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ABSTRACT I.e. guaranteed not to underestimate the execution
Knowing the Worst-Case Execution Time (WCET) of dime. To be useful, they must also hight, i.e.
program is necessary when designing and verifying reavoid Iarge overestimations.
time systems. A correct WCET analysis method must A correct WCET calculation method must take

take into account the possible program flow, such as Iow:ho account the possible program flow, such

iterations and function calls, as well as the timing effects of . ) . '

different hardware features, such as caches and pipelin@ss. loop iterations and function calls, and the
A critical part of WCET analysis is the calculation €ffects of hardware features, such as caches and

which combines flow information and hardware timing inpPipelines. The flow information can be considered
formation in order to calculate a program WCET estimat@as a set offlow facts, each giving constraints
The type of flow information which a calculation methochn the program flow for a certain piece of the
can take into account highly determines the WCET EStim?‘?ogram (loop bounds, infeasible paths, execu-

precision obtq|nable. Traditionally, we have had a chc_n ?on dependencies, etc.). Flow facts are usually
between precise methods that perform global calculatio

S . . L .
with a risk of high computational complexity, and IocarOcal in their nature, expressing information that

methods that are fast but cannot take into account all typ@Bly affects a smaller region of a program, such
of flow information. as a single loop or an if-statement. However,

This paper presents an innovative hybrid method wometimes these regions might reach over the
handle complex flows with low computational complexityhgsic program structures. For example, a loop

but stillgenerate safe and tight WCET estimates. The,q rather than a loop, or an entire function rather
method uses flow information to find the smallest par . e .
n just a loop inside that function.

of a program that have to be handled as a unit to ens X
precision. These units are used to calculate a program!N general, the expressiveness of the flow facts

WCET estimate in a demand-driven bottom-up mannekhich can be handled by a calculation method are
The calculation method to use for a unit is not fixed, bub a high degree determining the WCET estimate
could depend on the included flow information and prografrecision that can be achieved. In this paper we

characteristics. present a method to handle complex flow infor-
Index Terms: WCET analysis, WCET calculation, timingmation with low computational complexity while
analysis, hard real-time, embedded systems. still generating safe and tight WCET estimates.
Previous WCET calculations have been ei-
l. INTRODUCTION ther local or global in nature. Local calculation

HE purpose oMbrst-Case Execution Time schemes work by only considerindized granu-

(WCET) analysis is to provide a priori infor-larity of a program at once, such as a single loop
mation about the worst possible execution timar a function. Local calculation schemes are usu-
of a program before using the program in ally performed in dottom-up fashion, calculating
system. Reliable WCET estimates are necessarysafe (timing) abstraction for a program part,
when designing and verifying real-time systemsyhich is later used in the calculation of surround-
especially when real-time systems are used ity parts of the program. Bottom-up calculations
control safety-critical systems such as vehicleare beneficial, since the overall WCET calcu-
military equipment and industrial power plants.lation problem can be subdivided into smaller,

WCET estimates are used in real-time systemessier-to-solve problems, thereby achieving high

development to perform scheduling and scheduleemputational efficiency. The drawback of tra-
bility analysis, to determine whether performanaditional local calculation schemes is that they
goals are met for periodic tasks, and to chedannot handle all types of flow facts. Basically,
that interrupts have sufficiently short reactiomhen flow facts reach over the fixed calculation
times [1]-[3]. To be valid for use in safety-boundaries, they cannot be accounted for, which
critical systems, WCET estimates must e, leads to lower WCET estimate precision.
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Global calculation schemes handle this prolarget hardware. Timing dependencies can reach
lem by working globally on the entire program aacross calculation boundaries, and such cases
once. This allows most type of flow facts to b@eed to be handled safely in order to generate
handled, regardless of which program region theycorrect WCET estimate.
affect. However, most techniques for performing The concrete contributions of this paper are:
global calculations are based on integer linear. We introduce the concept of organizing flow
programming (ILP) or constraint programming information into fact clusters.

(CP) techniques, thus having a complexity poten-. We present various algorithms to construct
tially exponential in the program size. This makes fact clusters.
scaling to large programs risky. « We present an algorithm that uses fact clus-

Our clustered calculation method in effect ters to calculate a program WCET estimate.
achieves the precision of global WCET calcu- . \We evaluate the clustered calculation method
lations, while getting close to the efficiency of  against global and local calculation schemes.
local calculations. The key idea is to work with , \We present a timing model able to represent
a dynamic granularity in the WCET calculation: various type of hardware timing dependen-
determining the units of work in the calculation  cjes.
based on the actual flow facts present. This is, We evaluate the effect of long reaching
unlike traditional local calculations where the timing dependencies on various calculation
units are statically defined based on the pro- schemes.

gram structure, regardless of the flow information The rest of this paper is organized as follows:
present. _ o . Section Il gives an introduction to WCET anal-
Furthermore, in many cases it is not sufficieRjsis and previous work. Section IIl presents our
to consider each flow fact in isolation. Severgq, represention, Section IV presents how flow
flow facts are likely to be present for a progranigcts can be organized into fact clusters, and
and these flow facts manteract and together sections V-VI give the clustered WCET calcu-
constrain the program flow further than eacition method. Section VII presents our timing
individual flow fact. A WCET calculation methody,odel and Section VIII shows how we handle
must find such interacting flow facts and tregjming dependencies reaching over calculation
them as a unit or risk losing precision. The clugsorders. Section IX presents our WCET tool ar-
tered_ calculation method takes this into accouritecture, including our pipeline timing analysis
drawing the boundaries in the calculation in suqiSection IX-A), our efficient path-based calcula-
a way that all flow fact dependencies are indegg, method (Section IX-B), and our Extended
accounted for. _ IPET calculation method (Section IX-C). Finally,
The clustered calculation method works aSection X presents our experimental evaluation,

follows: the provided flow facts are used tQng Section XI gives our conclusions and ideas
construct units where all included flow facts argy; future work.

directly or indirectly dependent. For each such
fact cluster the program region affected by the |I. WCET ANALYSIS OVERVIEW AND
included flow facts is extracted. The fact clusters PREVIOUS WORK
and corresponding program regions are used tolTo generate a WCET estimate, we consider a
calculate a program WCET estimate in a bottonprogram to be processed through the phases of
up manner. The method is algiemand-driven flow analysis, low-level analysis and calculation.
in that a WCET for a program region is only The purpose of the flow analysis phase is to
calculated when its timing estimate is needegkiract the dynamic behaviour of the program.
in a surrounding program part. The calculatiofhis includes information on which functions
method to use for a particular fact cluster is nget called, how many times loops iterate, if
fixed, but could depend on the characteristitbere are dependencies betwedeh-statements,
of the included flow facts and correspondingtc. Since the flow analysis does not know the
program region. execution path which corresponds to the longest
The boundaries between calculation regiorexecution time, the information must be a safe
present in clustered and local calculation schem@wer)approximation includingll possible pro-
also interact with thehardware timing of the gram executions. The information can be ob-
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tained bymanual annotations (integrated in the Figure 1(a) shows an example control-flow
programming language [4] or provided separatefyraph with timing on the nodes and a loop-bound
[5]-[7]), or by automatic flow analysis methods flow fact. Figure 1(b) illustrates how a tree-
[8]-[12]. The flow analysis is traditionally calledbased calculation method would proceed over the
high-level analysis, since it is often done ograph according to the program syntax-tree and
the source code, but it can also be done @iven transformation rules. Collections of nodes
intermediate or machine code level. are collapsed into single nodes, simultaneously

The purpose of low-level analysis is to detederiving a timing for the new node. Since the
mine the timing behaviour of instructions givemprocessing order is pre-defined flow information
the architectural features of the target systemetween non-related program parts, e.g. between
For modern processors it is especially importadtandF, are hard to handle. Similarly, hardware
to study the effects of various performance emlependencies between non-local parts of the code
hancing features, such as caches and pipelinase difficult to handle, and must be treated in a
Low-level analysis can be further divided intgessimistic fashion to guarantee the safeness of
global low-level analysis, for effects that requirghe analysis.

a global view of the program, aridcal low-level In a path-based calculation, the WCET esti-
analysis, for effects that can be handled locallyate is generated by calculating times for differ-
for an instruction and its neighbours. ent paths in a program, searching for the overall

In global low-level analysis, instruction cachepath with the longest execution time [9], [12],
[7], [9], [12]-[14], data caches [12], [15], [16],[26]. The defining feature is that possible exe-
and branch predictors [17], [18] have been arution paths are representexplicitly. The path-
alyzed. Local low-level analysis has dealt witlhhased approach is natural within a single loop
scalar pipelines [9], [11], [12], [14], [17], [19]-iteration, but has problems with flow information
[21] and superscalar CPUs [22], [23]. Heckmanstretching across loop-nesting levels.
et al. [13] present an integrated cache and pipelineFigure 1(c) illustrates how a path-based cal-
analysis, and argue that such integration is necesdation method would proceed over the graph
sary for processors with heavy interdependencies Figure 1(a). The loop in the graph is first
between various functional elements. Attemptdentified and the longest path within the loop is
have also been made to use measurements &nthd. The time for the longest path is combined
the hardware itself to extract the timing [24]. with the loop bound flow fact to extract a WCET

The purpose of the calculation phase is testimate for the whole program.
calculate the WCET estimate for a program, In IPET, program flow and low-level execution
combining the flow and timing information detime are modeled using arithmetic constraints
rived in the previous phases. There are thr@gl—[7], [10], [27]. Each basic block and program
main categories of calculation methods propos#éidw edge in the program is given a time variable
in literature: tree-based, path-based, and IPET (texity), holding to the contribution of that entity
(Implicit Path Enumeration Technique). to the total execution time every time it is exe-

In a tree-based calculation, the WCET is calcweuted, and a count variabled,), corresponding
lated in a bottom-up traversal of a tree generaltp the number of times the entity is executed.
corresponding to a syntactical parse tree of tige WCET is extracted by maximizing the sum
program [14], [17], [25]. The syntax-tree is a repef products of the execution counts and times
resentation of the program whose nodes descriQ€ ,_.,......s ©i * t;), where the execution count
the structure of the program (e.g. sequenceriables are subject to constraints reflecting the
loops or conditionals) and whose leaves represestitucture of the program and possible flows. The
basic blocks. Rules are given for traversing thesult of an IPET calculation is a WCET estimate
tree, translating each node in the tree into @amd a worst-case count for each execution count
equation that expresses its timing based on thariable.
timing of its child nodes. The method is concep- Figure 1(d) shows the constraints and WCET
tually simple and computationally cheap, but hdsrmula generated by a IPET-based calculation
problems handling long reaching dependenciesgthod for the program illustrated in Figure 1(a).
since the computations are local within a singléhe start and exit constraints gives that the
program statement. program must be started and exited once. The



