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This paper discusses the role and integration of knowledge discovery (KD) in case-based reasoning (CBR)
systems. The general view is that KD is complementary to the task of knowledge retaining and it can be treated
as a separate process outside the traditional CBR cycle. Unlike knowledge retaining that is mostly related to case-
specific experience, KD aims at the elicitation of new knowledge that is more general and valuable for improving the
different CBR substeps. KD for CBR is exemplified by a real application scenario in medicine in which time series of
patterns are to be analyzed and classified. As single pattern cannot convey sufficient information in the application,
sequences of patterns are more adequate. Hence it is advantageous if sequences of patterns and their co-occurrence
with categories can be discovered. Evaluation with cases containing series classified into a number of categories and
injected with indicator sequences shows that the approach is able to identify these key sequences. In a clinical applica-
tion and a case library that is representative of the real world, these key sequences would improve the classification
ability and may spawn clinical research to explain the co-occurrence between certain sequences and classes.
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1. INTRODUCTION

Clinicians use both explicit knowledge obtained from guidelines and regulations, and im-
plicit knowledge based on their own experience and that of the patients and other clinicians,
and experience in the form of past cases (Montani and Bellazzi 2001). Implicit knowledge
may be knowledge that is known by many or all clinicians. But because medical case libraries
also include case outcomes, they may be a valuable source of implicit knowledge not pre-
viously recognized by clinicians. A large proportion of medical research is directed toward
discovering new co-occurrences (e.g., von Schéele 1999).

The main contribution of knowledge discovery (KD) is that it makes possible the recog-
nition of previously unknown and potentially useful information. It may be defined as the
nontrivial process of identifying novel, valid, and potentially useful data patterns, and ideally,
to also understand these data patterns (Fayyad, Piatetsky-Shapiro, and Smyth 1996). KD is
related to machine learning, statistics, databases, and data visualization, and uses a variety of
techniques such as statistical techniques, decision trees, decision nets, clustering techniques,
and neural nets. Some case-based reasoning (CBR) systems contain a proportionately large
part that could be labeled as KD, others contain no KD and the learning process is purely
based on new experience in the form of new cases stored in the case library during case
retaining. Typically the retain step adds a new case or may modify some existing cases in the
case library and usually contains a number of substeps of which the learning of knowledge
based on the new case is one substep (Aamodt and Plaza 1994).

A limitation of learning included in the CBR cycle is that it is always associated with
a specific case newly solved and thereby fails to discover more general domain knowledge
relevant for performing CBR tasks. The general domain knowledge in support of various
CBR steps can be classified into five different knowledge containers (Richter 1995), which
are outside the scope of the case library as shown in Figure 1. It follows that we need to
introduce an independent module to elicit knowledge for these knowledge containers apart
from learning by means of case retaining. The KD module depicted in Figure 1 serves this
purpose and it is considered as a separate background task outside the CBR cycle. Any ex-
isting knowledge including the case library constitutes the input source for KD and the new
knowledge discovered is then delivered back to knowledge containers as well as the case
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FIGURE 1. Case library, knowledge containers, and the knowledge discovery module.

library (e.g., as prototype or stereotype cases). Such bidirectional information exchange is
very beneficial in giving birth to an integration that, on one hand, facilitates knowledge acqui-
sition and learning, and on the other hand, makes new knowledge available to enhance some
steps in the CBR cycle.

Actually, the idea of a separate KD module came from our studies of medical CBR
applications with time series. Because the major interest therein lies on the transition of
behavior over time rather than on the absolute values in the sequence, original time series
data fail to capture the nature of the problem and thus cannot be utilized directly in case
matching and retrieval. Acquisition of structured knowledge therefore becomes imperative
to better characterize the time-series cases and to perform meaningful similarity matching
for retrieval of relevant cases. We focus on discovering knowledge for case retrieval in the
context here and that is why only one knowledge container (retrieve knowledge) in Figure 1
exhibits connections with the KD module. But in a general sense any knowledge container
can be coupled with KD and receives newly acquired knowledge.

The aim of this article is to advocate an independent KD process to be integrated with
CBR and demonstrate the significance of doing so, especially in light of common medical
applications with time-series data. The role of KD as supplementary to case retaining is
further discussed in Section 2. Followed in Section 3, a concrete medical scenario is tackled
in detail, where indicative sequences for judging patient stress categories are identified from
cases of series of breath patterns. The identified indicative sequences can be utilized as key
features for depicting original data series and also provide valuable information for similarity
matching and case retrieval.

