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Abstract 
 
Nowadays, up to 98% of all manufactured computer processors worldwide are used in embedded 

systems. Most of the embedded systems have time constraints, which means that the computer that 

controls such a system not only has to compute the correct result, but is also required to produce the 

correct result in a specific time interval. The time constraints are often expressed by temporal 

deadlines that must be met by the software tasks in the system. It is therefore important to know how 

long time the system needs to execute each individual task.  

 

The worst-case execution time (WCET) is an upper bound for all the possible execution times of such 

a task. The WCET can be obtained by various kinds of methods. Generally, they can be divided into 

two categories: dynamic methods and static methods. Dynamic methods derive the WCET by 

measurements. The program code executes, and the execution time is measured by hardware or 

software, such as a logic analyzer and time-functions provided by the operating system. Static methods 

obtain WCET without executing the program, instead a WCET analysis tool is used to calculate the 

execution time for the longest execution path.  

 

In this thesis the WCET was measured by dynamic methods. An oscilloscope and a logic analyzer 

were used for time measurement. The goal of the thesis was, together with CC-Systems AB (CCS), to 

compare and evaluates different kind of methods for execution time measurement. The WCET 

analyses have been performed on interrupt routines used in CCS’s welding machine control system. In 

order to find out the differences in precision and practical difficulties between using measurement and 

static analysis, the measurement methods and their results were compared with WCET estimates 

obtained by the static method, the aiT WCET analysis tool. To estimate WCET by a static method was 

a part of work in another Master Thesis, which was performed by Ola Eriksson at CCS during the 

same period of time as this thesis. 

 

Through this thesis, we found out that neither the dynamic measurement nor the static WCET analysis 

is alone perfect. To obtain the best WCET estimates, the recommendation is to combine both kinds of 

methods.  
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1. Introduction 

1.1 Background 
 
Today, our everyday lives are very much correlated with computers, not only the desktop computers, 

but also the computers that are embedded as a part of many different products around us. More than 

98% of all manufactured processors worldwide are used in embedded systems [1]. People can find 

embedded systems in various kinds of areas, such as telecommunications, vehicle industry, automotive 

systems, consumer electronics, nuclear power plant control, weapon guidance, etc.   

 

Any mechanical or electrical system that is controlled by a computer working as part of an overall 

system is called an embedded system [2]; in other words, embedded systems are special-purpose 

computer systems hidden inside other systems or products. They are normally rather small in size and 

therefore have some design constraints, such as, limited system resources, including memory, 

processor performance, network bandwidth, and limited display and user interface capabilities. Since 

they usually have few interfaces to the outside world, the users of such systems are usually not able to 

modify or maintain the computer systems hidden inside. Furthermore, most embedded systems have to 

meet real-time constraints, that is to say, the computer that controls the system not only has to give the 

correct computation result, but it is also required to give the result within a specific time interval. This 

is often expressed by temporal deadlines that must be met by the software tasks in the system. The 

deadlines can be either “hard” or “soft”. Hard deadline means that if the task misses its deadline, the 

consequence can be severe: damaged property or even loss of lives. For example, tasks in the flight-

control system in an airplane have hard deadlines. Soft deadline means that if the task misses its 

deadline, no catastrophe will happen, but the system performance will be deteriorated. For example, 

the encoding and decoding tasks in a multimedia device have soft deadlines.  

 

To guarantee the safety and the good performance of the systems, it is necessary to prove that all the 

tasks in the system will meet their real-time constraint even under the most stressful situations. If 

several tasks are ready to execute at the same time, a schedule must be made. According to the 

schedule, the scheduler will choose one task to execute on the CPU. A system is schedulable if all the 

tasks in the system will be executed in such a priority order so that all of them will meet their 

deadlines. This scheduling can be either static or dynamic, depending on when the decisions for the 

task selection are made: offline, if it is before the system starts to run; or online, if during execution by 

the scheduler. There are several parameters that are required for proving the schedulability of the 

system, including period time, release time, deadline, etc. In [3] there are explanations for all of these 

factors.  Another very important and basic factor for proving the schedulability is the knowledge of an 

upper bound for the execution time of each task, which is called Worst-Case Execution Time (WCET). 
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The WCET is defined as the longest execution time of a program that could ever be observed when the 

program is run on its target hardware [1]. 

 

Before computer programs are used in real-time applications, WCET analysis has to be done. This 

analysis aims to find out the worst possible execution time of program, so that the developer of the 

system will be able to tell whether the system can handle all kinds of possible scenarios, even under 

the most stressful situations. It is not easy to find the real WCET. The execution time of the computer 

program can vary from time to time. This is because it can be different inputs that are given to the 

functions in the program, which can lead to different execution paths through the program. It is 

difficult to know whether one has tested all possible scenarios. Modern processors have caches and 

pipelines to speed up memory access times and to accelerate program execution by overlapping 

instruction execution. These technologies make it even more difficult to decide the execution time, 

because in this case the execution time depends on not only the inputs, but also the execution history. 

For example, whether a data is in the cache or not, depends on which data accesses that have been 

made before this access. Similarly, the execution time of an instruction in a pipelined processor 

depends on what instructions that have been executed before. Thus it is very difficult to precisely 

estimate the WCET.  

 

1.1 Purpose 
 
The goal of this thesis is that, together with CC-Systems AB (CCS) [4], evaluate and compare 

different kinds of measuring methods for execution time analysis, and eventually give 

recommendations about which kind/kinds of methods shall be used by CCS in its future work. 

Dynamic WCET analysis methods are compared with static WCET analysis methods, which aim to 

find out which methods that are systematically best suited and most easy to use for CCS. CCS is also 

interested in how they should write their program code to simplify WCET analysis and if they can get 

more benefit from the method than just WCET values. This thesis also includes a study of the methods 

that have already been used by CCS. 

 

Two pieces of program code have been measured. Both of them are used on the same welding 

machine control system that CCS has developed for the welding and cutting machine manufacturer 

ESAB [5]. An oscilloscope and a logic analyzer are used as the time measuring instruments.  

 

The Advanced Software Technology Centre (ASTEC) in Uppsala [6] has supported this research. 

ASTEC is a Vinnova (Swedish Agency for Innovation Systems) initiative [7]. 
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1.2 Timing behaviour of a program  
 
 

 
Figure 1.3: Execution time estimates 

 
 
There are several expressions that are used to describe execution time measures when analysing the 

timing behaviour of a program. 

 

The worst-case execution time (WCET) is defined as the longest execution time of a program that 

could ever be observed when the program is run in its target hardware [1]. Observe that this definition 

is valid only for one program in isolation. This means that interference from background activities 

such as direct memory access or refresh of DRAM memory are not considered [1]. Likewise the pre-

emption or interrupts are also ignored in the WCET analysis. WCET is used to describe the time 

behaviour of a program and it is essential to bind this for all applications within a real-time system, to 

guarantee that the system works correct in all possible scenarios.  

 

The best-case execution time (BCET) is defined as the shortest execution time of a program that could 

ever be observed when the program is run on its target hardware [1]. BCET can be of interest when 

calculating the start of the response time interval of a real time system. For some kinds applications, 

the difference between the WCET and BCET is also important to know. 

 

The average-case execution time (ACET) lies somewhere in-between the WCET and the BCET, and 

depends on the execution time distribution of the program [1]. 

 

An execution time analysis should aim to give safe and tight estimates of the WCET and BCET. By 

safe we mean that the WCET estimates must be guaranteed not to be under the real WCET, and tight 

means that overestimation of the WCET estimates compared to the real WCET should be acceptable. 



9 

Likely, the BCET estimation should not overestimate the BCET and provide acceptable 

underestimations.  

 

Figure 1.3 shows the relation between the estimated WCET / BCET and the actual WCET / BCET of a 

program. The x-axis is the time-axis and the curve indicates the possibility distribution of programs 

execution time. As we can see in this figure, the execution time of the program varies a lot, and the 

possibility of the actual WCET occurrence is very low, which makes the WCET really difficult to 

catch. 

1.4 About CC-Systems AB 
 
CCS develops and delivers electronic solutions and software for machines and vehicles in tough 

environments. Some of their main products are: on-board computers, displays, I/O-modules and 

communication modules. The products are used in many areas, including forestry machines, 

construction equipments, trucks, marine vessels, industrial automation, railway vehicles and military 

vehicles. Depending on the customer’s needs, they deliver complete system solutions, partial systems, 

and custom made electronic solutions, products or consulting services. CCS has four offices in 

Sweden, located in Alfta, Uppsala, Västerås and Örnsköldsvik. The company also has an office in 

Tammerfors in Finland.  

 

1.5 Delimitations 
 
This Master Thesis corresponds to 20 university credits on D-level. The work was performed in CCS’s 

office in Västerås. Due to time limitation, it was not possible to test and measure the whole control 

system of ESAB’s welding machine, therefore only some interesting parts of the system’s program 

code were chosen to be measured. These were the CAN-interrupt on the WDS-node, the CAN-

interrupt and the Regulator-interrupt on the PSA-node.  

 

Another limitation was that for obvious reasons, it was not possible to set up a complete welding 

system could be set up in the office. The test environment was very much different from the reality, 

thus it was impossible to get all the possible execution paths of the program code. In order to create 

the worst-case scenario, certain inputs were sometimes given manually to the system, i.e., the code 

was forced to go certain executions path. Something that might have affected the accuracy of the 

measured results. 

1.6 Thesis Outline 
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Chapter 2 presents several kinds of methods that can be used for execution time estimation. The 

chapter starts with Section 2.1 that describes methods for dynamic measurement, including both 

measurements by hardware and software. Some concrete examples are shown in this section too. In 

the following section, Section 2.2, the theory of static WCET estimation is explained, and some 

examples of tools for static WCET analysis are also given. In Section 2.3, a comparison is made, of all 

the methods that were mentioned in Chapter 2. Chapter 3 presents information of all subjects 

concerned in this report. In Section 3.1, more detailed information of some dynamic methods is given, 

especially of those methods that have been studied for the possibility to be used on CCS’s program.    

Section 3.2 gives brief information about time measurement methods that have been used by CCS. 

One suggestion of another Linux time function that can be used in CCS time measurement is given in 

this section as well. In Section 3.3, the welding control system’s layout is described. Section 3.4, gives 

the information about the processor and flash memory used in the welding control circuits. Section 3.5 

shows some code characteristics of the program code that is being measured in this thesis. Section 3.6 

gives the methods chosen for measurement and the motivation of the choice. Chapter 4 gives 

descriptions of the measurements and analysis we had done. Section 4.1 illustrates how the 

measurement of CAN-interrupt in WDS-node is done with the help of oscilloscope. Section 4.2 

illustrates how the CAN- and Regulator- interrupts in the PSA-node are measured using a logic 

analyzer. Section 4.3 gives a general explanation of how to estimate WCET by using the static WCET 

analysis tool aiT. Section 4.4 describes efforts made to make the results from the dynamic 

measurement and static estimation comparable. Chapter 5 presents the result of the work performed in 

Chapter 4, including comparisons of the two methods in Section 5.1 and comparisons of the measured 

results in Section 5.2. In Section 5.3 some suggestions of other usage of the two types of methods are 

given. Chapter 6 presents conclusions from the work performed and the results obtained. Chapter 7 

gives some suggestions to CCS about how to design and create easy analysable programs. Chapter 8 

points out some issues that should have been done better in this thesis, but because of lack of time and 

other reasons are left as future work. 
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2.How can we obtain the WCET? 

