
Applying Static WCET Analysis to
Automotive Communication Software

Susanna Byhlin, Andreas Ermedahl, Jan Gustafsson and Björn Lisper
Dept. of Computer Science and Electronics, Mälardalen University

Box 883, S-721 23 Väster̊as, Sweden

Abstract

The number of embedded computers used in modern
cars have increased dramatically during the last years,
as they provide increased functionality to a reduced cost
compared to previous technologies. These computers
are often connected by one or more communication net-
works and the data traffic sent over the networks of-
ten has hard real-time requirements. To provide overall
system timing guarantees, upper timing bounds need to
be derived both for the data traffic and the embedded
computer programs that controls the communication.

In this article, we present a case study where static
Worst-Case Execution Time (WCET) analysis was
used to find upper time bounds for time-critical code
in products from Volcano Communications Technolo-
gies AB (VCT). The VCT company provides tools for
development of real-time communication solutions for
embedded network systems, mainly used within the car
industry. VCT’s tool suite includes support for Con-
troller Area Network (CAN), Local Interconnect Net-
work (LIN), FlexRay and MOST network traffic.

The primary purpose of the study was not to test the
accuracy of the obtained WCET estimates, but rather
to investigate the practical difficulties that arise when
applying current WCET analysis methods to these par-
ticular kind of systems. A central question was if to-
day’s static WCET analysis tools can be used in the au-
tomotive software development process. In particular,
we were interested in how labor-intensive the analysis
becomes, measured by the number of manual annota-
tions necessary to perform the analysis. As a result,
we provide some qualitative observations on desirable
research results for making static WCET analysis ap-
plicable in typical automotive software development.

1 Introduction

It is nowadays common practice to use embedded
computers to control parts of automotive systems. For
example, a modern car has a microcontroller control-
ling the engine, keeping performance up and fuel con-

sumption down by very precise control of the ignition
and fuel pump. Embedded controllers are responsible
for controlling the anti-lock break (ABS) system, the
antiskid control system, and the front panel display.
These controllers warm (or cool) your seats and con-
trol power windows, mirrors and doors. In some cars,
controllers are even used to sense tire pressure, record
the mileage from the last car service, and measure fluid
levels [3]. A car like Volvo S80 contains more than
30 embedded processors, communicating across several
networks. Similarly, BMW 7-series and the Mercedes
S-class both contain over 60 processors [28].

Consequently, in-vehicle electronics are today a ma-
jor cost factor in car development, and can represent
up to 30 percent of a car’s total manufacturing cost
[29]. Analysts estimate that more than 80 percent of
all automotive innovations now stem from electronics
[18]. The computers used in the cars are often standard
microcontrollers, making software the key for providing
the specific vehicle characteristics.

These embedded computers are often connected by
one or more communication networks, and the data
traffic transferred over these networks often has hard
real-time requirements. However, as more computers
and networks gets incorporated it becomes difficult to
verify the overall system behaviour, both regarding
functionality and timing. Therefore, new methods for
supporting the timing verification process have the po-
tential to offer improvements in product quality, as well
as reducing development and testing time.

To give overall system timing guarantees, a key pa-
rameter is the worst-case execution time (WCET) of
the tasks running on the different microcontrollers. To-
day, the common method (if any) in industry to de-
rive WCET values is by measurements, also known as
dynamic timing analysis. A wide variety of measure-
ment tools are employed in industry, including emula-
tors, logic analyzers, oscilloscopes, and software profil-
ing tools [24]. This is labor-intensive and error-prone
work, and even worse, it is difficult to guarantee that

the WCET has been found.
Static WCET analysis is an alternative method to

determine the WCET of a program, relying on mathe-
matical models of the software and hardware involved.
The analysis avoids the need to run the program by
considering the effects of all possible inputs, including
possible system states, together with the program’s in-
teraction with the hardware. Given that the models
are correct, the analysis will derive a timing estimate
that is safe, i.e., greater than or equal to the actual
WCET. The static WCET analysis research area has
developed during the last couple of years, and recently
commercial WCET tools, such as aiT [1] and Bound-
T [4], have reached the market. However, reports from
industrial experiences of static WCET analysis are few,
see Section 2.

In this case study we present experiences from using
the aiT WCET analysis tool from AbsInt GmbH [1]
to find time bounds for time-critical code in embed-
ded products from Volcano Communications Technolo-
gies AB (VCT). VCT provides tools for development of
real-time communication solutions for embedded net-
work systems, principally used within the car industry.
Their tool suite includes support for Controller Area
Network (CAN), Local Interconnect Network (LIN),
FlexRay and MOST network traffic. The VCT tool
suite builds upon the concept of holistic scheduling
theory [27], providing response time guarantees for in-
dividual tasks and messages as well as overall system
transactions [7]. The analyzed code is part of the LIN
tool suite.

The primary purpose of the study was not to test the
accuracy of the obtained WCET estimates, but rather
to investigate the practical difficulties that arise when
applying current state-of-the-practise WCET analysis
methods to this particular kind of systems. This should
provide valuable input for research and WCET tool de-
velopment. To make static WCET analysis industrial
useful it should be possible to, in a high degree, to
automate the process on a “one-click-analysis” basis.
Consequently, we were interested in how labor-intense
practical WCET analysis becomes, measured by the
number of manual annotations necessary to perform
the analysis.