Cases containing time series have been explored in medical applications in particular and
also in some industrial cases. The value of CBR in medical applications has also been investi-
gated and confirmed in a number of research projects. Successful CBR applications in medical
classifications include case-based object recognition (Perner and Bühring 2004); the Auguste
project (Marling and Whitehouse 2001); the CARE-PARTNER system (Bichindaritz, Kansu,
and Sullivan 1998); the MNAOMIA system, a CBR system able to create hypotheses in the
area of eating disorders (Bichindaritz 1995; Bichindaritz 1996), and Schmidt and Gierl’s
unnamed system for time-series analysis and prediction of kidney function (Schmidt and
Gierl 2001). For a more extensive overview of state-of-the-art of medical CBR systems (see
Nilsson and Sollenborn 2004).

2. KNOWLEDGE DISCOVERY AS COMPLEMENTARY
TO KNOWLEDGE RETAINING

As stated in the preceding section, experiences gained by CBR itself are always associated
with specific cases even if generalized in the form of classes and prototypes. We thereby take
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the approach of treating KD as a separate process, integrated into and extending the CBR
cycle. In the CBR systems we have studied, it is easy to distinguish between learning based
on new experience (new cases and their indexing) and KD. Our extended definition of KD
in CBR systems is that it is learning that is not naturally associated with a new specific case.
While the CBR cycle is often directly triggered by a new problem, the KD process is often
naturally suitable as a separate background task. The case library as a whole and additional
knowledge are the input to the KD process and the result is delivered back to the system. In an
industrial CBR system diagnosing faults in industrial robots on the basis of sound patterns,
the KD process was performed manually, discovering new features and general knowledge
that is used in the system to improve matching results (Olsson, Funk, and Xiong 2004). The
discovery of new features is now considered for automation in an off-line approach using all
cases as the source for the discovery process. For the identification of breathing dysfunctions
to diagnose stress, a CBR system is used to classify individual breathing cycles (Nilsson
et al. 2006). The KD process in this application is too complex to be performed manually but
experts in the field are convinced that KD would identify new and valuable co-occurrences
in categories of patient’s measurement data, and in particular in the time series of classified
breathing patterns. Such new knowledge would increase the usefulness of the CBR system in
the diagnosis of patients and would encourage research as experts can use the new knowledge
to improve and refine existing models.

Case-based reasoning uses domain knowledge to retrieve relevant cases from the case
library. In complex applications, as many medical applications are, a large body of domain
knowledge is often needed to enable the system to identify and retrieve the relevant cases.

If a system performs weakly in retrieving appropriate cases, either the retrieval knowledge
is insufficient or the cases do not include all the essential features necessary to retrieve the
most relevant cases. If the retrieval knowledge is insufficient, it may be necessary to optimize
the weighting or if a more complex domain, optimize the similarity functions. If, however,
essential features are missing or concealed in relations between other features, considerable
effort may be needed to identify them. For some systems the separation of the KD makes the
CBR system more transparent and reduces the complexity of research and implementation.
It may even make it easier to apply CBR to applications for which it has not been suitable
previously because of their complex nature.

A KD process integrated in the CBR cycle may also be advantageous because advance-
ments in computing technology will enable more sophisticated approaches to the discovery
of knowledge and the return of new general knowledge to the knowledge container. Figure 2
shows the input to and output from the KD process. The cases in the case library may stem
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FIGURE 2. Knowledge discovery and its integration with CBR.
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from different case bases. In the medical domain it may not normally be acceptable to dis-
tribute medical cases between hospitals without a medical reason, but it may be acceptable
if they are to be used by a KD process to obtain new knowledge to be made available to
all CBR systems of the same kind. In our example the retrieval knowledge is input to the
KD process to determine if there are previously undiscovered co-occurrences. In a medical
environment the knowledge containers of all the CBR systems may have the same content
and share prototypical cases, but in general, they contain different cases. Moreover, it may
also be desirable to validate and verify discovered knowledge automatically or manually, for
example, if the system is able to reclassify all the cases in the case library as effectively as
or more effectively than the system without the discovered knowledge, it may be argued that
it is safe to add the discovered knowledge.

The example showing the integration of CBR with KD is from the medical domain, in
which the classification of respiratory sinus arrhythmia (RSA) based on sensor readings
is becoming increasingly important in physiological/psychophysiological medicine (von
Schéele 1999). When clinicians diagnose patients, one important procedure is to classify
RSA into twelve or more different patterns, a task being automated with a CBR sys-
tem (Nilsson et al. 2006). The full patient case is information-rich and cases store the
time series of classified breathing patterns, today used manually by clinicians in mak-
ing a final diagnosis. Time series of breathing patterns are used in the diagnosis pro-
cess because clinicians know that classification based on a single breathing cycle is not
sufficient for the reliable diagnosis of a breathing dysfunction. Classifying complex time
series manually is tedious and often requires long experience, with no explicit rules
or guidelines available, in the worst case leading to incorrect diagnoses by less experi-
enced clinicians. KD pertinent to CBR in this scenario will be addressed in the following
section.

