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Abstract

Reliable program Worst-Case Execution Time (WCET)
estimates are a key component when designing and verify-
ing real-time systems. One way to derive such estimates
is by static WCET analysis methods, relying on mathemat-
ical models of the software and hardware involved. This
paper describes an approach to static flow analysis for de-
riving information on the possible execution paths of C pro-
grams. This includes upper bounds for loops, execution de-
pendencies between different code parts and safe determi-
nation of possible pointer values. The method builds upon
abstract interpretation, a classical program analysis tech-
nique, which is adopted to calculate flow information and
to handle the specific properties of the C programming lan-
guage.

1. Introduction

A Worst-Case Execution Time (WCET) analysis finds an
upper bound to the worst possible execution time of a com-
puter program. Reliable WCET estimates are crucial when
designing and verifying embedded and real-time systems,
especially when such systems are used to control safety-
critical systems like vehicles, military equipment and in-
dustrial power plants. These estimates are needed in hard
real-time systems development for schedulability analysis,
to determine if performance goals are met for periodic tasks,
and to check that interrupts have sufficiently short reaction
times [19].

The traditional way to determine the timing of a program
is by measurements. A wide variety of measurement tools
are employed in industry, including emulators, logic ana-
lyzers, oscilloscopes, and software profiling tools [34]. This
is labor-intensive and error-prone work, and even worse, it
cannot guarantee that the true WCET has been found since,
in general, it is impossible to perform exhaustive testing.

Static WCET analysis determines the WCET of a pro-
gram, relying on mathematical models of the software and
hardware involved. The analysis avoids the need to run the

program by considering the effects of all possible inputs, in-
cluding possible system states, together with the program’s
interaction with the hardware. Given that the models are
correct, the analysis will derive a timing estimate that is
safe, i.e., greater than or equal to the actual WCET.

To be able to statically estimate the WCET for a pro-
gram, information on both the program’shardware inter-
action (to get the timing of different instructions) and on
possibleprogram execution flows (to bound the number of
times the instructions can be executed) needs to be derived.

C is currently the dominant language for embedded sys-
tem software development [33], and has many features suit-
able for embedded system development, such as powerful
pointer and bit operations and access to the underlying data
representation. Unfortunately, these features makes it hard
to apply flow analysis techniques to C.

This paper presents ongoing work in the development
of automatic flow analysis methods to analyse real-world
embedded C programs. We use abstract interpretation [10],
a formal program analysis technique to derive properties of
the analysed program. During our work, we have developed
the abstract interpretation along three main lines:

1. We use abstract interpretation to calculate flow infor-
mation, such as upper bounds to loop iteration counts.

2. We have created an abstract analysis domain to handle
the data representation in C. This allows us to handle
C features like structs, arrays, pointers and type casts.

3. We do not perform our analysis directly on the C
source code. Instead, it is applied on an intermediate
code format, making our flow analysis more generic
and less dependent on C source characteristics.

The rest of this paper is organized as follows: In Sec-
tion 2, we given an introduction to static WCET analysis
and present some related work. In Section 3 we present
classical abstract interpretation. In Section 4 we extend the
abstract interpretation to calculate flow information, and in
Section 5 we extend the abstract domain to support data
types and structures in C. Section 6 presents our WCET
tool prototype, SWEET (SWEdish Execution time Tool).
Finally, in Section 7 we draw some conclusions and present
our ideas for future work.



2. Static WCET Analysis Overview

Any WCET analysis must deal with the fact that most
computer programs do not have a fixed execution time.
Variations in the execution time occur due to different in-
put data, the characteristics of the software, as well as of
the hardware upon which the program is run.

Consequently, static WCET analysis is usually divided
into three phases: a (fairly) machine-independentflow ana-
lysis of the code, where information about the possible pro-
gram execution paths is derived, alow-level analysis where
the execution time for atomic parts of the code is decided
from a performance model for the target architecture, and a
final calculation phase where flow and timing information
previously derived are combined to yield a WCET estimate.

The purpose of the flow analysis phase is to extract con-
straints on the dynamic behavior of the program. This
includes information on which functions get called, loop
bounds, dependencies between conditionals, etc. Since the
flow analysis does not know the execution path which corre-
sponds to the longest execution time, the information must
be a safe (over)approximation includingall possible pro-
gram executions. The information can be obtained byman-
ual annotations (integrated in the programming language
[26] or provided separately [15, 17]), or byautomatic flow
analysis methods [21, 23, 25, 27].

The purpose of low-level analysis is to determine the
timing behaviour of instructions, given the architectural fea-
tures of the target hardware. For modern processors it is
especially important to study the effects of various perfor-
mance enhancing features, like caches, branch predictors
and pipelines [3, 13, 24, 27].

The purpose of the calculation phase is to calculate a
WCET estimate, combining the flow and timing informa-
tion derived in the previous phases. A frequently used cal-
culation method is IPET (Implicit Path Enumeration Tech-
nique), using arithmetical constraints to model the program
flow and low-level execution times [15, 18, 25].

The presented work is carried out within a project with
the research goal to develop WCET analysis methods for
real-time embedded systems. Our current research focus
is on automatic flow analysis methods. The need for such
methods has been further motivated by recent case-studies
on static WCET analysis with embedded system vendors
[7, 8, 32]. We have found it especially important is to fo-
cus on automatic methods for loop bound analysis, since
these annotations have been found particularly troublesome
to give.