2.1 Dynamic Timing analysis 
 
Traditionally, the WCET analysis is done by measurement, also known as dynamic timing analysis. 

There are different kinds of time measuring methods in the industry. These methods can be divided 

into to three different categories: hardware, software and hybrid method. The hardware methods 

include, for instance, oscilloscopes, logic analyzers, and emulators. The software methods, for 

example, can be time-functions that different operating systems usually provide, or programs that tool 

vendors designed specifically for execution time measurement. The hybrid method is a combination of 

the above two mentioned methods: the system developer puts small code snippets in the program that 

is being measured, those code snippets work like triggers to the hardware; when the program is 

executed, the code snippets will start or stop the hardware that is connected to the target system for the 

execution time measurement. All these three methods have their advantages and disadvantages, which 

will be discussed later in Section 2.3. By giving “nasty” inputs to the program, people try to find the 

most difficult and stressful scenarios that the system can ever experience and thereafter catch the 

WCET. This is a very difficult work and requires a lot of time and effort. However, the result obtained 

by this way can never be guaranteed to be the actual WCET. 

 

In [8] there are descriptions of some of the dynamic methods, such as: 

 

Stop-watch: This method is only suitable for non-interactive programs, preferably running on single-

tasking systems. The method simply uses a digital watch or other equivalent timing device, starts the 

watch when the program start to execute, and stops the watch when the execution is finished, and 

reads the time. This method works for big program code that can take minutes to execute and when 

measurements only need to be approximations. 

 

Date command: is used like a stopwatch except is uses the built-in clock of the computer instead of an 

external stop-watch. A typical way to use the command is to wrap the program that is being measured 

in a shell script of alias with the following commands:  

 Date > output 

 Program > output 

 Date > output 

This method is more accurate than a stop-watch, but has the same granularity of only being able to 

accurately measure non-interactive processes. Both the Stop-watch method and the Date command 

method will only provide an estimate of how long the full program takes to execute and do not take 

into consideration pre-emption, interrupts or I/O. 
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Time command (UNIX): the time command is useful when using a UNIX-based system. Real Time 

Operating System (RTOS) most often have similar commands. Execution time measurement is 

activated by prefixing time to a command line. This command not only measures the time between 

beginning and end of the program, but also consider the execution time used by other interfering 

activities, such as time for pre-emption, I/O, and other activities that cause the process to give-up the 

CPU. For example: 

 % time program 

 8.400u  0.040s  0:18.40  56.1% 

The output can be little different depending on which version of the time command is used, but it just 

is the same information in different format. As in the above example, the first item, 8.400u, (u = CPU) 

is the execution time of the program, which means that it took 8.4 seconds for the CPU to execute the 

program, time spent on pre-emption or time spent for waiting for I/O, or performing RTOS functions 

has been removed. The second item, 0.040s (s = system), is the execution time used by the RTOS 

while running the program. The third item, 0:18.40 is the total execution time of the program, 

including not only the time for running but also time spent for being pre-empted, blocked, or waiting 

in the ready-queue, in this case, it was 18.40 seconds. The fourth item is the average percentage of 

CPU time used when the task was ready or running. This time command method is only suitable for 

measuring the execution time for a complete program. 

 

Prof and Gprof (UNIX): they are profiling mechanisms available in UNIX and are able to measure 

execution on a per function basis. Both prof and gprof measure execution time with the granularity of 

a function, the resolution is usually of the system clock, meaning on the order of 10msec. The 

difference between Prof and Gprof is that the latter gives much more detailed results. Like the time 

command, pre-emption is taken in to account. If a process is pre-empted, the clock stops until the 

process starts to execute again. One thing should be noticed, using these two methods will yield an 

inaccuracy in the result because the profiling mechanisms will slow down execution of the program. 

This will make the measured execution time to be longer than the real execution time of the program. 

The syntax for using these profiling mechanisms can be found in [8]. 

 

Clock(): this command can be used to measure even at finer granularity than a function, for example 

execution time of a code segment or a loop. To measure execution time with the clock() function, you 

simply add lines of code around the code segment or loop that is being measured so that the clock is 

read at the beginning and at the end of the code segment. When using the clock() function, there are 

some issues that should be taken into consideration. Firstly, the measured time can be given in 

different forms depends on how the function is implemented in the operating system. It can be given in 

microseconds, seconds, or clock cycles. Normally the format is stated in the reference manual for the 
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particular operating system. Secondly, it is not sure whether the pre-emption is taken into account 

when different operating systems implements its own clock() function. Of course, implementations 

that can handle pre-emption properly are more useful and can give more accurate results. The third 

issue is that sometimes it is needed to measure the execution time in finer resolution, but the time 

resolution reported by clock() is usually the same as the system clock, for example, on many UNIX 

systems, it is 10msec or longer. This issue can be solved in two ways, either create a loop around the 

code that is to be measured to let the code run for 10, 100 or 1000 times or more, and measure the total 

execution time that is later divided by the number of times that the code has been executed; or use a 

hardware-based method. 

 

Software Analyzer: CodeTest [9], TimeTrace[10] and WindView[11] are examples of software 

analyzers. When using a software analyzer it is very important to determine the resolution and 

granularity according to the specifications of the product. A good software analyzer can not only 

provide information on function basis but also contain a means for measuring execution time for 

smaller program segments, like a loop, a code snippet or even a single statement. Some can even 

measure the execution time of interrupt handlers and the RTOS overhead. Some soft analyzers provide 

a timing trace to show precisely what process is executing at what time. This is very helpful when 

debugging timing and synchronization errors. But software analyzers add overhead and therefore slow 

down the code. Furthermore, they usually requires a lot of memory to log data, which is a big 

disadvantage when used together with an embedded system whose memory resources can be limited. 

 

Logic Analyzers: this is one of the best tools for accurately measuring execution time, especially when 

accurate timing is essential.  There are two ways to use the logic analyzer to measure the execution 

time. One is to hook up the probes to the CPU pins or bus-pins on RAM or flash memory. This 

method is least obtrusive on the real-time code, but also the most difficult. Another way is to send 

strategic signals to an output port that is read by the logic analyzer as events. We will discuss more 

about using the logic analyzer in Section 3.1.2 and Section 4.2. 

 

Other kinds of hardware method: oscilloscope and emulator can also be used to measure the execution 

time. However, the oscilloscope usually has limited measuring point and is not most suitable for the 

time measurement. The emulator, on the other hand, is specially built for certain kind of processor and 

is able to give very nice time and activity trace of the processor. The downside of it is that emulators 

are usually quite expensive. We are going to talk more about the oscilloscope and emulators in Section 

3.1.1, Section 4.1 and Section 3.1.4. 

 

All these above mentioned methods can only measure one execution path at a time, and it is up to the 

user to find the inputs that will possibly cause the longest execution time.  



14 

2.2 Static Timing analysis  
 
In the recent years, a new kind of WCET analysis has came into use, static WCET analysis [1]. Instead 

of running the program, the static WCET analysis tool estimates the WCET, by statically analysing the 

program, basically deriving and adding together the execution time of each instruction in the program. 

In order to make the WCET calculation to be as accurate as possible, many issues will have to be 

taken into account. 

 

The static WCET analysis is done using a static WCET analysis tool. There are both commercial and 

research prototype tools available. Before the static analysis can begin, the user must define model of 

the hardware, like the type of the processor and the type of address- and data-bus used on the target 

system, so that the timing behaviour of the target system can be imitated. Memory mapping of the 

target is another decisive information for the WCET calculation.  

 

Static WCET analysis is generally divided into three steps: flow analysis, low-level analysis and 

calculation. See Figure 2.2 below. Many parts of the normal program development process are also 

shown in this figure. 

 

 
 

Figure 2.2: Components of WCET analysis 
  
 
Under the flow analysis step, all possible execution paths through the program are found out. These 

execution paths are expressed as flow constraints, such as upper loop bounds, infeasible paths, 

function calls, recursion depths etc. These flow constraints are obtained during this step, either 

calculated by the static tool itself, automatically; or given by the user. The program flow can be 

extracted from three different types of code; source code (such as C, C++ and Java), intermediate code 

(code inside the compiler) and object code (such as ELF, COFF). In the source code there is no 

information about how the code was re-arranged by the compiler at compilation; and this information 

is important for mapping the flow constraints to the executable code. Intermediate code contains more 

information from the compiler, but the shortcoming is that it is very compiler dependent. Commercial 

static tools usually uses object code for their flow analysis since it is less compiler independent, which 
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makes it is easy to adapt the flow analysis to other compilers and hardware. The downside of using the 

object code is that it is difficult to see how the program code is designed to work, i.e., from the object 

code, it’s hard to see which part of the code is correspond to the C code. A “reverse engineering” must 

be done in order to re-obtain the information of program flow.  

 

The second step of static WCET analysis is the low-level analysis, which in turn can be divided into 

global low-level analysis and local low-level analysis. Under this step the execution time for each 

instruction in the program is calculated. Things like pipeline overlaps and cache effects are also 

considered in this step. “Global” refers to those issues that can affect the whole program. The global 

low-level analysis considers how issues like instruction caches, data caches, branch prediction and 

Translation Lookaside Buffers (TLBs) [12] will affect execution time. “Local” refers to the values of 

the current instruction and its neighbours. The local low-level analysis takes care of how issues like 

pipeline overlap and memory access speed will affect the execution time.  If the target processor is 

very advanced, it will be difficult to separate these two kinds of low-level analysis, because some of 

the above mentioned issues could affect both of them. 

 

The calculation step is the final step in static WCET analysis. Based on the execution paths from the 

flow analysis and the execution time from the low-level analysis, a WCET estimate is calculated. In 

order to guarantee to find the WCET, the path that generates the longest execution time must be found. 

The methods to find it can be divided into three main categories: path based calculation, tree based 

calculation and Implicit Path Enumeration Technique (IPET) [1]. A path-based calculation calculates 

the execution time for all execution paths and selects the one with the highest execution time as 

WCET. In the tree-based calculation, The WCET estimate is generated by a bottom-up traversal of a 

tree corresponding to a syntactical parse tree of the program. The execution times of child nodes are 

collapsed into one single node and the timing is derived for the new node. IPET calculation is based 

on a representation of program flow and execution times using algebraic and/or logical constraints. 

Each basic block1 and/or edge in the basic block graph is given a time (tentity) holding the time for 

executing the entity, and a count variable (xentity) representing the number of times this block or edge is 

executed. The WCET is found by maximising the sum Σi∈entities xi*ti, subject to constraints 

reflecting the structure of the program and possible flows. IPET is most commonly used because it can 

handle more complex flow constraints than the other two methods.  