3. AN EXAMPLE OF KNOWLEDGE DISCOVERY IN TIME SERIES

As noted in Nilsson et al. (2006) classification of individual RSA patterns is one of the
main procedures used by clinicians to classify RSA dysfunction. Clinicians also emphasize
that classification based on a single RSA pattern is not sufficient for a reliable diagnosis of
an RSA dysfunction. This is because RSA reflects the net effect of the complex interaction
of the many different systems involved.

The pattern classification system (Nilsson et al. 2006) identifies dysfunctional RSA
patterns directly from sensor readings. A clinical session usually lasts eighteen minutes
divided into a number of different phases (e.g., normal breathing, provoking stress, breathing
deeply, etc.), with an average of five to fifteen seconds per respiration period. These phases
are handled as individual cases and each phase contains a series of classified RSA patterns
(example in Subsection 3.1). A series of breaths contains on average forty to eighty respiration
periods (inhalation–exhalation cycles). The pattern classification system eliminates most
sensor noise, but there is still the possibility that there may be some misclassifications caused
by distortions in sensor reading data. In the following we will only refer to series or breathing
patterns and not phases.

The ability of experienced clinicians to identify RSA series is based on their experience.
They are able to explain them once they recognize such a series, but the knowledge is not so
explicit that they are able to describe such a series in advance. It should also be noted that
the complexity of the systems reflected in RSA, their behavior, and their interaction are not
fully understood and more theoretical work is needed (von Schéele 1999).

For this reason we have developed a method



242 COMPUTATIONAL INTELLIGENCE� that permits the recognition of similarity of RSA sequences;� that makes possible the identification of new RSA sequences of importance for the diag-
nosis of patients,� that detects co-occurrence between RSA sequences and patient status, which may lead to
the discovery of new co-occurrences as results of clinical experiments isolating the causal
factors.

The method and relevant terminology are explained in the following subsections.

3.1. Important Sequences of RSA patterns

Assume that each dysfunctional RSA pattern is assigned a number between 1 and 9
(assuming for simplicity that there are only nine patterns, there being in reality more than
ten different dysfunctional RSA patterns) and that one normal RSA pattern is assigned the
number 0. A sequence of classified RSA patterns for a session can be illustrated by a series of
successive integers with the length equal to the number of breathing cycles (usually 40–80,
in the example below some parts of the series have been omitted)

RSA series: [0003000001060003000240050003020030020000700009020000]. (1)

For a reliable diagnosis it would be advantageous to be able to identify recurring sequences
of importance in the RSA series. Such sequences are exemplified in (2).

Significant sequences: [302], [3002], and [30002]. (2)

The sequences in (2) can be used by clinicians to detect RSA dysfunction, especially if they
recur a number of times during a series. If the RSA patterns occur in this particular order
(a RSA sequence) this may be a strong indication of a dysfunction, but if they (patterns “3”
and “2”) occurred in a different order or in a random order, then a clinician may not regard
them as an indication of a dysfunction. Hence a way to automatically recognize recurring
sequences of possible importance would be of value to clinicians.

3.2. Discovering New Important RSA Sequences in the Case Library

As can be seen from above, the important sequences recognized play a crucial role
in the detection of dysfunctional RSA. A number of RSA sequences of importance in the
diagnosis process are provided by clinicians with extensive experiences. But there may be
RSA sequences not yet discovered by clinicians that may indicate RSA dysfunction. Experts
in the field state that the discovery of new sequences is important for improving the reliability
of the diagnosis process.

Discovery of RSA sequences potentially indicating dysfunction can be made by analyzing
a large number of an RSA series from patients with known diagnosis. Once an RSA sequence
occurs frequently in different series, a data-mining tool is able to discover a co-occurrence
between the sequences and diagnosis. Such a tool may use clustering methods, statistics,
and search techniques, and inspect all cases with this particular sequence, and identify any
relation to a specific diagnosis. If such a relation is established, it can be used to aid clin-
icians in their diagnosis process. An experienced clinician may also be interested in using
this discovery tool for discovering useful knowledge to accelerate the progress in clinical
research.