3. Classical Abstract Interpretation

Abstract interpretation was presented in the 1970s by
Cousot and Cousot [10]. It is a formal framework for pro-

gram analysis which guaranteescorrectness, in the sense
that a predicted program property is surely true. It uses a
generic solution method calledfixed-point iteration which
will, under some conditions, yield the answer in finite time.
The original framework by Cousot and Cousot is defined for
flowcharts (basically control flow graphs) describing imper-
ative, possibly unstructured programs. The framework can
be extended to (possibly recursive) functions.

Abstract interpretation has three important properties:

1. It yields anapproximate and safe description of the
program behavior.

2. It is automatic, i.e., the program does not have to be
annotated.

3. It works forall programs in the selected language.

Abstract interpretation can be used to statically deter-
mine run-time information of many varieties. One use has
been to calculate possible values for variables at different
program points. This information can for example be used
in a ”static debugger” [6] which identifies (the risk of) ar-
ray indices lying outside array ranges, and other possible
errors in the analysed program. This idea has been further
developed and commercialised under the name PolySpace
[29]. Recent examples of the use of abstract interpretation
include special-purpose program analyzers for verification
of large embedded real-time software [4, 5, 35]. Another
use has been to automatically find complexity measures for
programs [30]. Abstract interpretation is also used in in the
commercial WCET tool aiT [1] as a main technique in the
various program analyses performed in the tool.

Abstract interpretation usesabstract states, which repre-
sent sets of program states. Each flowchart node is given an
abstract transition function, which maps abstract states to
abstract states. The set of abstract statesS must form acom-
plete lattice 〈S,�,�,�,�,⊥〉. � is an ordering relation
corresponding to the subset relation on the corresponding
sets of states.�, � correspond to union and intersection, re-
spectively, but may overapproximate the corresponding op-
eration.� is often called “merge”, and typically appears in
transfer functions, for nodes with several incoming edges,
to merge their abstract states. Finally,⊥ is thebottom el-
ement (w.r.t. �), representing∅, and� is the top element,
representing the universal set. IfS � S′, thenS yields
more precise information about the possible states thanS′.
The top element yields no information at all.

Program analysis by abstract interpretation assigns an
abstract stateSp to each program pointp. The abstract tran-
sition functions define a system of equations�S = �F (�S) for
the vectorS of the abstract states in the different program
points. If certain axioms are met, then a solution can al-
ways be found by fixed-point iteration:�Si = �F (�Si−1). The
iteration starts with the least possible assignment�S0 = �⊥,
assigning the bottom element to each program point, and



1) j := 0;
k := 0;
m := 0;

2) if (c)
i := 3;

else
i := 5;

3) while j < i do
k := k + j;
j := j + 1;

4) end do
5) while m < k do

m := m + 1;
6) end do
7) ...

(a) Example program
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(b) CFG

S1 = [i �→ ⊥, j �→ ⊥, k �→ ⊥, c �→ [−∞.. + ∞], m �→ ⊥]
S2 = [i �→ ⊥, j �→ [0..0], k �→ [0..0], c �→ [−∞.. + ∞], m �→ [0..0]]
S3 = [i �→ [3..5], j �→ [0..0], k �→ [0..0], c �→ [−∞.. + ∞], m �→ [0..0]]
S4 = S5 = S6 = S7 = [i �→ ⊥, j �→ ⊥, k �→ ⊥, c �→ ⊥, m �→ ⊥]

(c) Abstract states at the beginning of the first loop

S1 = [i �→ ⊥, j �→ ⊥, k �→ ⊥, c �→ [−∞.. + ∞], m �→ ⊥]
S2 = [i �→ ⊥, j �→ [0..0], k �→ [0..0], c �→ [−∞.. + ∞], m �→ [0..0]]
S3 = [i �→ [3..5], j �→ [0.. + ∞], k �→ [0.. + ∞], c �→ [−∞.. + ∞], m �→ [0..0]]
S4 = [i �→ [3..5], j �→ [1..5], k �→ [0.. + ∞], c �→ [−∞.. + ∞], m �→ [0.. + ∞]]
S5 = [i �→ [3..5], j �→ [3.. + ∞], k �→ [0.. + ∞], c �→ [−∞.. + ∞], m �→ [0.. + ∞]]
S6 = [i �→ [3..5], j �→ [3.. + ∞], k �→ [0.. + ∞], c �→ [−∞.. + ∞], m �→ [0.. + ∞]]
S7 = [i �→ [3..5], j �→ [3.. + ∞], k �→ [0.. + ∞], c �→ [−∞.. + ∞], m �→ [0.. + ∞]]

(d) Final abstract states after using widening

Figure 1. Example of integer interval analysis

will then produce theleast assignment solving the equa-
tions. This gives the best possible precision in the program
analysis.

For some abstract interpretations the fixed-point iteration
will not always terminate. Termination can be guaranteed
through a binarywidening operator 	 on abstract states,
obeying some axioms [10]. For some program pointp, the
recursive equationSp

i = F p(�Sin
i−1) is changed toSp

i =
Sp

i−1 	F p(�Sin
i−1). If at least one equation along each cycle

in the flowchart is changed in this way, then termination
is ensured. The solution obtained when iterating the new
equations will be correct, but it might not be the least one.

