
1

Clustered Worst-Case Execution-Time Calculation
– Tech Report Edition –

Andreas Ermedahl, Friedhelm Stappert, and Jakob Engblom

ABSTRACT

Knowing the Worst-Case Execution Time (WCET) of a
program is necessary when designing and verifying real-
time systems. A correct WCET analysis method must
take into account the possible program flow, such as loop
iterations and function calls, as well as the timing effects of
different hardware features, such as caches and pipelines.

A critical part of WCET analysis is the calculation,
which combines flow information and hardware timing in-
formation in order to calculate a program WCET estimate.
The type of flow information which a calculation method
can take into account highly determines the WCET estimate
precision obtainable. Traditionally, we have had a choice
between precise methods that perform global calculations
with a risk of high computational complexity, and local
methods that are fast but cannot take into account all types
of flow information.

This paper presents an innovative hybrid method to
handle complex flows with low computational complexity,
but still generate safe and tight WCET estimates. The
method uses flow information to find the smallest parts
of a program that have to be handled as a unit to ensure
precision. These units are used to calculate a program
WCET estimate in a demand-driven bottom-up manner.
The calculation method to use for a unit is not fixed, but
could depend on the included flow information and program
characteristics.

Index Terms: WCET analysis, WCET calculation, timing
analysis, hard real-time, embedded systems.

I. I NTRODUCTION

THE purpose ofWorst-Case Execution Time
(WCET) analysis is to provide a priori infor-

mation about the worst possible execution time
of a program before using the program in a
system. Reliable WCET estimates are necessary
when designing and verifying real-time systems,
especially when real-time systems are used to
control safety-critical systems such as vehicles,
military equipment and industrial power plants.

WCET estimates are used in real-time systems
development to perform scheduling and schedula-
bility analysis, to determine whether performance
goals are met for periodic tasks, and to check
that interrupts have sufficiently short reaction
times [1]–[3]. To be valid for use in safety-
critical systems, WCET estimates must besafe,

i.e. guaranteed not to underestimate the execution
time. To be useful, they must also betight, i.e.
avoid large overestimations.

A correct WCET calculation method must take
into account the possible program flow, such
as loop iterations and function calls, and the
effects of hardware features, such as caches and
pipelines. The flow information can be considered
as a set offlow facts, each giving constraints
on the program flow for a certain piece of the
program (loop bounds, infeasible paths, execu-
tion dependencies, etc.). Flow facts are usually
local in their nature, expressing information that
only affects a smaller region of a program, such
as a single loop or an if-statement. However,
sometimes these regions might reach over the
basic program structures. For example, a loop
nest rather than a loop, or an entire function rather
than just a loop inside that function.

In general, the expressiveness of the flow facts
which can be handled by a calculation method are
to a high degree determining the WCET estimate
precision that can be achieved. In this paper we
present a method to handle complex flow infor-
mation with low computational complexity while
still generating safe and tight WCET estimates.

Previous WCET calculations have been ei-
ther local or global in nature. Local calculation
schemes work by only considering afixed granu-
larity of a program at once, such as a single loop
or a function. Local calculation schemes are usu-
ally performed in abottom-up fashion, calculating
a safe (timing) abstraction for a program part,
which is later used in the calculation of surround-
ing parts of the program. Bottom-up calculations
are beneficial, since the overall WCET calcu-
lation problem can be subdivided into smaller,
easier-to-solve problems, thereby achieving high
computational efficiency. The drawback of tra-
ditional local calculation schemes is that they
cannot handle all types of flow facts. Basically,
when flow facts reach over the fixed calculation
boundaries, they cannot be accounted for, which
leads to lower WCET estimate precision.
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Global calculation schemes handle this prob-
lem by working globally on the entire program at
once. This allows most type of flow facts to be
handled, regardless of which program region they
affect. However, most techniques for performing
global calculations are based on integer linear
programming (ILP) or constraint programming
(CP) techniques, thus having a complexity poten-
tially exponential in the program size. This makes
scaling to large programs risky.

Our clustered calculation method in effect
achieves the precision of global WCET calcu-
lations, while getting close to the efficiency of
local calculations. The key idea is to work with
a dynamic granularity in the WCET calculation:
determining the units of work in the calculation
based on the actual flow facts present. This is
unlike traditional local calculations where the
units are statically defined based on the pro-
gram structure, regardless of the flow information
present.

Furthermore, in many cases it is not sufficient
to consider each flow fact in isolation. Several
flow facts are likely to be present for a program,
and these flow facts mayinteract and together
constrain the program flow further than each
individual flow fact. A WCET calculation method
must find such interacting flow facts and treat
them as a unit or risk losing precision. The clus-
tered calculation method takes this into account,
drawing the boundaries in the calculation in such
a way that all flow fact dependencies are indeed
accounted for.

The clustered calculation method works as
follows: the provided flow facts are used to
construct units where all included flow facts are
directly or indirectly dependent. For each such
fact cluster the program region affected by the
included flow facts is extracted. The fact clusters
and corresponding program regions are used to
calculate a program WCET estimate in a bottom-
up manner. The method is alsodemand-driven
in that a WCET for a program region is only
calculated when its timing estimate is needed
in a surrounding program part. The calculation
method to use for a particular fact cluster is not
fixed, but could depend on the characteristics
of the included flow facts and corresponding
program region.

The boundaries between calculation regions
present in clustered and local calculation schemes
also interact with thehardware timing of the

target hardware. Timing dependencies can reach
across calculation boundaries, and such cases
need to be handled safely in order to generate
a correct WCET estimate.

The concrete contributions of this paper are:
• We introduce the concept of organizing flow

information into fact clusters.
• We present various algorithms to construct

fact clusters.
• We present an algorithm that uses fact clus-

ters to calculate a program WCET estimate.
• We evaluate the clustered calculation method

against global and local calculation schemes.
• We present a timing model able to represent

various type of hardware timing dependen-
cies.

• We evaluate the effect of long reaching
timing dependencies on various calculation
schemes.

The rest of this paper is organized as follows:
Section II gives an introduction to WCET anal-
ysis and previous work. Section III presents our
flow represention, Section IV presents how flow
facts can be organized into fact clusters, and
Sections V-VI give the clustered WCET calcu-
lation method. Section VII presents our timing
model and Section VIII shows how we handle
timing dependencies reaching over calculation
borders. Section IX presents our WCET tool ar-
chitecture, including our pipeline timing analysis
(Section IX-A), our efficient path-based calcula-
tion method (Section IX-B), and our Extended
IPET calculation method (Section IX-C). Finally,
Section X presents our experimental evaluation,
and Section XI gives our conclusions and ideas
for future work.

II. WCET ANALYSIS OVERVIEW AND

PREVIOUS WORK

To generate a WCET estimate, we consider a
program to be processed through the phases of
flow analysis, low-level analysis andcalculation.

The purpose of the flow analysis phase is to
extract the dynamic behaviour of the program.
This includes information on which functions
get called, how many times loops iterate, if
there are dependencies betweenif-statements,
etc. Since the flow analysis does not know the
execution path which corresponds to the longest
execution time, the information must be a safe
(over)approximation includingall possible pro-
gram executions. The information can be ob-
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tained bymanual annotations (integrated in the
programming language [4] or provided separately
[5]–[7]), or by automatic flow analysis methods
[8]–[12]. The flow analysis is traditionally called
high-level analysis, since it is often done on
the source code, but it can also be done on
intermediate or machine code level.

The purpose of low-level analysis is to deter-
mine the timing behaviour of instructions given
the architectural features of the target system.
For modern processors it is especially important
to study the effects of various performance en-
hancing features, such as caches and pipelines.
Low-level analysis can be further divided into
global low-level analysis, for effects that require
a global view of the program, andlocal low-level
analysis, for effects that can be handled locally
for an instruction and its neighbours.

In global low-level analysis, instruction caches
[7], [9], [12]–[14], data caches [12], [15], [16],
and branch predictors [17], [18] have been an-
alyzed. Local low-level analysis has dealt with
scalar pipelines [9], [11], [12], [14], [17], [19]–
[21] and superscalar CPUs [22], [23]. Heckmann
et al. [13] present an integrated cache and pipeline
analysis, and argue that such integration is neces-
sary for processors with heavy interdependencies
between various functional elements. Attempts
have also been made to use measurements and
the hardware itself to extract the timing [24].

The purpose of the calculation phase is to
calculate the WCET estimate for a program,
combining the flow and timing information de-
rived in the previous phases. There are three
main categories of calculation methods proposed
in literature: tree-based, path-based, and IPET
(Implicit Path Enumeration Technique).

In a tree-based calculation, the WCET is calcu-
lated in a bottom-up traversal of a tree generally
corresponding to a syntactical parse tree of the
program [14], [17], [25]. The syntax-tree is a rep-
resentation of the program whose nodes describe
the structure of the program (e.g. sequences,
loops or conditionals) and whose leaves represent
basic blocks. Rules are given for traversing the
tree, translating each node in the tree into an
equation that expresses its timing based on the
timing of its child nodes. The method is concep-
tually simple and computationally cheap, but has
problems handling long reaching dependencies,
since the computations are local within a single
program statement.

Figure 1(a) shows an example control-flow
graph with timing on the nodes and a loop-bound
flow fact. Figure 1(b) illustrates how a tree-
based calculation method would proceed over the
graph according to the program syntax-tree and
given transformation rules. Collections of nodes
are collapsed into single nodes, simultaneously
deriving a timing for the new node. Since the
processing order is pre-defined flow information
between non-related program parts, e.g. between
C andF, are hard to handle. Similarly, hardware
dependencies between non-local parts of the code
are difficult to handle, and must be treated in a
pessimistic fashion to guarantee the safeness of
the analysis.

In a path-based calculation, the WCET esti-
mate is generated by calculating times for differ-
ent paths in a program, searching for the overall
path with the longest execution time [9], [12],
[26]. The defining feature is that possible exe-
cution paths are representedexplicitly. The path-
based approach is natural within a single loop
iteration, but has problems with flow information
stretching across loop-nesting levels.