Figure 3 shows a model that we are following to find new important sequences. The
starting point (the top in Figure 3) is the problem space of all plausible sequences. A pro-
cedure with some domain knowledge including a priori known expressions may guide the
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FIGURE 3. Discovery of new expressions and their co-occurrences.

generation of new sequences during the search process. The search is purported to find new
key sequences (see Subsection 3.2.2) from all possible ones that are indicative in predicting
a class in diagnosis. Each sequence generated is evaluated (see Subsection 3.2.1) in terms of
the co-occurrence relationship between it and probable consequent classes based upon RSA
series that belong to patients that have been diagnosed before. Clinicians classify patients
in fourteen different classes. Because a sequence can appear in cases belonging to differ-
ent patient classes all the cases containing the sequence have to be taken into account. The
percentages of these cases in different classes then reflect the strength of the co-occurrence
relationship of interest. Only those sequences exhibiting adequately strong co-occurrence (a
threshold may be set by an expert in the field) are accepted as the goals of the search proce-
dure. Following the search is the step of generalization, which intends to merge similar key
sequences into expressions. A sequence is regarded as the simplest form of an expression.
Creating expressions from sequences will be further explained in Subsection 3.4. Finally the
co-occurrences of expressions are assessed with respect to consequent classes based upon
the case library. The co-occurrences are also determined numerically for expressions already
known because this will supplement more exact knowledge to the clinician’s experience.
The expressions shown in the right bottom corner in Figure 3 are described by the two most
probable patient diagnoses and their corresponding probabilities.
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3.2.1. Evaluation of a Sequence. Given a sequence s there may be a set of probable
consequent classes {C1, C2, . . . , Ck}. The strength of the co-occurrence between sequence
s and class Ci (i = 1, . . . , k) can be measured by the probability, p(Ci | s), of Ci conditioned
upon s. Sequence s is considered as discriminative in predicting outcomes as long as it has
strong co-occurrence with either of possible outcomes. The discriminating power of s is
defined as the maximum of the strengths of its relations with probable consequents. Formally
this definition of discriminating power PD is expressed as:

P D(s) = max
i=1···k

P(Ci | s). (3)

The conditional probabilities in (3) can be derived according to the Bayesian theorem as

P(Ci | s) = P(s | Ci )P(Ci )

P(s)
. (4)

As the probability P(s) is generally obtainable by

P(s) = P(s | Ci )P(Ci ) + P(s | C̄ i )P(C̄ i ), (5)

equation (4) for probability assessment can be rewritten as

P(Ci | s) = P(s | Ci )P(Ci )

P(s | Ci )P(Ci ) + P(s | C̄ i )P(C̄ i )
. (6)

Our aim here is to yield the conditional probability P(Ci | s) in terms of equation (6). As
P(Ci ) is a priori probability of occurrence of Ci , which can be acquired or approximated from
experiences in the domain, the only items that remain to be resolved are the probabilities of
s in cases having class Ci and in cases not belonging to class Ci , respectively. Fortunately
such probability values can be easily estimated by resorting to the case library. For instance
we use the frequency of appearances of sequence s in class Ci samples as approximation of
P(s | Ci ), thus we have

P(s | Ci ) ≈ N (Ci , s)

N (Ci )
, (7)

where N(Ci ) denotes the number of cases having class Ci in the case library and N(Ci , s) is
the number of cases having both class Ci and sequence s. Likewise the probability P(s | C̄ i )
is approximated by

P(s | C̄ i ) ≈ N (C̄ i , s)

N (C̄ i )
, (8)

with N(C̄ i ) denoting the number of cases not having class Ci and N(C̄ i , s) being the number
of cases containing sequence s but not belonging to class Ci .

The denominator in (6) has to stay far above zero to enable reliable probability assessment
using the estimates in (7) and (8). Hence it is crucial to acquire an adequate amount of
samples containing s in the case library. The more such cases available the more reliable
could the derived probability assessment appear. For this reason we refer the quantity N (s) =
N (Ci , s) + N (C̄ i , s) as evaluation base of sequence s in this paper.

Especially, should the prior probability P(Ci ) be assessed based on the appearance fre-
quency of samples of Ci in the case library, equation (6) for calculation of the conditional
probability is simplified to

P(Ci | s) ≈ N (Ci , s)

N (s)
. (9)
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Herein the evaluation base N(s) clearly indicates the number of samples upon which the
required conditional probability value is estimated in (9).

Two criteria have to be fulfilled for a sequence to be assessed as a key one upon case
samples. The first is sufficient discriminating power to predict possible outcomes. The sec-
ond is adequate evaluation base to ensure reliability of the probabilities assessed. In real
applications it is up to related experts or clinicians to ultimately decide these thresholds
that are highly domain dependent. The threshold for discriminating power may reflect the
minimum probability value that suffices to predict a potential outcome in a specific domain.
The threshold for the evaluation base indicates the minimum amount of samples required
to fairly estimate the conditional probabilities of interest. Finally only those sequences that
pass the thresholds for both evaluation base and discriminating power are recommended for
being evaluated as key ones.