// Start and exit constraints
Xstart = 15 Xexit = 1

Longest path
marked

// Structural constraints

Xstart = XstartA

XA = XstartA + XHA = Xaexit ¥ XAB
Xp = Xag = Xgc * Xgp

Xc = Xgc = XcE

// Unit timing
toath = 31
theader = 3
XH = XFH + XGH = XHA
Xexit = Xaexit

// Loopbound constraint
xa<100

// WCET Expression
WCET = max(xp»3 + xg+5 +

// WCET Calc
WCET =

theader + tpath *
(maxiter-1) =
3+31.99=

3069

T(seq(S1,S2)) = T(S1) +T(S2) /Ioop

T(if(Exp) S1 else S2) = A seq ,, *2) =
(T((Ex;',’)) + max(T(S1)),T(82)) e Sen . )?:8679+ o+ Xyr2)
T(l Exp,Body)) = |
isatpaon e I
(a) Control-flow (T(Exp) +T(Body)) » (maxiter-1) E/ L\G

graph with timing Transformation rules Syntax-tree
and loop bound (b) Tree-based calculation (c) Path-based calculation (d) IPET-based calculation

Fig. 1. Different calculation methods

structural constraints reflects the possible pro-of a program. The fundamental data structure in
gram flow, meaning that for a basic block to beur approach is thscope graph. The scope graph
executed it must be entered the same numberi®fased on the partitioning of the instructions in
times as it is exited. Thioop bound is specified the object code of a program inteasic blocks
as a constraint on the number of times the logB0]. Figure 2(a) shows an example C function,
header nodé can be executed. Figure 2(b) show the corresponding assembler
IPET is able to handle all types of flow infor-code, and Figure 2(c) show the corresponding
mation, including flow facts with long reachingcontrol flow graph and basic blocks.
dependencies. IPET has traditionally been appliedThe scope graph consists of nodes (including
in a global fashion, treating the whole progrardistinguished start and exit nodes) and edges.
and all flow information together as a unit. IPETEach node (except the start and exit node) holds
calculations normally rely on integer linear proa reference to a basic block in the object code.
gramming (ILP) or constraint programming (CPThe flow information representation in the scope
techniques, thus having a complexity potentiallyraph thus refers to the compiled executable
exponential in the program size. Also, since flowbject-code of the program. This is necessary in
facts are converted to constraints the size ofder to be able to tie the flow information to the
the resulting constraint system grows with thrardware timing information of a program, which
number of flow facts. is by necessity generated on the object-code level.

We have previously developed an efficient The nodes and edges in the scope graph are
Path-based calculation method (Section IX-Byartitioned into scopes reflecting the dynamic
[26], [28], [29], and an Extended IPET calculastructure of the program in terms of function
tion method (Section IX-C) [5], [28]. Both meth-ca|ls, loops, recursive calls and unstructured code
ods are able to handle more types of complgyrts. Scopes are necessary in order to carry pro-
flow facts and timing dependendencies than tragjram flow information, in particular bounds for
tional path-based and IPET calculation schemeg} |oops and context-sensitive flow information
The clustered calculation method presented i8¢ function calls. Figure 2(d) shows the scope
this article combines the preCiSion of the E)(graph generated for the basic block graph in
tended IPET calculation with the efficiency of thesigure 2(c).

Path-based calculation. ~ Each scope has a distinguished header node,
In this article we focus on the calculatlor*(e_g_ nodeA resp.C in Figure 2(d)). No other
phase which uses the results of the other phasggie in the scope can be executed more than
(i.e. high-level flow information from the flow gnce without passing the header node. Each scope
analysis phase and detailed timing informatioghoy|d have a loop bound attached to it, providing
from the low-level analysis phase) as input. 41 ypper bound on the number of times its header
node can be executed for each entry of the scope.
The scopes in the scope graph are organized
In order to perform any kind of WCET calcu-in a scope-hierarchy, a directed tree with scopes
lation, we need to be able to represent the floms vertices and edges from a scope going to

I1l. REPRESENTINGPROGRAM FLOW



int foo(int max) foo: -
{ mov r0,r6 foo: scope: ffc:
L movi #1,r7 header: A;
int i,j,total; mov  r0,r5 | Loopbound: 1;
i=0; br foo_1
P foo_0:
=1 -
add r7,r5 scope foo
total = 0; addi #-2,r5 :l
while(i <= max) addi  #1,r6
{ foo_1:
(i <5) P foa's
00,
i foo_2: - scope loop
. cmpi  #5,r6 . 5> #E=1;
if(j > max) bge foo 4 }igpfl]‘:#;-#<E5%’
break; foo_3: 00piL JHHE = 97
total = total +j - 2; addi #1,r7
- foo_4:
A cmp r7,r1
ge foo_|
} b foo_0
return total; f°°_5:mov 51
} imp 311 G )
(e) Scope hierarchy
(a) C source code (b) Assembler code (c) Control flow graph Soxi (d) Scope graph and flow facts with flow facts

Fig. 2. Scope graph with flow facts and scope-hierarchy

all its children. Figure 2(e) illustrates the scopaising constraints to limit possible executions of
hierarchy generated for the scope graph in Figeope graph entities, with the ability to give the
ure 2(d). In the tree each scope has zero or mdlew information in a scope-local context. The
descendants, i.e. scopes below it in the tree, andatter property makes it possible to use flow
zero or moreancestors, i.e. scopes above it in thefacts in local calculations schemes. Furthermore,
tree. The immediate descendants of a scope aseng flow facts on the scope graph, we are able
its child scopes and the immediate ancestor is it$0 represent most types on interesting flows, as
parent scope. A scope without any descendant igliscussed in more details in Section IV-A below.
called aleaf scope. E.g. in Figure 2 scopkoop Each flow fact consists of three parts: the name
is a leaf scope and both a descendant and a chifcthe defining scope where the fact is attached, a
to scopef 00. context specifier, and aconstraint expression (see
The complete subtree for a scopes is formed Figure 2(d)). Each flow fact is consideréokal
by all scopes having as ancestor in the scopeto its defining scope and the fact is interpreted as
hierarchy (includings). Each tree of scopesbeing valid foreach entry of the scope.
formed by removing the complete subtrees of one The context specifier describes the iterations of
or several descendant scopessaé asubtree of the defining scope for which the constraint ex-
s. An in-edge of a scopes is an edge having its pression is valid. This can be for all or just some
source node in a scope not within the complefgrations. The type of a context specification is
subtree ofs and having its target within theeijthertotal (written with “[ ” and “] »), for which
complete subtree of. An in-node is a target the fact is considered as a sum over all iterations
node of anin-edge. An out-edge of a scopes of the specified scopes, 6oreach (written with
is an edge having its source node in a scope” and “>"), which considers the fact as being
within the complete subtree of and having its |ocal to a single iteration of the scope. Facts
target outside the complete subtreesofA scope valid for all iterations are expressed by>"
can be entered at several in-nodes, allowing fer “[ ] ”, while facts valid for certain iterations
unstructured jumps into loops, and might havgre expressed asmin..maz> or [ min..max] ,
several out-edges. An edge going to a headgheremin < max are integers larger than 0. The
node of a scopes and having its source nodespan of a fact is the iterations of the defining
located in the complete subtree ofis a back- scope for which a fact is valid. Two facts are

edge of s. For example, in Figure 2(dA—C is said tooverlap if their spans have any iteration
an in-edge,C is an in-node,F—G an out-edge in common.

and B—C a back-edge of scopeoop. The constraints are specified as a relation be-
tween two arithmetic expressions involvirey-
A. Flow facts ecution count variables and constants. An ex-

To express more complex program flow inforecution count variable#entity, corresponds to
mation than just basic loop bounds, each scopa entity (node or edge) in the scope graph,
can carry a set oflow facts [5], [28]. The flow and represents the number of times the entity
facts combine the expressive power of IPETS executed in the context given by the context



void foo (bool x) { // scope:m void bar (bool x){ // scope:p

for(...) // scope: q
for (i=0;i<10;i++) // scope: n, loop bound: 10 if (x==true)
for (j=1i;j<10;j++) // scope: o, loop bound: 10 Q1; // block Q1, execution
{... 01; ...} //\codeincluding block O1 C // implied by M1
R . }
if(...) Triangular loop
x=true; // block M1 / void baz () { // scope:s
bar (x) ; L hi - // code including blocks S1, S2, S3
- ong reaching for(...) // scope: t, loop bound: 10
for(...) // scope:r dependency if (T2) { // block T2, false during last 3 iters
{... 1/ code includi / s4; // block S4, big chunk of work
baz () ; code Including c ags break; }
.. blocks R1, R2, R3 Gonditional 4 includi
) } // dependency } - // code including block S5
Fig. 3. Example code
specification. [ scope m |m: 13 :#M 1< #Q1 (73)

A fact can only refer to count variables cor{ |..;.#neader(o) <55 (f1) r:[é..?]:ﬁg1f#¢é§21gg;
. .y . :<3..7>: =
responding to entities located in the completd seopen | :

scope p scope s

subtree o_f th_e defining scope of_ the fact. Fc
example, in Figure 2 a fact defined in scdpmop o<l #0121 () t:<8..10>:#T2>84 =0 ()
cannot refer to executions of entities located in (a) Example scope-hierarchy with associated facts
the f 00 scope. All scopes between the definingract|Peinng | Span def| Covered || Fact, | Defining | Span def | Covered
scope and the scopes containing referred comg n 1.1./b5(n) {n,o} @2 | b | o)
variables are said to tevered by the fact. Thus, | 5| |1.)m) moa || W | m || o)
the scopes covered by a fact form a subtree wittf |~ | -5 13 [ aafs oy 1.7 n
> 5 r 3.7 n {f6} 0 8.10 {0}
the defining scope as root. 6| o |8.10 | {o

In Figure 2(d), thd 0o0p scope has two flow (b) Information about facts (c) Information about fact clusters
facts attached to it. The fi_rst flow fact specifies Fig. 4. Fact clustering example
that for each timel oop is entered, nodeE
must be taken during each of the first five loo
iterations (but not that the loop needs to itera
5 times). The second fact specifies that for ea fined on scopd 0o referring to entities in

tlmetlfpopf IS entc()etr)ed noc:f]E tct?]n ?e ttaken lats opel oop would potentially interact with the
most five times. Observe that the facts are locgl | already given facts.

to scopd 0op, and should be valid for each entry We define dact cluster to be a set of flow facts

f thel , ind dentl h ti o . :
ot the | 0op, Indepencienty on now marny |me5|_he defining scope of a fact cluster is the first

function f 0o is called from other functions in i
the program. The two flow facts overlap sinc&ommon ancestor of all the facts in the cluster.

they span the first five and all iterationslabop The cow_ar_of a fact cluster is all scopes betwc_ae_n
respectively. the defining scope and the scopes containing

count variables referred to by a flow fact in the
IV. CLUSTERING OFFLOW FACTS scope. Thus, the covered scopes form a subtree