 

Nowadays, there are commercial static WCET analysis tools available, such as aiT of AbsInt 

Angewandte Informatik GmbH [13], RapiTime of RAPITA Systems Ltd. [14] and BoundT of 

                                                 
1 A basic block is a group of sequential instructions that will always be executed as one atomic element. 
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Tidorum Ltd. [15]. In [1], [3] and [16], there are more detailed information about different kinds of 

static WCET analysis tools and how the static WCET analysis is done.  

 

2.3 Overview of WCET analysis techniques 
 

As stated in the above section, there are many kinds of techniques that can be used to measure the 

execution time, all of them have their own advantages and disadvantages. This means that not a single 

technique can be taken as the best of all. In this section, a comparison will be made to show how each 

of the techniques compromises between multiple attributes, such as resolution, accuracy, granularity, 

intrusiveness, and difficulty. First, we give some explanations of these attributes.  

 

Resolution is used to describe how small time unit the measured time will be given in, such as, in 

second, in millisecond, in microsecond or in nanosecond.  

 

Accuracy shows how close the measured time is compared to the actual time if an ideal measurement 

was obtained. The smaller the divergence is, the more accurate is the measuring method.  

 

Granularity represents in what detail the program code can be measured. For example, a method with 

coarse granularity [8], would generally measure execution time on a per-process, per-procedure, or 

per-function basis. On the other hand, a method that has fine granularity can be used to measure 

execution time of a loop, small code snippet, or even a single instruction.  

 

Intrusiveness shows how much the time measuring method influences the program code being 

measured. If time measurement is done by software, for example: using some kind of software 

analyzer or inserting a code snippet in program code to trigger a logic analyzer or an oscilloscope, the 

execution of the overhead of the software analyzer or the triggering code snippet will consume CPU-

time. This will affect execution time and possibly the ordering of the execution. Once we remove the 

code when the time measurement is done, the system will probably be rescheduled and behave 

differently. This phenomenon is called a Probe-effect [17]. Using software measurement methods, the 

elimination of probe-effects is almost impossible. The easiest way is leaving the code in the program, 

but this will cause extra overhead in the program and consume valuable system resources. The less 

intrusive the method is, the smaller probe-effect it will cause. 

 

Difficulty describes the effort required for obtaining the measurements. For some methods, the user 

simply needs to run the code; the method will directly show the measurement result in an 

automatically created file or table. Those methods are considered to be easy. However, some other 
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methods requires instrumentation and filtering of data to obtain the answers, which are much more 

difficult. Generally speaking, the easier the method is, the coarser the measurement results will be. 

 

Table 2.3 below summarizes the methods and attributes of each method that presented in Section 2.1 

and 2.2. Note that in some cases the attributes are approximated or subjective, not exact values (some 

values is borrowed from [8]). 

 

Method Resolution Accuracy Granularity Intrusiveness Difficulty 

      

Dynamic tools      

Stop-watch 0.01 sec 0.5 sec Program None-intrusive Easy 

Date command 0.02 sec 0.2 sec Program None-intrusive Easy 

Time command 0.02 sec 0.2 sec Program None-intrusive Easy 

Prof and Gprof 10 msec 20 msec Subroutines Less-intrusive Moderate 

Clock () 15 ~ 30 msec 15 ~ 30 msec Statement Intrusive Moderate 

Software analyzer 10 µsec 20 µsec Subroutine Intrusive Moderate 

Oscilloscope 10 µsec 4 µsec Statement Less-intrusive Moderate 

Logic analyzer 8 nsec 40 nsec Instruction None-intrusive Hard 

      

Static tools 1 clock cycle Varying Instruction None-intrusive Hard 

  
Table 2.3: Summary of methods to measure execution time 
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3. Relevant technologies 

3.1 Different kinds of methods for execution time measurement 

3.1.1 Oscilloscope 
 
An oscilloscope [18] is basically a graph-displaying device - it draws a graph of an electrical signal. 

The appearance of an oscilloscope is quite like a small old-style television set with a rather small 

screen and more controls buttons and knobs. The front panel of an oscilloscope normally has control 

sections divided into Vertical, Horizontal, and Trigger sections. There are also display controls and 

input connectors.  

 

In most applications the graph shows how signals change over time: the vertical (Y) axis represents 

voltage and the horizontal (X) axis represents time. The intensity or brightness of the display is 

sometimes called the Z-axis. The Y- and X-axis are marked with equal strides, which depending on 

the setting by the user can indicate different volts and time unit per stride. It is important to remember 

that an oscilloscope trades reduced resolution on the signal for the longer time per stride, i.e. for 

instance, the execution time measured in 1ms time/stride is less precise than the execution time 

measured in 50µs/stride. 

 

There are oscilloscopes of both analogue and digital types. An analogue oscilloscope works by 

directly applying a voltage being measured to an electron beam moving across the oscilloscope screen. 

The voltage deflects the beam up and down proportionally, tracing the waveform on the screen. This 

gives an immediate picture of the waveform, like a sinus curve. In contrast, a digital oscilloscope 

samples the waveform and uses an analogue-to-digital converter (or ADC) to convert the voltage 

being measured into digital information. It then uses this digital information to reconstruct the 

waveform on the screen. For many applications either an analogue or digital oscilloscope will do. 

However, each type has some unique characteristics that makes it more or less suitable for some 

specific tasks. People often prefer analogue oscilloscopes when it is important to display rapidly 

varying signals in "real time" (or as they occur). Digital oscilloscopes allow you to capture and view 

events that may happen only once. They can process the digital waveform data or send the data to a 

computer for processing. Also, they can store the digital waveform data for later viewing and printing.  

 

With the help of an oscilloscope people can do many things. For example, to determine the time and 

voltage values of a signal, to calculate the frequency of an oscillating signal, to see if there is 

interference in a signal, in that case how much of the signal that is noise and whether the noise is 
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changing with time, and to find out how much of a signal is direct current (DC) or alternating current 

(AC). 

3.1.2 Logic analyzer 
 
A logic analyzer [2][19][20] is a display tool that is used to capture the activities of digital systems, 

similar to an oscilloscope for analogue system measurement. The basic problem that a logic analyzer 

solves is that a digital circuit is too fast to be observed by a human being, and has too many channels 

to be examined with an oscilloscope. A logic analyzer is like an array of inexpensive oscilloscopes. 

The analyzer can sample many different signals simultaneously but can display only 0, 1, or changing 

values for each. When logic analyzers first came into use, it was common to attach several hundred 

"clips" to a digital system. Later, specialized connectors came into use. 

 

A logic analyzer would trigger on a complicated sequence of digital events, and then copy a large 

amount of digital data from the system under test or debugging. There is an internal memory in the 

logic analyzer, to which the values on the signals will be recorded. When the internal memory is full 

or the user stops the measuring, the results will be displayed on a screen.  

 

Normally, a logic analyzer obtains data in two modes, which are called “state mode” and “timing 

mode”. Generally speaking, in the timing mode, the logic analyzer samples the signal more often than 

in the state mode. Timing mode uses an internal clock that is fast enough to take several samples per 

clock period in a typical system. On the other hand, in state mode, sampling is controlled by the target 

system’s own clock, so the signal is sampled only once per clock cycle. Thus, the timing mode gives a 

better resolution in the signal. However, the timing mode requires more memory to store a larger 

number of information that is sampled under a single clock cycle of the target system.  A logic 

analyzer does not provide access to the internal state of the processor, but it does give a very good 

view of the externally visible signals. That information can be used for both functional and timing 

debugging. 

 

Figure 3.1.2 below shows a typical logic analyzer made by Hewlett-Packard. A set of probes is used to 

connect the analyzer to hardware pins to monitor and measure logic states. It has totally 8 probe 

housings [21] with 18 signal lines [21] on each probe housing. It can measure up to 136 logic states of 

signals and capture time periods for events. The results can be displayed in both a graphical waveform 

and a list form that is easy and convenient to read. On the front panel there are push buttons for 

different configurations and display forms. 

 

As shown on the figure below, there is a floppy drive on the logic analyzer. It is a useful tool for 

transferring data to and from compatible computers or other systems that can read and write MS-DOS 
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format. The configuration files, measurement results, and even menu and measurement images from 

the screen, all of these can be saved on a flexible disk. The changes of signals over a period of time 

can also be stored, which allow a user to study the history of logic states for debugging purposes. 

Using a logic analyzer, the user is able to supervise and monitor the traffic on data bus, address bus 

and control bus signals, so that the user will be able to tell, for example, which instruction is executing 

at a specific time, or which address is accessed at a specific time. Analyzing the trace of the address 

bus, for example, will help the user to find out which execution path through the code that the program 

has taken, which is very important to know when measuring the execution time. We will discuss more 

about using the logic analyzer in Section 4.2. 

 

 
Figure 3.1.2: a typical logic analyzer made by Hewlett-Packard 

 

3.1.3 Simulator CrossView Pro in the EDE TASKING 
 
In modern computer systems various other tools have made logic analyzers obsolete for many uses. 

For example, many microprocessors have hardware support for software debuggers. Many digital 

designs, including those of integrated circuits, are simulated to detect defects before the unit is 

constructed. The simulation usually provides logic analysis displays. Often, complex discrete logic is 

verified by simulating inputs and testing outputs using boundary-scan logic. None of these exactly 

reproduce the high-speed data capture function of a logic analyzer, but they cover most real needs for 

debugging digital circuits.  

 

The TASKING Embedded Development Environment EDE [22] offers a number of simulators and 

target hardware debugger. The generic name of the debugger product is CrossView Pro. 

 

CrossView Pro knows four types of CPUs, 166, 167, 167MAC and EXT2MAC. '166' represents the 

basic C166 architecture. '167' represents the extended architecture, like the C161, C163, C164, C165 
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and C167 families. '167MAC' represents the extended architecture including the MAC coprocessor, 

like the ST10x262 and ST10x272 families. 'EXT2MAC' represents the second extended architectures 

like the C166S v2.0 and Super10. The CPU information can be given by the user in the configuration 

file [23]. In the “Target” menu in CrossView, the user can set the type of the processor that used on 

the target system. 

 

Two forms of profiling are implemented in CrossView Pro. Profiling allows the users to perform 

timing analysis on their software. Both forms of profiling in CrossView Pro are fully implemented in 

the CrossView Pro debugger.  

 

Function profiling, also called cumulative profiling, gives timing information about a particular 

function or set of functions. The time spent in functions called by the function being profiled is 

included in the timing results. To specify the functions to be profiled: Select the Tools | Cumulative 

Profiling Setup... menu item, there the user can select one or more functions to be profiled. The 

gathered profile is shown in the Cumulative Profiling Report dialog. To view the profiling results: 

Select the Tools | Cumulative Profiling Report... menu item. For each function the number of calls, the 

minimum, maximum, average and total time spent in the function are shown in term of clock cycels. 

Also, the relative amount of time consumed by a function in respect to the time consumed by the 

application is shown.  

 

Code range profiling presents timing information about a consecutive range of program instructions. 

CrossView Pro displays the time consumed by each statement, C or assembly, in the source window. 