3.2.2. Search Algorithm for Finding Key Sequences. Finding the set of key sequences
entails systematic exploration of a state space in which each state represents a sequence of
patterns. Connection between two states signifies an operator between them for transition,
i.e., addition or removal of a single pattern in time series. The search space for a scenario
with three patterns is illustrated in Figure 4, where an arc connects two states if one can be
created by extending the sequence of the other with a successive pattern.

The search starts from a null sequence and new sequences are created successively by
adding a single pattern to parent nodes for expansion. The newly created nodes are then
evaluated according to the evaluation bases and discriminating powers of the associated
sequences. The results of evaluation determine the way to treat each child node in one of the
following three situations:

i) If the evaluation base of the sequence is under a threshold required for conveying reliable
probability assessment, terminate the expansion at this node. The reason is that the child
nodes will have even smaller evaluation bases by appearing in fewer cases than their
parent node;

ii) If the evaluation base and discriminating power are both above their respective thresh-
olds, terminate the expansion at the node and store the state of this node as a key
sequence. It is not necessary to continue on that node for expansion because all its child
nodes merely contain redundant information with respect to the key sequence found;

   [  ] 

   [ 1 ]   [ 2 ]   [ 3 ] 

 [ 12 ]  [ 13 ]  [ 21 ]  [ 22 ]  [ 23 ]  [ 31 ]  [ 11 ]  [ 32 ]  [ 33 ] 

FIGURE 4. The state space for time series with three patterns.
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iii) If the evaluation base is above its threshold whereas the discriminating power still not
reaching the threshold, continue to expand this node with the hope of finding a satisfying
sequence from its children.

The expansion of non-terminate nodes is proceeded in a level-by-level fashion. It is
alike the breadth-first search in the sense that only when nodes at a current level have been
expanded does the algorithm move on to the next level. On the other hand, in the context
of this paper, we introduced certain special rules to deal with new nodes, which makes our
search algorithm differ from the traditional breadth-first procedure in that (1) it does not
attempt to expand every node encountered and a criterion is established to decide whether
exploration needs to be proceeded at any given state; (2) it presumes multiple goals in the
search space and thus the search procedure is not terminated when a single key sequence is
found. Instead the search continues on other nodes until neither node from the current level
needs to be further explored. A formal description of the proposed search algorithm is given
as follows:

Algorithm for finding key sequences

1. Initialize the Open list with an empty sequence.
2. Remove the most left node t from the Open list.
3. Generate all child nodes of t.
4. For each child node, C(t), of the parent node t

(a) Evaluate C(t) according to its discriminating power and evaluation base;
(b) If the evaluation base and discriminating power are both above their respective thresh-

olds, mark C(t) as a key sequence and store it into the Key list;
(c) If the evaluation base of C(t) is above its threshold but the discriminating power is

not satisfying, put C(t) on the right of the Open list.

5. If the Open list is not empty go to step 2, otherwise return the Key list and terminate the
search.

Finally it bears mentioning that the work of sequences discovery presented here differs
from those (Agrawal and Srikant 1995; Srikant and Agrawal 1996; Garofalakis, Rastogi, and
Shim 1999) in the literature of sequence mining. Usually the goal in sequence mining is merely
to find all legal sequential patterns with their appearance frequencies above a user-specified
threshold. However in our application context we have to consider the cause-outcome effect.
Only the sequences exhibiting sufficient appearances and also strong discriminating power
will be selected as the results of search.

3.3. Simulation Results on Sequence Discovery

To verify the feasibility of the mechanism addressed above we now present the simulation
results on an artificially created case base. A case in this case base is depicted by a time series
of 20 patterns and one diagnosis class as the outcome. A pattern in a time series belongs to
{1, 2, 3, 4, 5} and a diagnosis class is either A, B, or C. The four key sequences assumed
are [1 4 3], [2 3 1], [4 5 2], and [5 1 5]. The first two sequences were supposed to have
strong co-occurrences with class A and the third and fourth exhibit strong co-occurrence
with classes B and C, respectively. Each case in the data set was created in such a way that
both sequences [1 4 3] and [2 3 1] had a chance of 80% of being reproduced once in the time
series of class A cases while sequences [4 5 2] and [5 1 5] were added into B and C cases,
respectively, with a probability of 90%. After stochastic reproduction of key sequences the
remaining patterns in the time series of all cases were generated randomly. The whole case
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TABLE 1. Sequences Discovered with the Threshold of the Evaluation Base Set at 50