The goal of clustering is to find the flow factdn the scope-hierarchy with the defining scope as
that need to be considered together in order rigot. For the defining scopeof a cluster thespan
to lose precision. Two flow facts can interact big all iterations between the lowest and highest
giving constraints for the same iterations of Heration ofs spanned by any fact in the cluster.
scope, i.e. by overlapping. Interacting flow facts In Figure 3 some example code fragments are
do not need to refer to the same scope grapgiven, including three different functionsoo,
entity. For example, adding a flow fact whictbar and baz, and some loops. In Figure 4(a)
refers to noder in Figure 2(d) would indirectly a scope-hierarchy generated from the code in
constrain the execution of noéeand could there- Figure 3 is presented, including some flow facts.
fore interact with the two already given flow factskigure 4(b) show the defining scopes, defining
However, if the new flow fact only were spanningcope spans, and cover of each given flow fact.
the last three iterations of scop@op, it would The name of a count variable gives the scope
not directly interact with the first flow fact sincein which the corresponding entity is located, e.g.
they do not overlap. A flow fact can also interagtML refers to executions of noddl located in

constraining executions of entities located in
escendant scopes. For example, adding a fact
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scopem The functionl b(n) returns the loop Figure 4 captures this dependency by specifying
bound for a scope. that the edgd2—S4 cannot be taken during the
The fact clusters generated from the facts ala&st three iterations of the scope.

given in Figure 4(c). For each generated fact Another case of flow information causing clus-
cluster we show its defining scope, its definingers is when information from different types
scope span, and the scopes covered by the clustérflow analysis methods or manual annotations
Note that the same flow fact can be present interact, and therefore need to be considered
several clusters, and that not all flow facts in @gether in the WCET calculation. An example
cluster need to have the same defining scope.of such overlapping flow information is shown

_ in Figure 4(a) with flow factd 4 andf 5. Both
A. Flows causing clusters flow facts have the same defining scopeand

Program flows causing fact clusters and reactheir spans have iterations in common.
ing over several scopes are actually quite com-

mon. The simplest example is illustrated in th
first loop nest in functiorf oo in Figure 3. It is
the classical “triangular” loop, i.e. a nested loop An algorithm to create the clusters of flow facts
where the number of iterations of the inner loof$ given in Figure 5. The algorithm makes a post-
depends on the current iteration number of tk@der traversal of the scope graph, generating
outer loop (cf. scopes ands in Figure 4(a)). clusters in descendant scopes prior to the parents.

The inner loop considered in isolation will have For each scope, we look at the facts defined
an iteration bound of 10, and so will the oute®n the scope, and partition the facts based on their
loop. If WCET calculation is performed locally,iteration span. Two facts that overlap, i.e. have
the calculation of the inner loop will assume 180me iterations in common, go to the same clus-
iterations. The WCET calculation for the outeter: Vf;, f; € facts(s) : (overlap( f;, f;) A
loop will use 10 iterations of the inner loop forfi € c¢) = f; € c. This creates sets of facts where
each entry of the inner loop. This gives that theach fact overlaps one or more of the facts in the
inner loop body being counted 100 times, whe$ame cluster. For example, fadtd andf 5 in
it is actually cannot be executed more than F5gure 4 have the same defining scopand have
times. To solve this problem we need to handiterations in common, and should therefore be put
the inner and outer loop together as a unit. Flop the same cluster. Note that if there are any “all
fact f1 in Figure 4(a) shows how this typeiterations” facts (using context specificatipr]
of triangular loop dependency can be capture@; <>), there will only be one fact cluster for
(#header (o) refers to the count variable of thethis scope since these facts include all iterations,
header node of scops. and thus overlap with all other facts defined on

Flows in nested scopes can be related in otHée scope.
ways, for example if the outcome of a deci- The algorithm also consider interactions of
sion in a scope determines the paths taken irflaw facts located in different scopes. For each
loop (maybe deeply) nested in the scope (witktracted fact-clusterwe add fact cluster defined
varying outcome), e.g. for the scopas p and in descendant scopes covered dyThis creates
g in Figure 4(a). The code id oo and bar larger fact clusters, each covering a set of scopes
in Figure 3 experience such a long reachirifyat have to be jointly considered. Note that this
dependency. Flow fadt3 in Figure 4(a) capturesmeans that a fact can be part of several fact
this dependency. It gives that an execution efusters. For example, fa€tl in Figure 4 covers
nodeML implies an execution of nod@l, (node both scopen and o and should therefore be
QL can still be executed on its own). clustered together with fadt2, resulting in the

In the next example, given in functidmaz in fact cluster{f 1,f 2} with n as its defining scope.
Figure 3, nodeS4 does not belong to the loopFactf 2 also forms a fact cluster on its own with
(scopet ) due to thebr eak statement. Therefore,0 as defining scope.
the way the loop is exited will determine whether The algorithm given in Figure 5 generates min-
it should be counted or not. ThuS4 depends on imal sets of facts where all included facts should
the decisionr2 in the loop body, bu§4 is a node be considered together. We call this clustering
in the parent scope df (scopes). Factf 6 in algorithmminimal fact clustering. The algorithm

B. Fact cl ustering algorithm



ClusterFacts( scopegr aph sg) :
FC := 0 [l To hold generated fact clusters
/I Traverse scopes in scope graph bottom up
for each scope s in sg in bottomup order do

F :=flowfacts in sg with s as defining scope
/I Partition facts into clusters
C := partition facts in F into set of overlapping facts

/I Add fact clusters already created in descendant scopes
for each fact cluster c¢in C do

S : = scopes covered by c except scope s
for each fact cluster cgy in FC defined in S do
c = cUcgup
end for
end for

/I Update set of fact clusters
FC := FCUC

end for

return FC

Fig. 5. Minimal fact clustering algorithm

makes sure that all facts that might interact are <6. . 7>: #R1 + #R3 = 1 (f 5”). The result-
put in the same cluster. ing fact clusters becoméf 4, f 5’} and {f 5" }.

It is also possible to make more relaxed foridve call such clusteringplit-foreach-fact minimal
of clusterings, i.e. merging some of the minimaglustering. Compared to the minimal clustering
fact clusters into larger clusters. These clusteringtgorithm, splitting of foreach facts will result in
will put facts into the same cluster even thougmore fact clusters with smaller covers.
they do not really interact. Natural examples of

such more relaxed clusterings are: . ) )
, , , The algorithm for calculating a WCET esti-

» Scope-based clustering: All facts defined in 1546 ysing fact clusters is shown in Figure 6. The
a scope are put in the same cluster, t0gethgpqrithm performs a demand-driven traversal of
with all the facts in fact clusters defined inp,q scopes in the scope-hierarchy. For each scope
covered descendant scopes. _ we find the fact clusters defined on the scope,

« Maximum clustering: All flow facts in the 54 for each fact cluster the scopes covered by
scope graph are put into one big ClUstghe cjyster are extracted as a subtree over which a
with the first common ancestor scope §g.,| WCET calculation is made. This means that
its defining scope. Scopes not covered B¥ihere are fact clusters that cover more than one
the resulting fact cluster will be calculated;qne 5 WCET calculation is performed over all
separately from the scopes in the cluster. ., ared scopes as a unit.

« Global cl ustering: All flow facts in the SCOP€  The WCET estimate for a scopeis obtained
graph are put into one big cluster with they itarating over the clusters havingas defining
root scope of the scope graph as its definingone in range order, i.e. fact clusters spanning
scope. All scopes in the scope-graph are pafls first iterations ofs are processed before fact
of the cluster. This is identical to the global,| siers spanning later iterations ef If some

calculation view used by our Extended IPE'gCOpe range is not spanned by any fact cluster,

method [28]. an empty fact cluster is created. Such empty

Furthermore, we can construct even smallelusters cover just the current scope and span
clusters by subdividing foreach facts into factsnly consecutive iterations not spanned by any
valid for smaller ranges. A foreach fact gives flofact. For a scope not covered by any flow fact,
information valid for each individual iteration an empty cluster is created, spanning all iterations
and therefore does not need to force overlappiog the scope.
subranges to the same cluster. Instead, we apphlA WCET estimate for a program fragment
the algorithm given in Figure 5 to total facts onlyshould be calculated from where the execution
The remaining foreach facts asplit into new can enter the fragment to where the execution
foreach facts across the ranges of the resultingn exit the fragment. A calculation for a cluster
clusters. E.g. in Figure 4(a) the total fdct does is therefore performed from sontaegin-nodes,
not overlapf 5 completely, so we split 5 into where the execution can enter the covered scopes,
the factsr: <3. . 5> #R1 +#R3 =1 (f 5’) and to someend-edges, where the execution can exit

V. CLUSTEREDWCET CALCULATION



ScopeWCET(scope s, scopegraph sg, factclusterset FC, Toopbound: 20
ti medat abase tdb): @Iu:[l..S]:#U1S#U2+2 (f1)
Il Initialize timing variables for scopes and clusters uf?é : 7§o#U¢16§L£#:\)1 Eg;
//séackf L= Its Jout }— teback ©= teout 1= 0 i [ b. ’ d] ’ 10 -
et fact clusters for scope oopbound:
Cs := fact clusters in FC with s as defining scope @I vi<l..4>:#VI+H#V2<1 (f4)
Cs := add enpty cluster for each range of s not (a) Scope-hierarchy with flow facts
covered by fact clusters in Cs -
/I Make WCET calculation over clusters in header
for each cluster cin Cs in increasing range order do | |
st := subtree of scopes in sg covered by c {f4} {1}
Il Replace non-covered descendant scopes with timing nodes v:l..4 v:5..10
for each child scope sub to | eaf scopes in st. do | | |
/I Do demand-driven analysis of descendant scopes out back out
if time for sub is not in tdb then WCET(in,v,out) =
tdb 1= ScopeWCET(sub, st,cs,tdb) max(WCET(in,v:1..4,out),
/I Replace _caIIs to descendant scopes with timing nodes WCET(in,v:1..4,back)+
tsup 1= time for scope sub in tdb WCET(header,v:5..10,0ut))
ste 1= in st. replace call to sub with -
node taking teup time (b) WCET calculation scope v
end for ;
/I Get begin nodes for cluster ’f header header
if cspans first iteration of s then b := in_nodes(s) |
el se b : = header _node( s) {f1.12} {} {f3.f4}
/I Calculate time to out-edges for cluster walooT LR RS u:10..20
te,out 1= ClusterWCET(c,b,out _edges( s), stc, tdb) v:l..10
/I Update time to out-edges for scope |
if vali d( tc,out) t hen out | back out | back OLllt
ts,out - = max ( ts back T tc,out, ts,out) scope v v:1..4 and
I/ Calculate time to back-edges for cluster scope v v:5..10 s calc-
if c does not span last iteration of s then time for v becomes a new %?ffg,g%g‘ztge’
teback = ClusterWCET (c,b,back_edges(s), stc, tdb) node in u:1..7 and u:8..9 o
/I Update time to back-edges for scope WCET(in,u,out) =
if valid(tcpack) then max(WCET(in,u:1..7,0ut),
ts,back - = Usback + tcback WCET(in,u:1..7,back) +
/I Break if execution can't continue WCET (header,u:8..9,out),
el se break |oop WCET(in,u:1..7,back) +
end for WCET (header,u:8..9,back)+
/I Update timing database and return WCET (header,u:10..20,out) )
?Cej?utr L]n.fd;s’out for scope s to tdb (c) WCET calculation scope u
Fig. 6. Clustered WCET calculation algorithm Fig. 7. Calculation over clusters

the covered scopes. The cluster spanning the firsg entity is located, e.gtV1 refers to executions
iteration of a scope has begin-nodes equal to tbenodeV1 located in scop&. The factsf 1 and
in-nodes of the scope. For the remaining clustefr® together form a clustegf 1, f 2}, spanning
the begin-nodes are equal to the header-nodesarige 1..7 ofi. Since neithef 1 norf 2 coverv,
the scope, since this defines the start of a newocal calculation is made for by a recursive
iteration. call to the algorithm,

Similarly, for all clusters except the one includ- The local WCET calculation fov only needs
ing the last iteration, we make two distinct calcuo consider facts and fact clusters definedwon
lations, one ending at an out-edge and one endiRgctf 4 creates a fact cluster on its owff, 4}.
at a back-edge. This is because the execution pa#o calculations are made for tHé 4} cluster:
taken to exit a scope might be different from thene to the out-edges and one to the back-edges.
path taken when continuing to the next cluster. Tthe remaining iterations (5..10) of are not
a WCET estimate for the back-edges cannot Bpanned by any fact and an empty fact cluster
calculated, e.g. due to some contradicting floyv} (covering just scope) is therefore created
information in the cluster, the execution canndor these iterations. Since the fact cluster covers
continue. If so, we stop iterating over the rangdake last iteration olv, a WCET estimate is only
and return the total time accumulated for themade to the out-edges, and not to the back-edges
scope. as in the previous clusters.