The timing data can be displayed in three different formats: absolute, relative to program, and relative 

to function. In “Tools” menu the profile report dialog shows the time spend in each function. The time 

consumed by functions called from the function being profiled is not included in the displayed time. 

Select the Profiling button in the Source Window to display profile data in the Source Window. If 

profiling is not enabled, this button also starts gathering of profiling data. 

 

Normally both function and code range profiling will slow down the execution speed of the 

application being debugged. Therefore, switch off profiling whenever the timing information is not 

required. (Compare this with the Prof and Gprof (UNIX) in Section 2.1) 

 

3.1.4 Emulator 
 
An emulator [2] is a software package that imitates the hardware operations of a controller. Companies 

like Nohau and Hitex Development Tools produce and sell C167CS emulators. For the micro 

controller C167CS-LM, there are two kinds of emulators that support it. They are Dprobe167 [24] and 
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Dbox167 [25]. Dprobe167 is the compact base modular of Hitex’s in-circuit emulation system. It is a 

fully functional in-circuit emulator (ICE) of handheld size. The Dbox167 features a trace-buffer of up 

to 512K frames. Each frame includes external inputs that supplied via logic probes and a timestamp 

with a resolution of 10 ns. Dbox167 is a module to extend the DProbe 167 system into a high-end in-

circuit emulator system, i.e. Dbox167 helps the DProbe167 to be upgraded. Figure 3.1.4 below shows 

how the DProbe167 and Dbox167 are connected to a target system. 

 

 
Figure 3.1.4 DProbe 167 and Dbox167 

 
 
 
Using the emulators, the instructions can be traced under the program run-time, and the execution path 

and the execution time will be monitored on a PC.   

 

The prices of those two emulators are rather high. It costs over 9,000 euros for a total package that 

include DProbe167 and adapter that connects the emulator with the target circuit. There are extra 

module options that can be added on the Dprob167: Trace and Dual Ported Memory. With Trace-

memory, it will be able to save the whole execution together with the measured time. Thereby, people 

can actually see what the program code was doing at a specific time point. It helps to keep watch on 

the execution process and save a lot of when debugging the system. Those extra modules cost extra 

too. 

 

3.2 Methods used by CC-Systems AB 
 
As far as this thesis is concerned, CCS measures the execution time of their program code using two 

methods: an oscilloscope and time-functions in Linux. 

3.2.1 Oscilloscope 
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Unfortunately, there is no detailed documentation saved to describe what and how CCS has performed 

measurement using the oscilloscope. There are only comments written in the program code, showing 

the results measured for some functions. For example, they have measured the conversion time on an 

AD conversion, in order to find out if it is done within 100000 cycles.  

3.2.2 Linux 
 
In another CCS’s project, Linux was used as the operating system kernel. This project aimed to 

upgrade and porting the Common Controls CCN01 with CCN02 for Rolls Royce Marine. CCS used a 

time function provided by the Linux to measure the execution time. The function is called 

gettimeofday(). This function retrieves the system time in microseconds, where the system time is the 

time elapsed since Epoch (00:00:00 UTC, January 1, 1970). The aim was to use the time measurement 

to continuously check that the execution time for a process-loop was within the permitted time 

interval. If the execution time exceeded the limit, some compensation would be done. This kind of 

measurement occurred constantly, and the program code measured including both very big code 

segment and small statements, depending on which part of the process that was executed.  

 

CCS is also interested in finding out other options of Linux time-function that can be used for this 

project, as well as any advantages and disadvantages of time analysis by the help of the operating 

system.  

 

However, the choices of time measurement functions can vary depending on the hardware and which 

distribution of Linux that is used for the target system. For the Rolls-Royce Marine project, the 

hardware is a PC 104 X86 platform with a 300Mhz AMD Duron processor from Hectronics. 

Regarding the distribution of Linux, CCS uses a self-made solution that is combined of a Linux-kernel 

2.6.6, which is a standard kernel, and some device drivers for the special hardware.  

 

Linux-kernel 2.6.6 actually provides another time function that can be used by CCS, it is called rdtsc() 

(read time-stamp counter)[26]. This function is available in all of the 2.6 kernels on X86 platform. 

Rdtsc() gives the time in term of clock cycles, which is more accurate and causes less overhead 

compared to the gettimeofday() which CCS is currently using. The rdtsc() function is accessing a time-

stamp counter which keeps an accurate count of every cycle that occurs on the processor. The 

following macros, rdtscl(low) and rdtsc(low,high) [27], where low and high are of the type unsigned 

long, i.e. 32-bit long. The time stamp counter register on X86 platforms is 64-bit long. rdtscl(low) 

reads the low half of the register into a 32-bit variable and the latter reads a 64-bit value into two 32-

bit variables. The overhead difference between gettimeofday() and rdtscl() is stated in [27], for 

example, the overhead of gettimeofday() is 1µs; while the overhead for two consecutive calls to 
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rdtscl() was measured to 0.0711µs. The reason for the difference is that gettimeofday() is a system call 

that requires two memory operations: one for reading the timer, another one for storing the read value. 

In some systems, reading the internal timer needs to call the system kernel, which can take relatively 

long time compares to the actual execution time of the code being measured. Though, rdtscl() and 

rdtsc() is not a system call, instead they read time directly from the register (the Time Stamp Counter) 

in the hardware, which saves a lot of time. rdtscl() and rdtsc() can be useful when a very fine cycle 

measurement is needed for a section of code. For example, it can give a good idea of how many cycles 

a specific set of instructions might take compared to another set of instructions. Another use is to get 

an average time estimate for a function or a section of code.  

 

The advantages of using an OS to measure the execution time are that it is simple to use, give 

comparatively good time resolutions and can measure both big code snippets and small statement. A 

disadvantage of using an OS is that the interference of the OS on the measured execution time can 

vary. This is because the OS also is responsible for other work, such as file management, network 

communications, and scheduling. Depending on what the OS is doing when the time-function is 

called, the time function call can sometimes be delayed and it might take a long time before the OS 

handles it. In the real time extension of Linux, there is a limit of how much the OS may have 

interfered with the measured execution time. 

 

3.3 The Welding Control System’s Layout 
 
The Welding Control System whose program code is being measured is delivered to ESAB by CCS. 

ESAB is one of the world's largest producers of welding consumables and equipment. It was 

established by Oscar Kjellberg in 1904. Since then, the company has constantly improved on existing 

methods and materials, and developed new methods to meet the requirements of the technological 

progress. Today the company produces consumables and equipment for all kinds of welding and 

cutting process and application.  

 

The ESAB welding control system is a modular system consisting of up to four different types of 

permanent nodes (MMC, Powersource, Wirefeeder and RemoteControl) and one service node (PC 

ECAT), which are all connected by a CAN bus. See figure 3.3 below. 
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Figure 3.3a: the ESAB welding control system 

 

Among those four permanent nodes, the MMC (Man Machine Communication) node and the PSA 

(PowerSource A) node exist in all kinds of welding systems; the rest of the nodes, however, are 

optional depending on the type of the welding system. If needed, several nodes of the same type can 

be connected in the system. 

 

The MMC node is the interface between the user and the system; being responsible for handling the 

display and buttons. It is also the master node in the system and has information of the entire system. 

It regularly checks what nodes that are connected to the system by sending “hello-messages” via the 

CAN bus and supervises all the other nodes, except the PC node. The PowerSource_versionA (PSA) 

node controls the power supply to the welding process. The Wire Feeder (WF) node is responsible for 

feeding wire under the welding process if the current welding method uses wire. The RemoteControl 

(RC) node is used to replace the MMC panel when the welder is far away from the actual welding 

unit, which means when the remote control is responding, REMOTE state is entered and the MMC 

control panel is disabled. The PC node does not take part in the welding process. It is a service tool 

and is connected to the system only when a service engineer wants specific service information from 

the system or when the program in one of the nodes is upgraded. The node isn’t a separate piece of 

hardware, but actually software running on a PC and communicating with the other nodes through a 

CAN-card in the computer. The MMC node supervises the powersource and the wirefeeder by sending 

them supervision requests. If they do not respond, an error alert is shown to the user, and the welding 

process is stopped.  

 

As mentioned before, there can be several nodes of the same type present in the system 

simultaneously. However, only certain type of nodes might exist in several versions. If there are 

several nodes of the same type in the system, then it is usually several WF nodes that are connected, 

responsible for controlling the feeding of different kind of wire in different materials or dimensions.  

 
 

3.4 Introduction of hardware used by the welding machine control system 
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For this thesis, the system measured consists of two circuits: one WDS circuit and one PSA circuit. It 

took quite some time to obtain both circuits and get them connect together and work properly. 

 

 

 
Figure 3.4a: WDS Circuit 

 

 

 

 
Figure 3.4b: PSA Circuit 

 

The WDS circuit is sitting together with the control panel with a display. The PSA circuit is connected 

with the WDS circuit using CAN-interface and communicate with each other via CAN-messages. The 

WDS circuit gets its power supply at 12V via the CAN-interface, and the PSA circuit has special 

welding power sources at 26V and 9V. See figure 3.4a and 3.4b. 
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Both of the circuits are designed by ESAB. ESAB added both extra RAM (32k) and Flash-memory 

(1M) for program code and data. Each circuit includes an Infineon SAK-C167CS-LM microcontroller 

and neither of them has any operating system (OS). 

3.4.1 The Infineon C167CS-LM Microcontroller 
 

The Infineon SAK-C167CS-LM [28] belongs to the C166 microcontroller family. Below is a listing of 

some of characters of the microcontroller: 

• The main core of the CPU consists of a 4-stage instruction pipeline 

• 16-bit arithmetic and logic unit (ALU) 

• CPU runs at a frequency of 20MHz 

• Dedicated SFRs (Special Function Registers) 

• Two on-chip CAN modules version 2.0B active  

• Peripheral Event Controller (PEC)  

• Capture Compare Unit (2x16 channels)  

• 4-channel PWM (Pulse Width Modulation) unit  

• 24-channel 10Bit A/D Converter  

• Idle, Sleep and Power Down Mode with Flexible Power Management  

• Two Multi-Functional general purpose timer units with five 16-bit timers  

• Watchdog Timer and Oscillator Watchdog  

• Up to 111 General purpose I/O lines  

• Full Automotive Temperature Range: -40°C to +125°C 

• Up to 16 MB of external RAM and/or ROM can be connected to the microcontroller. 

 

Most of the C167CS’s instructions can be executed in just one machine cycle that requires 100ns at 20 

MHz CPU clock. For example, shift and rotate instructions are always processed during one machine 

cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been 

optimised so that they can be executed very fast as well: branches in 2 cycles, a 16∗16-bit 

multiplication in 5 cycles and a 32-/16-bit stride in 10 cycles. Another pipeline optimisation, the so-

called “Jump Cache”, allows reducing the execution time of repeatedly performed jumps in a loop 

from 2 cycles to 1 cycle. 