The approximative solution can be improved using a
narrowing operator 
. It can be shown that the down-
ward abstract iterative sequence using narrowingSp

i =
Sp

i−1 
 F p(�Sin
i−1) will yield an upper approximation of the

fixpoint that is better than the result found by widening, un-
der some circumstances [11].

3.1. Abstract Interpretation using Intervals

In [9], Cousot proposed the following abstract domain
using the lattice of integer intervals

{⊥} ∪ {[l..u] | l ∈ Z ∪ {−∞}∧ u ∈ Z ∪ {+∞}∧ l ≤ u}

as an approximation of sets of integers, and ordered by set
inclusion. This approximation is formalised by a pair of
functions (theGalois connection) defined by

γ(⊥) = ∅, γ([l..u]) = {x ∈ Z | l ≤ x ≤ u}
α(∅) = ⊥, α(X) = [min(X)..max(X)]

The abstraction function α creates an interval[l..u]
which is a safe aproximation of a set of integers. Thecon-
cretization functionγ creates a set of concrete values (inte-
gers) from an abstract value.

Example. We will present an example using this abstrac-
tion. In Section 4 we develop a different way than presented
here to set up and solve a system of equations for abstract
states. The example motivates this development. Consider
the very small program fragment P shown in Figure 1(a),
with its control flow graph (CFG) in Figure 1(b). P is writ-
ten in a generic imperative programming language, using
only integer variables.

We are interested in the loop bounds of the two while-
loops. The two variablesj andm behave as loop counters;
if the analysis can find possible values of these, the result
could be used as loop bounds. Also, we notice that the num-
ber of iterations in the second loop is dependent on the first.
We will show that the “classical” abstract interpretation is
unable to calculate the number of iterations in the second
loop.

We will visualise an abstract stateSp with the variable
mapping at the program pointp. For increased clarity we
will only annotate a few program points (marked 1,. . . , 7
in Figure 1) in this way during analysis. Also we will not,
for space reasons, show the details of the calculations.

We have the initial stateλx.⊥ at all program points. Af-
ter a few iterations in the fixed-point calculation we are at
the beginning of the first loop, with the abstract states in
Figure 1(c). We assume thatc is an unknown input param-
eter, therefore it is set to the top (�) value[−∞..+∞] prior
to this code. Note thati has received the value [3..5] due to
the merge of the if-edges and becausec is unknown.

After a number of iterations of the fix-point calculation,
j will stabilize to the final value 5 at the join point at the
beginning of the first while loop. The other variable updated
in the loop,k, (i.e., an induction variable), will not find a
stable value but grow infinitely. Thus, the calculation will
not terminate; one reason for this is that the domain contains
infinitely ascending chains.

As mentioned above, one way to enforce termination is
to use a widening operator. In [9], Cousot introduced the



following widening operator for intervals:

⊥� X = X �⊥ = X

[l0..u0] � [l1..u1] =

[(if l1 < l0 then −∞ elsel0)..

(if u1 > u0 then + ∞ elseu0)]

If we use this widening operator at the join program points
for the loops (i.e., program points 3 and 5 in Figure 1), the
fix-point calculation will terminate, with the result in Fig-
ure 1(d). As a result of the widening, all unstable bounds
are extended to infinity. We see thatj has the value[1..5]
in S4 inside the first loop, i.e., the upper loop bound of the
first loop is 5. However, we have no information about the
second loop bound, sincem is unbound inS6.

We can try to improve this result by applying the narrow-
ing operator below, also defined in [9]:

⊥� X = X �⊥ = ⊥
[l0..u0] � [l1..u1] =

[(if l0 = −∞ thenl1 elsel0)..

(if u0 = +∞ thenu1 elseu0)]

Applying this narrowing in a downward abstract iteration
will reducej to [3..5] in S5, S6 andS7, but we get no better
results fork andm, i.e., we do not get any loop bound on
the second loop.

The conclusion from this example is that classical ab-
stract interpretation can not calculate all loop bounds. We
have developed abstract interpretation further to calculate
additional loop bounds, as described in next section.

4. Extending Abstract Interpretation for Flow
Fact Extraction

Classical abstract interpretation merges program states
whenever the control flow joins, analyses all iterations for
a loop ”collectively”, and enforces fast termination using
widening. Narrowing is used to reduce the overestimation
of values. As we saw, in the example in Figure 1, classi-
cal abstract interpretation cannot calculate all loop bounds,
but has to developed further to be able to calculate more
bounds.

We have suggested a type of abstract interpretation (a
kind of ”abstract execution” described in more detail in,
e.g., [16, 21]) where the loops are ”rolled out” dynamically
and each iteration is analysed individually.

In the basic version of the method, no merge is done at
join program points. Instead, all feasible paths in the pro-
gram are analyzed independently.

Example revisited. With that type of analysis, we ana-
lyze the loops in Figure 1 as shown in Table 1 and 2. As
mentioned, the paths are analyzed independently. Since the
flow forks after program point 2, both loops will be ana-
lyzed twice. The tables show the analysis of the first and
the second loop, respectively. The first part of the tables
shows the analysis for the path wherei = [3..3], and the
second part wherei = [5..5]. We see that each iteration is
analysed individually.

In this very simple example, the ranges are just single
values. Normally, the abstract values are ranges represent-
ing many values.