Figure 7 shows an example of a WCET calcu- After calculating a WCET estimate for, the
lation working over clusters. The algorithm startsalculation restarts ati with the fact cluster
at scopeu where there are several facts coverinff 1, f 2}. There are no facts spanning range 8..9,
the iteration range. The name of a referred couahd an empty fact clustdr} (covering just scope
variable gives the scope in which the correspond) is created. For both these calculations, the call
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s loon: 10 ] [ to nodeS4 cannot be taken during the last three
¥ ralRY iterations oft . The WCET estimate for scope
L\ (L will therefore be different depending on the used
[s4] [4] out-edge. In the calculation of scope this will
[s5] [s5] result in two separate call nodes for scopeach
one WoEL | | separate wicETs || with different timing. Thus, by making separate
(c) Calculation alternatives calculations for different in-nodes and out-edges
the calculation cost increases, but more precise
WCET estimates can be achieved.
to scopev is represented by a call node with the Note that we only need to extract one single
timing of the extracted WCET estimate fori.e. program fragment even though we perform sep-
no details ofv except its timing are included inarate calculations for its begin-nodes and end-
the calculation. edges. By adding extra flow facts stating which
Factf 3, however, covers both scopeandv begin-nodes and end-edges are possible for each
and will be clustered together with tHe4 fact particular calculation, the extracted graph frag-
as {f 3, f 4}. This means that when calculatingnent can be reused.
a WCET estimate for scope over range 10..20
we cannot use the previously generated time fory,
scopev, but must do the calculation ovéaoth
u andv. Observe thaff 3, f 4} covers the last
iteration of u, so no calculation for the back- In Figure 9(a)-(k) we give a compact illus-
edges is needed. tration of the steps involved in our clustered
, , calculation method. To simplify the presentation,
A. Entry and Exit Options no timing for entities is included in the example.
Some graph fragments have several pointsrigyre 9(a) shows an example control-flow
where the execution can enter or exit. For sugfiaph consisting of a single loop and a loop nest
fragments we have the option to make a separgnsisting of two loops. Figure 9(b) shows the
WCET CalCUlation fOI’ eaCh pair Of entry and eXiéorresponding Scope graph W|th SCOW' n,
points, or to make just one WCET calculation gop, out er andi nner. Each scope has a
for all entry or exit points together, or to dQoop hound and some have flow facts attached.
something in between. This allows us to tradqote that bothl oop andout er have multiple
WCET estimate precision for calculation speedgyt-edges. Figure 9(c) shows the corresponding
Figure 8 gives an example of the need facope-hierarchy, with flow facts attached to the
the calculation to differentiate between differenfjtferent scopes. Figure 9(d) shows the defining
exit points for increased precision. The code angope, defining scope span, and cover of the flow
scope graph corresponds to the example in furgets.

tion baz in Figure 3, where flow fao‘t6.specifies Figure 9(e) shows the fact clusters generated
that edger2—3S4 cannot be taken during the lasfynen applying the minimal clustering algorithm

three iterations of scope. given in Figure 5. Since fadt1 andf 2 overlap
If only one calculation is made for scoge ., iheir ranges they will be put in the same

for both its out-edges it will result in a timingqy,ster. Fact 3 refers to the header node of scope
estimate fott which gives that the loop is iterated ,ner and is therefore put in the same cluster
10 full iterations. Later, when doing a WCET,q¢ 41
calculation for scopes the worst case path will

be passing the call node for scopetogether Figure 9(f) shows the fact clusters gener
with the nodesS4 and S5, This gives a safe butated when applying the split-foreach-fact minimal

L%c;lg.lstering (see Section IV-B). Fattl has been

S5

(é) Example (b) Scope graph
code fragment

Fig. 8. Calculation options for fragment with multiple exits

COMPLETE EXAMPLE OF CLUSTERED
CALCULATION

pessimistic WCET estimate, since the extract lit into two new factd oop: <1.. 5> #D— 1
worst case path could not be taken in an actugl,, ) and | oop: <6 40>.' #DII: 1 '(f 1)
execution. B ' '
The other calculation alternative, which is to , , - ,
k te WCET calculation for each out- _Factf 4 is al;o constituting a_fact c_Iuster on its _ow{f,4},
maxe a separa ' - Wefined on scopenner , but this is not included in Figure 9(e),
edge of scopé , will discover that the out-edgesincef 4 will always be calculated together wiff3.
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7scope: loop;

loopbm’mdz 50; outer: []:#J <55 (f3)
loop:<1..40>:#D=1; (£1)
loop: [1..5]:#G=2; (£f2)

7scope : outer;
header: I;

loopbound: 10; inner:<1..5>:#L =1 (f4)
outer: []:#J <55; (£3) @
- loop:<1..40>:#D =1 (f1)
loop:[1..5]:#G =2 (f2)
[scope: inner; (c) Scope-hierarchy with associated flow facts
header: J;
loopbound: 10; Defining Span defining Covered
inner:<l..5>:#L=1; (£4) Fact scope scope scopes
f1 loop 1..40 {loop}
f2 loop 1.5 {loop}
[ scope: main; f3 outer 1..10 {outer,inner}
ﬂ —[| header: 2; f4 inner 1.5 {inner}
loopbound: 1; .
®exit - (d) Information about flow facts
(a) Control-flow graph (b) Scope graph and flow facts Fact | Defining | Span def | Covered
Fact Defining | Span def| C d — cluster | scope scope scopes
IFact Defining | Span def | Covered cluster | scope scope | scopes clfxasi;r D:;:;‘;gg Ssngpd:f (;g\é;r:: {} main 1.1 {main}
cluster | scope | scope | scopes {f1,f2} | Joop | 1.5 | {loop) {main {f1,f2} | foop | 1.40 | {loop}
{f1,f2} | loop 1..40 {loop} {1’} loop 6..40 {loop} {f1,£2, ) 11 outer. {} loop 41..50 | {loop}
{outer, {outer, f3,f4) | Mmain g inner. {outer,
{f3,f4} | outer 1..10 inner {f3,f4} | outer 1..10 inner loop} {f3,f4} | outer 1..10 inner,
(e) Minimal fact clustering (f) Minimal split-foreach clustering (9) Global clustering (h) Minimal plus empty clusters
ot @start
L B outer Calc 4: outer:1..10 to first out-edge Calc 6:main:1..1 to out-edge
loop | |Calc 1: loop:1..40 to back-edge loopbound: 10 start loopbound: 1
loopbound: 40 outer: []:#J<55 ® - "
B loop:<1..40>:#D =1 inner:<1..5>:#L=1 call to loop is main
loop: [1..5]:#G=2 . outer: []:#0—=exit=0 replaced}tl;yt_nqde
5 loop: [1..40] :#B—=exit + #E—=exit=0 with timing
. Calc 5: outer:1..10 to second out-edge
Calc 2: loop:1..40 to out-edge loopbound: 10
H loopbound: 40 outer: []:#J<55
n loop:<l..40>:#D =1 inner:<l..5>:#L=1 N call to outer
loop:[1..5]:#G =2 outer: [] :#l—=exit=0 is replaced by
ﬂ loop: [1..40] :#G>exit + #D—exit = 0 two different
nodes with
Calc 3: loop:41..50 to out-edge ——scope inner is timing (one
E loopbound: 10 ) ) calculated together Jg{_:g;g
loop: [41..50] :#G=exit + #D—=exit=0 with scope outer of outer)
Wexit “exit exit‘
(i) Scope graph and calculations of scope loop (j) Scope graph and calculations of scope outer (k) Scope graph and calcs of scope main