 

In order to get an idea of where we could possibly measure on the processor, the functions of all the 

ports on the microcontroller were firstly carefully studied. Following are some of the ports that were 

eventually considered interesting for bus sniffing.  
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• Port 0 and Port 1 were used as address and data lines when accessing external memory if they 

were configured as external buses.  

• Port 4 outputs could be configured as push/pull or open drain drivers and could be used to 

output the segment address lines and for serial interface lines.  

• Port 2, Port 8 and Port 7 (and parts of Port 1) were associated with the capture inputs or 

compare outputs of the CAPCOM units and/or with the outputs of the PWM module.  

• Port 3 included alternate functions of timers, serial interfaces, the optional bus controlled 

signal BHE, and the system clock output CLKOUT (or the programmable frequency output 

FOUT).  

 

One thing that should be mentioned here was that the Infineon C167CS-LM originally runs at 25Mhz. 

When ESAB constructed the circuits, they put an external crystal that controls how fast the processor 

would work. The crystal was connected to the pin number 138 on the processor and made the 

processor run at 20Mhz. In the manual, it was shown how to clock the device from an external source: 

drive XTAL1 (pin 138), while leaving XTAL2 (pin 137) unconnected, which was the case shown on 

the ESAB circuit’s map. 

 

3.4.2 The Am29F800B flash-memory 
 
On both the WDS and the PSA circuits, there was a 1M byte flash memory. The function of it was to 

store the program code. The flash memory was of type Am29F800B and manufactured by Advanced 

Micro Devices (AMD) and Fujitsu [29]. 

 

The Am29F800B was an 8M bit, 5.0 volt-only Flash memory organized as 1,048,576 bytes or 524,288 

words. The word-wide data (x16) appeared on DQ15–DQ0; the byte-wide (x8) data appeared on 

DQ7–DQ0. This device was designed to be programmed in-system. Below is the connection diagram 

of Am29F800B flash memory. 

Figure 3.4.2 the connection diagram of Am29F800B flash memory 
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As shown on Figure 3.4.2, there were 19 pins for the address-bus (A0 ~ A18) and 16 pins for the data-

bus (DQ0 ~ DQ). Besides the bus pins, there were also some other pins that were useful and 

interesting to know for the measurement’s sake.  

 

• Pin number 12 (CE#). When listening to the bus, the address on the address-bus was 

sometimes not valid because of interference from other devices or because of bit-flip. It was 

therefore necessary and desirable to filter those “trash addresses” away. The CE# pin made it 

possible. The CE#-pin was “active high”, meaning that the address was available only when 

the CE#-pin was set to 0. By checking the CE#-pin at the same time as when listening to the 

address-bus, it was possible to easily identify only valid addresses, which saved a lot of time. 

• Pin number 33 (BYTE#). The BYTE# pin controlled whether the device data I/O pine DQ15 ~ 

DQ0 operated in the byte or word configuration. If the BYTE# pin was logic ‘1’, the device 

was in work configuration, and DQ15 ~ DQ0 were active and controlled by CE# and OE#. If 

the BYTE# pin was set at logic ‘0’, the device was in byte configuration, and only data I/O 

pins DQ0 ~ DQ7 were active and controlled by CE# and OE#. The data I/O pins DQ8 ~ DQ15 

were tri-stated, and the DQ15 pin was used as an input for the LSB (A-1) address function. 

Before the bus sniffing might begin, it must therefore be clear if the memory access was done 

in byte-mode or in word-mode, otherwise the address from the address bus might differ from 

the one shown on the development environment or the debugging software. 

 

3.5 Code characteristics of the welding machine control system 
 

In this section we will give descriptions of how the welding machine control system’s program code is 

structured, as well as some main characters of the two parts of the code that have been measured. 

3.5.1 System’s construction 
 

All of the program code was written in the object-oriented programming language C++. As introduced 

in Section 3.3, the welding system consisted of five kinds of nodes: MMC, PowerSource, Wirefeeder, 

RemoteControl and PC-ECAT. Images of these nodes could be found in the software too. They were 

classes PowerSource, WireFeeder, RemoteControl and ESAT, which implemented the ‘interface’ 

functionality that each node had to the MMC-node. These classes were aggregates to class 

WeldDataUnit that represented the MMC-node. Supervision was also handled by these classes. In 

method ProcessMessage, messages to a specific node were erected, as well as decoding of incoming 

messages. The supervised nodes sent error information to the MMC-node. This error mask was stored 

in respective object of the class. Every class had timer in the main loop, to handle timer events. 
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The program-design and code-structures of WDS-node and PSA-node were quite similar. The whole 

welding process was constructed as a big endless-loop, in which the system were designed to do its 

routine work, such as, reading from keyboard, interpreting if there had been a press on the keyboard, 

checking both in- and out-buffer of the CAN-message, etc. Besides this loop, there were seven kinds 

of interrupt that took care of different events that may happen during the welding process. They were: 

1. NMITRAP: Used by undervoltage signal from reset circuit. 

2. STOTRAP: Stack overflow trap. 

3. STUTRAP: Stack underflow trap. 

4. BTRAP: Hardware traps. 

5. T5INT: Interrupt for software timer. 

6. T6INT: Interrupt for welding regulator. 

7. CAN1INT: Interrupt for CAN controller.   

Those seven kinds of interrupt had the same name in WDS-node as well as in PSA-node, but they took 

different actions for handling the interrupts in each node. 

3.5.2 WDS 
 
The MMC-node was represented by the WDS-node in the program code, so the WDS-node had two 

main roles in the system: being the master node in the system, and being the interface between the 

system and the user.  

 

The following code characteristics were found for the WDS-node by Ola Eriksson, see [16]: 

• 126 C++ source-code files. Between 30 and 2400 line of code per file including comments. 

There is a file with 13000 lines but it contains only icons written as char-arrays. 

• There were 133 header-files with between 20 and 600 lines each. 

• There are about 1100 functions 

• The code itself doesn’t contain assembler routines but there are some library routines written in 

assembler that are used, for example, floating-point additions and type casts. 

• Switch-statements are commonly used since many parts of the node can be considered as state-

machines and the switch-statements are there to make sure that the correct state is executed. 

• Recursion seems no to occur, or are seldom used.  

• There are 119 for-loops in the node, among which ten are nested. All of them are two-levels 

deep. 15 for-loop condition-tests are dependent on functions calls. There are no triangular for-

loops or for-loops dependent on pointers. At least three for-loops contain a switch-statement. 

• There were 119 while-loops, none of them are nested. Ten while-loop conditions-tests are 

depending on functions calls. Seven pointer-depending while-loop conditions-tests. 57 of the 
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while-loops are none-terminating loops, designed to halt the execution of the system, if a serious 

error occurs. The system will be rebooted when a timer expired. 

 

CAN-interrupt in WDS 

 
The Can interrupt in WDS was one of the code snippet that was measured under this thesis. Therefore 

it was necessary to take a more closer look. 

 
In the above figure, each arrow represents a function-call. There were totally three types of message 

that were valid at the WDS-node. By valid we mean that the message would be received/transmitted 

and handled by the WDS-node. The three types are: 

• Normal message: an ordinary CAN-message. 

• Message15: used for service messages from the ESAT node. 

• STATUS message: message from the actual CAN-controller informing of an error in the 

circuit.  

 

Every time a CAN interrupt occurred, Interrupt() was called from an interrupt vector. Up to six 

messages could be received and put into the receive-buffer during one single interrupt. The incoming 

message was put into the receive-buffer by Interrupt() calling GetMessageFromCanController(). 

The CAN-message was then read from the CANcontroller and the type of the message was checked, 

and according to the message type, the corresponding actions were taken. If it was a STATUS 

message, the cause of the interrupt were checked; afterwards an error log was put on the display to 

alarm the user. If it was a Normal message or a Message15 message, the message was put into the 

buffer and if there had been a buffer overflow, the user would be alarmed too. 
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3.5.3 PSA 
 

The PSA-node controlled the power supply to the welding process. According to the welding method 

present, it would increase or decrease the current at the weld-point to get the best welding result. 

Generally speaking, the program code for the PSA-node was less complicated than for the WDS-node. 

 

The following code characteristics have been found for the PSA node [16]: 

• 41 C++ source-code files. Between 40 and 2400 line of code per file including comments. Most of 

the files have less than 400 lines of code. 

• 40 header-files up to 400 lines each. Most of them have less then 100 lines. 

• There are about 500 functions. 

• The code itself doesn’t contain assembler routines but there are some library routines written in 

assembler that are used for example floating-point additions and typecasts. 

• Switch-statements are commonly used, since many parts of the node can be considered as state-

machines, and the switch-statements are there to make sure that the correct state is executed. 

• Recursion seems not to occur very often. There is recursion in the library function fflush() and the 

recursion depth in that function is up to five.  

• There are 64 for-loops in the node. Many for-loops are identical and placed in several cases in the 

same switch-statement. Three of them are nested and all of them are two-levels deep. Basically all 

for-loop condition-tests are simple integer comparisons. 

• 58 while-loops. No nested while-loops. Basically all while-loop condition-tests are simple integer 

comparisons but some while-loop condition-tests are, however, dependent on pointers. About half 

of the while-loops are designed to wait for something to be ready, for instance, “while(busy)”. 

 

Two code parts at the PSA-node were measured under this thesis, which were code for CAN-interrupt 

and Regulator-interrupt. The following will give more details on how these two interrupts were 

constructed. 
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CAN-interrupt in PSA 

 

 
 

The CAN-interrupt in the PSA-node had almost the same actions as the one in the WDS-node, but the 

code was considerably different. Simply speaking, the CAN-interrupt code in the PSA-node was much 

more clearer and easier to understand than the one in the WDS-node. For example, the function 

Interrupt()  checked the message-type and took actions accordingly to the message type directly, 

instead of, as in WDS-node, calling PutMessageOnBuffer() that in its turn called 

GetMessageFromCanController() to do it. Another example, CheckWarning() and CheckBusOff() 

were used to find the reason that cause a STATUS-message. In the WDS-node, this work was done 

twice, both in GetMessageFromCanController() and in PutMessageOnBuffer(), which made it a 

unnecessary double-work. However, in the PSA-node this work was done only once by the function 

Interrupt() itself, directly after it acknowledged a STATUS-message. The code differences made the 

CAN-interrupt for PSA-node, compared with CAN-interrupt for WDS-node, more effective, since it 

saved a lot of function calls; and was also easier to understand. 

 

Regulator-interrupt in PSA 

 

There were two different welding methods on the ESAB welding machine that we looked at: MMA 

and TIG. Either of them could be chosen as the present welding method. The MMA-method is also 

called as “pin-weld”. The welding machine was holding a coated electrode, as soon as the pin got 

close enough to the work piece, there would automatically be an arc between them so that the pin 

melts. The pin would be getting shorter and shorter under the welding process and eventually needed 

to be replaced by a new one. The TIG-method, on the other hand, the welder would hold a TIG rod 

(like solder) that was melted on the work piece. The welder needed to press on a button of the handle 
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to start the welding process. See the Figures 3.5.3a and 3.5.3b below, for illustrations of the two 

methods. 