Sequence Discriminating Evaluation Main
Discovered Power (%) Base Consequent

[1 4 3] 76.70 103 Class A
[2 3 1] 78.22 101 Class A
[4 5 2] 73.39 124 Class B
[5 1 5] 83.18 107 Class C

TABLE 2. Sequences Discovered with the Threshold of the Evaluation Base Set at 30

Sequence Discriminating Evaluation Main
Discovered Power (%) Base Consequent

[1 4 3] 76.70 103 Class A
[2 3 1] 78.22 101 Class A
[4 5 2] 73.39 124 Class B
[5 1 5] 83.18 107 Class C
[3 1 4 3] 82.86 35 Class A
[3 4 5 2] 84.85 33 Class B

base consists of 100 instances for each class. The a priori probabilities of different classes
were estimated based upon their appearance frequencies in this data set.

The search algorithm was applied to this case base to find key sequences and potential
co-occurrences hidden in the data. The threshold for discriminating power was set at 70% to
ensure an adequate strength of the relationship discovered. We also specified the values for
the threshold of the evaluation base for reliable assessment of probabilities. Tables 1 and 2
illustrate the results from the tests where the threshold for the evaluation base was specified
as 50 and 30, respectively.

As seen from Table 1 we detected all the four key sequences previously assumed. They
were recognized to potentially cause the respective consequents with probabilities ranging
from 73.39% to 83.18%. This relationship with a degree of uncertainty is due to the many
randomly generated patterns in the case base such that any sequence of patterns is more or
less probable to appear in any class cases. But such non-deterministic property is prevalent
in many real-world domains, particularly in medical diagnosis situations.

By reducing the evaluation base threshold to 30 we obtained the results in Table 2, which
consists of two more sequences: [3 1 4 3] and [3 4 5 2]. Yet this is not outside our expectation
because the sequence [3 1 4 3] includes the key sequence [1 4 3] and [3 4 5 2] includes
the key sequence [4 5 2]. Undoubtedly, a sequence containing a known key sequence is still
discriminative in diagnosis. On the other hand, it bears noting that these two new sequences
are actually redundant in conveying no more information. Redundant sequences can be easily
identified by checking possible inclusion between sequences returned by the search procedure.
Redundant sequences may also be avoided by increasing the evaluation base threshold for
the search algorithm (as shown in Table 1) because a redundant sequence appears in fewer
cases than the sequence it includes.
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FIGURE 5. Identification of relevant sequences in a pattern series.

3.4. Applying Discovered Sequences to New Cases

Once a set of key sequences has been discovered upon the case library, they can be
compared with each other for possible merging. Our solution is to generalize those sequences
relating to the same class and with similar discriminating power into an expression enabling
certain variations. For instance, if the sequences in (2) exhibit similar co-occurrences with
the same RSA dysfunction, they are generalized into the expression [“3”, n ∗ “0”, “2”] with
∗ denoting n time repetition of the following label and n ∈ {1, . . . , 3}. This generalized
expression means that there is first an RSA pattern 3 followed by one, two, or three normal
breathing patterns and finally an RSA pattern of class 2, and that the variation of the number of
normal breathing cycles in between plays no significant role. The aim of such generalization
is to recognize similar sequences and enable identical interpretation of certain varying RSA
sequences as done by clinicians. When a clinician is investigating a measurement session, a
search for similar, but not exactly matching sequences may be relevant and hence a similarity-
based matching is preferred. This may indicate a variation of an RSA dysfunction or even a
new type of RSA dysfunction not previously encountered.

In Figure 5 a series of classified RSA patterns is given as input (from the left). This
series is a result from a measurement signal classified by the HR3Modul, a tool for clas-
sification of RSA (Nilsson et al. 2006). The HR3Modul has classified each RSA pattern
in the measurement signal. “0” is a normal breathing cycle with no indication of dysfunc-
tion. The library of expressions at the top can be seen as the output from Figure 3 and it
contains expressions and/or sequences of importance for classifying dysfunctions. The ex-
pressions in this library may, as mentioned previously, stem from experienced experts, but
may also contain formulations of sequences automatically generated as described in Subsec-
tion 3.2. The “identify sequences of relevance” process in the middle is the matching process,
discovering sequences similar to those formalized in the expression library. In the resulting
output series on the right, the identified sequences are underlined. Such identified relevant se-
quences can be considered as distinguishing features for depicting the case of the input pattern
series.

The result will present the recognized sequences in the RSA pattern series to the clinician
in a suitable way (sequences may overlap each other so how the sequences are visualized for
the clinician must be chosen carefully). This will help less experienced clinicians in making
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an overall diagnosis of the patient and also ease the work load on experienced clinicians.
Moreover, as the discovered sequences have strong discriminating power, they will also be
valuable in explaining diagnoses of clinicians in a similar way as that was done for single
features in McSherry (1999, 2004).