Figure 1(c) illustrates how a path-based cal-
culation method would proceed over the graph
in Figure 1(a). The loop in the graph is first
identified and the longest path within the loop is
found. The time for the longest path is combined
with the loop bound flow fact to extract a WCET
estimate for the whole program.

In IPET, program flow and low-level execution
time are modeled using arithmetic constraints
[5]–[7], [10], [27]. Each basic block and program
flow edge in the program is given a time variable
(tentity), holding to the contribution of that entity
to the total execution time every time it is exe-
cuted, and a count variable (xentity), corresponding
to the number of times the entity is executed.
The WCET is extracted by maximizing the sum
of products of the execution counts and times
(
∑

i∈entities xi ∗ ti), where the execution count
variables are subject to constraints reflecting the
structure of the program and possible flows. The
result of an IPET calculation is a WCET estimate
and a worst-case count for each execution count
variable.

Figure 1(d) shows the constraints and WCET
formula generated by a IPET-based calculation
method for the program illustrated in Figure 1(a).
The start and exit constraints gives that the
program must be started and exited once. The
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Fig. 1. Different calculation methods

structural constraints reflects the possible pro-
gram flow, meaning that for a basic block to be
executed it must be entered the same number of
times as it is exited. Theloop bound is specified
as a constraint on the number of times the loop
header nodeA can be executed.

IPET is able to handle all types of flow infor-
mation, including flow facts with long reaching
dependencies. IPET has traditionally been applied
in a global fashion, treating the whole program
and all flow information together as a unit. IPET
calculations normally rely on integer linear pro-
gramming (ILP) or constraint programming (CP)
techniques, thus having a complexity potentially
exponential in the program size. Also, since flow
facts are converted to constraints the size of
the resulting constraint system grows with the
number of flow facts.

We have previously developed an efficient
Path-based calculation method (Section IX-B)
[26], [28], [29], and an Extended IPET calcula-
tion method (Section IX-C) [5], [28]. Both meth-
ods are able to handle more types of complex
flow facts and timing dependendencies than tradi-
tional path-based and IPET calculation schemes.
The clustered calculation method presented in
this article combines the precision of the Ex-
tended IPET calculation with the efficiency of the
Path-based calculation.

In this article we focus on the calculation
phase which uses the results of the other phases
(i.e. high-level flow information from the flow
analysis phase and detailed timing information
from the low-level analysis phase) as input.

III. R EPRESENTINGPROGRAM FLOW

In order to perform any kind of WCET calcu-
lation, we need to be able to represent the flow

of a program. The fundamental data structure in
our approach is thescope graph. The scope graph
is based on the partitioning of the instructions in
the object code of a program intobasic blocks
[30]. Figure 2(a) shows an example C function,
Figure 2(b) show the corresponding assembler
code, and Figure 2(c) show the corresponding
control flow graph and basic blocks.

The scope graph consists of nodes (including
distinguished start and exit nodes) and edges.
Each node (except the start and exit node) holds
a reference to a basic block in the object code.
The flow information representation in the scope
graph thus refers to the compiled executable
object-code of the program. This is necessary in
order to be able to tie the flow information to the
hardware timing information of a program, which
is by necessity generated on the object-code level.

The nodes and edges in the scope graph are
partitioned into scopes reflecting the dynamic
structure of the program in terms of function
calls, loops, recursive calls and unstructured code
parts. Scopes are necessary in order to carry pro-
gram flow information, in particular bounds for
all loops and context-sensitive flow information
for function calls. Figure 2(d) shows the scope
graph generated for the basic block graph in
Figure 2(c).

Each scope has a distinguished header node,
(e.g. nodeA resp.C in Figure 2(d)). No other
node in the scope can be executed more than
once without passing the header node. Each scope
should have a loop bound attached to it, providing
an upper bound on the number of times its header
node can be executed for each entry of the scope.

The scopes in the scope graph are organized
in a scope-hierarchy, a directed tree with scopes
as vertices and edges from a scope going to
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Fig. 2. Scope graph with flow facts and scope-hierarchy

all its children. Figure 2(e) illustrates the scope-
hierarchy generated for the scope graph in Fig-
ure 2(d). In the tree each scope has zero or more
descendants, i.e. scopes below it in the tree, and
zero or moreancestors, i.e. scopes above it in the
tree. The immediate descendants of a scope are
its child scopes and the immediate ancestor is its
parent scope. A scope without any descendant is
called aleaf scope. E.g. in Figure 2 scopeloop
is a leaf scope and both a descendant and a child
to scopefoo.

The complete subtree for a scopes is formed
by all scopes havings as ancestor in the scope-
hierarchy (including s). Each tree of scopes
formed by removing the complete subtrees of one
or several descendant scopes ofs is a subtree of
s. An in-edge of a scopes is an edge having its
source node in a scope not within the complete
subtree ofs and having its target within the
complete subtree ofs. An in-node is a target
node of anin-edge. An out-edge of a scopes
is an edge having its source node in a scope
within the complete subtree ofs and having its
target outside the complete subtree ofs. A scope
can be entered at several in-nodes, allowing for
unstructured jumps into loops, and might have
several out-edges. An edge going to a header
node of a scopes and having its source node
located in the complete subtree ofs is a back-
edge of s. For example, in Figure 2(d)A→C is
an in-edge,C is an in-node,F→G an out-edge
andB→C a back-edge of scopeloop.

A. Flow facts

To express more complex program flow infor-
mation than just basic loop bounds, each scope
can carry a set offlow facts [5], [28]. The flow
facts combine the expressive power of IPET,

using constraints to limit possible executions of
scope graph entities, with the ability to give the
flow information in a scope-local context. The
latter property makes it possible to use flow
facts in local calculations schemes. Furthermore,
using flow facts on the scope graph, we are able
to represent most types on interesting flows, as
discussed in more details in Section IV-A below.

Each flow fact consists of three parts: the name
of thedefining scope where the fact is attached, a
context specifier, and aconstraint expression (see
Figure 2(d)). Each flow fact is consideredlocal
to its defining scope and the fact is interpreted as
being valid foreach entry of the scope.

The context specifier describes the iterations of
the defining scope for which the constraint ex-
pression is valid. This can be for all or just some
iterations. The type of a context specification is
eithertotal (written with “[” and “]”), for which
the fact is considered as a sum over all iterations
of the specified scopes, orforeach (written with
“<” and “>”), which considers the fact as being
local to a single iteration of the scope. Facts
valid for all iterations are expressed by “<>”
or “[]”, while facts valid for certain iterations
are expressed as<min..max> or [min..max],
wheremin ≤ max are integers larger than 0. The
span of a fact is the iterations of the defining
scope for which a fact is valid. Two facts are
said tooverlap if their spans have any iteration
in common.

The constraints are specified as a relation be-
tween two arithmetic expressions involvingex-
ecution count variables and constants. An ex-
ecution count variable,#entity, corresponds to
an entity (node or edge) in the scope graph,
and represents the number of times the entity
is executed in the context given by the context
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Fig. 3. Example code

specification.
A fact can only refer to count variables cor-

responding to entities located in the complete
subtree of the defining scope of the fact. For
example, in Figure 2 a fact defined in scopeloop
cannot refer to executions of entities located in
the foo scope. All scopes between the defining
scope and the scopes containing referred count
variables are said to becovered by the fact. Thus,
the scopes covered by a fact form a subtree with
the defining scope as root.

In Figure 2(d), theloop scope has two flow
facts attached to it. The first flow fact specifies
that for each timeloop is entered, nodeE
must be taken during each of the first five loop
iterations (but not that the loop needs to iterate
5 times). The second fact specifies that for each
time loop is entered nodeE can be taken at
most five times. Observe that the facts are local
to scopeloop, and should be valid for each entry
of the loop, independently on how many times
function foo is called from other functions in
the program. The two flow facts overlap since
they span the first five and all iterations ofloop
respectively.

IV. CLUSTERING OFFLOW FACTS

The goal of clustering is to find the flow facts
that need to be considered together in order not
to lose precision. Two flow facts can interact by
giving constraints for the same iterations of a
scope, i.e. by overlapping. Interacting flow facts
do not need to refer to the same scope graph
entity. For example, adding a flow fact which
refers to nodeF in Figure 2(d) would indirectly
constrain the execution of nodeE and could there-
fore interact with the two already given flow facts.
However, if the new flow fact only were spanning
the last three iterations of scopeloop, it would
not directly interact with the first flow fact since
they do not overlap. A flow fact can also interact
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Fig. 4. Fact clustering example

by constraining executions of entities located in
descendant scopes. For example, adding a fact
defined on scopefoo referring to entities in
scopeloop would potentially interact with the
two already given facts.

We define afact cluster to be a set of flow facts.
The defining scope of a fact cluster is the first
common ancestor of all the facts in the cluster.
The cover of a fact cluster is all scopes between
the defining scope and the scopes containing
count variables referred to by a flow fact in the
scope. Thus, the covered scopes form a subtree
in the scope-hierarchy with the defining scope as
root. For the defining scopes of a cluster thespan
is all iterations between the lowest and highest
iteration ofs spanned by any fact in the cluster.

In Figure 3 some example code fragments are
given, including three different functionsfoo,
bar and baz, and some loops. In Figure 4(a)
a scope-hierarchy generated from the code in
Figure 3 is presented, including some flow facts.
Figure 4(b) show the defining scopes, defining
scope spans, and cover of each given flow fact.
The name of a count variable gives the scope
in which the corresponding entity is located, e.g.
#M1 refers to executions of nodeM1 located in
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scopem. The functionlb(n) returns the loop
bound for a scopen.

The fact clusters generated from the facts are
given in Figure 4(c). For each generated fact
cluster we show its defining scope, its defining
scope span, and the scopes covered by the cluster.
Note that the same flow fact can be present in
several clusters, and that not all flow facts in a
cluster need to have the same defining scope.