Fig. 9. Complete example of clustered calculation

The fact clusters{f 1’ ,f2} and {f1' ' } to- first iteration of|l oop. The scopes covered by
gether span the same range as ffiel, f 2} the cluster are extracted to form a separate graph
cluster given in Figure 9(e). fragment as given in Figure 9(i). Two different
Figure 9(g) shows the fact cluster generatetilculations are made: one ending at the back-
when applying the global clustering (see Seedge ofl oop (Calc 1) and one ending at the out-
tion IV-B). All facts are put into one cluster, withedge ofl oop (Calc 2). The same scope graph is
mai n as defining scope, and will all be considused for both calculations, but some extra flow
ered together as a unit in the final calculation. facts are added in each calculation to constrain
For the rest of the example we use the clu¥here the execution should end.
ters in Figure 9(e) as generated by the minimal The calculation continues with the empty clus-
clustering. Figure 9(h) shows the resulting set ¢ér spanning range 41...50 of scdpeop. When
clusters, after adding empty clusters for all rangesalculating a WCET estimate for this cluster we
of scopes not covered by any cluster. This is domeuse the extracted scope graph for scopep.
as part of the algorithm given in Figure 6. ArSince the cluster is empty, no flow facts are
empty cluster for range 1..1 afai n and one included, except one specifying that the execution
empty cluster for range 41..50 bbop is created. must end at the out-edge (Calc 3). The three
Our demand-driven WCET calculation algodifferent WCET estimates extracted are used to-
rithm given in Figure 6 starts at scopei n. gether, as given by the algorithm in Figure 6, to
Since onlynai n is covered by the empty factcalculate a WCET estimate for scopeop.
cluster, recursive calls are made for scommp The next step is to calculate a WCET esti-
and out er, before calculating the WCET ofmate for scopeout er. Since the fact cluster
mai n. {f 3, f 4} covers both scopeut er andi nner,
Scopel oop is covered by two fact clustersa WCET estimate will be extracted for both
{f 1, f 2} and an empty cluster. The calculatioscopes together. A new scope graph is extracted
starts with clustedf 1, f 2}, since it spans thefor the two scopes, as shown in Figure 9(j). For
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the extracted scope graph and fact cluster, twlee scope graph, and thus refers to a certain
different calculations are made, one to the oubasic block in the program executing in a certain
edge with nodd as source (Calc 4), and one t@ontext.
the out-edge with nod® as source (Calc 5). Intuitively, a node timet,.q. represents the
After calculating WCET estimates for scopgéime it takes to execute a node in isolation on
| oop andouter a WCET estimate for scopethe hardware. A timing effeci,., represents the
mai n can be calculated. A scope graph for scomhange in execution time encountered when a
mai n is extracted, as shown in Figure 9(k), withode sequenceeq is executed compared to the
the calls to scopkoop andout er replaced with total time of the constituent nodes (and the timing
call nodes. Each node is given a timing equaffects of the subsequences of the sequence).
to the WCET estimate extracted for the call tdiming effects are negative to indicate a speedup
the corresponding scope. Note that scopéer over a sequence of nodes, and positive to indicate
gets replaced with two different call nodes, sinc& slowdown.
it had multiple out-edges. No fact is covering We use the notatiofl’(seq) for the execution
scopenai n, and only one calculation needs téime of a sequenceseq of nodes. This time
be made for this scope (Calc 6). The result @¢hould be a safe estimate of the execution time
the calculation is a WCET estimate for the wholef the corresponding instructions on the target
program. hardware. The execution time for a sequence of
Note that we do not put any demands on thebdes is obtained by summing all node times
calculation method to use when calculating and timing effects defined for the sequence:
WCET estimate for a fact cluster and its covered
scopes. For example, for the calculations of the(seq) = Z tn + Z Os
mai n scope or the last range bbop, both our Vnenodes ( seq) Vsesubsequences( seq)
Path-based and Extended IPET methods can be
used (see Section IX). For fact clusters with more Figure 10(a) shows a small piece of a scope
complicated flow information, such 463, f 4}, graph, containing three basic blockg R and
our Extended IPET calculation method is prefe®. The example processor includes an in-order

ably used. scalar pipeline containing an instruction fetch
(I F), an executeEX), and a memory acces)(
VIl. REPRESENTINGPROGRAM TIMING stage. It also contains a separate floating point

As we have defined the clusters in the clusteréd) stage, which can be used instead of t&BX)(
calculation based on the flow information, iand (V) stages. Instructions can execute in thg (
is possible that there are hardware timing estage for several clock cycles.
fects crossing the boundaries between calculationFigure 10(b) shows the pipeline layout of three
units. In order to discuss this problem, we nedehsic blocks, and that the execution times for
to have a definediming model for the program. the nodes are 8 cycles fd@ 6 cycles forR

In previous work, we have developed a timingnd 7 cycles foiS, respectively. When executing
model designed to support the calculation dhe blocks in sequence, the total execution time
a program WCET estimate from the timing ofor the sequence is usually smaller than the sum
smaller program parts, while still capturing albf the times for the individual basic blocks,
relevant hardware timing effects [19], [20]. Thigeflecting that the instructions of the basic blocks
timing model will be explained here and usedre overlapping in the pipeline. For example, the
in Section VIII to attack the problem of timingtiming for the sequenc€R is 11 cycles, while
effects across calculation boundaries. the sum of the execution times fdp and R

The timing model represents the executios 8 + 6 = 14 cycles. Similarly, the time for
time usingtiming for nodes,t,.4., andtiming executing sequenc€S is 14 cycles, while the
effects for sequences of nodes,.,. Each node execution time sum ofQ and S is 8 + 7 =
corresponds to one or more instructions on tHé cycles. The overlaps give the timing effects
target, and the edges connecting them to ther = T(QR) —to—tr =11 —8 — 6 = —3 and
potential flows between the instructions. For thiss = 7(QS) —tg—ts = 14 -8 — 7 = —1, as
discussion, we can assume that the nodes siown in Figure 10(c).
the timing model are identical to the nodes in An important feature of this model is that we
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Fig. 10. Pipeline overlap
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Fig. 11. Pipeline overlap and interference over three nodes

can getlong timing effects, timing effects over et al. [21] generates a model where times are
sequences of nodes longer than two. Such effeasssigned to basic blocks in a program (using an
occur when there are effects in the hardwarterative analysis to include the effect of both

reaching across more than adjacent basic blockgelines and caches on the timing of each block).
Two examples of when long timing effects appedrhis model can be represented in our timing
are given in Figure 11. Execution sequeC model framework, using node times only and no
shows that a basic block can overlap more thaiming effects. Similarly, the timing model for

one successor, while execution sequed®D Infineon C167 presented by Atanassov et al. [31]
shows how a basic block can delay a later basttributes times only to edges in the control flow
block across intervening blocks. graph. This can be represented in our timing

The timing model for these two cases is sunffodel framework, using timing effects only on
marized in Figure 11(c), showing that we haveduences of length two and no node times. Thus,

long timing effectssasc = T'(ABC) — §as — dac — both low-level analysis methods can easily be
th—tg—tc=134+24+5-10—-5—7 = —2 combined with the clustered calculation method
and dpgp = T(ABD) — Sps — Jgp — ta — tg — tp = presented in this paper.
16+2+5-10-5—7=+1.In general, long  VIIl. CLUSTERING AND LONG TIMING

timing effects can be both positive and negative, EFFECTS

and can potentially occur for sequences of nodesgqy efficiency reasons, local and clustered cal-

of arbitrary lengths [19]. culation methods perform WCET calculations
Our timing model is not tied to a particularon small parts of a program. As discussed in
method of low-level analysis; while it has obviousection VII, timing effects can occur between
affinities with the pipeline analysis method usedodes and on longer sequences of nodes. Thus,
in our prototype tool (presented in Section IX), itiming effects can be present which are only
can also represent the results of other varietiesgrtially covered by the nodes included in a local
low-level analyses. For example, the integratemhlculation. For example, since fact clusters are
cache and pipeline analysis for the Motoroleormed only from flow information, there are no
ColdFire 5307 processor presented by Ferdinagdarantees that the low-level timing information
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History nodes added
to reflect potential flows
in previous fragment

will be nicely split along the same boundaries i
the program.

A WCET calculation method must be able
to handle such border crossing timing effect
safely and efficiently to be correct and useful. Ou
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solution to this problem assumes that the timin( «(fgf /fij- o e
model is global, i.e. that the low-level analysis———<£. o
has been performed aCrOSS the entlre program.(a)Longtimingeﬁects (b) Timing graphs for each fragment

We use this global timing model to construct arig. 12. Managing long timing effects at fragment borders
local timing model valid for the considered graph
fragment and extends this model to include alind EFG two history nodes corresponding to
relevant timing effects. nodesC and E are added in the timing model
We note that a timing effect for a sequenct®r fragment (2), together with the long timing
of nodes should only be accounted for when tredfects. The calculation for fragment (2) will then
execution goes uninterrupted via all the nodes find the local longest path including the long
the sequence. However, when constructing a tiiming effects overlapping fragments (1) and (2).
ing model for a graph fragment, no knowledge of The insertion of history nodes gives a safe
the worst case execution path in the surrounditgit possibly pessimistic estimate of the execu-
fragments can be assumed, i.e. we do not kndion times, since we will always use the worst
if the prefix nodes of the sequence were taken imcoming timing effect. For example, in Figure 12
not. Therefore, at the boundaries between fragpe worst case execution path for fragment 1 will
ments, rules are needed to ensure safe timing axt in sequenc®E, giving that the long timing
(hopefully) precision. We need to use potentiallgffects should not be used in the calculations in
pessimistic but safe assumptions on the possilitegment 2. However, this cannot be accurately
executions made in the surrounding fragmentsrepresented in the local timing model for frag-
We solve this problem by introducingistory ment 2, which will cause an overestimation of
nodes, special nodes that are added to the timirthe WCET. This imprecision is the price we have
model and that represent the potential paths takenpay for the convenience of using a subdivided
before entering the given graph fragment. Iralculation method.
a fragment containing incoming timing effects, In the clustered calculation border-crossing
such history nodes are added at the start of theing effects can come both from surrounding
fragment. scopes and from subordinate scopes. Figure 13
History nodes have an execution time of zergjves an example of long timing effects reaching
and their only purpose is to provide support fapver fact cluster calculation borders. Figure 13(a)
the specification of long timing effects. A historyshows a scope graph fragment with the scapes
node is added for each node belonging to andu. Scopet has a flow fact covering scope
surrounding fragment which is also included ibut not scopel. This generates a fact cluster only
a long timing effect which ends in a node irconsisting of this single fact covering only the
the fragment. Edges are added to connect theope. The corresponding timing graph fragment
history nodes, with the result that all incomingontains timing for nodes and edges, (not shown
timing effects get a corresponding history noda the figure), as well as two long timing effects,
sequence. Each added edge has a timing effélcistrated asiacp and dgg -
of zero. When making a clustered calculation the
If there are incoming execution paths not inscope will be calculated in isolation from the
cluded in any timing effect sequence, extra edgesope. A worst case estimate for scapeés first
should be added from the start node to the entrglculated and given a timing. The resulting scope
of the fragment. This allow the calculations to bygraph for scop¢ is illustrated in Figure 13(b). In
pass incoming timing effects if this would resulthe graph, the call to scope has been replaced
in a larger WCET estimate for the fragment. with a call-node. To be sure to capture the long
Figure 12 shows an example of the handling &iming effect dacp a history node is created for
long timing effects. Due to the two (overlappingihe A node. Since we can enterby two different
long timing effects over the sequenc€tFG edges, an extra edge from the start node is added
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history node

added for =+ \
node A 6ACD 1 o

scope: t;
header: B;
loopbound: 10;

t:[1:4H=1;

t:[]:#H=1;

t scope: t;
c i header: C;
loopbound:

scope: u;
header: E;
loopbound: 20;

call to u has been
replaced with node

call to u has timing
in the resulting
timing graph

]
Ss

history node
added for
node E
history node
for E has

no timing 856\='1

s
>
m
Q
Il
I

exit exit

-~

a) Scope graph and timing graph fragment (b) Cutted out scope graph for scope t and timing graph

Fig. 13. Example of clustered calculation and long timing effects

to allow the calculation to bypass the timingnt calculation methods. Figure 15 illustrates the
effect sequence. clustered calculation method in more detail. Note
We also have a long timing effedtg originat- that both the Path-based and the Extended IPET
ing in nodeE in the non-covered scope To be methods are used by the clustered calculation
sure to capture this long timing effect, a historynethod to compute the WCET for clusters.
node is created for th& node. Note that this The flow analysis is currently performed manu-
node is connected to the node for the subscoalty, but we have an automatic flow analysis under
u, since the long timing effect starts within development [8]. The flow analysis results in a
scope graph annotated with flow facts, represent-

IX. WCET TooL IMPLEMENTATION ) : .
, , ing the dynamic behaviour of the program (see
The work presented in this paper has beefLqtion 1.

implemented within the framework of our WCET
analysis tool. Figure 14 gives an overview o0 . .
our WCET tool, illustrating where the clustered™ Low-Level Timing Analysis

calculation module fits in. Compared to our pre- To extract the low-level hardware timing of the
viously presented work [5], [26] all componentprogram we perform gipeline timing analysis

of the system except the calculation phase remain the nodes in scope graph, generatirtgrang
unchanged, demonstrating the modular structu@eaph which is a concrete representation of the
of the tool. timing model presented above.