Table 1. Analysis of the first loop.
Si iter. i j k c m
3 - [3..3] [0..0] [0..0] [−∞.. + ∞] [0..0]
4 1 [3..3] [1..1] [0..0] [−∞.. + ∞] [0..0]
4 2 [3..3] [2..2] [1..1] [−∞.. + ∞] [0..0]
4 3 [3..3] [3..3] [3..3] [−∞.. + ∞] [0..0]

Si iter. i j k c m
3 - [5..5] [0..0] [0..0] [−∞.. + ∞] [0..0]
4 1 [5..5] [1..1] [0..0] [−∞.. + ∞] [0..0]
4 2 [5..5] [2..2] [1..1] [−∞.. + ∞] [0..0]
4 3 [5..5] [3..3] [3..3] [−∞.. + ∞] [0..0]
4 4 [5..5] [4..4] [6..6] [−∞.. + ∞] [0..0]
4 5 [5..5] [5..5] [10..10] [−∞.. + ∞] [0..0]

Table 2. Analysis of the second loop.
Si iter. i j k c m
5 - [3..3] [3..3] [3..3] [−∞.. + ∞] [0..0]
6 1 [3..3] [3..3] [3..3] [−∞.. + ∞] [1..1]
6 2 [3..3] [3..3] [3..3] [−∞.. + ∞] [2..2]
6 3 [3..3] [3..3] [3..3] [−∞.. + ∞] [3..3]

Si iter. i j k c m
5 - [5..5] [0..0] [10..10] [−∞.. + ∞] [0..0]
6 1 [5..5] [5..5] [10..10] [−∞.. + ∞] [1..1]
6 2 [5..5] [5..5] [10..10] [−∞.. + ∞] [2..2]
6 3 [5..5] [5..5] [10..10] [−∞.. + ∞] [3..3]
6 4 [5..5] [5..5] [10..10] [−∞.. + ∞] [4..4]
6 5 [5..5] [5..5] [10..10] [−∞.. + ∞] [5..5]
6 6 [5..5] [5..5] [10..10] [−∞.. + ∞] [6..6]
6 7 [5..5] [5..5] [10..10] [−∞.. + ∞] [7..7]
6 8 [5..5] [5..5] [10..10] [−∞.. + ∞] [8..8]
6 9 [5..5] [5..5] [10..10] [−∞.. + ∞] [9..9]
6 10 [5..5] [5..5] [10..10] [−∞.. + ∞] [10..10]

Since the respective loop variables are initialized to zero
and incremented by one, the respective interval for the final
iteration bounds the maximal iteration count for the loop
in question. Thus, we conclude that the possible number of
iterations, for the first loop in Figure 1, is in the range[3..5],
and for the second loop in the range[3..10]. In this way,
we can find better loop bounds than with classical abstract
interpretation:

• We get both lower and upper loop bounds for the second
loop.

• We get a tighter lower loop bound for the first loop.

Another advantage is that we can get results for individ-



ual loop iterations. For example, when having nested loops,
we can get individual loop bounds for the inner loops for
each iteration of the outer loops.

Our general approach to calculate loop limits is to instru-
ment the loops withexecution counter variables that are set
to 0 prior to the loop, incremented by one in the loop, and
then use our type of abstract interpretation to find the final
values of these variables. It is worth mentioning, that these
execution counter variables will behave as induction vari-
ables, i.e., like the variablek in Figure 1, and as we have
pointed out, classical abstract interpretation can not calcu-
late the bounds for these. There are, however, other meth-
ods to do calculations for some types of induction variables,
like [20], but our type of of abstract interpretation is a more
general solution.

The loop bounds are, as well as information on infeasi-
ble paths, recursion depth etc., information on the possible
flows in the program. We call this informationflow facts,
and use a specially developedflow fact language to express
this information. Thescope graph is a program representa-
tion where these flow facts can be stored [14].

4.1. Merging

One consequence of this type of abstract interpretation is
that each iteration up to the loop bound has to be analyzed.
This means of course that quite heavy calculations have to
be made. There is a risk of state explosion since there can
be a lot of alternatives in each iteration.

To reduce this problem we introducemerging of abstract
states at certain join program points. We have developed
four types of merge strategies, based on the selection of dif-
ferent types of merge points:

• Type 1: merge atfunction end. The merge points are the
targets of the return statements in functions.

• Type 2: merge atloop termination. The merge points are
the termination points after loops.

• Type 3: merge atloop body end. Merging is performed
at the header after each loop iteration.

• Type 4: merge atif. The merge points are the join points
after selection statements.

Merging may of course introduce some overestimations.
For example, if a merge is done at the join point after an if
statement, the results of both branches will be merged into
one, and we may include some values in the result which are
not possible in real executions. However, it can be shown
that the result is safe in the sense discussed in Section 3.

Consider for example the example in Figure 1 again. Do-
ing a merge after if statements (type 4) would have lead to
a single analysis of the first loop withi = [3..5]. We would
have included the infeasible valuei = 4 in the calculations,
but the result would still be safe, and we would have less
calculations in the analysis.

As an another example, consider an analysis of the
following code fragment: if(x < 3) S1 else S2;
if(x > 17) S3 else S4. Without merging, we obtain
four different abstract states after the last statement. How-
ever, the abstract state corresponding to the sequenceS1-S3

becomes infeasible sincex cannot both be smaller than 3
and larger than 17 (assuming thatx is not changed inS1).
We can therefore conclude thatS1-S3 can not be executed
and therefore is an infeasible path. If we would have merged
the abstract states after each if statement (type 4 above) we
would have lost this information.