 

   
          Figure 3.5.3a Welding method MMA             Figure 3.5.3b Welding method TIG 

 

The whole welding process could be divided into different states. For different methods, the states will 

also be different. There were six states in the MMA-method and 20 states in the TIG-method.  

 

The Regulator-interrupt was responsible for regularly checking the state of the welding process and 

adjusting the current consequently. When a regulator-interrupt occurred, first IntRegulatorTimer() will 

get called to find out what kind of welding method that was used, then the Regulator-interrupt function 

in the corresponding method will be called. 

 

Function-calls Regulator-interrupt in MMA-method 
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The Regulator-interrupt in the MMA-method worked like this: First the voltage and current of the arc 

was measured by StartWaitReadAdInj(); then according to the state of the process, the voltage was 

changed in the State() function, for example, if it was under state IDLE the voltage control would be 

set to off; later in the CalculateCurrent() an appropriate current would be counted and given to the 

machine. 

 

There was a switch-statement with six cases (six states of the welding process) in both State() and 

CalculateCurrent(). 

 

Function-calls Regulator-interrupt in MMA-method 

 

 
Compared to the regulator-interrupt in MMA-method, the regulator-interrupt in Tig-method was little 

more complicated. Partly because there were 20 different states for the welding process, which was 

much more than the states in MMA-method; partly because almost all of the work were done in the 

State() function, which in some cases, had to call many other functions to get the job done. 

 

3.6 The methods chosen  

There was no OS in the system; therefore we could not get any help from the time-functions that an 

OS could provide.  

 

The C167CS-LM processor run at 20Mhz on both circuits, which means that one clock cycle was 50 

nanoseconds. We do not need to analyze the system behaviour at every clock cycle. However, in order 

to measure the execution time for a small function, which may take only a couple of microseconds, the 

measuring method should be able to provide a resolution finer than millisecond. Furthermore most of 
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the timers in the program, such as the timer for the current sampling, and the timer for reading from 

the keyboard, are set at a millisecond resolution. Hence a measuring method with at least a resolution 

at microseconds should be chosen. 

 

Since we wanted our measurements to be as little intrusive as possible (see Section 2.3), we decided to 

use hardware-based measurements instead of software-based ones. An oscilloscope was chosen to 

measure the CAN-interrupt in WDS, while a logic analyzer was used to measure the CAN-interrupt 

and Regulator-interrupt.  Although CC-Systems AB had measured their code with an oscilloscope 

before, there was not any documentation available to describe how the measurements were done. 

Besides, they had only measured very small code segments, such as a for-loop or one single statement. 

Our measurements was therefore aimed to give a more detailed documentation so that other program 

developers may have it as a reference. 
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4. Problem Description and Solution 

 

In this chapter we will discus how the measurements were done, both on the WDS-node and the PSA-

node, and what results that we got. For instance, how the oscilloscope and the logic analyzer were 

connected to the target circuit; which configuration or format that were chosen on the equipment, etc.  

4.1 Can-interrupt routine in WDS-circuit measured with Oscilloscope  

4.1.1 Preparations 
 
We had to solve several issues before the measurements could start: 

1. The WDS circuit had to be provided with a power supply.  

2. Since we did not have the possibility to set up a full real-life welding system connected to the 

WDS-node in the CCS office, a tool that could send CAN-messages to the WDS-node was 

needed. In other words, a tool that could pretend to be other nodes that in reality would be 

connect to the WDS-node via the CAN-bus.  

3. We had to download the executable file to the circuit. 

4. We had to find suitable measuring points on the circuit, i.e. we had to decide where on the 

circuit we could put our probes to read the signals of the code under investigation, the start 

and finishing points of an interrupt routine. 

5. We had to decide what settings the oscilloscope should have in order to get the best 

measurement results. 

According to the above five issues, we will now step by step, describe how the measurement set-up 

was done before the actual measurements were performed. 

 

Provide a power Supply 

The WDS-circuit needed 12V DC from the CAN-interface. In real working environment, the WDS-

circuit is connected with the PSC-circuit via a CAN-interface that also supplies it with power. 

However in the office test environment, the WDS-node was not connected to the PSA-node, and 

therefore we had to make some changes on the CAN-cable so that it got directly connected to a power 

supply unit. Thereby the power supply problem was solved. The same CAN cable was also used to 

connect the circuit with a PC, from which the CAN-messages were sent to the WDS circuit. The next 

paragraph gives the preparations required for setting up the CAN-message tool. When the circuit got 

its power supply, it did a kind of self-test. There were three LEDs (Light Emitting Diodes) on the 

circuit. Each diode had two small lights, one green and one red. If the self-test were passed, the green 

light in LED number 3 would light. 
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CAN-message Simulator 

 

 
Figure 4.1.1 Parts of the graphical interface of the CanTool 

 

At CCS, they had implemented a program called “CanTool” to simulate data communication by CAN-

messages. They had also manufactured the CAN-card themselves to meet their own requirements. The 

CanTool was used to both send/receive messages to/from all circuit that use the CAN-message for 

communication. In the graphic interface of the CanTool, the user simply gives the messageID and the 

appropriate data of the message and then press “send”, the message is then sent to the connect circuit. 

If there was a reply or ACK-message from the receiver, it would be also shown to the view-window. 

From the view-window, the user could see all the traffic that happens on the CAN-bus. Information 

such as message’s index, direction, type, ID, data, and time since the CanTool was started were 

presented to the user.  Figure 4.1.1 above depicts parts of the graphical interface of the CanTool 

program. 

 

Downloading the executable file 

First the program code was compiled into Motorola S records (.sre) format, which was done by the 

TASKING developing environment. The sre-format was the format for EPROM programming. Then 

the sre-file was downloaded to the target circuit via the serie-port by a program called “Launcher”. 

Here, one thing had to be noticed: every time, before we downloaded the sre-file, the target system had 

to first be rebooted, otherwise Launcher would complain that it could not find the target system.  



39 

Selecting a measuring point on the circuit 

To select a good place on the circuit, where we could attach our measurement equipment, turned out to 

be the most difficult and import decision.  

 

The idea was to insert a row of code before and after the CAN-interrupt function, so that one out-

signal would be set “high” before the execution and “low” after the execution of the interrupt function. 

By measuring time spent between the changes of the signal, we could find out the execution time of 

the CAN-interrupt function.  

 

The oscilloscope had only one probe that we could connect somewhere on the circuit to get the signal. 

The question was: where? As mentioned before in Section 3.3.1, there were several ports on the 

processor that could be used for this out-signal. In order to affect the system as little as possible, one 

pin that was very seldom used by the program code should be chosen.  

 

In many books, such as [20], it states that LEDs are very useful to indicate the system state, for 

instance, error conditions, entering of a certain routine or idle time activity. As we could see, there 

were actually three LEDs designed on the WDS-circuit, so it was necessary to find out what functions 

they have. After studying the program code carefully, we found that pins number 0 to 5 on port 8 are 

connected to the LEDs and were only used when there was a warning or an error on the circuit. This 

even made the measurement easier, because the pins on the processor were sitting very tightly together 

and there was a risk for getting a short circuit if the probe of the oscilloscope was wrongly attached to 

them. Since the pins were connected to the LEDs, we could simply put the probe on one of the LEDs 

to catch the signal. In the program code there were functions used to turn on and off the light in the 

LEDs: ELed_Green(unsigned short a), ELed_Red(unsigned short a), ELed_Both(unsigned short a) 

and ELed_None(unsigned short a), there “a” indicates the diode’s number. In those functions _putbit() 

was used to set low or high on the corresponding pins on the processor in order to turn on or off the 

lights. For example, _putbit(0,P8,0) set “low” on  pin number 0 on the port8, which would turn on the 

green light in diode number 3; and _putbit(1,P8,0) turned the same light off. Among those three 

diodes, number 2 was the least used one, and it was turned off in the original code. Therefore, we 

decided to insert “ELed_Green(2);” before the CAN-interrupt function and “ELed_Red(2);” after it. 

During the measurements the oscilloscope probe was attached to the connect point of the green light 

on diode number 2; so the probe could feel the signal changes when the light was turned on and off. 

 

One point should be mentioned here, actually we could use _putbit(0,P8,2) and _putbit(1,P8,2) 

directly to turn on and off the green light in diode number 2, but the execution time for the CAN-

interrupt function was so short that the light could never manage to show that it had been turned on. 

Therefore ELed_Green(2) and ELed_Red(2) were used instead. Furthermore, these codes made the 
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diode2 light red after the interrupt, so that we could know directly and clearly see that a CAN-interrupt 

had occurred.  

 

Although we only inserted two small functions calls in the code, it still caused a little probe-effect on 

the system, which made the measured result somewhat inaccurate. Hence the execution time for these 

two functions was subtracted from the total execution time measured for the interrupt routine. How we 

did it will be explained in Section 4.2.2. 

 

Specifying the settings on the oscilloscope 

The oscilloscope used was called HAMEG Digital Storage Scope. We used the oscilloscope’s 

“trigger” function that works as follows: once the green light was turned on, the probe attached to the 

LED felt the signal change, which triggered the oscilloscope to start to store the signal. This storing 

lasted until next time the probe felt another signal change, which was at the time the green light was 

turned off, and then the storing was stopped. Afterwards, the signal stored during these two signal 

changes was shown on the screen. The screen of the oscilloscope was divided into 10 parts along the 

X-axis and 8 parts along the Y-axis, which indicated different time/stride and voltage/stride 

respectively, see Section 3.1.1 for details. When the measured signal was shown on the screen, we 

could read how many time-strides the signal covered. By multiplying the number of strides with the 

time/stride that was set on the oscilloscope, we got the time spent from when the code entered the 

CAN-interrupt function until it exit it, i.e., the execution time for the CAN-interrupt function.  

 

The smallest resolution on this oscilloscope was 10µs per time-stride on the screen, which made the 

whole x-axis on the screen showing a time-span of 100µs. The smallest time resolution that the 

oscilloscope could save and store was 20µs per time-stride on the screen, which made the whole x-axis 

covering a time-span of 200µs. This was the time resolution that we used. With this setting we were 

able to measure all kinds of execution time that was shorter than 200µs. 

 

For the voltage/stride, we chose 1V/stride. The actual setting of the voltage/stride was not so important 

in this case, because we were not interested in how much the voltage-level was, but only in when the 

voltage-level changed.  

 

There were two channels on the oscilloscope; we decided to use channel 1 for the measurement and 

attached the probe to its socket.  

 

In order to trigger the storage of the signal, the “STOR” button and the “DOTJ” button were pressed 

down. Before every new measurement, the trigger had to be reset by pressing the “reset” button. 



41 

 

The figure 4.1.1 below shows all the settings of the oscilloscope. 