4. UTILITY OF THE KNOWLEDGE ABOUT KEY SEQUENCES
FOR INDEXING TIME-SERIES CASES

The discovered key sequences are treated as significant features in capturing dynamic
system behaviors. Rather than enumerating what happened in every consecutive time seg-
ment, we can now more concisely represent a time-series case in terms of occurrences of key
sequences in it. Let {S1, S2, . . . , Sp} be the set of key sequences. We have to search for every
Si (i = 1, . . . , P) in a time series X to detect all possible appearances. Then case index for X
can be established according to the results of key sequence detection. In the following three
alternate ways to index X based on key sequences are suggested.

4.1. Naı̈ve Case Index

A naı̈ve means of indexing a time-series case X is to depict it by a vector of binary
numbers each of which corresponds to a key sequence. A number in the vector is unity if the
corresponding sequence is detected in X and zero otherwise. This means that, by the naı̈ve
method, the index of X is given by

Id1(X | S1, . . . , SP ) = [b1, b2, . . . , bP ] (10)

where bi =
{

1 if Si is subsequence of X

0 otherwise.
(11)

This index has the merit of imposing low demand in computation. It also enables the
similarity between two cases to be calculated as the proportion of the positions where their
indexing vectors have identical values. Suppose two time-series cases X 1 and X 2 which
are indexed by binary vectors [b11, . . . , b1P ] and [b21, . . . , b2P ], respectively, the similarity
between them is simply defined as

Sim1(X1, X2) = 1 − 1

P

P∑
j=1

|bij − b2 j |. (12)

4.2. Case Index Using Sequence Appearance Numbers

With a binary structure the case index in Subsection 4.1 carries a little limited content
and would be usable only in relatively simple circumstances. A main reason is that the index
cannot reflect how many times a key sequence has appeared in a series of consideration. To
incorporate that information, an alternate way is to directly employ the numbers of appear-
ances of single key sequences in describing time-series cases. By doing this we acquire the
second method of indexing time series X by an integer vector as

Id2(X | S1, . . . , SP ) = [ f1, f2, . . . , fP ], (13)

where fi denotes the number of occurrences of sequence Si in series X .
Further, considering the case index in (13) as a state vector, we use the cosine matching

function (Salton 1968) as the similarity measure between two time-series cases X 1 and X 2.
Thus we have
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Sim2(X1, X2) =

P∑
j=1

f1 j f2 j√√√√ P∑
j=1

f 2
1 j

√√√√ P∑
j=1

f 2
2 j

, (14)

with f1 j , f2 j denoting the numbers of occurrences of key sequence S j in X 1 and X 2,
respectively.

4.3. Case Index in Terms of Discriminating Power

Although the case index in (13) can distinguish two cases having a same key sequence
but with different numbers of appearances, it still might not be an optimal representation to
capture the exact nature of the problem. Recall that the value of a key sequence is conveying
a degree of confidence in the sense of discriminating power for predicting a potential conse-
quent, a time series X would be more precisely characterized by the discriminating powers
of the appearances of single key sequences. Intuitively two times of occurrences of a key
sequence would give a stronger discriminating power than occurring just once, but not twice
in the quantity of the strength. From view of this we suggest indexing X as a vector of real
numbers, representing discriminating powers for the appearances of single key sequences,
as follows:

Id3(X | S1, . . . , SP ) = [g1, g2, . . . , gP ], (15)

with gi =
{
DP ( fi ∗ Si ) if fi ≥ 1

0 if fi = 0.
(16)

With DP( fi ∗ Si ) we denote the discriminating power by sequence Si appearing fi times
in X .

Let C be the class that the key sequence Si is indicative of. We define the discriminating
power DP( fi ∗ Si ) as the probability for class C given fi appearances of sequence Si . This
probability can be obtained by applying the Bayesian theorem in a sequential procedure.
Assuming a two-class problem without loss of generality, this procedure is depicted here by
a series of equations as follows:

P(C | Si ) = P(Si | C)P(C)

P(Si | C)P(C) + P(Si | C̄)P(C̄)
, (17)

P(C | 2 ∗ Si ) = P(Si | C)P(C | Si )

P(Si | C)P(C | Si ) + P(Si | C̄)P(C̄ | Si )
, (18)

P(C | t ∗ Si ) = P(Si | C)P(C | (t − 1) ∗ Si )

P(Si | C)P(C | (t − 1) ∗ Si ) + P(Si | C̄)P(C̄ | (t − 1) ∗ Si )
, (19)

DP ( fi ∗ Si ) = P(C | fi ∗ Si )