A. Flows causing clusters
Program flows causing fact clusters and reach-

ing over several scopes are actually quite com-
mon. The simplest example is illustrated in the
first loop nest in functionfoo in Figure 3. It is
the classical “triangular” loop, i.e. a nested loop
where the number of iterations of the inner loop
depends on the current iteration number of the
outer loop (cf. scopesr ands in Figure 4(a)).

The inner loop considered in isolation will have
an iteration bound of 10, and so will the outer
loop. If WCET calculation is performed locally,
the calculation of the inner loop will assume 10
iterations. The WCET calculation for the outer
loop will use 10 iterations of the inner loop for
each entry of the inner loop. This gives that the
inner loop body being counted 100 times, when
it is actually cannot be executed more than 55
times. To solve this problem we need to handle
the inner and outer loop together as a unit. Flow
fact f1 in Figure 4(a) shows how this type
of triangular loop dependency can be captured,
(#header(o) refers to the count variable of the
header node of scopeo).

Flows in nested scopes can be related in other
ways, for example if the outcome of a deci-
sion in a scope determines the paths taken in a
loop (maybe deeply) nested in the scope (with
varying outcome), e.g. for the scopesm, p and
q in Figure 4(a). The code infoo and bar
in Figure 3 experience such a long reaching
dependency. Flow factf3 in Figure 4(a) captures
this dependency. It gives that an execution of
nodeM1 implies an execution of nodeQ1, (node
Q1 can still be executed on its own).

In the next example, given in functionbaz in
Figure 3, nodeS4 does not belong to the loop
(scopet) due to thebreak statement. Therefore,
the way the loop is exited will determine whether
it should be counted or not. Thus,S4 depends on
the decisionT2 in the loop body, butS4 is a node
in the parent scope oft (scopes). Factf6 in

Figure 4 captures this dependency by specifying
that the edgeT2→S4 cannot be taken during the
last three iterations of thet scope.

Another case of flow information causing clus-
ters is when information from different types
of flow analysis methods or manual annotations
interact, and therefore need to be considered
together in the WCET calculation. An example
of such overlapping flow information is shown
in Figure 4(a) with flow factsf4 andf5. Both
flow facts have the same defining scoper and
their spans have iterations in common.

B. Fact clustering algorithm

An algorithm to create the clusters of flow facts
is given in Figure 5. The algorithm makes a post-
order traversal of the scope graph, generating
clusters in descendant scopes prior to the parents.

For each scopes, we look at the facts defined
on the scope, and partition the facts based on their
iteration span. Two facts that overlap, i.e. have
some iterations in common, go to the same clus-
ter: ∀fi, fj ∈ facts(s) : (overlap(fi, fj) ∧
fi ∈ c) ⇒ fj ∈ c. This creates sets of facts where
each fact overlaps one or more of the facts in the
same cluster. For example, factsf4 and f5 in
Figure 4 have the same defining scoper and have
iterations in common, and should therefore be put
in the same cluster. Note that if there are any “all
iterations” facts (using context specification[ ]
or < >), there will only be one fact cluster for
this scope since these facts include all iterations,
and thus overlap with all other facts defined on
the scope.

The algorithm also consider interactions of
flow facts located in different scopes. For each
extracted fact-clusterc we add fact cluster defined
in descendant scopes covered byc. This creates
larger fact clusters, each covering a set of scopes
that have to be jointly considered. Note that this
means that a fact can be part of several fact
clusters. For example, factf1 in Figure 4 covers
both scopen and o and should therefore be
clustered together with factf2, resulting in the
fact cluster{f1,f2} with n as its defining scope.
Factf2 also forms a fact cluster on its own with
o as defining scope.

The algorithm given in Figure 5 generates min-
imal sets of facts where all included facts should
be considered together. We call this clustering
algorithmminimal fact clustering. The algorithm
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ClusterFacts(scopegraph sg):

FC := ∅ // To hold generated fact clusters
// Traverse scopes in scope graph bottom up
for each scope s in sg in bottom-up order do

F := flow facts in sg with s as defining scope
// Partition facts into clusters
C := partition facts in F into set of overlapping facts
// Add fact clusters already created in descendant scopes
for each fact cluster c in C do

S := scopes covered by c except scope s
for each fact cluster csub in FC defined in S do

c := c ∪ csub

end for
end for
// Update set of fact clusters
FC := FC ∪ C

end for
return FC

Fig. 5. Minimal fact clustering algorithm

makes sure that all facts that might interact are
put in the same cluster.

It is also possible to make more relaxed form
of clusterings, i.e. merging some of the minimal
fact clusters into larger clusters. These clusterings
will put facts into the same cluster even though
they do not really interact. Natural examples of
such more relaxed clusterings are:

• Scope-based clustering: All facts defined in
a scope are put in the same cluster, together
with all the facts in fact clusters defined in
covered descendant scopes.

• Maximum clustering: All flow facts in the
scope graph are put into one big cluster
with the first common ancestor scope as
its defining scope. Scopes not covered by
the resulting fact cluster will be calculated
separately from the scopes in the cluster.

• Global clustering: All flow facts in the scope
graph are put into one big cluster with the
root scope of the scope graph as its defining
scope. All scopes in the scope-graph are part
of the cluster. This is identical to the global
calculation view used by our Extended IPET
method [28].

Furthermore, we can construct even smaller
clusters by subdividing foreach facts into facts
valid for smaller ranges. A foreach fact gives flow
information valid for each individual iteration
and therefore does not need to force overlapping
subranges to the same cluster. Instead, we apply
the algorithm given in Figure 5 to total facts only.
The remaining foreach facts aresplit into new
foreach facts across the ranges of the resulting
clusters. E.g. in Figure 4(a) the total factf4 does
not overlapf5 completely, so we splitf5 into
the factsr:<3..5>:#R1+#R3 = 1 (f5’) and

r:<6..7>:#R1 + #R3 = 1 (f5”). The result-
ing fact clusters become{f4,f5’} and {f5”}.
We call such clusteringsplit-foreach-fact minimal
clustering. Compared to the minimal clustering
algorithm, splitting of foreach facts will result in
more fact clusters with smaller covers.

V. CLUSTEREDWCET CALCULATION

The algorithm for calculating a WCET esti-
mate using fact clusters is shown in Figure 6. The
algorithm performs a demand-driven traversal of
the scopes in the scope-hierarchy. For each scope
we find the fact clusters defined on the scope,
and for each fact cluster the scopes covered by
the cluster are extracted as a subtree over which a
local WCET calculation is made. This means that
if there are fact clusters that cover more than one
scope, a WCET calculation is performed over all
covered scopes as a unit.

The WCET estimate for a scopes is obtained
by iterating over the clusters havings as defining
scope in range order, i.e. fact clusters spanning
the first iterations ofs are processed before fact
clusters spanning later iterations ofs. If some
scope range is not spanned by any fact cluster,
an empty fact cluster is created. Such empty
clusters cover just the current scope and span
only consecutive iterations not spanned by any
fact. For a scope not covered by any flow fact,
an empty cluster is created, spanning all iterations
of the scope.

A WCET estimate for a program fragment
should be calculated from where the execution
can enter the fragment to where the execution
can exit the fragment. A calculation for a cluster
is therefore performed from somebegin-nodes,
where the execution can enter the covered scopes,
to someend-edges, where the execution can exit
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ScopeWCET(scope s, scopegraph sg, factclusterset FC,
timedatabase tdb):

// Initialize timing variables for scopes and clusters
ts,back := ts,out := tc,back := tc,out := 0
// Get fact clusters for scopes
Cs := fact clusters in FC with s as defining scope
Cs := add empty cluster for each range of s not

covered by fact clusters in Cs

// Make WCET calculation over clusters
for each cluster c in Cs in increasing range order do

stc := subtree of scopes in sg covered by c
// Replace non-covered descendant scopes with timing nodes
for each child scope sub to leaf scopes in stc do

// Do demand-driven analysis of descendant scopes
if time for sub is not in tdb then

tdb := ScopeWCET (sub, st, cs, tdb)
// Replace calls to descendant scopes with timing nodes
tsub := time for scope sub in tdb
stc := in stc replace call to sub with
node taking tsub time

end for
// Get begin nodes for cluster
if c spans first iteration of s then b := in nodes(s)
else b := header node(s)
// Calculate time to out-edges for cluster
tc,out := ClusterWCET (c, b,out edges(s), stc, tdb)
// Update time to out-edges for scope
if valid(tc,out) then

ts,out := max(ts,back + tc,out,ts,out)
// Calculate time to back-edges for cluster
if c does not span last iteration of s then

tc,back := ClusterWCET (c, b,back edges(s), stc, tdb)
// Update time to back-edges for scope
if valid(tc,back) then

ts,back := ts,back + tc,back

// Break if execution can’t continue
else break loop

end for
// Update timing database and return
add time ts,out for scope s to tdb
return tdb

Fig. 6. Clustered WCET calculation algorithm

2��:
$����%


�

��	 ���/ ��	

2��:
$������

$�����

���� 
�%0%��	!�1
���������� ���� 
�%02&''3%��	!%

�������������� 
�%02&''3%���/!4
�������������� $�����%02(''&+%��	!!

�������

������
 �����������&�
���������<F���<F���������
������ ��<F��<F���������
�������&���<F�

�
�

�
<G������

�������������
$�����%��<G��<G���������

�	��������$
�����$��#
	$��
�#����	�

�����������
��
�	
���������0

�����������
��
�	
����������

����� 
�%�%��	!�1
��������� ���� 
�%�2&''-%��	!%

���� 
�%�2&''-%���/!�4
���� $�����%�2*''5%��	!%
���� 
�%�2&''-%���/!�4
���� $�����%�2*''5%���/!4
���� $�����%�2&+''6+%��	!��!