Furthermore, we were interested in the characteris-
tics of obtained WCET values. Most (holistic) schedul-
ing theories assume that each task and message has a
single fixed WCET, and we wanted find out whether
this assumption is sound in a real industrial setting.
Our hypothesis is that automotive software should be
representative for a large class of industrial real-time
code, making our results applicable to many similar
kind of systems.

2 Static WCET Analysis Overview

Any WCET analysis must deal with the fact that a
computer program typically has no single fixed execu-
tion time. Variations in the execution time occur due
to the characteristics of the software, as well as of the
computer upon which the program is run. Thus, both
the properties of the software and the hardware must
be considered in order to understand and predict the
WCET of a program.

Consequently, static WCET analysis is usually di-
vided into three phases: a (fairly) machine-independent
flow analysis of the code, where information about the
possible program execution paths is derived, a low-level
analysis where the execution time for atomic parts of
the code is decided from a performance model for the
target architecture, and a final calculation phase where
flow and timing information derived in the previous
phases are combined to derive a WCET estimate.

The purpose of the flow analysis phase is to extract
the dynamic behavior of the program. This includes
information on functions called, how many times loops
may iterate, if there are dependencies between condi-
tionals, etc. The information can be obtained by man-
ual annotations [13, 14], or by automatic flow analysis
methods [15, 16, 20].

The purpose of low-level analysis is to determine
the timing behavior of instructions given the architec-
tural features of the target system. For modern pro-
cessors it is especially important to study the effects
of various performance enhancing features, like caches,
branch predictors and pipelines [12, 25, 20].

The purpose of the calculation phase is to calculate a
WCET estimate, combining the flow and timing infor-
mation derived in the previous phases. A common cal-
culation method is IPET (Implicit Path Enumeration
Technique), using arithmetical constraints to model
program flow and low-level execution times [13, 25].

Studies of WCET analysis of industrial code are
not common. There are some reports on the usage
of static WCET analysis to analyze code in space ap-
plications [17, 22], and aerospace industry [25, 26]. We
have performed two case studies of the OSE operat-
ing system [6, 23], obtaining timing for system calls
and disable interrupt regions. Colin et al. [9] analyzed
operating system functions of RTEMS, a small, open-
source real-time kernel. To our knowledge this paper
presents the first work where static WCET analysis has
been applied to automotive software.

3 The Project Context

The work presented has been carried out within a
project with the research goal to develop WCET analy-

�������

�	�
��
��

�	�
���
	��

��	���
	��

��	��

��	��
�� ��	���
	�� ��	��

��
��	���
	��

�������

���� ����� �� ��������
��	 � ��!�" ### ��!�� �����

���

��	$�� ��������
��	��

Figure 1. LIN network

sis methods for real embedded systems. Our prototype
tool, named SWEET (SWEdish Execution time Tool),
is in the final stage of completion [13, 15]. Our current
focus is on automatic flow analysis methods, motivated
by the fact that manual annotations are believed to be
a major hurdle when analyzing real embedded software.
This case study is a test of this hypothesis.

Besides our work on automatic flow analysis, we
work with case studies involving WCET tool vendors
and companies with different kinds of time-critical em-
bedded software. As mentioned in Section 2, we have
performed earlier case studies on the OSE operating
system [6, 23]. In the first study we used an early ver-
sion of SWEET, but in the second study as well as
the one presented here, we have used the commercial
WCET analysis tool aiT from AbsInt GmbH [1]. This
tool has a richer set of processor timing models and a
better graphical user interface than what can be ex-
pected from our research prototype.

4 Automotive Networks

A modern car contains a number of electronic con-
trol units (ECUs) interconnected to standard commu-
nication networks. In the same vehicle many different
types of networks can be present, differing in the band-
width, network topology and real-time requirements
supported. Used automotive networks include low-
speed and high-speed Controller Area Network (CAN),
Local Interconnection Network (LIN), Media Oriented
Systems Transport (MOST) and FlexRay.

CAN is currently the most widely used vehicular
network, and a typical vehicle can contain two or
three separate CANs operating at different transmis-
sion rates [18]. A high-speed CAN manages real-time-
critical functions such as engine management, antilock
brakes, and cruise control. A low-speed CAN manages
a car’s comfort electronics, like seat and window move-
ment controls. MOST networks provide support for
multimedia applications. FlexRay targets the future

needs of in-car control, such as active chassis systems.
VCT provides tool suites for CAN, LIN, MOST

and FlexRay network traffic and system management.
Both the CAN and LIN tool suite were judged suitable
for testing static WCET analysis upon. However, since
the work was performed under a limited time period,
only selected parts of the LIN tool suite targeting the
LIN 2.0 protocol were included in the study.

4.1 The LIN 2.0 Protocol

LIN is a low-cost communication network used
where the bandwidth and safety properties of CAN are
not required. LIN is most often used for soft real-time
traffic, managing devices such as window lifts, sun-
roofs and seat adjustment. LIN is meant to link to
CAN, supporting communication between ECUs situ-
ated on different networks. As shown in Figure 1, a
LIN network forms a cluster, composed of one master
node and one or more slave nodes, all connected to a
LIN bus [10]. The master node controls the communi-
cation over the network and contains a master- and a
slave task. A slave node only contains one slave task.