The prototype runs under Solaris, Linux, and The pipeline analysis uses a trace-driven cycle-
Windows. The tool currently supports low-leveaccurate simulator of the target processor to gen-
WCET analysis for two different target chipsgerate times. The core of the method is illustrated
NEC V850E [32] and ARM9 [33], both typicalin Figure 16. Each node and sequence of nodes
32-bit RISC micro-controller architectures withis executed in the simulator, and the resulting
pipelines. For the current experiments, we onlymes are used to construct the timing model. The
use the V850E model since it has more interestiagalysis treats the hardware model as a black
behavior. box, i.e. it does not need to have access to its

The WCET analysis tool supports three difinternal state. In principle, the weak requirements
ferent calculation methods: A Path-based locah the hardware model allow us to use any
calculation method [26], [28], an Extended IPETrace-driven cycle-accurate processor model (or
calculation method [5], [28], and the clusteredven the hardware itself) to extract timing for
calculation method described in this article.  instructions.

As illustrated in Figure 14 all calculation meth- To include information such as cache misses
ods take the same inputs and can be used amd hits, and various memory speeds in the analy-
terchangeably. The clear separation between #is, the nodes in the scope graph can be annotated
flow- and low-level analysis from the calculatiorwith additional execution information [19], [28]
phase makes it possible to systematically coras illustrated in Figure 18(a) and Figure 16. The
pare the performance and precision of our diffehardware model must be able to correctly mimic
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Fig. 14. WCET tool architecture Fig. 15. Clustered calculation unit

the behaviour of the hardware for the provided cover of only one scope can be handled
execution information. We have implemented afinother problem for our path-based method is
instruction cache analysis similar to the one prenstructured code, since it makes it difficult to
sented by Ferdinand et al. [13], but do not use thitefine what constitutes a path or a single iteration.
analysis in this paper since the V850E typically To handle flow facts valid for certain iterations

does not use a cache. we perform a graph transformation, unrolling a
given scope into a set ofirtual scopes. Each
B. Efficient Path-based Calculation virtual scope is a copy of the original scope and

] ~ represents a certain range of iterations for which
The path-based calculation method used in O4rgiven set of flow facts should hold. Figure 17

tool is very fast and can handle many types @fyes an illustration of a virtual scope expansion.
flow facts and all types of long timing effectsHere, the two facts: <1..5> #C = 1 and
The method gains its efficiency from using ou§: <3 10> #B + E = 1 are specified for
timing model which allows the timing of a paththe scopes. Both facts hold for the iterations
to be composed from smaller components (cf. 5. Only factf 1 holds in iterationsl..2, and
Section VII). This allows us to reformulate thg 3 in jterations6..10. In iterations11..20, none
longest path search problem to finding the longest the facts hold. Thus, the scope is split into
path in a directed acyclic graph, something whigie virtual scopes: 1..2,s:3..5,s:6.. 10,
can be solved very efficiently using well-knowrgnd s: 11. . 20. After the expansion, we note
graph-search techniques, such as Dijkstra’s Alg@nich facts should be valid for each virtual scope,
rithm [34]. and derive a longest path for each virtual scope
Other approaches to longest executable pagfisolation. The derived paths together form a
search for WCET analysis are based on genergngest path for the whole scope. For a more

ing all possible paths for a certain program segretailed description of these techniques we refer
ment (function, loop body, or other unit), run altg [26], [28], [29].

the paths through some kind of hardware model,
and select the path with the longest executiqia Extended |PET Calculation

time. The unit for these analyses is the complete _
path, and the number of paths to explore is up We also have an Extended IPET calculation

to 2", wheren is the number of decisions in theN€thod implemented in our WCET tool. The ba-
program segment being analyzed. sics of IPET was presented in Section Il. We have

Instead, our Path-based calculation methéeftended IPET to be able to handle long timing
only needs to visit each node and edge oncd€cts [20] and complex flow facts [5], [28]. The
therefore having a complexity linear to the size dFxtended IPET calculation can take into account
the program graph. An extracted execution path@ types of flow facts described in Section III-A,
checked against provided flow facts for feasibilit)’c!uding both foreach and total facts, and flow

[26]. The method uses graph rewriting in ord pcts covering several scopes. Similar to other

to delete paths not feasible and to safely handfeE T @Pproaches our Extended IPET calculation

long timing effects. method considers the whole program at once.
The method can only handle a subset of the 10 handle flow facts valid for just some iter-

flow facts expressable in our flow fact languag@ions the scope graph is unrolled into a virtual

fgI{geSS?[C?)C;.?h ”ilr)l. e?ilgl‘? eséggemiﬁtl‘;ggla{ligﬂs ;I‘r]]elalzPath-based methods can be extended to handle triangular loop

_dependencies and unstructured code [35], this is however not
loop bounds and flow facts of foreach type witlinplemented in our path-based method.
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Fig. 17. Virtual scope expansion

scope graph. Compared to our path-based calclusters covering just one scope and containing no
lation method, which unrolls only one individuatotal flow facts, while IPET is used for all other
scope at a time, our Extended IPET calculatiariusters. To our knowledge this is the first WCET
method considers and unroll all the scopes oalculation method making use of two different
the scope graph at the same time. All flowype of calculation schemes for the calculation of
facts are lifted to a global level and converted single program.
to constraints over entities in the virtual scope In the experiments, the clustered calculation
graph. The structure of the virtual scope graplersion using both path-based and IPET is called
is used to generate structural constraints. EaClustered Mix, while the version using only IPET
(long) timing effect is given a count variable, anés calledClustered IPET.
constraints are generated to limit the number of
times each timing effect can be accounted for. For X. EXPERIMENTS AND EVALUATION
a more detailed description of these techniquesin order to demonstrate the precision and ef-
we refer to [28]. fectiveness of our clustered calculation method
In the current experiments we rely on theve have performed a number of measurements,
mixed ILP solverl p_sol ve [36] to solve gen- using the programs listed in Table I. We have
erated constraint systems. We also support tired to find a number of test programs containing
possibility to export generated constraints in arious types program structures and of varying
format suitable as input to Sicstus Prolog C8ize, in order to test the calculation methods
[37] or to the mixed integer and constraint solvehoroughly. TheBB column gives the number of

CPLEX [38]. basic blocks when compiled for the V8505¢
gives the number of scopes aRr# the number
D. Clustered Calculation Implementation of flow facts in the corresponding scope graph.

. All flow facts where added manually. Thete

We have also implemented the clustered caI-I . h ber of | .

culation method described in this article. Théo. gives the number of non-zero long timing
- " N&ffects with a length larger than two.

method comes in two versions. In the first version .
For each program we have derived actual

(Extended) IPET is always used to calcula ET value by running a worst-case trace of

WCET times for clusters. In the second version )
depending on the characteristics of the cluster, tl?_e program through the CPU simulator used by

ther the path-based calculation or IPET is utlize e WCET analysis. Thereby, the experiments

When_ FalCUIatlng a WCET estlma_te fo_r aCIUSteI"3The benchmarks are available for download at
Specifically, path-based calculation is used f@rtp://ww. c-1ab. de/ home/ en/ downl oad. ht ni
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[ Program[Description [Properties [BB [Sc [FF [Lte]
adpcm|adaptive differential pulse code modulation alg@empletely well-structured code 14859 [43 |0
rithm
conpr ess |Compression using lzw. Nested loops, goto-loop, function calls. 91 (24 (9 (3
cr ¢ |Cyclic redundancy check computation on 40 by@smplex loops, lots of decisions, loop bounds depend26n{9 |6 |0
of data. function arguments, function that executes differently the (first

time it is called.
duf f {Using “Duff’'s device” to copy 43 byte array. |Unstructured loop with known boundwi t ch statement. {20 {6 |2 |[O
7

expi nt |Series expansion for computing an exponentraier loop that only runs once, structural WCET estimate gixés 4 |0
integral function heavy overestimate.
fibcal | [Simple iterative Fibonacci calculation, used to ¢Barameter-dependent function, single-nested loop. 7 |4 |0 |0

culate fib(30).
Finite impulse response filter (signal processinger loop with varying number of iterations, loop-iteratjgd (5 [7 |0
algorithms) over a 700 items long sample. dependent decisions.
i sort |Insertion sort on a reversed array of size 10. [Input-data dependent nested loop with worst-casen®f2|7 [4 [1 [0
iterations.
j fdcti nt |Discrete-cosine transformation on a 8x8 pptaing calculation sequences (i.e. long basic blocks), sing#e-|6 |0 |3
block. nested loops.
| cdnum|Read ten values, output half to LCD Loop with iteration-dependent flow. 26 |4 |2 |0
mat mul t |Matrix multiplication of two 20x20 matrices. |Multiple calls to the same function, nested function calls, tri#@- |16 [0 |0
nested loops.
ns|Search in a multi-dimensional array Return from the middle of a loop nest, deep loop nesting{18 |7 |1 |0

nsi chneu|Simulate an extended Petri Net Automatically generated code containing massive amour|tg5df|3  |[129|1
i f -statements>¥ 250)

TABLE I. Benchmark programs used in experiments

fi

Il

only deal with the effectiveness and precision gfipeline overlaps between basic blocks seems to
the WCET analysis phases, and do not needtighten the WCET estimates by at least 20 per-
take into account any differences between tlent, (ignoring pipeline effectsithin basic block
simulator and the actual hardware. The tracesuld create WCET estimates about five times
were obtained by manual analysis of the prograhigher, since the V850E has a five-stage pipeline).
source and object codes, and extensive testie benefit is greatest for programs with many
was undertaken to make sure that they really camall basic blocks (such as c, fi bcal | and
respond to the actual WCETSs. All measurememtisi chneu), and least for programs with large
were performed on a Pentium 4, 2.66 GHz, withasic blocks (for examplg,f dcti nt).