So, there is a trade-off between analysis speed and preci-
sion of the result. The different types of merging allows us
to make experiments to choose the optimal merging strategy
for a certain piece of code.

5. Extending the Abstract Domain for C

Most embedded systems are programmed in C and/or as-
sembly language. More sophisticated languages, such as
C++, Ada or Java, have found some use, but the need for
speed, portability, small code size, and efficient access to
the hardware has kept C the dominant language in such sys-
tems [33]. Furthermore, embedded software is often spe-
cialized for a particular hardware platform and a special
purpose, and the code can therefore differ quite significantly
from ordinary desktop code [12]. For example, features like
unstructured code, deeply nested loops, function pointers,
logical and bitwise operations are common in embedded
real-time code, while dynamical features like dynamical al-
location of memory and recursion are used to a lesser extent.
A flow analysis suitable for embedded system C code must
be able to handle all common features in an efficient and
safe manner.

5.1. Analysing C programs

An analysis of C programs requires an adaption of the
classical abstract interpretation outlined in Section 3. In C,
memory representation of data is very explicit, i.e., all val-
ues can be seen as a sequences of bits, and the interpretation
depends on the operations applied on the values. The data
can be stored in memory and referenced using pointers. For
example,int* p = &i assigns the address of thei vari-
able to the pointerp. The address can, similar to other val-
ues, be seen as a sequence of bits on which operations can
be applied. This explicit representation of data is suitable
for embedded programmers who often need to manipulate
and access their data on a very fine-grained level. For ex-
ample, memory mapped I/O requires access to dedicated
memory addresses.

Furthermore, due to memory constraints the embedded
system C programmer often tries to use minimal sized data



types, e.g., using chars or shorts instead of ints whenever
possible [12]. These data types are limited in their value
ranges. For example, an unsigned char can only hold a value
between 0 and 255. This means that the abstract value do-
mains must be adapted to be suitable for the data types used
in C, i.e., instead of[−∞..+∞] a variable of unsigned char
type should have a possible value domain of[0..255]. Fur-
thermore, C has no protection for arithmetical overflow of
values, making the codeunsigned char c = 255;
c = c + 1; result in the value0, a fact that the analysis
must handle correctly.

In C a chunk of data, like an array, is actually a con-
tinuous piece of memory where you can access individual
elements using a start address and an offset. For example,
an arraychar A[5] can be referenced using normal array
indexing:char c = A[2]; or using a pointer:char*
p = A; c = *(p + 2);. Furthermore, you can read
smaller parts of a datum or you can merge several smaller
parts into a larger piece of data. For example,int i =
*((int *)(A+1)); merges the four last chars in theA
array and stores the resulting value as a 32-bit integer value
in the variablei. C is strongly typed, but you can (implic-
itly or explicitly) create data of a specific type from a data
of another type.

C has powerful operations for bit manipulation of data,
like left (<<) and right (>>) bitshift, binary or (|) and bi-
nary and (&). For the embedded system programmer, such
operations can be useful for setting and manipulating indi-
vidual bits in ports or dedicated registers. However, these
operations makes it hard to represent possible data values
only as intervals, since we also need to know how the data
is represented at bit level. For example, when performing
a binaryk = j & 25; operation, an interval representa-
tion ofk will be dependent of the possible bitpatterns of the
interval representation ofj.

The bit representation of data becomes even more ap-
parent when we consider how chars, shorts and integers are
represented. Basically, for each such data you can interpret
the bitstring as either signed or unsigned. This means that it
might be the case that(i < j) is true ifi andj both are
signed, but not true if they are both unsigned. Furthermore,
when comparing values of different types, C makes implicit
type conversions. For example, assumingi is a signed char
with value-1 andj is an unsigned int with value5, a com-
parison(i < j) would be evaluated to false. This is be-
causei is interpreted as a unsigned int, which becomes a
very large number, before being compared. Since type con-
versions (both implicit and explicit) are frequently used in
C the abstract interpretation must be able to handle this.

Pointers are frequently used by embedded system C pro-
grammers. They give the programmer large freedom, but
are also a common source for programming errors. Pointers
also cause problems for the classical interval analysis. A

straightforward interval representation of a pointer would
be an interval covering all possible addresses which the
pointer could hold. However, this is not possible on the C
code level since it is not defined at what particular memory
addresses data and instructions should be stored, i.e., this
is left for the compiler and linker to decide. Therefore, a
safe analysis assumption would be that every pointer could
hold any address of every data in the program. This would
however be overly pessimistic in most cases and result in
non-usable analysis results.

Unfortunately, a flow analysis suitable for C must handle
pointers and pointer operations, since these are frequently
used to decide the outcome of conditionals. For example,
Sandberg [31] reports that more than 50% of the condition-
als of the analyzed embedded system codes were directly
dependent on pointers. Pointers can also be used to indi-
rectly manipulate data which control conditionals. For ex-
ample, inint* p = &i; *p = 5; if(i < j) the
p pointer is used to assign a value to thei variable, and is
indirectly deciding the outcome of the branch condition.