The nodes communicate over the LIN bus by trans-
ferring messages, called frames, with information.
Each node in the LIN cluster is responsible for trans-
mitting a specific set of frames. The communication
is initiated when the master node sends out a message
header on the bus. One (or more) of the slaves is then
activated and transmits its response part. A LIN frame
consists of several standardized parts, including a mes-
sage identifier, one to eight data fields, and a checksum.
A data field can be composed of one or more signals,
represented by either scalar values (1-16 bits) or byte-
arrays (1-8 bytes). Signals are the primary information
carriers within the LIN network. Frames can also in-
clude diagnostic information.

There are severals standardized LIN frame types al-
lowed in the LIN network, including: Unconditional ;
the standard frame type for carrying signals, Event-
triggered ; used to allow multiple slaves to provide a
response on a header, Sporadic; to enable a more dy-
namic behavior in the otherwise deterministic signal
transmission scheme, and Diagnostic; for transmission
of diagnostic information [10].

One key characteristic of the LIN protocol is the use
of its schedule table(s), assuring that the LIN bus never
gets overloaded, i.e., that no frames are lost. The mas-
ter controls the communication on the bus by following
a predefined schedule table that defines which specific
frame to send at each specific time. This makes LIN
a time triggered network using a Time Division Multi-
ple Access (TDMA) mechanism, unlike CAN which is
event-triggered.

5 The Volcano Tool Suite

The Volcano Tool Suite is a holistic data communi-
cations concept for design and implementation of in-
vehicle networks using CAN and/or LIN [29]. It is a
system engineering approach managing software devel-
opment from many different suppliers. The LIN tool
suite consists of several different tools.

The LIN Network Architect (LNA) is the top-level
design tool. It captures all design requirements on the
network, like requirements of signals, nodes and frames,
and automatically generates a resulting LIN cluster
configuration. LNA packs the signals into frames, as-
signs identifiers and generates schedule tables. The re-
sulting cluster configuration is written to a LIN De-
scription File (LDF).

Each signal is described in the LDF-file by its name,
size, initial value, which node that transmits and which
node(s) that receive the signal. LNA uses a timing
model that specifies the time between the generation
and the consumption of each signal. A signal could
for example be generated in response to some exter-
nal sensor event, e.g., the pressing of a button, and be
consumed by some actuator action, e.g., the raising or
lowering of a window.

The next tool in the LIN tool chain is the LIN Tar-
get Package (LTP) which takes the LDF file together
with a private file as input. The private file is delivered
by the supplier and includes hardware node details, in-
cluding information on the flags used. LTP consists of
a configuration tool and pre-compiled object libraries
necessary for LIN network communication. LTP con-
figures the individual LIN nodes and outputs LIN tar-
get dependent code.

To supply solutions for various car manufacters VCT
support a large variety of target processors [29], includ-
ing Fujitsu 16Lx, Hitachi H8S/SH7055/SH7058, Pow-
erPC, NEC V85x and Motorola HC08/HC12/Star12.
Since aiT supports the Star12, it was chosen as a suit-
able target processor for the study. VCT also have
tools for testing, verifying and emulating communica-
tion on the LIN network.

6 The MC9S12DP256 Board and
Development Environment

The microcontroller used in this study was a
MC9S12DP256 from Motorola [21]. It includes a 16-bit
Star12 CPU of the MC68HC12 family. The CPU has
a three stage pipeline and several different addressing
modes (indexed, inherent, immediate etc.), but does
not support caches. The MC9S12DP256 memory con-
figuration is 256K of Flash EEPROM, 4K of EEPROM

and 12K of SRAM. The time for most memory accesses
is one bus cycle for reading single bytes and aligned
words, and two bus cycles for reading misaligned words.

The LIN target dependent code was compiled with
the Hiware HC12 Compiler from Metroworks, a com-
piler used by VCT and supported by the aiT tool. We
used the Hiware SmartLinker to link the object files
into one absolute binary file which was loaded to the
MC9S12DP256 using a debugger. The generated ex-
ecutable contains information, like symbol tables and
debugger information, which is used by aiT to con-
struct control-flow graphs and other information rele-
vant for the WCET analysis.

7 The aiT WCET Analysis Tool

aiT is a commercial WCET analysis tool from Ab-
sInt GmbH [1], a spinoff company from Universität
des Saarlandes. aiT analyses executable binaries,
and supports a number of target architectures includ-
ing ARM7, PowerPC555/565/755, ColdFire5307 and
HCS12/STAR12. To generate a WCET estimate the
aiT tool performs the following analysis steps:
− A reconstruction of the control flow graph from the

executable code.
− A loop-bound analysis to bound the number of loop

iterations.
− A value analysis to determine the range of values in

registers.
− A cache analysis to classify accesses to main memory

w.r.t. hits and misses, if the processor has a cache.
− A pipeline analysis, to determine execution times of

basic blocks using a model of the processor pipeline.
− A calculation phase where IPET (i.e., integer linear

programming) is used to determine the WCET.
In essence, the aiT WCET analysis conforms to the
general scheme presented in Section 2. Several of the
analyses in the chain are based on abstract interpre-
tation [11], such as the value analysis and the cache
analysis [25]. Since the HCS12 does not support cache
memories, no cache analysis was performed in this
study. Figure 2 illustrates the graphical interface for
the aiT WCET tool, including buttons for performing
WCET analysis and some assembler code. The front
window present some examples of aiT user annotations.