256 MB RAM. The need for correct flow information is il-
lustrated by the values in th&/ith Flow col-
A. Necessity of correct flow and timing umn. The improvements in WCET estimate pre-

The necessity for both correct low-level timingison due to flow information vary much more
and flow information when calculating safe anfPr the different benchmarks than the effect of
tight WCET estimates is illustrated in Table lIPipeline analysis. Some benchmarks, for example
The columnBasic gives the WCET estimateCONpr ess andnsi chneu, show large decrease
when ignoring pipe“ne Over|ap between basi@ obtained WCET OvereStimationS, while for
blocks, (but including the pipeline overlap withirPther programs the improvement is much smaller.
basic blocks), and using only basic loop bounds The good results in th€low & Pipe column
as flow information. The columns indudir@ow indicate that to obtain WCET estimates both

give WCET estimates resulting from adding floftigh quality flow and timing information must be
facts to the program. Columns includir@'pe obtained. All WCET estimates are Safe, i.e. Iarger
give WCET estimates where timing effects behan or equal to the actual WCET. The remaining
tween nodes have been accounted for. Coluri§ecution time overestimation is mostly due to
Actual gives the actual WCET of the program, a1e problem of correctly modelling the program
given by a simulation of the target platform. Thdow. All WCET estimates were calculated using
numbers in thet% columns give the pessimismthe Extended IPET method.
of each WCET estimate in percent, relative to the
actual WCET. B. Calculation method comparasion

The need for correct pipeline timing is illus- Table 11l shows the WCET estimate precision
trated by the values in th&/ith Pipe column. The (cycles) in clock cycles and needed computa-
WCET overestimation is clearly reduced comtion time {ime) in seconds, of the different
pared to theBasic column. In general, modelling calculation methods. Th€lustered IPET holds



Basic With Flow With Pipe Flow & Pipe | Actual

Program | Cycles +% | Cycles| +%]| Cycles| +%]| Cycles| +%| Cycles
adpcm 8954 +42.5 8714 +38.7| 6382 +1.59 6282 0 6282
conpress | 126242 +1357 10388 +20| 92482 +967 8672 +0.12 8662
crc 61624 +104] 61340 +103] 30389 +0.39 30271 0| 30271

duf f 1823 +86.3 1775 +63.9 1104 +1.9 1083 0 1083
expi nt 68077 +693] 100627 +17.2] 41359 +382 8588 0 8588
fibcall 559 +78.6 559 +78.6 313 0 313 0 313
fir | 487970 +40.2| 487808 +40.1 352164 +1.2| 352073 +1.1| 348095

i sort 2328 +117 1428 +33.00 1794 +67.0 1074 0 1074
jfdctint 5388 +9.4] 5388 +9.4 4925 0 4925 0 4925
I cdnum 501] +153 341 +72.2 283 +42.9 198 0 198
mat nul t | 275879 +24.4 275859 +24.4] 221824 0| 221824 0| 221824
ns 25741 +84.8 25713 +84.6| 17373 +24.7| 17353 +24.6)] 13928

nsi chneu | 150841 +195 87193 +70.60 97645 +91.0] 51116 0| 51116

TABLE Il. WCET estimates with and without flow facts and timing effects
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Program Path-based Extended IPET Clustered IPET Clustered Mix Actual
cycles | +% | time | cycles| +% |time| cycles| +% |time | cycles| +% | time | WCET
adpcm 6282 0 | 0.02 6282 0| 0.24 6282 0] 0.18 6282 0| 0.12 6282
conpr ess 8670 | +0.09 | 0.01 8670 +0.09 | 0.21 8670 +0.09 | 0.12 8670 +0.09 0.1 8662
crc 58435 +93 0 30271 0 | 0.03 30271 0| 0.04 30271 0 | 0.03 30271
duf f - - - 1083 0] 0.01 1083 0| 0.04 1083 0 | 0.04 1083
expi nt 8588 0| 0.01 8588 0| 0.01 8588 0| 0.04 8588 0 | 0.03 8588
fibcall 313 0| 0.01 313 0] 0.01 313 0] 0.01 313 0| 0.01 313
fir 352073 | +1.14 | 0.02 | 352073 +1.14 | 0.03 | 352073 +1.14 | 0.04 | 352073 | +1.14 | 0.04 | 348095
isort 1794 | +67.0 | 0.02 1074 0| 0.01 1074 0 0 1074 0| 0.01 1074
jfdctint 4942 | +0.40 | 0.01 4925 0] 0.01 4926 +0.02 | 0.03 4942 +0.40 | 0.01 4925
I cdnum 198 0 0 198 0| 0.04 198 0] 011 198 0 0.1 198
mat mul t 221824 0 | 0.01 | 221824 0 | 0.02 | 221824 0| 0.04 | 221824 0 | 0.04 | 221824
ns 17361 | +24.6 | 0.01 17353 | +2459 | 0.01 17353 | +24.59 | 0.03 17353 | +24.59 | 0.03 13928
nsi chneu 51133 | +0.03 | 0.03 51116 0 1.4 51116 0 1.5 51133 | +0.03 | 0.22 51116

TABLE lll. WCET estimate precision and calculation time

measurements made when always using IPET| **

4501 | —e— Path-based Y

calculate WCETs for clusterClustered Mix
holds measurements made when making pa
based calculation within clusters covering jus
one scope and not containing total flow factt
and IPET calculation within remaining clusters
The Path-based method does not work with tf
duf f benchmark, since it contains an unstrug
tured loop. ”
The path-based WCET estimate precision is o 1 2 s 4 5 s 1 8 5 10
the same quality as the clustered and Extendeu —
IPET for most programs, indicating that foreach
facts with a cover of a single scope often are
sufficient for obtaining precise WCET estimatesnethods.
However, programs such assort and fir To evaluate how the different calculation meth-
need extra flow facts coverirgpveral scopes for ods scale with added flow facts and the pro-
high WCET estimate precision. This indicategram size, we used an altered version of the
that scope-local methods are not always sufficiemt schneu benchmark. The original scope graph
to achieve high precision. The precision of thgenerated fonsi chneu consists of three scopes
clustered methods are of the same quality as tfsee Table I). The innermost scope is very large,
Extended IPET, the current method with highesbntaining 752 scope nodes. By adding extra
precision. dummy flow facts (i.e. facts that do not reflect
For all our benchmarks, exceptdpcm and the real program execution, but increase the
nsi chneu the time spent in the calculationcomplexity of the resulting constraint system),
stages is almost negligible. This is because magtanning a particular iteration of the inner scope
of the benchmarks programs given in Table | a@nd not actually removing any execution paths,
guite small and do not really stress our calculatiome increase the computational load. For example,

—a— Extended IPET
—a— Clustered IPET
—e— Clustered Mix
--e--- Ip_solve Ext. IPET
---a-- Ip_solve Cl. IPET

Computation time (seconds)

100

Fig. 19. Computation time scaling
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Extra Path-based Extended IPET Clustered IPET Clustered Mix

facts | time | expl. | paths time | Iptime | constr. | vars. | time | Iptime | calcs | time | icalls | pcalls
0 | 0.03 5 | 3.73E97 1.4 0.43 1651 2139 1.5 0.38 2] 0.22 0 2
1| 0.08 12 | 1.11E98 15.9 4.45 3417 4528 4.12 0.97 4 | 0.54 0 4
2| 0.13 19 | 1.87E98| 23.03 7.55 4931 6665 7.16 1.7 6 | 0.99 0 6
3| 0.17 26 | 2.61E98| 71.87 26.69 6445 8802 | 11.79 2.78 8 | 1.36 0 8
4 | 0.23 33 | 3.36E98 | 110.85 36.56 7959 | 10939 | 15.61 3.53 10 | 1.52 0 10
5| 0.28 40 | 4.11E98 | 165.31 56.71 9473 | 13076 | 30.35 4.79 12 | 1.83 0 12
6 | 0.34 47 | 4.85E98 | 199.34| 59.35| 10987 | 15213 | 24.59 5.73 14 | 2.15 0 14
7 | 0.45 54 | 5.59E98 | 295.26 74.88 | 12501 | 17350 | 28.27 6.6 16 | 2.47 0 16
8 | 0.46 61 | 6.34E98| 326.21 88.33 | 14015 | 19487 | 34.26 7.76 18 3.2 0 18
9 | 0.58 68 | 7.09E98| 389.45| 106.62 | 15529 | 21624 | 31.61 7.28 20 4.2 0 20
10 | 0.65 75 | 7.83E98| 468.98 | 134.47 | 17043 | 23761 | 55.77 12.99 22 | 4.62 0 22

TABLE IV. Scaling measures of calculation methods

adding one dummy fact creates a virtual scope _sol ve for the Extended IPET and clustered
graph consisting of 1508 (752 + 752 + 4) scop®ET. For the Extended IPET a single call to
nodes. The Extended IPET method createsl @_sol ve is made for each calculation, with
constraint system over the whole graph whileonstraints and variables for the complete virtual
the clustered and path-based calculation meseope graph. For the clustered calculation, the
ods partition the resulting problem into smallenumber ofl p_sol ve calls increases with the
subproblems. For each calculation run all WCEf@umber of added dummy facts, but not the size
estimates achieved were exactly the same @fseach generated constraint system. Each call
reported in Table . to | p_sol ve by the clustered calculation of
Table IV gives computation times obtained fothe innermost scope contained 2159 variables
our calculation methods when adding dumm§nd 1666 constraints and took approximately 0.3
flow facts. For each calculation method we giveéeconds.
some values of interest for understanding its We conclude that Extended IPET has quite bad
particular execution time properties. For the patcaling properties. This could be a general prob-
based calculation the computation timegn(e), lem for calculation methods relying on global
the number of explored pathexpl.) and the ILP solvers for calculating WCET estimates. Our
number of potential pathgéths) are given. For path-based calculation method is very efficient,
the Extended IPET calculation, the computatio?nly exploring a few of the total number of
time (time), the time spent in the linear proPossible paths, and seems to scale very well.
gramming solverl p_sol ve (Iptime), and the Clustered IPET is somewhere in between in com-
number of constraintscénstr.) and variables plexity, scaling reasonably well, while still being
(vars.) generated are given. For the Clusteredple to handle complex flow information. The
IPET calculation the computation timeirge), Clustered Mix scales even better, relying on the
the number ofl p_sol ve calls made dalcs) fact that our path-based method can be used for
and the total time spent ihp_sol ve (Iptime) all calculations of clusters.
are given. For the Clustered Mix calculation the, Clustered calculation evaluation

computation timet{me), the number of path calls e have implemented all five clustering algo-
(pcalls) and the number of IPET callsc@lls) are  (jthms outlined in Section IV-B. The algorithms
given. differ in how many flow facts will be grouped
Figure 19 shows computation times of eadpgether, and consequently in the size of the scope
calculation method plotted against the numbggaph that will be covered by each fact cluster.
of added dummy flow facts. We note that thgable V shows the effect of applying different fact
computation time seems to be linearly increasinguster algorithms to our benchmarks. Columns
with the problem size both for the path-basedbelledcl give the number of fact clusters gen-
and clustered calculations, while the Extendegtated (not including empty clusters). Columns
IPET has a more than linear increase. Both thgbelled calls give the number of local WCET
Extended IPET and the clustered calculatiorgilculations performed, i.e. the number of calls
spend most of the calculation time in constructing | p_sol ve, and time gives the computation
graphs and generating constraint systems.  time of the calculation. All measurements where
The graph also plots the time spent imsed using Clustered IPET.
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Program min-split minimum scope max global
c | calls | time | cl | calls | time | cl | calls | time | cl | calls | time | cl | calls | time
adpcm | 18 59 | 0.17 | 18 59 | 0.18 | 18 59| 018 1 36| 023 1 1| 0.23
conpr ess 6 38 | 0.29 4 34 | 0.28 4 30 0.3 1 231 034 | 1 1| 0.28
crc 6 6 0.04 6 6 0.01 6 6| 004 1 1 001 1 1| 0.02
duf f 2 12 | 0.04 2 12 | 0.04 2 12| 0.03 | 1 41 002 1 1| 0.01
expi nt 4 11 | 0.04 4 11 | 0.04 2 7 003 1 6 0.03 | 1 1| 0.01
fibcall 0 4 | 0.01 0 4 | 0.01 0 41 001 0 41001 0 1| 0.01
fir 5 12 | 0.05 2 6 0.04 2 3] 003 1 1 002 1 1| 0.02
isort 1 1 0.01 1 1 0.01 1 1 001 1 1 001 1 1] 0.01
jfdctint 0 5| 0.02 0 5| 0.02 0 51 002| 0 51 002| 0 1] 0.01
I cdnum 2 23 | 0.13 2 23 | 0.12 1 19 011 | 1 21| 012 | 1 1] 0.03
mat mul t 0 15 | 0.04 0 15 | 0.04 0 15 0.05| O 15| 0.04| O 1] 0.01
ns 1 13 | 0.03 1 13 | 0.03 1 10| 0.02| 1 13| 0.03] 1 1] 0.01
nsi chneu 1 2 2.18 1 2 2.17 1 2 206 | 1 2 217 1 1 1 1.72