� $�����

2��3��:
����� 

2��:
��#��'

$�����

��	

	
�������0�������������#
�����
���2&''-������2*''5

02&''3�����
02(''&+�
����
��
�
�	���	���	$��
#
	$��2&+''6+

��	 ���/ ��	 ���/

������&�
$������

2��3��:

������� �������

Fig. 7. Calculation over clusters

the covered scopes. The cluster spanning the first
iteration of a scope has begin-nodes equal to the
in-nodes of the scope. For the remaining clusters
the begin-nodes are equal to the header-nodes of
the scope, since this defines the start of a new
iteration.

Similarly, for all clusters except the one includ-
ing the last iteration, we make two distinct calcu-
lations, one ending at an out-edge and one ending
at a back-edge. This is because the execution path
taken to exit a scope might be different from the
path taken when continuing to the next cluster. If
a WCET estimate for the back-edges cannot be
calculated, e.g. due to some contradicting flow
information in the cluster, the execution cannot
continue. If so, we stop iterating over the ranges
and return the total time accumulated for the
scope.

Figure 7 shows an example of a WCET calcu-
lation working over clusters. The algorithm starts
at scopeu where there are several facts covering
the iteration range. The name of a referred count
variable gives the scope in which the correspond-

ing entity is located, e.g.#V1 refers to executions
of nodeV1 located in scopev. The factsf1 and
f2 together form a cluster,{f1,f2}, spanning
range 1..7 ofu. Since neitherf1 norf2 coverv,
a local calculation is made forv by a recursive
call to the algorithm.

The local WCET calculation forv only needs
to consider facts and fact clusters defined onv.
Factf4 creates a fact cluster on its own,{f4}.
Two calculations are made for the{f4} cluster:
one to the out-edges and one to the back-edges.
The remaining iterations (5..10) ofv are not
spanned by any fact and an empty fact cluster
{ } (covering just scopev) is therefore created
for these iterations. Since the fact cluster covers
the last iteration ofv, a WCET estimate is only
made to the out-edges, and not to the back-edges
as in the previous clusters.

After calculating a WCET estimate forv, the
calculation restarts atu with the fact cluster
{f1,f2}. There are no facts spanning range 8..9,
and an empty fact cluster{ } (covering just scope
u) is created. For both these calculations, the call



10

 �!�����������$
�������������	

7�������
�����������

������	�������
�������$���	�����

 �!���
��
�	
����
	����	
0��

�/

�+

�& �&

�/

�+

��

�	

�&

�/

�&


�
�!
��
!

�+

HHH
�&
�����HHH�����
��2
��������HHH���	
�������2
�����������/
�������������	&5
�������:
������&
��:
�+
HHH
 �!������
�
���������

$%�&�'�!
���&��"(�'���
!'�)

��*'+����������

Fig. 8. Calculation options for fragment with multiple exits

to scopev is represented by a call node with the
timing of the extracted WCET estimate forv, i.e.
no details ofv except its timing are included in
the calculation.

Factf3, however, covers both scopeu andv
and will be clustered together with thef4 fact
as {f3,f4}. This means that when calculating
a WCET estimate for scopeu over range 10..20
we cannot use the previously generated time for
scopev, but must do the calculation overboth
u andv. Observe that{f3,f4} covers the last
iteration of u, so no calculation for the back-
edges is needed.

A. Entry and Exit Options
Some graph fragments have several points

where the execution can enter or exit. For such
fragments we have the option to make a separate
WCET calculation for each pair of entry and exit
points, or to make just one WCET calculation
for all entry or exit points together, or to do
something in between. This allows us to trade
WCET estimate precision for calculation speed.

Figure 8 gives an example of the need for
the calculation to differentiate between different
exit points for increased precision. The code and
scope graph corresponds to the example in func-
tion baz in Figure 3, where flow factf6 specifies
that edgeT2→S4 cannot be taken during the last
three iterations of scopet.

If only one calculation is made for scopet
for both its out-edges it will result in a timing
estimate fort which gives that the loop is iterated
10 full iterations. Later, when doing a WCET
calculation for scopes the worst case path will
be passing the call node for scopet together
with the nodesS4 andS5. This gives a safe but
pessimistic WCET estimate, since the extracted
worst case path could not be taken in an actual
execution.

The other calculation alternative, which is to
make a separate WCET calculation for each out-
edge of scopet, will discover that the out-edge

to nodeS4 cannot be taken during the last three
iterations oft. The WCET estimate for scopet
will therefore be different depending on the used
out-edge. In the calculation of scopes, this will
result in two separate call nodes for scopet, each
with different timing. Thus, by making separate
calculations for different in-nodes and out-edges
the calculation cost increases, but more precise
WCET estimates can be achieved.

Note that we only need to extract one single
program fragment even though we perform sep-
arate calculations for its begin-nodes and end-
edges. By adding extra flow facts stating which
begin-nodes and end-edges are possible for each
particular calculation, the extracted graph frag-
ment can be reused.

VI. COMPLETE EXAMPLE OF CLUSTERED

CALCULATION

In Figure 9(a)-(k) we give a compact illus-
tration of the steps involved in our clustered
calculation method. To simplify the presentation,
no timing for entities is included in the example.

Figure 9(a) shows an example control-flow
graph consisting of a single loop and a loop nest
consisting of two loops. Figure 9(b) shows the
corresponding scope graph with scopesmain,
loop, outer and inner. Each scope has a
loop bound and some have flow facts attached.
Note that bothloop andouter have multiple
out-edges. Figure 9(c) shows the corresponding
scope-hierarchy, with flow facts attached to the
different scopes. Figure 9(d) shows the defining
scope, defining scope span, and cover of the flow
facts.

Figure 9(e) shows the fact clusters generated
when applying the minimal clustering algorithm
given in Figure 5. Since factf1 andf2 overlap
in their ranges they will be put in the same
cluster. Factf3 refers to the header node of scope
inner and is therefore put in the same cluster
asf41.

Figure 9(f) shows the fact clusters gener-
ated when applying the split-foreach-fact minimal
clustering (see Section IV-B). Factf1 has been
split into two new factsloop:<1..5>:#D = 1
(f1’) and loop:<6..40>:#D = 1 (f1’’).

1Factf4 is also constituting a fact cluster on its own,{f4},
defined on scopeinner, but this is not included in Figure 9(e),
sincef4 will always be calculated together withf3.
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Fig. 9. Complete example of clustered calculation

The fact clusters{f1’,f2} and {f1’’} to-
gether span the same range as the{f1,f2}
cluster given in Figure 9(e).

Figure 9(g) shows the fact cluster generated
when applying the global clustering (see Sec-
tion IV-B). All facts are put into one cluster, with
main as defining scope, and will all be consid-
ered together as a unit in the final calculation.

For the rest of the example we use the clus-
ters in Figure 9(e) as generated by the minimal
clustering. Figure 9(h) shows the resulting set of
clusters, after adding empty clusters for all ranges
of scopes not covered by any cluster. This is done
as part of the algorithm given in Figure 6. An
empty cluster for range 1..1 ofmain and one
empty cluster for range 41..50 ofloop is created.

Our demand-driven WCET calculation algo-
rithm given in Figure 6 starts at scopemain.
Since onlymain is covered by the empty fact
cluster, recursive calls are made for scopeloop
and outer, before calculating the WCET of
main.

Scopeloop is covered by two fact clusters,
{f1,f2} and an empty cluster. The calculation
starts with cluster{f1,f2}, since it spans the

first iteration of loop. The scopes covered by
the cluster are extracted to form a separate graph
fragment as given in Figure 9(i). Two different
calculations are made: one ending at the back-
edge ofloop (Calc 1) and one ending at the out-
edge ofloop (Calc 2). The same scope graph is
used for both calculations, but some extra flow
facts are added in each calculation to constrain
where the execution should end.

The calculation continues with the empty clus-
ter spanning range 41...50 of scopeloop. When
calculating a WCET estimate for this cluster we
reuse the extracted scope graph for scopeloop.
Since the cluster is empty, no flow facts are
included, except one specifying that the execution
must end at the out-edge (Calc 3). The three
different WCET estimates extracted are used to-
gether, as given by the algorithm in Figure 6, to
calculate a WCET estimate for scopeloop.

The next step is to calculate a WCET esti-
mate for scopeouter. Since the fact cluster
{f3,f4} covers both scopeouter andinner,
a WCET estimate will be extracted for both
scopes together. A new scope graph is extracted
for the two scopes, as shown in Figure 9(j). For



12

the extracted scope graph and fact cluster, two
different calculations are made, one to the out-
edge with nodeI as source (Calc 4), and one to
the out-edge with nodeO as source (Calc 5).

After calculating WCET estimates for scope
loop and outer a WCET estimate for scope
main can be calculated. A scope graph for scope
main is extracted, as shown in Figure 9(k), with
the calls to scopeloop andouter replaced with
call nodes. Each node is given a timing equal
to the WCET estimate extracted for the call to
the corresponding scope. Note that scopeouter
gets replaced with two different call nodes, since
it had multiple out-edges. No fact is covering
scopemain, and only one calculation needs to
be made for this scope (Calc 6). The result of
the calculation is a WCET estimate for the whole
program.

Note that we do not put any demands on the
calculation method to use when calculating a
WCET estimate for a fact cluster and its covered
scopes. For example, for the calculations of the
main scope or the last range ofloop, both our
Path-based and Extended IPET methods can be
used (see Section IX). For fact clusters with more
complicated flow information, such as{f3,f4},
our Extended IPET calculation method is prefer-
ably used.

VII. R EPRESENTINGPROGRAM TIMING

As we have defined the clusters in the clustered
calculation based on the flow information, it
is possible that there are hardware timing ef-
fects crossing the boundaries between calculation
units. In order to discuss this problem, we need
to have a definedtiming model for the program.

In previous work, we have developed a timing
model designed to support the calculation of
a program WCET estimate from the timing of
smaller program parts, while still capturing all
relevant hardware timing effects [19], [20]. This
timing model will be explained here and used
in Section VIII to attack the problem of timing
effects across calculation boundaries.