7.1 aiT User Annotations
The information present in the executable itself is

typically not sufficient to yield a good WCET bound.
Therefore, aiT supports a set of annotations to provide
external information to the analysis [14]. In particu-
lar, annotations could be given on the possible pro-
gram flow, like the start address of the task to ana-
lyze, targets of indirect function calls and branches,

Figure 2. Graphical interface of aiT WCET analysis tool

and iteration bounds of loops not caught by the loop
bound analysis. Furthermore, specific hardware con-
figuration specifications, like processor frequency and
address memory mapping, are sometimes required. For
example, correct memory map specifications are impor-
tant when accesses to different memories take different
amount of time. Most annotations are given relative
the program object code. Among others, the following
information can be manually given:

− Clock rate - If the clock rate of the microprocessor
is not specified, aiT only generates the computed
WCET results in cycles. clock exactly 8 MHz; in-
forms aiT that clock frequency is 8 MHz.

− Naming the compiler - The control flow reconstruc-
tion works better if aiT knows what type of com-
piler that has generated the executable: compiler

"hc12-hiware";

− Routine entry - A routine could be specified to start
at a given address: entry 0x0:0x414c;1 .

− Stop decoding - The analysis may be informed to end
the analysis at a specific address: end 0x0:0x414c;.

− Specifying control-flow - A the target address of a
call or branch can be manually given:
instruction 0x0:0x414c calls 0x0:0x8500;.
1Routine entries are usually found during the control flow re-

construction phase, and their names are fetched from the symbol
table in the executable.

− Specifying memory accesses - The specific memory
address of a memory access could be specified like:
instruction 0x0:0x8500 accesses 0x3a:0x8100;.

− Known register values - For example, instruction

0x3a:0x9110 is entered with X = 0:0x100; gives
that the register X will always have a value of 0x100
at address 0x3a:0x9110.

− Address mapping - The STAR12/HCS12 micropro-
cessor has a memory addressing on the form P:B,
where P is a 6 bit page number and B is a 16 bit
base address. The base addresses should be mapped
to special memory areas. The following four an-
notations specify the default memory mapping of
MC9S12DP256B microcontroller:
map base 0x0 .. 0x3ff to registers;

map base 0xff00 .. 0xffff to vectors;

map base 0x1000 .. 0x3fff to ram;

map base 0x0 .. 0xfff to eeprom;

− Never executed code - The user can remove code
from the analysis, e.g., infeasible code. For exam-
ple: snippet 0x0:0x1a0c is never executed;

− Branch condition outcome - An constant outcome
(true or false) of a branch condition, can be spec-
ified as: condition 0x0:0452 is always true; or
condition 0x0:0452 is always false;

− Recursion depth - aiT cannot handle mutual recur-
sion. However, direct recursion where a routine

Function Code properties Annotations WCET
Object Source Loops Mem. Loop Proc. Com- Total Cycles Time

code (.o) code (.c) map. bound rate piler (µs)
l star12sci ifc s connect() 6 kb 3 kb 0 4 0 1 1 6 25 3.125
l star12sci ifc m connect() 6 kb 3 kb 0 4 0 1 1 6 25 3.125
l star12sci ifc s init() 6 kb 3 kb 0 4 0 1 1 6 159 19.875
l star12sci ifc m init() 6 kb 3 kb 0 4 0 1 1 6 182 22.75
l star12sci ifc s rx() 10 kb 14 kb 3 4 3 1 1 9 2058 257
l star12sci ifc m rx() 16 kb 8 kb 0 4 0 1 1 6 224 28
l star12sci sch set() 6 kb 3 kb 2 4 2 1 1 8 3612 452
l star12sci sch tick() 10 kb 12 kb 8 4 8 1 1 14 6823 853
l star12sci sys init() 4 kb 2 kb 0 4 0 1 1 6 10 1.25

Table 1. Code properties, manual annotations and WCET values of some selected functions

calls itself is allowed, and a maximal recursion depth
must then be specified: recursion "foo" max 12;

− Loop bound - If the loop-bound analysis fails to
bound some loops, their bounds can be manually
specified: loop 0x0:0x4537 begin exactly 12;

− Source code annotations - Some information can be
defined direct in the source code by annotations in
a specific format. Example:
for(i=3;i*i<=n;i+=2) /* ai: loop here max 20; */

Most of these specifications cannot be checked by aiT
so care should be taken to provide correct annotations.
Only a few type of annotations are mandatory, e.g.,
memory mapping specifications and upper bounds for
loops not found by the loop-bound analysis.

8 Experiments and Results

The Volcano LIN Target package (LTP) was selected
as a suitable part of the Volcano LIN tool suite to anal-
yse. It consists of a configuration tool and some library
files. The LIN API describes the interface between the
network and the application program. The API con-
sists of some C functions, each implemented in a sepa-
rate C file.

Code properties of some selected LIN API functions
are given in Table 1. The table shows the size of the
object files (.o) and the corresponding source files (.c).
The number of loops within the source code files are
also given. Most of the analyzed functions were rather
small, and only a few of them contained loops. Only
one loop was nested, i.e., incapsulated within another
loop.

To get the WCET of a function call it was usually
not enough to only consider the code of the called func-
tion. The called function might call other functions,
which call other functions etc. For example, an anal-
ysis with aiT on the l star12sci sch tick() func-
tion generated a call-graph containing 19 routines, (i.e.,
functions or loops).