 

                             
Figure 4.1.1 the Hameg Digital Storage Scope 

 

4.1.2 Measurement with oscilloscope 
 
Once all preparations were done, the next work was to figure out the message IDs of all of the 

messages sent on the CAN-bus. As mentioned before, there were three kinds of message: Normal 

messages, Message 15, and STATUS message. The normal message included 14 different message-

IDs. Every message ID consisted of 11 bits.  The first six bits indicated the message type, such as 

IDENTIFICATION_MSG, TRIGGER_MSG, ERROR_MSG, etc.; bit 7 and 8 indicated the 

unit_number; and the last three bits indicated the unit_type. Depending on the message type, the 

unit_type and the unit_number could together be used to identify the receiver or sender of the 

message. For IDENTIFICATION_MSG and ERROR_MSG, the last five bits indicated the sender of 

the message. For example: message ID: 162HEX, which is 00101100010BIN, this was a power source 

identification message, for the PSA-node with unit_type 2. 

 

For to the different message type, unit_number and unit_type, we calculated all message ID from 

message 1 to message 15. STATUS message was defined directly to have the Can Interrupt ID 1. 

Table 4.1.2a lists some information derived for the fifteen messages.  
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Message box Message ID Receive/ Transmit Function 

1 0x164 Receive Identification, remote control 

2 0x204 Receive Status, remote control 

3 0x162 Receive Identification, powersource 

4 0x163 Receive Identification, wirefeeder 

5 0x1a2 Receive Measure, powersource 

6 0x042 Receive Error, powersource 

7 0x043 Receive Error, wirefeeder 

8 0x1dc Receive Service, esat 

9 0x2a0 Receive Start/stop acknowledge, powersource 

10 0x466 Receive Start/stop, wirefeeder 

11 0x000 Transmit All sent messages, all units 

12 0x422 Receive Generic status, powersource 

13 0x3a2 Receive Trigger, powersource/wirefeeder 

14 0x044 Receive Error, remote control 

15 0x180 - - 

Table 4.1.2a CAN-Messages  

 

We first filled in message ID 0x180 (message 15) with 1 byte arbitrary data in the CanTool program; 

the oscilloscope probe was attached to the connection-point of the green light on LED2; the “STOR” 

and “DOTJ” buttons on the oscilloscope were pressed down so that the “STOR” “DOTJ” and “TRIG” 

diodes got lit on the oscilloscope. The message was sent from the CanTool to the WDS-circuit and the 

oscilloscope caught one signal at 104µs. We reset the trigger and same message with the same data 

was sent to the WDS-node. This procedure was repeated several times, every time we got the same 

time of 104µs. This was expected, since the program should have the same system behaviour for the 

same input. 

 

In the next step we tried to find out the execution path that corresponded to the 104µs measured value. 

This was very difficult to do, because the only help we had were the three LEDs on the circuit. There 

were many if-else-statements and switch-statements in the CAN-interrupt function, and to figure out 

all the possible paths through those statements was almost impossible. Therefore, we just tried to find 

out what was the execution path for the measured time. This is one of the disadvantages of dynamic 

measurement methods: it is hard to figure out what execution path that was executed and it is hard to 

guarantee that the time measured was the time for the worst case.  

 



43 

We lit different lights in the different cases in switch-statements and if-else-statements in order to see 

which part of the code that was executed. Since there were only 3 LEDs with 2 lights each, we could 

only test a small part of the code each time.  We were finally able to figure out what execution path 

that corresponded to the measured value of the 104µs. Unfortunately this execution path was surely 

not the worst case, because there was one if-else-statement where the if-part would obviously took 

longer execution time, but the execution path of the 104µs took the else-part.  

 

In order to make the code to go in the if-part, the code was changed so that the if-condition got true. 

The changed code was recompiled, and the executable file was downloaded to the WDS-circuit. 

Exactly same message was sent to the node, and this time the oscilloscope reported a time at 115µs. 

Afterwards, the number of data byte was changed to 8 bytes while the message ID remained 

unchanged. For this message configuration the interrupt took 152µs.  

 

Later on the message ID was changed to normal messages. The execution time for each message with 

one respective eight bytes data was measured. For every execution, the path was re-examined after the 

time measurement. It showed that it was the same problem as for the message 15 type: there was a 

similar if-else statement in one of the interrupt’s functions, where the execution would always take the 

shorter path, i.e. the else-part. Therefore the code was changed like in the message 15-case, and then 

the measurement was remade. The results showed that execution time of the interrupt routine are the 

same for all the normal messages: it took 121µs for 1 byte data and 145µs for 8 bytes data. The results 

were shown in the Table 4.1.2b below: 

 

Msg typ Msg ID Time in µs for 1 byte data Time in µs for 8 byte data 
    

Normal message, 
including message    
1 - 9, 13 and 14: 

121 145 

15 0x180 115 152 
Table 4.1.2b Measured results for CAN-interrupt for the messages with manipulated code 

 

You might have noticed that message type 10, 11 and 12 are missing in the table 4.2.1b. The reason 

for this was that message type 10 and 12 needed unit_nr and unit_type as inputs. With the 

measurements made by oscilloscope, we tried to give unit_nr = 1 and unit_type = 2 that was the 

unit_type for PSA, but the message were not accepted by the WDS-circuit, thus no signal was 

triggered and no time could be measured. Message type 11 is a special TRANSMIT message that 

could not cause the CAN-interrupt on the WDS-node. 
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Obviously, after the program code was changed and directed into a longer path, a longer execution 

time was obtained. However, the code modification also caused some strange and remarkable system 

behaviours. For example, before we changed the code, there had always been three reply messages 

received after certain normal messages were sent, such as message 3 and 4. But after the code was 

directed into the longer path, no reply message was ever received. The reason for this was possibly the 

statements executed in the if-statement had affected the system in a wrong way, so that it could not run 

as normal. Another strange thing that should be noticed was that: for one byte data, the execution time 

for the normal message was longer than the message 15, but for eight byte data, it was shorter than 

message 15. However, we could not find any good explanation for it. Therefore, changing program 

code to direct it into a certain execution path was not the best choice when trying to measure the 

WCET. On the other hand, in our case, we were forced to do so, because under the conditions that we 

measured we did not have all other necessary nodes connected to our test environment, and it was thus 

impossible to get the WCET in the natural way. The next question was: should we take these “faked” 

results as possible execution times? After considering the benefit and drawback of it, we decided not 

to do so. Instead, we let the program execute in its natural way and measured the execution times of 

the CAN-interrupt for all kinds of the messages again. The results were shown in the Table 4.1.2c: 

 

Msg typ Msg ID Time in µs for 1 byte data Time in µs for 8 byte data 
    

Normal message, 
including message 1 

~ 9, 13 and 14: 

115 139 

15 0x180 104 132 
Table 4.1.2c Measured results for CAN-interrupt for message 1~15 with original code 

 

In the next step, the execution time of the STATUS message was measured.  The STATUS message 

was sent to the WDS-node when some error occurred on the circuit, such as bus-off or warning. Since 

such an error could never happen in the test environment that we had at CCS, we were once again 

forced to modify the program code. This was made by still sending normal messages to the WDS-

node, and just before the messageID was checked, it was changed into STATUS. Thereby the 

execution was directed to go into the part of code when there was a warning or there was a bus-off, 

when both warning and bus-off occurred on the circuit.  

 

During the measurement, the set-up of the oscilloscope had to be changed, because the execution time 

for the interrupt caused by a STATUS message was much longer than the other messages. The setting 

on time per stride on the oscilloscope was changed to 0.5ms/stride when we measured the execution 

time for an interrupt routine handling STATUS message that caused by either a WARNING or a BUS-

OFF. We used a 1ms/stride when we measured a STATUS message that caused by both a WARNING 
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and a BUS-OFF. Other settings remained unchanged. The measured execution times are listed in 

Table 4.1.2d: 

 

Reason caused STATUS message Execution time for the Interrupt-routine 

WARNING 4.8 ms 

BUS-OFF 4.8 ms 

WARNING & BUS-OFF 9.75 ms 

Table 4.1.2d Measured results for CAN-interrupt caused by STATUS message  

 

There were two ways to direct the program code, one way was to let functions CheckWarning() and 

CheckBusOff() in file “Ecanmess.cpp” to directly return true; another way was to change the code in 

ECAN.cpp when the WARNING and BUS-OFF flags in  STATUS_REGISTER were checked. Both 

ways were however tested, with no noticeable difference of the measured execution.   

 

As previously mentioned, the lights on the three LEDs were used to trigger the measurement and also 

to show the execution paths. Functions called to turn on and turn off the lights also consumed 

execution time, which must be eliminated from the measured execution time to obain the actual 

execution time. In order to find the execution time for functions, such as ELed_Red() and 

ELed_Green(), both functions were called 20 times each and the execution time for these 40 function-

calls were saved. In order to make sure that the execution time of those 40 function-calls was constant, 

it was measured several times, and each time we got the same execution time. This led to a conclusion 

that each function-call would take about 2µs to execute. The time for turning on and off the lights 

were then subtracted from the total execution time measured for the interrupt-routine.  For a normal 

message with 1 byte data, the execution time was 115µs – 2 * 2µs = 111µs and with 8 bytes data the 

execution time was 139µs –2*2µs = 135µs; for a message 15 with 1 byte data, the execution time was 

104µs – 1*2µs = 102µs and with 8 bytes data the execution time was 132µs – 1 * 2µs = 130µs. The 

code that was altered to direct the execution path for a STATUS message took relatively little extra 

time, maybe a couple of microseconds, which was negligible compared to the total execution time on 

milliseconds. Hence the final results of the execution time measured for the CAN-interrupt-routine 

caused by different CAN-message could be summarized like below: 

 

Msg typ Msg ID Execution Time  Execution Time  
STATUS - 4.8ms (WARNING or BUS-OFF) 9.75ms (WARNING and BUS-OFF) 

15 0x180 102µs (1 byte data) 130µs(8 byte data) 
Normal - 111µs (1 byte data) 135µs(8 byte data) 

Table 4.1.2e Summary for measured results for CAN-interrupt at the WDS-node 
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The execution time for handling the STATUS message when there was neither a WARNING nor 

BUS-OFF message was also measured, to be approximately 60µs. This case could however never 

happen in reality, since a STATUS message was sent out only when there had been a warning or a 

bus-off. Therefore this 60µs execution time could only be used for comparing the result to the 

execution time obtained by the static WCET analysis tool aiT (see Section 4.3). 

 

Some similar problem occurred for the code changing, like when we changed the code to direct it into 

a longer execution path. After the code was modified, the execution time of CAN-interrupt for 

STATUS message was measured. But we could only “create” the STATUS message once, the second 

time we tried to fake a STATUS message the CAN-interrupt was never triggered. The reason might be 

something like: Since a normal message was used to fake the STATUS message, a normal message 

was actually stored in the buffer of the CAN-controller. Normally the message should be removed 

from the buffer once it was read, but it was never removed in the STATUS-case, because the program 

code for STATUS message-handling never read from the CAN-controller (STATUS message has no 

data), instead it only checked if there had been a WARNING or BUS-OFF on the circuit. Thus the 

second time a normal message was sent, the buffer of the CAN-controller was still full, which led to 

the message got ignored or discarded.   

4.1.3 Optimisations in WDS 
 
Since CCS was also interested in finding out how different kinds of optimisations would affect the 

execution time of the program, we measured the execution time of the same program code with 

different kinds of optimisations too.  