The timing model represents the execution
time using timing for nodes,tnode, and timing
effects for sequences of nodes,δseq. Each node
corresponds to one or more instructions on the
target, and the edges connecting them to the
potential flows between the instructions. For this
discussion, we can assume that the nodes in
the timing model are identical to the nodes in

the scope graph, and thus refers to a certain
basic block in the program executing in a certain
context.

Intuitively, a node timetnode represents the
time it takes to execute a node in isolation on
the hardware. A timing effectδseq represents the
change in execution time encountered when a
node sequenceseq is executed compared to the
total time of the constituent nodes (and the timing
effects of the subsequences of the sequence).
Timing effects are negative to indicate a speedup
over a sequence of nodes, and positive to indicate
a slowdown.

We use the notationT (seq) for the execution
time of a sequenceseq of nodes. This time
should be a safe estimate of the execution time
of the corresponding instructions on the target
hardware. The execution time for a sequence of
nodes is obtained by summing all node times
and timing effects defined for the sequence:

T (seq) =
∑

∀n∈nodes(seq)

tn +
∑

∀s∈subsequences(seq)

δs

Figure 10(a) shows a small piece of a scope
graph, containing three basic blocksQ, R and
S. The example processor includes an in-order
scalar pipeline containing an instruction fetch
(IF), an execute (EX), and a memory access (M)
stage. It also contains a separate floating point
(F) stage, which can be used instead of the (EX)
and (M) stages. Instructions can execute in the (F)
stage for several clock cycles.

Figure 10(b) shows the pipeline layout of three
basic blocks, and that the execution times for
the nodes are 8 cycles forQ, 6 cycles for R
and 7 cycles forS, respectively. When executing
the blocks in sequence, the total execution time
for the sequence is usually smaller than the sum
of the times for the individual basic blocks,
reflecting that the instructions of the basic blocks
are overlapping in the pipeline. For example, the
timing for the sequenceQR is 11 cycles, while
the sum of the execution times forQ and R
is 8 + 6 = 14 cycles. Similarly, the time for
executing sequenceQS is 14 cycles, while the
execution time sum ofQ and S is 8 + 7 =
15 cycles. The overlaps give the timing effects
δQR = T (QR) − tQ − tR = 11 − 8 − 6 = −3 and
δQS = T (QS) − tQ − tS = 14 − 8 − 7 = −1, as
shown in Figure 10(c).

An important feature of this model is that we
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Fig. 11. Pipeline overlap and interference over three nodes

can getlong timing effects, timing effects over
sequences of nodes longer than two. Such effects
occur when there are effects in the hardware
reaching across more than adjacent basic blocks.
Two examples of when long timing effects appear
are given in Figure 11. Execution sequenceABC
shows that a basic block can overlap more than
one successor, while execution sequenceABD
shows how a basic block can delay a later basic
block across intervening blocks.

The timing model for these two cases is sum-
marized in Figure 11(c), showing that we have
long timing effectsδABC = T (ABC)− δAB− δBC−
tA − tB − tC = 13 + 2 + 5 − 10 − 5 − 7 = −2
andδABD = T (ABD)− δAB − δBD − tA − tB − tD =
16 + 2 + 5 − 10 − 5 − 7 = +1. In general, long
timing effects can be both positive and negative,
and can potentially occur for sequences of nodes
of arbitrary lengths [19].

Our timing model is not tied to a particular
method of low-level analysis; while it has obvious
affinities with the pipeline analysis method used
in our prototype tool (presented in Section IX), it
can also represent the results of other varieties of
low-level analyses. For example, the integrated
cache and pipeline analysis for the Motorola
ColdFire 5307 processor presented by Ferdinand

et al. [21] generates a model where times are
assigned to basic blocks in a program (using an
iterative analysis to include the effect of both
pipelines and caches on the timing of each block).
This model can be represented in our timing
model framework, using node times only and no
timing effects. Similarly, the timing model for
Infineon C167 presented by Atanassov et al. [31]
attributes times only to edges in the control flow
graph. This can be represented in our timing
model framework, using timing effects only on
sequences of length two and no node times. Thus,
both low-level analysis methods can easily be
combined with the clustered calculation method
presented in this paper.

VIII. C LUSTERING AND LONG TIMING

EFFECTS

For efficiency reasons, local and clustered cal-
culation methods perform WCET calculations
on small parts of a program. As discussed in
Section VII, timing effects can occur between
nodes and on longer sequences of nodes. Thus,
timing effects can be present which are only
partially covered by the nodes included in a local
calculation. For example, since fact clusters are
formed only from flow information, there are no
guarantees that the low-level timing information
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will be nicely split along the same boundaries in
the program.

A WCET calculation method must be able
to handle such border crossing timing effects
safely and efficiently to be correct and useful. Our
solution to this problem assumes that the timing
model is global, i.e. that the low-level analysis
has been performed across the entire program.
We use this global timing model to construct a
local timing model valid for the considered graph
fragment and extends this model to include all
relevant timing effects.

We note that a timing effect for a sequence
of nodes should only be accounted for when the
execution goes uninterrupted via all the nodes in
the sequence. However, when constructing a tim-
ing model for a graph fragment, no knowledge of
the worst case execution path in the surrounding
fragments can be assumed, i.e. we do not know
if the prefix nodes of the sequence were taken or
not. Therefore, at the boundaries between frag-
ments, rules are needed to ensure safe timing and
(hopefully) precision. We need to use potentially
pessimistic but safe assumptions on the possible
executions made in the surrounding fragments.

We solve this problem by introducinghistory
nodes, special nodes that are added to the timing
model and that represent the potential paths taken
before entering the given graph fragment. In
a fragment containing incoming timing effects,
such history nodes are added at the start of the
fragment.

History nodes have an execution time of zero,
and their only purpose is to provide support for
the specification of long timing effects. A history
node is added for each node belonging to a
surrounding fragment which is also included in
a long timing effect which ends in a node in
the fragment. Edges are added to connect the
history nodes, with the result that all incoming
timing effects get a corresponding history node
sequence. Each added edge has a timing effect
of zero.

If there are incoming execution paths not in-
cluded in any timing effect sequence, extra edges
should be added from the start node to the entry
of the fragment. This allow the calculations to by-
pass incoming timing effects if this would result
in a larger WCET estimate for the fragment.

Figure 12 shows an example of the handling of
long timing effects. Due to the two (overlapping)
long timing effects over the sequencesCEFG
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Fig. 12. Managing long timing effects at fragment borders

and EFG, two history nodes corresponding to
nodesC and E are added in the timing model
for fragment (2), together with the long timing
effects. The calculation for fragment (2) will then
find the local longest path including the long
timing effects overlapping fragments (1) and (2).

The insertion of history nodes gives a safe
but possibly pessimistic estimate of the execu-
tion times, since we will always use the worst
incoming timing effect. For example, in Figure 12
the worst case execution path for fragment 1 will
exit in sequenceDE, giving that the long timing
effects should not be used in the calculations in
fragment 2. However, this cannot be accurately
represented in the local timing model for frag-
ment 2, which will cause an overestimation of
the WCET. This imprecision is the price we have
to pay for the convenience of using a subdivided
calculation method.

In the clustered calculation border-crossing
timing effects can come both from surrounding
scopes and from subordinate scopes. Figure 13
gives an example of long timing effects reaching
over fact cluster calculation borders. Figure 13(a)
shows a scope graph fragment with the scopest
andu. Scopet has a flow fact covering scopet
but not scopeu. This generates a fact cluster only
consisting of this single fact covering only thet
scope. The corresponding timing graph fragment
contains timing for nodes and edges, (not shown
in the figure), as well as two long timing effects,
illustrated asδACD andδEGI.

When making a clustered calculation theu
scope will be calculated in isolation from thet
scope. A worst case estimate for scopeu is first
calculated and given a timing. The resulting scope
graph for scopet is illustrated in Figure 13(b). In
the graph, the call to scopeu has been replaced
with a call-node. To be sure to capture the long
timing effect δACD a history node is created for
theA node. Since we can entert by two different
edges, an extra edge from the start node is added
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Fig. 13. Example of clustered calculation and long timing effects

to allow the calculation to bypass the timing
effect sequence.

We also have a long timing effectδEGI originat-
ing in nodeE in the non-covered scopeu. To be
sure to capture this long timing effect, a history
node is created for theE node. Note that this
node is connected to the node for the subscope
u, since the long timing effect starts withinu.

IX. WCET TOOL IMPLEMENTATION

The work presented in this paper has been
implemented within the framework of our WCET
analysis tool. Figure 14 gives an overview of
our WCET tool, illustrating where the clustered
calculation module fits in. Compared to our pre-
viously presented work [5], [26] all components
of the system except the calculation phase remain
unchanged, demonstrating the modular structure
of the tool.

The prototype runs under Solaris, Linux, and
Windows. The tool currently supports low-level
WCET analysis for two different target chips,
NEC V850E [32] and ARM9 [33], both typical
32-bit RISC micro-controller architectures with
pipelines. For the current experiments, we only
use the V850E model since it has more interesting
behavior.

The WCET analysis tool supports three dif-
ferent calculation methods: A Path-based local
calculation method [26], [28], an Extended IPET
calculation method [5], [28], and the clustered
calculation method described in this article.

As illustrated in Figure 14 all calculation meth-
ods take the same inputs and can be used in-
terchangeably. The clear separation between the
flow- and low-level analysis from the calculation
phase makes it possible to systematically com-
pare the performance and precision of our differ-

ent calculation methods. Figure 15 illustrates the
clustered calculation method in more detail. Note
that both the Path-based and the Extended IPET
methods are used by the clustered calculation
method to compute the WCET for clusters.

The flow analysis is currently performed manu-
ally, but we have an automatic flow analysis under
development [8]. The flow analysis results in a
scope graph annotated with flow facts, represent-
ing the dynamic behaviour of the program (see
Section III).

A. Low-Level Timing Analysis

To extract the low-level hardware timing of the
program we perform apipeline timing analysis
on the nodes in scope graph, generating atiming
graph which is a concrete representation of the
timing model presented above.