8.1 Manual Workload

Table 1 also includes information on the manual
annotations required for the WCET analysis. Anno-

tations for the memory mapping, the processor rate,
and the compiler type were provided for all functions.
No loop bounds were automatically found by aiT, and
they therefore had to be set manually. All call and
branch targets were found automatically by aiT and
no function used recursion, so no such annotations were
needed. Annotations for condition outcomes, never ex-
ecuted code, start and end points were given in some
special cases, see Section 8.2.

The actual workload required for analyzing a func-
tion varied with its code size and structure. Smaller
code snippets were straightforward to analyse while
more complex codes became more time consuming and
error-prone. The main complexity came from the need
to support correct annotations, especially giving iter-
ation bounds for loops. Setting correct annotations
often required a lot of detailed system knowledge.

To investigate how some system parameters affected
the WCET (see Section 8.2 below) we were sometimes
required to modify some system configuration files and
re-compile the system. If the code layout changed as
a consequence, all annotations referring to absolute
memory addresses, e.g., loop 0x0:0x4537 begin max
37, had to be modified accordingly. One way to reduce
this hassle was to provide detailed comments about
which part of the source code a given annotation was
referring to. This made the first analysis of a func-
tion time consuming, but simplified later analyses. An
alternative was to use aiT’s possibility to use relative
addressing in annotations, e.g., loop "foo" + 1 loop
begin max 37. This turned out to be a useful option,
but still required extra checks to confirm that applied
compiler optimizations did not changed the code layout
to make the annotations incorrect.

8.2 WCET Value Characteristics

We were able to obtain WCET values for all ana-
lyzed LIN API functions. However, these values were
often not a constant single value, but instead depended
on some system parameters given in the system config-
uration files (LDF and private files). These were:
− The numbers of frames within the current network,
− The types of the frames,

Loop Annotation Parameters affecting loop iterations Cycles/ Time/
iter iter (µs)

loop1 loop 0x0:0x456f begin max (0-7); size of received unconditional or diagnostic frame 49 6.125
loop2 loop 0x0:0x4590 begin max (0-9); number of flags within a frame 23 2.875
loop3 loop 0x0:0x4656 begin max 6; sets up the sleep command 19 2.375
loop4 loop 0x0:0x46af begin max 7; always iterates eight times 52 6.5
loop5 loop 0x0:0x4780 begin max (0-7); size of transmitted unconditional or diagnostic frame 71 8.875
loop6 loop 0x0:0x4737 begin max 7; size of event-triggered or sporadic frame 46 5.75
loop7 loop 0x0:0x4609 begin max 7; size of event-triggered frame 73 9.125
loop8 loop 0x0:0x4537 begin max 7; size of event-triggered frame 88 11

Table 2. Properties of loops in l star12sci sch tick() function
CASE Conditions Extra Annotations WCET

Never exec. Br. cond Cycles Time (ms)
CASE1 - - - 6871 0.859
CASE2 no sporadic or event-triggered frames 3 - 3531 0.441
CASE3 no sporadic or event-triggered frames, no sleep request, no errors 7 - 1674 0.210
CASE4 unconditional received, unconditional sent, no sporadic or event-triggered 3 4 3315 0.415
CASE5 unconditional received, diagnostic sent, no sporadic or event-triggered 3 4 3308 0.414
CASE6 diagnostic received, unconditional sent, no sporadic or event-triggered 3 4 2756 0.345
CASE7 diagnostic received, diagnostic sent, no sporadic or event-triggered 3 4 2749 0.344

Table 3. Analyzed cases for l star12sci sch tick() function

− The size of the frames, and
− The number of flags latched to the signals within

the frames.
A WCET valid under all possible system configura-

tions would for most functions be an overly pessimistic
value. Furthermore, for many code parts it was hard to
directly see how these parameter values affected the ex-
ecution of the code. We therefore analyzed each func-
tion in a number of specific cases. Each case gave a
WCET for the function under some specific conditions.
Indirectly, the WCET analysis also gave a better un-
derstanding of the execution characteristics of the code.
We will in the following describe the cases obtained and
analysis performed for two different LIN API functions.
For a more detailed description we refer to [5].

The l star12sci sch tick() function

The l star12sci sch tick() function may only be
called by the master node in the LIN cluster and is
the function that drives the communication in the LIN
network. The function is called periodically on a time
basis specified in the LDF-file and follows a pre-defined
schedule for frame transmissions. The specific schedule
to be used is set by calling the l star12sci sch set()
function.

The l star12sci sch tick() function contains
eight non-nested loops as illustrated in Table 2. The
table also gives the given loop bound annotations and
the iteration cost per loop. The execution behavior
for most loops are dependent on the parameters given
during system configuration. For example, many of the
loops iterates over the content of frames transmitted or
received. This gives that their iteration bounds are im-
plicitly given by the largest frame size allowed in the
network, as given in the LDF file.

Furthermore, most of the loops are only executed
under certain system conditions. For example, loop3

will only execute if the master sends out a sleep request
on the network. Some loops are only executed if a cer-
tain type of frame should be transmitted or have been
received. Some of these conditions are exclusive, e.g.,
a frame cannot both be unconditional and sporadic,
giving that some loops never can be executed together
during the same call.

