ESC SF) 2002, Mar 2002.

[15] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona,
M. Langenbach, R. Wilhelm, and C. Ferdinand. An
Abstract Interpretation-Based Timing Validation of Hard
Real-Time Avionics Software. In Proc. of the IEEE Inter-
national Conference on Dependable Systems and Networks
(DSN-2003), June 2003.

[16] Volcano Technologies Communications AB homepage.
www.volcanoautomotive.com, 2005.

[17] Volvo CE (Construction Equipment) homepage, 2005.
URL: http://volvo.com/constructionequipment.

[18] Worst Case Execution Times (WCET) project homepage,
2005. www.mrtc.mdh.se/projects/wcet.

4