The pipeline analysis uses a trace-driven cycle-
accurate simulator of the target processor to gen-
erate times. The core of the method is illustrated
in Figure 16. Each node and sequence of nodes
is executed in the simulator, and the resulting
times are used to construct the timing model. The
analysis treats the hardware model as a black
box, i.e. it does not need to have access to its
internal state. In principle, the weak requirements
on the hardware model allow us to use any
trace-driven cycle-accurate processor model (or
even the hardware itself) to extract timing for
instructions.

To include information such as cache misses
and hits, and various memory speeds in the analy-
sis, the nodes in the scope graph can be annotated
with additional execution information [19], [28]
as illustrated in Figure 18(a) and Figure 16. The
hardware model must be able to correctly mimic
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the behaviour of the hardware for the provided
execution information. We have implemented an
instruction cache analysis similar to the one pre-
sented by Ferdinand et al. [13], but do not use this
analysis in this paper since the V850E typically
does not use a cache.

B. Efficient Path-based Calculation

The path-based calculation method used in our
tool is very fast and can handle many types of
flow facts and all types of long timing effects.
The method gains its efficiency from using our
timing model which allows the timing of a path
to be composed from smaller components (cf.
Section VII). This allows us to reformulate the
longest path search problem to finding the longest
path in a directed acyclic graph, something which
can be solved very efficiently using well-known
graph-search techniques, such as Dijkstra’s Algo-
rithm [34].

Other approaches to longest executable path
search for WCET analysis are based on generat-
ing all possible paths for a certain program seg-
ment (function, loop body, or other unit), run all
the paths through some kind of hardware model,
and select the path with the longest execution
time. The unit for these analyses is the complete
path, and the number of paths to explore is up
to 2n, wheren is the number of decisions in the
program segment being analyzed.

Instead, our Path-based calculation method
only needs to visit each node and edge once,
therefore having a complexity linear to the size of
the program graph. An extracted execution path is
checked against provided flow facts for feasibility
[26]. The method uses graph rewriting in order
to delete paths not feasible and to safely handle
long timing effects.

The method can only handle a subset of the
flow facts expressable in our flow fact language
(cf. Section III). Since the method finds the
longest path in each scope in isolation, only
loop bounds and flow facts of foreach type with

a cover of only one scope can be handled2.
Another problem for our path-based method is
unstructured code, since it makes it difficult to
define what constitutes a path or a single iteration.

To handle flow facts valid for certain iterations
we perform a graph transformation, unrolling a
given scope into a set ofvirtual scopes. Each
virtual scope is a copy of the original scope and
represents a certain range of iterations for which
a given set of flow facts should hold. Figure 17
gives an illustration of a virtual scope expansion.
Here, the two factss:<1..5>:#C = 1 and
s:<3..10>:#B + E = 1 are specified for
the scopes. Both facts hold for the iterations
3..5. Only fact f1 holds in iterations1..2, and
f2 in iterations6..10. In iterations11..20, none
of the facts hold. Thus, the scope is split into
the virtual scopess:1..2, s:3..5, s:6..10,
and s:11..20. After the expansion, we note
which facts should be valid for each virtual scope,
and derive a longest path for each virtual scope
in isolation. The derived paths together form a
longest path for the whole scope. For a more
detailed description of these techniques we refer
to [26], [28], [29].

C. Extended IPET Calculation

We also have an Extended IPET calculation
method implemented in our WCET tool. The ba-
sics of IPET was presented in Section II. We have
extended IPET to be able to handle long timing
effects [20] and complex flow facts [5], [28]. The
Extended IPET calculation can take into account
all types of flow facts described in Section III-A,
including both foreach and total facts, and flow
facts covering several scopes. Similar to other
IPET approaches our Extended IPET calculation
method considers the whole program at once.

To handle flow facts valid for just some iter-
ations the scope graph is unrolled into a virtual

2Path-based methods can be extended to handle triangular loop
dependencies and unstructured code [35], this is however not
implemented in our path-based method.
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scope graph. Compared to our path-based calcu-
lation method, which unrolls only one individual
scope at a time, our Extended IPET calculation
method considers and unroll all the scopes in
the scope graph at the same time. All flow
facts are lifted to a global level and converted
to constraints over entities in the virtual scope
graph. The structure of the virtual scope graph
is used to generate structural constraints. Each
(long) timing effect is given a count variable, and
constraints are generated to limit the number of
times each timing effect can be accounted for. For
a more detailed description of these techniques
we refer to [28].

In the current experiments we rely on the
mixed ILP solverlp solve [36] to solve gen-
erated constraint systems. We also support the
possibility to export generated constraints in a
format suitable as input to Sicstus Prolog CP
[37] or to the mixed integer and constraint solver
CPLEX [38].

D. Clustered Calculation Implementation

We have also implemented the clustered cal-
culation method described in this article. The
method comes in two versions. In the first version
(Extended) IPET is always used to calculate
WCET times for clusters. In the second version,
depending on the characteristics of the cluster, ei-
ther the path-based calculation or IPET is utlized
when calculating a WCET estimate for a cluster.
Specifically, path-based calculation is used for

clusters covering just one scope and containing no
total flow facts, while IPET is used for all other
clusters. To our knowledge this is the first WCET
calculation method making use of two different
type of calculation schemes for the calculation of
a single program.

In the experiments, the clustered calculation
version using both path-based and IPET is called
Clustered Mix, while the version using only IPET
is calledClustered IPET.

X. EXPERIMENTS AND EVALUATION

In order to demonstrate the precision and ef-
fectiveness of our clustered calculation method
we have performed a number of measurements,
using the programs listed in Table I. We have
tried to find a number of test programs containing
various types program structures and of varying
size, in order to test the calculation methods
thoroughly3. TheBB column gives the number of
basic blocks when compiled for the V850E,Sc
gives the number of scopes andFF the number
of flow facts in the corresponding scope graph.
All flow facts where added manually. TheLte
column gives the number of non-zero long timing
effects with a length larger than two.

For each program we have derived anactual
WCET value by running a worst-case trace of
the program through the CPU simulator used by
the WCET analysis. Thereby, the experiments

3The benchmarks are available for download at
http://www.c-lab.de/home/en/download.html
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Program Description Properties BB Sc FF Lte
adpcm adaptive differential pulse code modulation algo-

rithm
Completely well-structured code 148 59 43 0

compress Compression using lzw. Nested loops, goto-loop, function calls. 91 24 9 3
crc Cyclic redundancy check computation on 40 bytes

of data.
Complex loops, lots of decisions, loop bounds depend on
function arguments, function that executes differently the first
time it is called.

29 9 6 0

duff Using “Duff’s device” to copy 43 byte array. Unstructured loop with known bound,switch statement. 20 6 2 0
expint Series expansion for computing an exponential

integral function
Inner loop that only runs once, structural WCET estimate gives
heavy overestimate.

24 7 4 0

fibcall Simple iterative Fibonacci calculation, used to cal-
culate fib(30).

Parameter-dependent function, single-nested loop. 7 4 0 0

fir Finite impulse response filter (signal processing
algorithms) over a 700 items long sample.

Inner loop with varying number of iterations, loop-iteration
dependent decisions.

14 5 7 0

isort Insertion sort on a reversed array of size 10. Input-data dependent nested loop with worst-case ofn2/2
iterations.

7 4 1 0

jfdctint Discrete-cosine transformation on a 8x8 pixel
block.

Long calculation sequences (i.e. long basic blocks), single-
nested loops.

14 6 0 3

lcdnum Read ten values, output half to LCD Loop with iteration-dependent flow. 26 4 2 0
matmult Matrix multiplication of two 20x20 matrices. Multiple calls to the same function, nested function calls, triple-

nested loops.
27 16 0 0

ns Search in a multi-dimensional array Return from the middle of a loop nest, deep loop nesting. 18 7 1 0
nsichneu Simulate an extended Petri Net Automatically generated code containing massive amounts of

if-statements (� 250)
754 3 129 1

TABLE I. Benchmark programs used in experiments

only deal with the effectiveness and precision of
the WCET analysis phases, and do not need to
take into account any differences between the
simulator and the actual hardware. The traces
were obtained by manual analysis of the program
source and object codes, and extensive testing
was undertaken to make sure that they really cor-
respond to the actual WCETs. All measurements
were performed on a Pentium 4, 2.66 GHz, with
256 MB RAM.

A. Necessity of correct flow and timing

The necessity for both correct low-level timing
and flow information when calculating safe and
tight WCET estimates is illustrated in Table II.
The column Basic gives the WCET estimate
when ignoring pipeline overlap between basic
blocks, (but including the pipeline overlap within
basic blocks), and using only basic loop bounds
as flow information. The columns includingFlow
give WCET estimates resulting from adding flow
facts to the program. Columns includingPipe
give WCET estimates where timing effects be-
tween nodes have been accounted for. Column
Actual gives the actual WCET of the program, as
given by a simulation of the target platform. The
numbers in the+% columns give the pessimism
of each WCET estimate in percent, relative to the
actual WCET.

The need for correct pipeline timing is illus-
trated by the values in theWith Pipe column. The
WCET overestimation is clearly reduced com-
pared to theBasic column. In general, modelling

pipeline overlaps between basic blocks seems to
tighten the WCET estimates by at least 20 per-
cent, (ignoring pipeline effectswithin basic block
would create WCET estimates about five times
higher, since the V850E has a five-stage pipeline).
The benefit is greatest for programs with many
small basic blocks (such ascrc, fibcall and
nsichneu), and least for programs with large
basic blocks (for example,jfdctint).

The need for correct flow information is il-
lustrated by the values in theWith Flow col-
umn. The improvements in WCET estimate pre-
cison due to flow information vary much more
for the different benchmarks than the effect of
pipeline analysis. Some benchmarks, for example
compress andnsichneu, show large decrease
in obtained WCET overestimations, while for
other programs the improvement is much smaller.