Table 3 presents the analyzed cases for the
l star12sci sch tick() function. All values in Ta-
ble 2 and Table 3 are derived under some default as-
sumptions, unless otherwise stated in the Conditions
column: that sporadic and event-triggered frames may
occur, sleep requests may be transmitted, errors can
come up, the maximum frame size is eight, and maxi-
mum ten flags may be latched to signals within a trans-
mitted/received frame.

In CASE1 we examined how the maximum size and
the maximum latched flags allowed for a frame affect
the WCET. These parameters are given values in the
LDF and private files and are therefore specified by
the system designer. Table 4 shows how WCET grows
with the number of latched flags when the frame size
is fixed. Similarly, Table 5 shows how WCET grows
with the frame size when the latched flags parameter is
fixed. To derive these WCET values we repeatedly run
aiT on the same code. The loop bounds for loop1 and
loop5 were systematically adjusted according to the
upper frame size. Similarly, the loop2 loop bound was
systematically adjusted according to maximum num-
ber of latched flags. By combining the WCET values
derived we obtained the parametrical WCET formula
in Table 6, expressing the fact that the WCET is lin-
early dependent of both investigated parameter values.

In CASE2 we derived WCET values under the as-
sumption that no event-triggered or sporadic frames
are transmitted. Three never executed annotations
were added to exclude code parts handling these type

Frame Flags Cycles Time
size (ms)
8 1 6662 0.833
8 2 6685 0.836
8 3 6708 0.839
8 4 6731 0.842
8 5 6754 0.845
8 6 6777 0.848
8 7 6800 0.850
8 8 6823 0.853
8 9 6846 0.856
8 10 6869 0.859

Diff./Flag 23 0.003

Table 4. WCET / flag CASE1

Frame Flags Cycles Time
size (ms)
1 10 5735 0.717
2 10 5897 0.738
3 10 6059 0.758
4 10 6221 0.778
5 10 6383 0.798
6 10 6545 0.819
7 10 6707 0.839
8 10 6869 0.859

Diff./Frame size 162 0.02

Table 5. WCET / frame size CASE1

WCET (CASE1) =
5343 + Flags ∗ 23 + Framesize ∗ 162
where Flags ∈ N , F ramesize ∈ 1..8

Table 6. WCET formula CASE1
WCET (CASE2) =
2005 + Flags ∗ 23 + Framesize ∗ 162
where Flags ∈ N , F ramesize ∈ 1..8

Table 7. WCET formula CASE2
WCET (CASE3) =
994 + Framesize ∗ 85
where Flags ∈ N , F ramesize ∈ 1..8

Table 8. WCET formula CASE3

of frames from the WCET analysis. The WCET values
were shown to be dependent on the same parameters
as in CASE1, giving the resulting parametrical WCET
formula in Table 7. The base cost of CASE2 (2005
cycles) is smaller than the base cost for CASE1 (5343
cycles), reflecting that code parts have been excluded
from the CASE2 analysis.

In CASE3 we derived a WCET bound under the
assumption that no event-triggered or sporadic frames
may be transmitted and that no sleep requests or errors
may occur. This allowed us to remove more code than
in the two previous cases, using seven never executed
annotations. Consequently, the WCET for CASE3 be-
comes much smaller that for CASE1 and CASE2, as
shown in Table 3. The resulting WCET formula, given
in Table 8, gives that the WCET no longer depends on
the number of latched flags, but only on the frame size.

In the last four cases, (CASE4 to CASE7), we tested
how different combinations of sent and received uncon-
ditional and diagnostic frames influence the WCET.
To do this we had to assume that no event-triggered or
sporadic frames may occur, using the same three never
executed annotations as in CASE2. Furthermore, the
conditions that triggers if a unconditional/diagnostic
frame had been transmitted/received were systemati-
cally specified to be true/false using four branch con-
dition outcome annotations. The experiments showed
that two unconditional frames transmitted after each
other, CASE4, generated the largest WCET.

The l star12sci s rx() function

The l star12sci s rx() function is the largest
function executed by a slave node in a LIN cluster.
The function is executed whenever the node receives
one character of data from the network. The function
calls several other functions, like id received() and
frame received() to perform its tasks, many which
contain one or more non-nested loops. The execution
of most loops were dependent on some LDF file param-
eters, like the maximum frame size and the number of

frames in the network. Loop bounds for these loops
had to be manually provided. Again, we were able to
distinguish a number of interesting cases, (CASE8 to
CASE10), to be investigated in more detail.

In CASE8 we tested how the WCET of
l star12sci s rx() depends on the maximum
frame size and the maximum number of latched flags
allowed. We were able to derive a parametrical WCET
formula, were the WCET was linearly dependent on
the two investigated parameters. Each increase in
frame size gave a WCET increase of 36 cycles and
each extra latched flag gave a WCET increase of 49
cycles. The WCET base cost were 1306 cycles, giving
a WCET of 2058 cycles or 157 ms, for a maximum
frame size of eight and up to ten latched flags as shown
in Table 1.

In CASE9 we tested how the WCET depends on
number of frames within the network. Two loops in
two different called functions, iterated according to this
parameter, and we had to modify their loop bounds in
a systematic way to obtain the dependency. Again,
we were able to generate a parametrical formula giving
that one extra frame increases the WCET with 198
cycles or 25.1 ms.