5.2. The NIC format

One intricate question is to which program code level
that derived flow information should be related. Flow in-
formation can be provided in relation to the source code,
the intermediate code in a compiler, or to the object code.
For WCET-tool users, flow information or value constraints
on variables are often easier to provide at the source-code
level. However, such flow information must somehow be
mapped down to the object code to be used in the WCET
calculation. In the presence of optimizing compilers, this
mapping problem is non-trivial since transformations like
loop unrolling, function inlining and code duplication can
be performed [28]. On the other hand, automatic flow ana-
lysis is harder to perform at the object code level since vari-
ables and other entities of interest are harder to identify in
the object code.

We perform our flow analysis on NIC (New Intermediate
Code), an intermediate code format designed for embedded
system code analysis and compilation. NIC and its support-
ing environment has been developed by a research project at
Uppsala University targeting whole program analysis [37].
NIC is generated from C and is able to handle (almost) com-
plete ANSI-C. By performing the flow analysis on an inter-
mediate code format we will be able to evaluate the benefits
of integrating static WCET analysis into a compiler frame-
work.

NIC explicitly expresses most of the things that are im-
plicit in C. For example, when comparing a signed char and
an unsigned int a lot of implicit type conversions are made
in C, but in NIC all these steps are explicitly represented
by NIC instructions. NIC can represent the C source code
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(a) C to NIC
conversion

int foo(void)
{
short arr[4];
int i = 2;
int buf[7];
int *p;
buf[5] = i;
p = buf;
p++;
....

}
(b) Example C
code fragment

...
(function ()
(register manager
((register 1 32) (annot (variable "p")))
((register 2 32) (annot (variable "i")))))
(frame layout
((const (symbol "arr")) 64)
((const (symbol "buf")) 224))
(flowgraph
((0 (node (stmt enter))
(1 (node (stmt def (register 2)
(expr imm (const (bits "00000002"))))))
(2 (node (stmt store
(expr op (operator add 32 (32 32))
((expr rel (const (symbol "buf")))
(expr imm (const (bits "00000014")))))
(expr use (register 2)))))

(3 (node (stmt def (register 1)
(expr rel const (symbol "buf")))))
(4 (node (stmt def (register 1)
(expr op (operator add 32 (32 32))
((expr use (register 1))
(expr imm (const (bits "00000004"))))))))

...

(c) Corresponding NIC code fragment
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(d) Potential
memory layout and

environment
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(e) Abstract
memory and
environment

Figure 2. C to NIC conversion example (a-d) and corresponding abstract state (e)

closely, such that all data and control structures in the C
code have direct counterparts in the NIC code. Then flow
analysis results on NIC, such as execution count bounds on
basic blocks or iteration bounds on loops, can be mapped
back to the corresponding control-flow construct in C. But
NIC can also represent the code after structural optimiza-
tions, before the backend generates object code. The control
flow of this kind of NIC code will then be close to the con-
trol flow of the object code, and flow analysis results can be
mapped to the object code with only minor modifications.

NIC can be seen as high-level assembler code format and
is written in a LISP-like syntax. All data values are repre-
sented as bitstrings and the interpretation of a certain bit-
string depends on the operation applied to the datum. For
example,SMUL(32,32) is an operation specified for two
32-bit bitstrings where the arguments should be interpreted
as signed 32 bit integers. Few properties of the target archi-
tecture are present in NIC. However, sizes of different data
types, endianness and alignment have to be specified.

NIC supports three type of places where data can be
stored:global memory (allocated at program start-up),lo-
cal memory (allocated at function entries) andregisters (or
temporaries). NIC has a common global symbol table in-
cluding global data identifiers and function identifiers, the
latter allowing for function pointers. Data that can be refer-
enced using pointers cannot be allocated in registers, but are
instead stored in local memory. The same holds for large lo-
cal data allocated at function entries, like arrays and structs.

Global and local data are allocated by NIC inmemory
frames. NIC does not specify the actual memory address

for a frame, just that the frame should be allocated when
entering the function and that it should have a certain size.
An allocated frame can be referenced by a given frame id.
A hypothetical implementation of NIC would use anenvi-
ronment as part of the state, which maps frame id’s to ac-
tual addresses in such a way that frames don’t overlap. See
Fig. 2.

All global data frames are allocated and given values at
program startup. Local data frames are allocated at func-
tion entries and deallocated at function returns. Whenever
a new frame is allocated the current environment is updated
with a mapping between the frame id (used to reference the
frame) and the address where the frame was allocated. This
means that a new local frame can be allocated every time a
function is called, and the environment makes sure that the
last allocated frame is referred by the given frame id.

As an illustrating example consider the C code fragment
in Figure 2(b) and corresponding NIC code fragment in Fig-
ure 2(c). Theint buf[7]; declaration has a direct cor-
respondance in the NIC code, specifying that a frame of size
32 ∗ 7 = 224 bits should be allocated and referenced using
the frame id “buf”. The i variable andp pointer are not
allocated in frames but are instead stored in registers. Fig-
ure 2(d) gives a potential memory layout after the NIC code
has been executed. It also gives the resulting environment.