The good results in theFlow & Pipe column
indicate that to obtain WCET estimates both
high quality flow and timing information must be
obtained. All WCET estimates are safe, i.e. larger
than or equal to the actual WCET. The remaining
execution time overestimation is mostly due to
the problem of correctly modelling the program
flow. All WCET estimates were calculated using
the Extended IPET method.

B. Calculation method comparasion

Table III shows the WCET estimate precision
(cycles) in clock cycles and needed computa-
tion time (time) in seconds, of the different
calculation methods. TheClustered IPET holds
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Basic With Flow With Pipe Flow & Pipe Actual
Program Cycles +% Cycles +% Cycles +% Cycles +% Cycles
adpcm 8954 +42.5 8714 +38.7 6382 +1.59 6282 0 6282

compress 126242 +1357 10388 +20 92482 +967 8672 +0.12 8662
crc 61624 +104 61340 +103 30389 +0.39 30271 0 30271
duff 1823 +86.3 1775 +63.9 1104 +1.9 1083 0 1083

expint 68077 +693 10062 +17.2 41359 +382 8588 0 8588
fibcall 559 +78.6 559 +78.6 313 0 313 0 313

fir 487970 +40.2 487808 +40.1 352162 +1.2 352073 +1.1 348095
isort 2328 +117 1428 +33.0 1794 +67.0 1074 0 1074

jfdctint 5388 +9.4 5388 +9.4 4925 0 4925 0 4925
lcdnum 501 +153 341 +72.2 283 +42.9 198 0 198
matmult 275879 +24.4 275859 +24.4 221824 0 221824 0 221824

ns 25741 +84.8 25713 +84.6 17373 +24.7 17353 +24.6 13928
nsichneu 150841 +195 87193 +70.6 97645 +91.0 51116 0 51116

TABLE II. WCET estimates with and without flow facts and timing effects

Program Path-based Extended IPET Clustered IPET Clustered Mix Actual
cycles +% time cycles +% time cycles +% time cycles +% time WCET

adpcm 6282 0 0.02 6282 0 0.24 6282 0 0.18 6282 0 0.12 6282
compress 8670 +0.09 0.01 8670 +0.09 0.21 8670 +0.09 0.12 8670 +0.09 0.1 8662

crc 58435 +93 0 30271 0 0.03 30271 0 0.04 30271 0 0.03 30271
duff - - - 1083 0 0.01 1083 0 0.04 1083 0 0.04 1083

expint 8588 0 0.01 8588 0 0.01 8588 0 0.04 8588 0 0.03 8588
fibcall 313 0 0.01 313 0 0.01 313 0 0.01 313 0 0.01 313

fir 352073 +1.14 0.02 352073 +1.14 0.03 352073 +1.14 0.04 352073 +1.14 0.04 348095
isort 1794 +67.0 0.02 1074 0 0.01 1074 0 0 1074 0 0.01 1074

jfdctint 4942 +0.40 0.01 4925 0 0.01 4926 +0.02 0.03 4942 +0.40 0.01 4925
lcdnum 198 0 0 198 0 0.04 198 0 0.11 198 0 0.1 198
matmult 221824 0 0.01 221824 0 0.02 221824 0 0.04 221824 0 0.04 221824

ns 17361 +24.6 0.01 17353 +24.59 0.01 17353 +24.59 0.03 17353 +24.59 0.03 13928
nsichneu 51133 +0.03 0.03 51116 0 1.4 51116 0 1.5 51133 +0.03 0.22 51116

TABLE III. WCET estimate precision and calculation time

measurements made when always using IPET to
calculate WCETs for clusters.Clustered Mix
holds measurements made when making path-
based calculation within clusters covering just
one scope and not containing total flow facts,
and IPET calculation within remaining clusters.
The Path-based method does not work with the
duff benchmark, since it contains an unstruc-
tured loop.

The path-based WCET estimate precision is of
the same quality as the clustered and Extended
IPET for most programs, indicating that foreach
facts with a cover of a single scope often are
sufficient for obtaining precise WCET estimates.
However, programs such asisort and fir
need extra flow facts coveringseveral scopes for
high WCET estimate precision. This indicates
that scope-local methods are not always sufficient
to achieve high precision. The precision of the
clustered methods are of the same quality as the
Extended IPET, the current method with highest
precision.

For all our benchmarks, exceptadpcm and
nsichneu the time spent in the calculation
stages is almost negligible. This is because most
of the benchmarks programs given in Table I are
quite small and do not really stress our calculation
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Fig. 19. Computation time scaling

methods.
To evaluate how the different calculation meth-

ods scale with added flow facts and the pro-
gram size, we used an altered version of the
nischneu benchmark. The original scope graph
generated fornsichneu consists of three scopes
(see Table I). The innermost scope is very large,
containing 752 scope nodes. By adding extra
dummy flow facts (i.e. facts that do not reflect
the real program execution, but increase the
complexity of the resulting constraint system),
spanning a particular iteration of the inner scope
and not actually removing any execution paths,
we increase the computational load. For example,
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Extra Path-based Extended IPET Clustered IPET Clustered Mix
facts time expl. paths time lptime constr. vars. time lptime calcs time icalls pcalls

0 0.03 5 3.73E97 1.4 0.43 1651 2139 1.5 0.38 2 0.22 0 2
1 0.08 12 1.11E98 15.9 4.45 3417 4528 4.12 0.97 4 0.54 0 4
2 0.13 19 1.87E98 23.03 7.55 4931 6665 7.16 1.7 6 0.99 0 6
3 0.17 26 2.61E98 71.87 26.69 6445 8802 11.79 2.78 8 1.36 0 8
4 0.23 33 3.36E98 110.85 36.56 7959 10939 15.61 3.53 10 1.52 0 10
5 0.28 40 4.11E98 165.31 56.71 9473 13076 30.35 4.79 12 1.83 0 12
6 0.34 47 4.85E98 199.34 59.35 10987 15213 24.59 5.73 14 2.15 0 14
7 0.45 54 5.59E98 295.26 74.88 12501 17350 28.27 6.6 16 2.47 0 16
8 0.46 61 6.34E98 326.21 88.33 14015 19487 34.26 7.76 18 3.2 0 18
9 0.58 68 7.09E98 389.45 106.62 15529 21624 31.61 7.28 20 4.2 0 20

10 0.65 75 7.83E98 468.98 134.47 17043 23761 55.77 12.99 22 4.62 0 22

TABLE IV. Scaling measures of calculation methods

adding one dummy fact creates a virtual scope
graph consisting of 1508 (752 + 752 + 4) scope
nodes. The Extended IPET method creates a
constraint system over the whole graph while
the clustered and path-based calculation meth-
ods partition the resulting problem into smaller
subproblems. For each calculation run all WCET
estimates achieved were exactly the same as
reported in Table III.

Table IV gives computation times obtained for
our calculation methods when adding dummy
flow facts. For each calculation method we give
some values of interest for understanding its
particular execution time properties. For the path-
based calculation the computation time (time),
the number of explored paths (expl.) and the
number of potential paths (paths) are given. For
the Extended IPET calculation, the computation
time (time), the time spent in the linear pro-
gramming solverlp solve (lptime), and the
number of constraints (constr.) and variables
(vars.) generated are given. For the Clustered
IPET calculation the computation time (time),
the number oflp solve calls made (calcs)
and the total time spent inlp solve (lptime)
are given. For the Clustered Mix calculation the
computation time (time), the number of path calls
(pcalls) and the number of IPET calls (icalls) are
given.

Figure 19 shows computation times of each
calculation method plotted against the number
of added dummy flow facts. We note that the
computation time seems to be linearly increasing
with the problem size both for the path-based
and clustered calculations, while the Extended
IPET has a more than linear increase. Both the
Extended IPET and the clustered calculations
spend most of the calculation time in constructing
graphs and generating constraint systems.

The graph also plots the time spent in

lp solve for the Extended IPET and clustered
IPET. For the Extended IPET a single call to
lp solve is made for each calculation, with
constraints and variables for the complete virtual
scope graph. For the clustered calculation, the
number oflp solve calls increases with the
number of added dummy facts, but not the size
of each generated constraint system. Each call
to lp solve by the clustered calculation of
the innermost scope contained 2159 variables
and 1666 constraints and took approximately 0.3
seconds.

We conclude that Extended IPET has quite bad
scaling properties. This could be a general prob-
lem for calculation methods relying on global
ILP solvers for calculating WCET estimates. Our
path-based calculation method is very efficient,
only exploring a few of the total number of
possible paths, and seems to scale very well.
Clustered IPET is somewhere in between in com-
plexity, scaling reasonably well, while still being
able to handle complex flow information. The
Clustered Mix scales even better, relying on the
fact that our path-based method can be used for
all calculations of clusters.