In the last case, CASE10, we tried to obtain the
longest path executed from when a frame ID is received
in a slave, until the slave sends out the first byte in
its response. This required extra routine entry and
stop decoding annotations to specify where the analysis
should start and end. We also had to give three branch
condition outcome annotations to specify the outcome
of certain conditions to force the execution to take a
certain path.

The provided annotations gave a large reduction in
the amount of code to analyze. As an illustration,
consider the difference between Figure 3, which shows
the original call graph and Figure 4, which shows the
reduced call graph after the annotations were added.
Both graphs were generated by aiT’s graphical visual-
ization tool aiSee. The WCET for the original graph

���
%��&��&%$'�� �%��$���
%��&��&����'()((���
%��&��&����'(((*

���
%��&��&����'+++"

���
%��&��&����'++++���
%��&��' 	��' ,� ��$���
%��&��$*'��	$'-.'%$���
%��&��&����'(/++

���
%��&��$*'��������'��	��

���
%��&��' 	����
',�	$��'��	��

���
%��&��',�	$��'
�'0�	��'�
	�"*� %

���
%��&��$*'����	��'��������

���
%��&��&����'+++* ���
%��&��&����'(1+*

���
%��&��$*'	 ��
'%$

���
%��&��&����'()21

���
%��&��' 	����
'��������'��	��

Figure 3. Entire call graph for l star12sci s rx() function

���
%��&��&����'()21

���
%��&��&�',�	$��'
�'0�	��'�
	�"*� % ���
%��&��&�' 	����
',�	$��'��	�� ���
%��&��%$'�� �%��$

���
%��&������'+++"

Figure 4. Reduced call graph CASE10

�3� �
%��

%��

4%

��

��! 5�!+

Figure 5. Function jitter

became 11174 cycles while the reduced graph gave a
much tighter WCET estimate of 325 cycles. We con-
clude that it is possible to use aiT to get the WCET
for a specific execution path, but that extra annota-
tions are required to constrain the analysis to include
only relevant code.

9 Conclusions and Future Work

We were able to obtain WCET estimates for all an-
alyzed parts of the Volcano LIN Target Package. The
overall conclusion is therefore that static WCET anal-
ysis is a feasible method for deriving WCET estimates
for this kind of automotive communication software.
We note, however, that static WCET analysis is not
yet mature enough to fully automate work on a “one-
click-analysis” basis. Instead, detailed system and code
knowledge is often required and manual intervention is
needed in terms of annotations. Consequently, the use-
fulness of static WCET analysis would improve with a
higher level of automation and support. Especially im-
portant should be to develop better methods for loop
bound analysis.

Another important conclusion is that absolute
WCET bounds (in terms of cycles or milliseconds) of-
ten were insufficient for the analyzed system. Instead,
the WCET often depended on some specific system pa-
rameters, like the number of frames in the system. An
absolute WCET bound, covering all possible situations,
was often a gross over-approximation. A mode- and
input-sensitive WCET analysis would have the pos-
sibility to get better resource utilization and provide
better understanding of the system’s timing character-
istics. Thus, it seems important to develop methods to
support such analyses.

For many parts of the LIN API it was possible to

manually create parametrical WCET formulas. This
allowed us to test how certain parameter values affect
the WCET and gave a good understanding of the ex-
ecution behavior of the analyzed code. Thus, it seems
interesting to develop methods to automatically derive
these parametrical dependencies and formulas [8, 19].
Even if such methods require some manual annota-
tions, like limits of input parameter values, we believe
that these annotations are fewer, and easier to give,
than e.g., loop bounds and exact execution counts.
Compared to earlier work where we analyzed operating
system code [6, 23], we note that the VCT code is of
less parametrical nature, but still more than what we
initially expected.

After discussions with the VCT employees it turned
out that not only the WCET, but also the jitter that
a function or a task can experience is of large inter-
est. The jitter is the largest execution time variation
a function can experience, i.e., the difference between
the best-case execution time (BCET) and the WCET.
Figure 5 gives an illustration of the concept. To sup-
port jitter calculation today’s WCET tools need to be
extended with BCET analysis. We do not believe this
to be very complicated, but it requires adaptation of
the analysis methods to do safe underestimations for
BCET (instead of safe overestimations of WCET).

We believe that static WCET analysis could be inte-
grated into VCTs development environment. However,
VCT uses a large variety of processors and compilers
(see Section 5), and is often required to quickly adapt
its tool suite to new target platforms. A full integration
of a static WCET analysis tool in VCTs development
chain may pose a problem, since WCET tools for new
processors and compilers may not be available or de-
veloped quickly enough. However, we expect that the
amount of platforms supported by static WCET anal-

ysis to increase, making this a less problematic issue.
The employed at VCT had a positive attitude to-

wards aiT and static WCET analysis in general. They
thought that the tool was very user-friendly, and gave
results on a detailed level. Future work includes to
compare static WCET values with timing values de-
rived using more dynamical analyses, such as hardware
measurements. We would also like to perform comple-
mentary studies on the Volcano CAN target package.

Acknowledgements
This work was performed within the Advanced Soft-
ware Technology competence center (ASTEC) [2], sup-
ported by the Swedish Agency for Innovation Systems
(VINNOVA) [30]. We especially want to thank AbsInt
GmbH [1], for giving us access to their HCS12 WCET
analysis tool, as well as Volcano Communications Tech-
nologies AB [29], for giving us access to source code and
binaries of the Volcano Tool Suite.