A pointer value in NIC is a pair(x, o), wherex is a frame
id ando is an offset. Given an environmentE, the actual
reference to memory is calculated asE(x)+o. For accesses
of array elementsa[i] the offset is calculated ass · i where
s is the size in bytes of the elements, just as in C.



char a[5]={’h’,’e’,’l’,’l’,’o’};
char b; char c = 100; char *p;

1) if(b < 10)
p = &a[2]; 2)

else
p = &a[0]; 3)

p++;
4) if(b == 5)

p = &c; 5)
b = *p; 6)

(a) Example C code program

S1 = [a �→ P, b �→ [−128..127], c �→ [100..100], p �→ ⊥]
S2 = [a �→ P, b �→ [−128..9], c �→ [100..100], p �→ {〈”a”, [2..2]〉}]
S3 = [a �→ P, b �→ [10..127], c �→ [100..100], p �→ {〈”a”, [0..0]〉}]
S4 = [a �→ P, b �→ [−128..127], c �→ [100..100], p �→ {〈”a”, [1..3]〉}]
S5 = [a �→ P, b �→ [5..5], c �→ [100..100], p �→ {〈”c”, [0..0]〉}]
S6 = [a �→ P, b �→ [100..108], c �→ [100..100], p �→ {〈”a”, [1..3]〉, 〈”c”, [0..0]〉}]
where
P = {〈0, [104..104]〉, 〈1, [101..101]〉, 〈2, [108..108]〉, 〈3, [108..108]〉, 〈4, [111..111]〉}

(b) Abstract values

Figure 3. Example program with new abstract domain

NIC has a general function call parameter transfer. The
caller pushes evaluated parameter values in a parameter
passing area as specified by a specific call instruction, and
the called function pops the corresponding parameter values
into its local registers. At a function entry a new environ-
ment is allocated and updated with new registers and new
mappings between frame id:s and frame start addresses.
The old environment is stored on a call stack. At function
returns, a similar mechanism is used to handle return values
from functions. The previous environment is restored from
the call stack.

5.3. Our New Analysis Domain

Our new abstract domain, for our flow analysis, is de-
fined for NIC. For ordinary numerical values we use inter-
vals, as outlined in Section 3, to represent sets of values.
Each basic data type in C, such aschar, short, int and
float has a corresponding abstract interval data type. The
−∞ and+∞ values used in classical interval analysis are
replaced with the real lower and upper bounds of each par-
ticular data type. The abstract domain of each such abstract
type forms a lattice with a specified bottom element and top
element, as outlined in Section 3. For example, for an un-
signed short the top element�short is [0..65535] as shown in
Figure 2(e). The bottom element occurs when a data cannot
contain any value, which is an indication of an infeasible
execution path.

All data are given a default abstract basic type accord-
ing to its specified C type. Each data can only have one
current abstract type, except for integers where we concur-
rently maintain both a signed and unsigned abstract value
domain, see Section 5.4. If the value should be interpreted
as another type than its default type, maybe due to some
type cast, we have functions for converting data between
different domains, e.g., from an integer interval to a float
interval. We have also implemented abstract versions of all
bit manipulating operations for intervals.

For larger pieces of memory consisting of several basic
data, like arrays and structs, we use the NIC frame con-
cept. An abstract frame is defined as a set of abstract data,

where each abstract data has a specified abstract type and
a specified start address in the frame. For example, in Fig-
ure 2(e) thebuf array gets represented as an abstract frame
frame2 of 224 bits size which contains seven 32-bit inte-
ger intervals stored continously at every 32-bit offset from
the frame start address.

We also use the NIC frame concept to implement pointer
values. An abstract data in an abstract frame is referenced
using a symbolic frame id and an offset, where the offset is
represented as an integer interval. For example, the possi-
ble value of&a[2]; is represented as a tuple〈”a”, [2..2]〉,
where a is the symbolic frame id “a” used to refer to the
frame allocated for arraya. To handle the case that a pointer
can point to several different data, we represent a pointer
value as a set of such tuples.

Figure 3 gives an illustration of our pointer representa-
tion. Since variableb is locally allocated an not initial-
ized with a value we cannot decide the outcome of the dif-
ferent conditionals. A safe approximation of the possible
state after executing the code in Figure 3(a) is given by pro-
gram pointS6 in Figure 3(b). The abstract value ofp of
{〈”a”, [1..3]〉, 〈”c”, [0..0]〉} holds all potential pointer val-
ues ofp and is used to give values to theb variable.

We note that our abstract pointer representation will
never include frames which cannot be referenced by the
pointer. For example, in Figure 3 the value ofp will never
includeb even thoughb might be located at an physical
address situated inbetweena and c. This pointer repre-
sentation also allows us to handle operations like addition
and subtraction on pointers, by applying the operation on
the offset interval. For example, thep++ operation in Fig-
ure 3(a) increases the offset value by one.

In our current implementation we only keep one offset
interval per frame id. This might sometimes yield infeasi-
ble offset values. For example, in Figure 3 the〈”a”, [1..3]〉
is overly pessimistic sincep actually can only point to the
addresses ofa[1] anda[3]. We plan to evaluate the pes-
simism introduced by this representation, and increase the
number of offsets per frame id if neccessary.



5.4 Representing Both Signed and Unsigned

In classical interval analysis each variable value has a
designated type, and is represented as a range consisting of
an lower and upper limit of the specified value. For exam-
ple, a 8-bit unsigned char variable value would be repre-
sented as a range[i..j] where0 ≤ i ≤ j ≤ 255. How-
ever, as mentioned in Section 5.1, in C implicit or explicit
type conversions are often made, and the same data can be
used in both signed and unsigned operations. This means
that the same bitpattern can represent several possible val-
ues, depending on the operation applied on the bitpattern.
This provides a problem when designing a useful abstract
domain for an interval analysis.