TABLE V. Clustered calculation measures

The minimum Minimum) and split-foreach- precision for speed. Table VIl presents measure-
fact (min-split) fact clustering algorithms gen-ments performed using the minimal clustering
erate many small clusters, and result in mamjgorithm. Thediff in-out measurements differ-
local WCET calculations. At the other extrementiate between entry and exit points, while the
we have the global clusteringglpbal) which no diff measurements do not. The amount of fact
performs one single WCET calculation for thelusters generated is identical for both algorithms
whole program or maximum clusteringnéx) (cl). The calls column gives the number of local
which puts all flow facts into one cluster buWCET calculations performed for each program.
does not include non-covered scopes. Scopes Mdé note that for many programs, the number of
covered by any fact clusters are traversed bottofoeal WCET calculations decreases quite signif-
up generating one or more local WCET calculaeantly when not differentiating between entry
tions, explaining the different number of WCETand exit points. For all programs, exceps,
calculation calls made for different benchmarkshe calculated WCET estimates precision is of
For all benchmarks all clustering algorithms gawhe same quality. Programs contains a non-
the same WCET estimates as presented for tloeal return from a deeply nested loop, causing an
clustered calculation in Table III. overestimation in a fashion similar to the example

Table VI shows measurements done by thgesented in Section V-A.

Clustered IPET and Clustered Mix calculation

methods. For the Clustered IPET calculation tHe. Impact of long timing effects

computation time tfme) the number of IPET A long timing effect is an effect reaching
calls (calls) are given. For the Clustered Mixover a sequence of three or more nodes (see
calculation the computation timéihe), the num- Section VII). The number of long timing effects
ber of path calls fcalls) and the number of varies with the processor architecture and the
IPET calls {calls) are given. We note that bothprogram code properties. For the V850E, only a
methods always make the same number of lodalv of our benchmark programs contained long
calculation calls. For most programs most locaiming effects, as shown by thiete column in
calculations can be made using path-based calQable I.

lation. However, for some programs, suchcas We have implemented a model of the NEC
andduf f, IPET is needed in some calculations/850E with a data memory latency of 6 clock-
All WCET values except forj f dctint and cycles. This is an artificial model not correspond-
nsi chneu are identical, indicating that Clus-ing to any real setup of the V850E, but very
tered Mix obtain almost the same precicisionseful in provoking long timing effects. We use
as Clustered IPET. For all programs the timghe model to investigate how long timing effects
calculation time of the Clustered Mix is smalleaffect the WCET estimate precision. This is par-
than Clustered IPET. All measurements whergularly relevant for calculations that partition the
made using split-foreach-fact clustering. program into smaller parts to increase efficiency,

As discussed in Section V-A, some fact clustesich as our path-based and clustered calculation.
define graph fragments with several entry an&/hen long timing effects reach over calculation
exit points, allowing us to trade WCET estimatboundaries they might introduce pessimism in
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Program Clustered IPET Clustered Mix Program diff in-out no diff
cl | icalls | cycles | time | icalls | pcalls | cycles | time c | calls | cycles | cl | calls | cycles
adpcm 18 59 6282 | 0.18 0 59 6282 | 0.12 adpcm 18 59 6282 | 18 58 6282
conpr ess 6 38 8670 | 0.12 0 38 8670 0.1 conpr ess 6 38 8670 6 31 8670
crc 6 6 30271 | 0.04 2 4 30271 | 0.03 crc 6 6 30271 6 6 30271
duf f 2 12 1083 | 0.04 9 3 1083 | 0.04 duf f 2 12 1083 2 5 1083
expi nt 4 11 8588 | 0.04 0 11 8588 | 0.03 expi nt 4 11 8588 4 10 8588
fibcall 0 4 313 | 0.01 0 4 313 | 0.01 fibcall 0 4 313 0 3 313
fir 5 10 | 352073 | 0.04 0 10 | 352073 | 0.04 fir 5 12 | 348095| 5 12 | 348095
i sort 1 1 1074 0 1 0 1074 | 0.01 isort 1 1 1074 1 1 1074
jfdctint 0 5 4926 | 0.03 0 5 4942 | 0.01 jfdctint 0 5 4926 0 5 4926
I cdnum 2 23 198 | 0.11 0 23 198 0.1 I cdnum 2 23 198 2 7 198
mat mul t 0 15 | 221824 | 0.04 0 15 | 221824 | 0.04 mat mul t 0 15| 221824 | O 15 | 221824
ns 1 13 17353 | 0.03 0 13 17353 | 0.03 ns 1 13 17353 | 1 8 23746
nsi chneu 1 2 51116 15 0 2 51133 | 0.22 nsi chneu 1 2 51116 1 2 51116

TABLE VI. Detailed Clustered IPET and Clustered Mix comparision TABLE VII. Entry and exit point differentation effect

the WCET estimate calculation, as discussed @onsequences of ignoring long timing effects are
Section VIII. For example, in Table Il the onequite substantial. Altogether, we conclude that
clock cycle difference of WCET estimates fofong timing effects must be modelled in order
j fdctint of the clustered and the Extendetb generate safe and tight WCET estimates.
IPET calculation, is caused by a border-crossing
long timing effect. XI. CONCLUSIONS ANDFUTURE WORK
Table VIII gives the WCET precision achieved In this paper we have presented a new method
for our calculation methods when using théor calculating the WCET of a program. The
V850E model with 6 cycle data memory. Wemethod can be considered a hybrid between fast
use the same scope graphs, flow facts and basit less precise calculation methods such as tree-
block graphs as for the runs in Table Ill. Fobased and path-based methods, and the precise
some programs, such asdpcm conpress but potentially slow global IPET method. It is
andmat mul t, many long timing effects appearpased on finding the smallest possible parts of
while for others there is no impact. a program that have to be handled as a unit
More long timing effects make the precisioio ensure precision. The calculation method to
of the clustered WCET estimates fadpcm use for each such part is not fixed but could
conpress, jfdctint, mtnult andns to depend on the characteristics of the given flow
be a little worse than for Extended IPET. Sincmformation and program structure. Since these
the WCET estimates for these programs weparts are typically small compared to the overall
identical when using the basic V850E model, grogram, the method is fast, but no precision is
given Table Ill, we conclude that the obtainetbst from introducing arbitrary boundaries in the
pessimism is due to long timing effects acrosslculation as is done in tree-based and path-
calculation boundaries. based approaches. Our experiments indicate that
For all our benchmarks only negative longhe clustered calculation achieves the same pre-
timing effects where observed, even though tlusion as the global Extended IPET, while being
V850E CPU has a potential of exhibiting positivenuch less prone to high analysis times.
long timing effects [19]. This means that for In general, the suitability of a particular cal-
the tested programs, a calculation method woutdilation method depends on the structure of the
obtain pessimistic but safe estimates by ignoripggogram, the properties of the provided flow
long timing effects. information and the timing characteristics of the
To evaluate the effect of ignoring long tim+target hardware. We have outlined several differ-
ing effects, we calculated WCET estimates fant alternatives to perform clustered calculation,
programs using the slow memory and Extendedaking it easy to adapt the calculation to par-
IPET calculation method, while ignoring all longticular requirements of computation speed and
timing effects. The result is shown in th@ET, precision.
no Lte column in Table IX. For all programs We are currently working on fully integrating
excepti sor t, ignoring long timing effects leadsan automatic flow analysis module [8] into our
to an overestimation of the WCET estimate. FMVCET analysis tool. Preliminary results indicate
some programs, such dsif f andl cdnum the that such analyses are likely to produce a large
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Program| Path-based Clustered IPET Ext. IPET Actual| Lte
Cycles|]  +%]| Cycles]| +%| Cycles| +%| WCET Program IPET, Lte IPET, no Lte Actual
adpcm] 12217 +2.02 11985 +0.0§) 11983 +0.07] 11979 36 Cycles | +% | Cycles | +% | WCET
conpress| 15457 +1.10 15309 +0.10| 15304 +0.10 15289 26 adpcm 11983 +0.07 12252 +2.31 11975
crc| 34432 +1.53] 33917 +0.01] 33917 +0.01] 33914 8 conpr ess 15304 +0.10 15461 +1.12 15289
duf f - - 1468 0 1468 0 1467 2 crc 33917 +0.01 34427 +1.50 33914
expi nt 8720 0 8720 0 8720 0 87200 O duf f 1468 0 1765 | +20.31 1467
fibcall 332 0 332 0 332 0 3320 O isort 2361 | +0.21 2361 | +0.21 2356
fir| 597204 +1.19 590168 0| 590168 0| 590168 O jfdctint 6392 +0.12 6626 +3.77 6385
i sort 3963 +40.55 2361 +0.21] 2361 +0.21 23560 3 | cdnum 238 0 268 | +12.61 238
jfdctint 6626 +3.77| 6393 +0.13 6392 +0.12 6385 3 mat mul t 287468 | +0.74 | 312550 | +9.53 | 285348
I cdnum| 268 +12.61 238 0 238 0 238 5 ns 21349 | +24.52 21350 | +24.53 17145
mat nul t | 312550 +9.53 28747Q +0.74f 287468 +0.74 285348 13 nsi chneu | 135776 0 | 135793 | +0.01 | 135776
ns| 29243 +70.56 21350 +24.53 21349 +24.52 17145 1
nsichneu| 135793 +0.01 13577 0 135776 0] 13577 3 TABLE IX. Precision when ignoring long timing effects

TABLE VIII. WCET precision using V850 model with 6 cycle memory

number of flow facts, while a human user usually9]
only provides a handful of facts for a typical
program. In this scenario we believe that the clus-
tered calculation method will become importantg,
to keep the calculation time down.
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