= P(Si | C)P(C | ( fi − 1) ∗ Si )

P(Si | C)P(C | ( fi − 1) ∗ Si ) + P(Si | C̄)P(C̄ | ( fi − 1) ∗ Si )
, (20)
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where the probabilities P(Si | C) and P(Si | C̄) can be estimated according to equations (8)
and (9), respectively. The probability updated in equation (17) represents the probability for
class C given one appearance of Si , which is further updated in equation (18) by the second
appearance of Si producing a higher probability considering both occurrences. Generally,
the probability P(C | t ∗ Si ) is yielded by updating the prior probability P(C | (t − 1) ∗ Si )
with one more occurrence of Si in equation (19). Finally we obtain the ultimate probability
assessment incorporating all appearances, i.e., the required discriminating power, by equa-
tion (20).

We now give a concrete example to illustrate how a case index can be built in terms of
occurrences of key sequences. Suppose a two-class situation in which three key sequences
S1, S2, and S3 are discovered. Sequence S1 appears twice in time series X and S2 appears
once while S3 is not detected. S1 and S2 are both indicative of a certain class C. The a priori
probability for class C is 50% and the probabilities of sequences S1, S2 in situations of class
C and its complementary are shown below

P(S1 | C) = 0.56 P(S1 | C̄) = 0.24

P(S2 | C) = 0.80 P(S2 | C̄) = 0.40.

With all the information assumed above, the discriminating powers for the appearances
of S1 and S2 are calculated in the following:

1. Calculate the probability for C with the first appearance of S1 by

P(C | S1) = P(S1 | C)P(C)

P(S1 | C)P(C) + P(S1 | C̄)P(C̄)
= 0.56 · 0.5

0.56 · 0.5 + 0.24 · 0.5
= 0.70.

2. Refine the probability P(C | S1) with the second appearance of S1, producing the dis-
criminating power for the appearances of S1

DP (2 ∗ S1) = P(C | 2 ∗ S1) = P(S1 | C)P(C | S1)

P(S1 | C)P(C | S1) + P(S1 | C̄)P(C̄ | S1)

= 0.56 · 0.70

0.56 · 0.70 + 0.24 · 0.30
= 0.8448.

It is clearly seen here that the power of discrimination is increased from 0.70 to 0.8448
due to the key sequence occurring for the second time.

3. Derive the discriminating power for the occurrence of S2 by calculating the conditional
probability for C upon S2 as

DP (1 ∗ S2) = P(C | S2) = P(S2 | C)P(C)

P(S2 | C)P(C) + P(S2 | C̄)P(C̄)

= 0.80 · 0.50

0.80 · 0.50 + 0.40 · 0.50
= 0.6667.

Moreover, because S3 is not detected in X , there is no discriminating power for it.
Hence we construct the index for this time series case as

I d3(X | S1, S2, S3) = [0.8448, 0.6667, 0].
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Finally, with this case-indexing scheme, we use the cosine function again as the
similarity measure for case retrieval. So the similarity between two time series X 1 and
X 2 is given by

Sim3(X1, X2) =

P∑
j=1

g1 j g2 j√√√√ P∑
j=1

g2
1 j

√√√√ P∑
j=1

g2
2 j

, (21)

where g1 j and g2 j denote the jth elements in the case indexes (15) for X 1 and X 2,
respectively.

5. SUMMARY AND CONCLUSIONS

We have in this paper discussed the value of combining KD and case-based reasoning
in medical applications in which time series and patterns of events in these time series are
relevant. We propose to treat KD as a separate process, outside the traditional CBR cycle.
In contrast to knowledge retaining which is directly related to case-specific experience, the
purpose of KD is to discover new knowledge that is more general and, by adding this new
knowledge to improve the overall performance of the CBR system.

The approach is exemplified in a medical domain (diagnosis of stress) in which the
diagnosis is based on time series of classified breathing patterns. KD is used to discover key
sequences in previously classified time series of breathing cycles. Single classified breathing
patterns are not always sufficiently reliable for classification. New sequences that may have
a causal correlation to specific diagnoses are generated and thereafter evaluated against
all classified time series. If there is a correlation between the sequence and a particular
diagnosis, the sequence is saved and used for improved classification of new unclassified
series of breathing patterns. If the case library is representative of the real world, the key
sequences can be used to improve the case-based reasoning systems ability to classify new
problems. The identified key sequences may also have a value for experts who wish to explore
and discover new causal relations not known previously. Hence the proposed approach also
makes the case libraries valuable assets for clinical research. The suggested combination of
KD and case-based reasoning is generic and will work for similar domain where time series
contain information that improves classification and diagnosis.
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