C. Clustered calculation evaluation
We have implemented all five clustering algo-

rithms outlined in Section IV-B. The algorithms
differ in how many flow facts will be grouped
together, and consequently in the size of the scope
graph that will be covered by each fact cluster.
Table V shows the effect of applying different fact
cluster algorithms to our benchmarks. Columns
labelledcl give the number of fact clusters gen-
erated (not including empty clusters). Columns
labelled calls give the number of local WCET
calculations performed, i.e. the number of calls
to lp solve, and time gives the computation
time of the calculation. All measurements where
used using Clustered IPET.
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Program min-split minimum scope max global
cl calls time cl calls time cl calls time cl calls time cl calls time

adpcm 18 59 0.17 18 59 0.18 18 59 0.18 1 36 0.23 1 1 0.23
compress 6 38 0.29 4 34 0.28 4 30 0.3 1 23 0.34 1 1 0.28

crc 6 6 0.04 6 6 0.01 6 6 0.04 1 1 0.01 1 1 0.02
duff 2 12 0.04 2 12 0.04 2 12 0.03 1 4 0.02 1 1 0.01

expint 4 11 0.04 4 11 0.04 2 7 0.03 1 6 0.03 1 1 0.01
fibcall 0 4 0.01 0 4 0.01 0 4 0.01 0 4 0.01 0 1 0.01

fir 5 12 0.05 2 6 0.04 2 3 0.03 1 1 0.02 1 1 0.02
isort 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01 1 1 0.01

jfdctint 0 5 0.02 0 5 0.02 0 5 0.02 0 5 0.02 0 1 0.01
lcdnum 2 23 0.13 2 23 0.12 1 19 0.11 1 21 0.12 1 1 0.03
matmult 0 15 0.04 0 15 0.04 0 15 0.05 0 15 0.04 0 1 0.01

ns 1 13 0.03 1 13 0.03 1 10 0.02 1 13 0.03 1 1 0.01
nsichneu 1 2 2.18 1 2 2.17 1 2 2.06 1 2 2.17 1 1 1.72

TABLE V. Clustered calculation measures

The minimum (minimum) and split-foreach-
fact (min-split) fact clustering algorithms gen-
erate many small clusters, and result in many
local WCET calculations. At the other extreme
we have the global clustering (global) which
performs one single WCET calculation for the
whole program or maximum clustering (max)
which puts all flow facts into one cluster but
does not include non-covered scopes. Scopes not
covered by any fact clusters are traversed bottom-
up generating one or more local WCET calcula-
tions, explaining the different number of WCET
calculation calls made for different benchmarks.
For all benchmarks all clustering algorithms gave
the same WCET estimates as presented for the
clustered calculation in Table III.

Table VI shows measurements done by the
Clustered IPET and Clustered Mix calculation
methods. For the Clustered IPET calculation the
computation time (time) the number of IPET
calls (icalls) are given. For the Clustered Mix
calculation the computation time (time), the num-
ber of path calls (pcalls) and the number of
IPET calls (icalls) are given. We note that both
methods always make the same number of local
calculation calls. For most programs most local
calculations can be made using path-based calcu-
lation. However, for some programs, such ascrc
andduff, IPET is needed in some calculations.
All WCET values except forjfdctint and
nsichneu are identical, indicating that Clus-
tered Mix obtain almost the same precicision
as Clustered IPET. For all programs the time
calculation time of the Clustered Mix is smaller
than Clustered IPET. All measurements where
made using split-foreach-fact clustering.

As discussed in Section V-A, some fact clusters
define graph fragments with several entry and
exit points, allowing us to trade WCET estimate

precision for speed. Table VII presents measure-
ments performed using the minimal clustering
algorithm. Thediff in-out measurements differ-
entiate between entry and exit points, while the
no diff measurements do not. The amount of fact
clusters generated is identical for both algorithms
(cl). The calls column gives the number of local
WCET calculations performed for each program.
We note that for many programs, the number of
local WCET calculations decreases quite signif-
icantly when not differentiating between entry
and exit points. For all programs, exceptns,
the calculated WCET estimates precision is of
the same quality. Programns contains a non-
local return from a deeply nested loop, causing an
overestimation in a fashion similar to the example
presented in Section V-A.

D. Impact of long timing effects

A long timing effect is an effect reaching
over a sequence of three or more nodes (see
Section VII). The number of long timing effects
varies with the processor architecture and the
program code properties. For the V850E, only a
few of our benchmark programs contained long
timing effects, as shown by theLte column in
Table I.

We have implemented a model of the NEC
V850E with a data memory latency of 6 clock-
cycles. This is an artificial model not correspond-
ing to any real setup of the V850E, but very
useful in provoking long timing effects. We use
the model to investigate how long timing effects
affect the WCET estimate precision. This is par-
ticularly relevant for calculations that partition the
program into smaller parts to increase efficiency,
such as our path-based and clustered calculation.
When long timing effects reach over calculation
boundaries they might introduce pessimism in
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Program Clustered IPET Clustered Mix
cl icalls cycles time icalls pcalls cycles time

adpcm 18 59 6282 0.18 0 59 6282 0.12
compress 6 38 8670 0.12 0 38 8670 0.1

crc 6 6 30271 0.04 2 4 30271 0.03
duff 2 12 1083 0.04 9 3 1083 0.04

expint 4 11 8588 0.04 0 11 8588 0.03
fibcall 0 4 313 0.01 0 4 313 0.01
fir 5 10 352073 0.04 0 10 352073 0.04
isort 1 1 1074 0 1 0 1074 0.01

jfdctint 0 5 4926 0.03 0 5 4942 0.01
lcdnum 2 23 198 0.11 0 23 198 0.1
matmult 0 15 221824 0.04 0 15 221824 0.04

ns 1 13 17353 0.03 0 13 17353 0.03
nsichneu 1 2 51116 1.5 0 2 51133 0.22

TABLE VI. Detailed Clustered IPET and Clustered Mix comparision

Program diff in-out no diff
cl calls cycles cl calls cycles

adpcm 18 59 6282 18 58 6282
compress 6 38 8670 6 31 8670

crc 6 6 30271 6 6 30271
duff 2 12 1083 2 5 1083
expint 4 11 8588 4 10 8588
fibcall 0 4 313 0 3 313

fir 5 12 348095 5 12 348095
isort 1 1 1074 1 1 1074

jfdctint 0 5 4926 0 5 4926
lcdnum 2 23 198 2 7 198
matmult 0 15 221824 0 15 221824

ns 1 13 17353 1 8 23746
nsichneu 1 2 51116 1 2 51116

TABLE VII. Entry and exit point differentation effect

the WCET estimate calculation, as discussed in
Section VIII. For example, in Table III the one
clock cycle difference of WCET estimates for
jfdctint of the clustered and the Extended
IPET calculation, is caused by a border-crossing
long timing effect.

Table VIII gives the WCET precision achieved
for our calculation methods when using the
V850E model with 6 cycle data memory. We
use the same scope graphs, flow facts and basic
block graphs as for the runs in Table III. For
some programs, such asadpcm, compress
andmatmult, many long timing effects appear,
while for others there is no impact.

More long timing effects make the precision
of the clustered WCET estimates foradpcm,
compress, jfdctint, matmult and ns to
be a little worse than for Extended IPET. Since
the WCET estimates for these programs were
identical when using the basic V850E model, as
given Table III, we conclude that the obtained
pessimism is due to long timing effects across
calculation boundaries.

For all our benchmarks only negative long
timing effects where observed, even though the
V850E CPU has a potential of exhibiting positive
long timing effects [19]. This means that for
the tested programs, a calculation method would
obtain pessimistic but safe estimates by ignoring
long timing effects.

To evaluate the effect of ignoring long tim-
ing effects, we calculated WCET estimates for
programs using the slow memory and Extended
IPET calculation method, while ignoring all long
timing effects. The result is shown in theIPET,
no Lte column in Table IX. For all programs
exceptisort, ignoring long timing effects leads
to an overestimation of the WCET estimate. For
some programs, such asduff andlcdnum, the

consequences of ignoring long timing effects are
quite substantial. Altogether, we conclude that
long timing effects must be modelled in order
to generate safe and tight WCET estimates.

XI. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented a new method
for calculating the WCET of a program. The
method can be considered a hybrid between fast
but less precise calculation methods such as tree-
based and path-based methods, and the precise
but potentially slow global IPET method. It is
based on finding the smallest possible parts of
a program that have to be handled as a unit
to ensure precision. The calculation method to
use for each such part is not fixed but could
depend on the characteristics of the given flow
information and program structure. Since these
parts are typically small compared to the overall
program, the method is fast, but no precision is
lost from introducing arbitrary boundaries in the
calculation as is done in tree-based and path-
based approaches. Our experiments indicate that
the clustered calculation achieves the same pre-
cision as the global Extended IPET, while being
much less prone to high analysis times.

In general, the suitability of a particular cal-
culation method depends on the structure of the
program, the properties of the provided flow
information and the timing characteristics of the
target hardware. We have outlined several differ-
ent alternatives to perform clustered calculation,
making it easy to adapt the calculation to par-
ticular requirements of computation speed and
precision.

We are currently working on fully integrating
an automatic flow analysis module [8] into our
WCET analysis tool. Preliminary results indicate
that such analyses are likely to produce a large
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Program Path-based Clustered IPET Ext. IPET Actual Lte
Cycles +% Cycles +% Cycles +% WCET

adpcm 12217 +2.02 11985 +0.08 11983 +0.07 11975 36
compress 15457 +1.10 15306 +0.10 15304 +0.10 15289 26

crc 34432 +1.53 33917 +0.01 33917 +0.01 33914 8
duff - - 1468 0 1468 0 1467 2

expint 8720 0 8720 0 8720 0 8720 0
fibcall 332 0 332 0 332 0 332 0

fir 597206 +1.19 590168 0 590168 0 590168 0
isort 3963 +40.55 2361 +0.21 2361 +0.21 2356 3

jfdctint 6626 +3.77 6393 +0.13 6392 +0.12 6385 3
lcdnum 268 +12.61 238 0 238 0 238 5
matmult 312550 +9.53 287470 +0.74 287468 +0.74 285348 13

ns 29243 +70.56 21350 +24.53 21349 +24.52 17145 1
nsichneu 135793 +0.01 135776 0 135776 0 135776 3

TABLE VIII. WCET precision using V850 model with 6 cycle memory

Program IPET, Lte IPET, no Lte Actual
Cycles +% Cycles +% WCET

adpcm 11983 +0.07 12252 +2.31 11975
compress 15304 +0.10 15461 +1.12 15289

crc 33917 +0.01 34427 +1.50 33914
duff 1468 0 1765 +20.31 1467

isort 2361 +0.21 2361 +0.21 2356
jfdctint 6392 +0.12 6626 +3.77 6385

lcdnum 238 0 268 +12.61 238
matmult 287468 +0.74 312550 +9.53 285348

ns 21349 +24.52 21350 +24.53 17145
nsichneu 135776 0 135793 +0.01 135776

TABLE IX. Precision when ignoring long timing effects

number of flow facts, while a human user usually
only provides a handful of facts for a typical
program. In this scenario we believe that the clus-
tered calculation method will become important
to keep the calculation time down.
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