To exemplify the problem, consider an 8-bit characterv.
If interpreted as unsigned,v can have a value0 ≤ v ≤ 255,
and if interpreted as signed,v can have a value−128 ≤
v ≤ 127. This means that some of the possible bitpatterns
of v have a different meaning if interpreted as signed re-
spectively unsigned, but not all. For example, bitpattern
00010100 means20 both as signed and unsigned, while the
bitpattern10100110 is interpreted as−90 if signed and166
if unsigned. The same principle holds for C:s representation
of chars, shorts, ints etc.

�����,��� �&������%���,-�

���"�%��!�.���

�����"�%��!�/���		

������"�%��!

�����,��� �&������%���,-�

,���"�%��!�.���		

��	���"�%��!

�����,��� �&������%�����

����"�%��!�.����

������"�%��!

��������

��

��������

���

"�%��!

��"�%��!

�������� �������� �������� ��������

�������,���

�������� �������� �������� ��������

�������,���

��������

,-�

��������

,��

"�%��!

��������

�		

��������

��	

��"�%��!

�������,��� �		,-� ��

"�%��!

��"�%��!

�������� ����������������
�������� �������� �������� ��������

Figure 4. Signed and unsigned integer ranges

Figure 4 illustrates the problem of representing values
using standard integer intervals. As shown in Figure 4(a),
an 8-bit value range[00010100..01100100] is interpreted
as the same value range both as signed and as unsigned,
[20..100]. The 8-bit value range[10100110..11001110]
becomes more problematic since it will be interpreted
differently as signed,[−90..−50], respectively unsigned,
[166..206]. This means that a< comparison between the

two bitpattern ranges in Figure 4(b) will have different out-
comes depending on if a signed or unsigned comparison is
applied.

When value ranges cross signed and unsigned bitvalue
borders the problem becomes even more problematic. Fig-
ure 4(c) illustrates the range[−90..20], and its correspond-
ing bitpattern range:[10100110..00010100]. The range in-
cludes values which are the same if interpreted as signed or
unsigned, but also some values which are not. If we want to
interpret the[−90..20] range as an unsigned, e.g., to apply a
unsigned operation, we get thetwo unsigned ranges[0..20]
and [166..255] as a result, where the latter corresponds to
the part of the[−90..20] range smaller than 0.

A safe, but very pessimistic conversion of[−90..20] to
an unsigned range would be the[0..255] range, i.e., a range
holding all possible unsigned values for an 8-bit value.
However, this conversion means that we lose a lot of pre-
cision when going from signed to unsigned and vice versa.
Consequently, when going back to the signed value repre-
sentation again, after applying the unsigned operation, the
resulting value would be a gross overapproximation, i.e., the
range[−128..127]. For larger data, like 32-bit integer inter-
vals, a signed to unsigned conversion might easily lead to
very large precision loss, resulting in an range representing
all possible 32-bit integer values.

To solve this problem, we chose to maintaintwo rep-
resentations of integers at the same time; one signed, and
one unsigned. Each representation can consist of at most
two ranges. For a representation to consist of two ranges
it must have the property to include both the min and max
value limits in the range, and that the corresponding (signed
or unsigned) representation only consists of one range. Fig-
ure 4(c) illustrates the idea. The signed[−90..20] range cor-
responds to the two[0..20] and[166..255] unsigned ranges.
The unsigned representation is allowed to be two ranges
since it includes the min value (0), and max value (255)
limits in the range.

This double range representation also nicely handles the
problem of value limit overflow and underflow for a range.
For example, adding the value of one to an unsigned 8-bit
range[250..255], will result in a overflow, yielding the two
unsigned ranges[0..0] and[251..255], (together correspond-
ing to the signed range[−5..0]), instead of the overly pes-
simistic range[0..255]. The drawback of this representation
is that all abstract operations have to be adapted to argu-
ments consisting of two ranges instead of one. For example,
the abstract version ofSMUL must be able to multiply two
arguments each consisting of (at most) two ranges.

6. The SWEET Tool

The SWEET tool (SWEdish Execution time Tool) [15,
22] is a research prototype tool, which combines the flow
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Figure 5. WCET tool prototype

analysis described in this paper with a number of supporting
analyses. For example, in order to speed up the analysis,
statements not affecting the control flow are removed, and
simple loops are analysed and removed prior to the abstract
interpretation step.

The basic analysis steps of SWEET are depicted in Fig-
ure 5. The C program is translated to NIC code, which is
analysed with the flow analysis. The result of the flow ana-
lysis is stored as flow facts, which are combined with the
result of the low-level analysis (including pipeline analysis)
in a calculation step to yield a final WCET.

7. Conclusions and Future Work

We have shown how abstract interpretation can be used
to make flow analysis on embedded C code. One important
next step will be to test these ideas in practice on real em-
bedded C code. This will be done once the SWEET tool is
finished.

We are participating in the ARTIST2 timing analysis
cluster together with most WCET analysis researcher in Eu-
rope. The aim for the cluster is to increase the availability
of static WCET tools and analyses. This is made by the de-
velopment of common data formats for exchanging analysis
results, such as flow facts, required in the WCET analysis.

For future work one idea is to map the flow facts found
for (unoptimized) NIC code back to C. In this way, our flow
analysis results would be easily visible by the programmer.
Also, the flow analysis will be more autonomous and less
coupled to our internal data representation. Another idea is
to convert assembler code to NIC to be able to perform flow
analysis on code for which source code is missing.
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