References
[1] AbsInt company homepage, 2005. www.absint.com.

[2] ASTEC homepage, 2005. www.astec.uu.se.

[3] S. Barret and D. Pack. Embedded Systems - Design and
Applications with the 68HC12 and HCS12. Pearson Edu-
cation, Inc, 2005. ISBN: 0-13-140141-6.

[4] Bound-T tool homepage, 2005. www.tidorum.fi/bound-t/.

[5] Susanna Byhlin. Evaluation of Static Time Analysis for
Volcano Communications Technologies AB. Master’s thesis,
Mälardalen University, Väster̊as, Sweden, Sept 2004.

[6] M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and
B. Lisper. Worst-case Execution Time Analysis of Disable
Interrupt Regions in a Commercial Real-Time Operating
System. In Proc. 2nd International Workshop on Real-
Time Tools (RT-TOOLS’2002), 2002.

[7] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg.
Volcano – A Revolution in On-Board Communications.
Volvo Technology Report, 1:9–19, 1998.

[8] A. Colin and G. Bernat. Scope-tree: a Program Represen-
tation for Symbolic Worst-Case Execution Time Analysis.
In Proc. 14th Euromicro Conference of Real-Time Systems,
(ECRTS’02), pages 50–59, 2002.

[9] A. Colin and I. Puaut. Worst-Case Execution Time Anal-
ysis for the RTEMS Real-Time Operating System. In
Proc. 13th Euromicro Conference of Real-Time Systems,
(ECRTS’01), June 2001.

[10] LIN Consortium. LIN Specification Package, Revision 2.0,
Sept 2003. http://www.lin-subbus.org/.

[11] P. Cousot and R. Cousot. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proc. 4th ACM
Symposium on Principles of Programming Languages, Los
Angeles, January 1977.

[12] J. Engblom. Processor Pipelines and Static Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University,
Dept. of Information Technology, Box 337, Uppsala, Swe-
den, Apr 2002. ISBN 91-554-5228-0.

[13] A. Ermedahl. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University,
Dept. of Information Technology, Box 325, Uppsala, Swe-
den, June 2003. ISBN 91-554-5671-5.

[14] C. Ferdinand, R. Heckmann, and H. Theiling. Convenient
User Annotations for a WCET Tool. In Proc. 3rd Interna-
tional Workshop on Worst-Case Execution Time Analysis,
(WCET’2003), 2003.

[15] J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a Flow
Analysis for Embedded System C Programs. In 10th IEEE
International Workshop on Object-oriented Real-time De-
pendable Systems (WORDS 2005), Feb 2005.

[16] C. Healy, M. Sjödin, V. Rustagi, and D. Whalley. Bound-
ing Loop Iterations for Timing Analysis. In Proc. 4th

IEEE Real-Time Technology and Applications Symposium
(RTAS’98), June 1998.

[17] N. Holsti, T. L̊angbacka, and S. Saarinen. Using a Worst-
Case Execution-Time Tool for Real-Time Verification of the
DEBIE software. In Proc. of the DASIA 2000 Conference
(Data Systems in Aerospace 2000, ESA SP-457), Sep 2000.

[18] G. Leen and D. Hefferman. Expanding Automotive Elec-
tronic Systems. IEEE Computer, 35(1):88–93, Jan 2002.

[19] B. Lisper. Fully Automatic, Parametric Worst-Case Execu-
tion Time Analysis. In Proc. 3rd International Workshop
on Worst-Case Execution Time Analysis, (WCET’2003),
June 2003.

[20] T. Lundqvist. A WCET Analysis Method for Pipelined
Microprocessors with Cache Memories. PhD thesis, De-
partment of Computer Engineering, Chalmers University
of Technology, Göteborg, Sweden, 2002.

[21] MC9S12DP256 Advance Information, Rev. 1.1, Dec 2002.

[22] M. Rodriguez, N. Silva, J. Estives, L. Henriques, and
D. Costa. Challenges in Calculating the WCET of a Com-
plex On-board Satellite Application. In Proc. 3rd Interna-
tional Workshop on Worst-Case Execution Time Analysis,
(WCET’2003), 2003.

[23] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper.
Static Timing Analysis of Real-Time Operating System
Code. In Proc. 1st International Symposium on Leveraging
Applications of Formal Methods (ISOLA’04), Oct 2004.

[24] D. B. Stewart. Measuring Execution Time and Real-Time
Performance. In Proceedings of the Embedded Systems Con-
ference (ESC SF) 2002, Mar 2002.

[25] S. Thesing. Safe and Precise WCET Determination by Ab-
stract Interpretation of Pipeline Models. PhD thesis, Uni-
versität des Saarlandes, 2004.

[26] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona,
M. Langenbach, R. Wilhelm, and C. Ferdinand. An Ab-
stract Interpretetation-Base Timing Validation of Hard
Real-Time Avionics Software. In Proc. of the IEEE Inter-
national Conference on Dependable Systems and Networks
(DSN-2003), June 2003.

[27] K. Tindell and J. Clark. Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems. Microprocessing
and Microprogramming, 40(2-3):117–134, 1994.

[28] J. Turley. Embedded processors. In Extremetech.com, Jan
2002.

[29] Volcano Technologies Communications AB homepage.
www.volcanoautomotive.com, 2005.

[30] Vinnova homepage, 2005. www.vinnova.se.