 

The TASKING compiler could do different optimisations when compiling the program code. The 

program code could be optimised for speed, which made the execution of the code faster; and for size, 

which made the executable file smaller in size; or, by using some user defined optimisation.  

 

Since changing the program code would affect the system in an unknown and wrong way, which was 

undesirable, the code was changed back into its original shape. The code was compiled first with 

default optimisation, then with optimisation for speed and at last with optimisation for size. The 

execution times for all messages were measured for all three types of optimisations. It was quite easy 

to measure execution time of the different kinds optimisations of the program code. The optimisation-

options were set in TASKING, using the EDE menu, C compiler options, project options, 

optimization. The settings on the oscilloscope remained unchanged. The results are shown in Table 

4.1.3: 
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Msg type (ID) 1 byte data (µs) 8 byte data (µs) 
Compiled Optimization Optimization 

 Default For speed For Size Default For speed For Size 
       

15(0x180) 102 102 105 130 119 127 
Normal message, 
including message    
1 - 9, 13 and 14: 

111 108 108 135 130.5 132 

Table 4.1.3 Measured results for different kinds of optimisations 

4.2 PSA-circuit measured by logic analyzer 
 

The largest difference between the logic analyzer and the oscilloscope was that there were many more 

measuring channels on the logic analyzer, i.e. more information could be obtained simultaneously. A 

logic analyzer was therefore chosen to measure the PSA-circuit, we wanted to find out how much 

more a logic analyzer could do than an oscilloscope and whether it was much more difficult to do the 

measurements. Execution times for two kinds of interrupts were measured: CAN-interrupt and 

Regulator-interrupt.  

4.2.1 Preparations 
 

Same as in Section 4.1.1, we had to do some reparations before the measurements can begin. 

 

Power Supply 

The PSA-circuit used a special power supply for welding. The circuit got 26V AC respective 9V AC 

from pins H1-2 respective pins H6-7 on the  wiring diagram. It must be connected to a WDS-circuit 

via its CAN-interface, otherwise it would not pass the self-test and all of the three LEDs on the PSA-

circuit would light red. That is to say, to make a PSA-circuit work normally, a WDS-circuit must be 

connected to it. When the two circuits were properly connected, they also had a power supply. After 

the self-test was passed on both circuits, the green light on LED1 on the WDS was turned on and all 

the LEDs on PSA were turned off.  

 

Measuring point on the circuit 

The measurements were done in a completely non-intrusive way: by listening to the address-bus of the 

circuit. With help of a logic analyzer, a whole trace of addresses that had been accessed could be 

observed and stored with their corresponding access times. The time difference between the start and 

return address of the interrupt-routine was then the execution time for the interrupt.  

 

The first problem that had to be solved was how to connect the logic analyzer to the address-bus. As 

mentioned before, the Infineon C167CS-LM processor has very narrow spaces between the pins. It 
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was therefore not possible to directly attach the clips on the address-pins on the processor. The 

address-bus was connected with both the external RAM and external flash-memory on the PSA-

circuit. The spaces between the pins on both of the memories were fortunately big enough to hook up 

the clips of the logic analyzer without causing any short circuit. Actually it was also possible to 

purchase adapters for the processor, but we decided to choose this easier and cheaper way. We decided 

to attach the clips on the address pins on the flash memory. 

 

The pod1 and pod2 probes of the logic analyzer were used. There were 16 channels on each of the 

pods and every channel could be connecting to one bit of the address-bus. Before attaching the clips, 

the Pin number 33 on the flash memory, the BYTE#-pin was measured (see Section 3.4.2). This pin 

was set to high, which indicated that the memory access was done in word-mode. The same byte in 

memory has half the size address on word-mode as on byte-mode. For example: 

 

 Memory 
Address in byte-mode 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 … 
Address in word-mode 0x1 0x2 0x3 0x4 … 

 

In our case, the address was actually wanted in byte-mode, because the start and return addresses of 

the interrupt routines we got from the simulator CrossView and the static WCET analysis tool aiT 

were in byte-mode, and we would like to use them directly without modifying them. Therefore, when 

attaching the clips to the address-pins on the flash-memory, channel 0 on pod1 was left unconnected, 

i.e. all the addresses observed by the logic analyzer would be shifted one bit to the left. Then, 

according to the connection diagram (see Section 3.4.2), the clips were connected bit by bit to the 

address-bus. Channel 1 on pod 1 was connected to the address-bus bit 0, channel 2 on pod 1 to 

address-bus bit 1, etc. There were totally 19 bits on the address-bus, so channel 0 to 15 on pod1 and 

channel 0 to 3 on pod2 were used for listening to the address-bus. As previously mentioned, the 

channel 0 on pod1 was left unconnected, while the rest of the channels were attached with the address 

pins of the flash-memory. 

 

When the logic analyzer was attached to the address-bus, pin number12, the CE# pin was connected to 

channel 7 on pod2 on the logic analyzer. CE# was an active low pin on the flash-memory and could be 

used to filter out “trash addresses” and make the study of the address trace easier. See Section 3.4.2 for 

details. 

 

Obtaining start and return addresses of the interrupt routines 

In order to get the start and return addresses of the interrupt-routines that should be measured, the 

program had to be first executed on the TASKING CrossView Pro simulator or analysed by the static 

WCET analysis tool aiT, because their graphical interfaces could show the start and return addresses 
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of the interrupt routines. Thus the program was first compiled in .abs format, since aiT and CrossView 

required this format. Then the code was compiled in .sre format and downloaded to the processor. To 

guarantee that the addresses showed in Crossview and aiT corresponded to the same addresses 

accessed on the flash-memory exactly the same code was compiled into both kinds of formats. For our 

measurements, the addresses obtained by aiT were used because it was easier to see the addresses of 

the single instructions in aiT’s graphical interface aiSee. See Section 4.3 for examples of this graphic 

interface aiSee. The addresses from CrossView were also tried and they could absolutely also be used, 

it was easier to see the related source code that matched the addresses from CrossView.  

 

Specifying the settings on the Logic Analyzer 

The Logic Analyzer used was a HP 1670 Deep Memory Logic Analyzer. Following are the setting we 

used for our measurements. 

 

In the “Config” menu, the type of Logic Analyzer was set to “Timing”. 

 

In the “Format” menu that the user could select which channels that should be active. Channel number 

0 to 15 on pod1 and channel number 0 to 3 on pod2 were selected to be active, since they were the bits 

for the address-bus. Besides, channel number 7 on pod2 was connected to the CE# pin on the flash-

memory and also selected. 

 

Then in the “Waveform” menu, under label “Acq. Control”, the mode was set to “manual”, the 

memory length was set to the largest, the trigger position was set to “center”, and the sample period 

was set to “40ns”. The C167CS-LM processor on PSA-node was running on 20Mhz, so every clock 

cycle was 50ns. If the logic analyzer sampled with a 40ns period, we should be able to see the address 

accessed in every clock cycle.  

 

In the “trigger” menu, we chose “Label a” and defined it to be the start address of the interrupt routine. 

In the field “Timing Sequence Levels”, it showed “trigger on “a” > 40 ns”. During system running, 

once this start address was accessed, the logic analyzer would be triggered and started to store all the 

activities that were occurring on the address-bus. Afterwards, the label “Marker off” was selected and 

changed to “Pattern”. Then label “Specify patterns” was shown on the screen. The user could specify 

the addresses to be searched. In our case, we set the 0-pattern to be the “entering” the start address of 

the interrupt routine; and set the X-pattern to be “leaving” the end-address of the interrupt routine.  

 

Every time when the measurement was done, we simply chose the “List” menu, there the triggering 0-

pattern (start address of the interrupt routine) was always shown with time 0ns; and we searched the 
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first X-pattern (return address of the interrupt routine) that was caught after the trigger, the time of the 

X-pattern was then the execution time for the interrupt routine being measured.   

 

Downloading the executable file   

We compiled the original codes for both WDS-node and PSA-node into the .sre format. Then the 

executable files were downloaded in the circuits via the serie-ports.  

4.2.2 The Can-interrupt routine on the PSA-node 
 

Since the PSA-node was connected to the WDS-node, it was not necessary to use the CanTool to send 

the message to the PSA-node, the two nodes were automatically sending messages to each other. We 

only measure the execution times of the CAN-interrupt using the logic analyzer.  

 

From the map file we could see that the address to the CAN-interrupt vector was 000100h, and the 

CAN-interrupt routine had start address 0007A6Eh, which agreed with the start address we got from 

aiT. We first set 007A6Eh as the trigger address for our logic analyzer, but after consideration, the 

trigger address was changed to the address of the CAN-interrupt vector, because the execution time for 

calling the interrupt routine should also be included in the execution time for the CAN-interrupt 

handling. Shown on the control-flow graph we got from aiT, 007AA0h was the return address of the 

interrupt-routine in the main-loop, thus we set 007AA0h as the return address from the CAN-interrupt.  

 

The “run” button was pressed and we caught a time at 56.32µs.  The measurement was done 

repeatedly by pressing “shift” + “run”. There were three different times that were caught by the logic 

analyzer: 56.3±0.5µs, 169.8±0.5µs and 184.8±0.5µs. Among them, time around 56µs was most 

frequently occurring, about 85% of the totally number of measurements. Why did the execution times 

vary so much? Was the 184µs the longest execution time the CAN-interrupt could take? Our next step 

was to find out the execution paths of all these three times.  

 

One execution trace was saved for each of those three times. The execution traces were than copied 

from the logic analyzer to a PC for analysing. A trace from the logic analyzer looked like the 

following: 

 



51 

 
Figure 4.2.2a address trace taken by a logic analyzer  

 

In order to find out what really happened during the execution, we had to match all these addresses 

with the program code, i.e. to find out what path through the program the execution had taken. For 

example, as shown on the picture, in column “Lab1 Hex”, 000100 was the address to the CAN-

interrupt vector, which triggered this measurement; 480ns after the measurement started the CAN-

interrupt routine was called at address 007A6E. As mentioned before, the address of each instruction 

could be obtained either by aiT or CrossView. Often, the program code was analyzed, for example, 

after the address of an if-statement, the instruction subsequent was always analyzed to see whether the 

code went into the if-statement or the else-statement. For each address the corresponding instruction 

and statement in the program code was extracted. Finally the whole execution trace was interpreted, 

and the complete execution path was discovered. An interpreted execution path could look like the 

following: 

 

 
Figure 4.2.2b An interpreted address trace  
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When all the three execution traces were interpreted, we found out that only the execution time at 56µs 

was a pure execution of a CAN-interrupt routine. In the other two executions the CAN-interrupt had 

been disturbed by a Regulator-interrupt. For example, for the execution of 184µs: 16.34µs after the 

measurement was triggered, a Regulator-interrupt occurred, and the handling of the Regulator- 

interrupt lasted until 144.5µs after the trigger, which mean that the Regulator-interrupt took 144.5 – 

16.34 = 128.16µs to process. When we subtracted 128.16µs from the total execution time 184.8µs, the 

pure execution time for the CAN-interrupt was 56.6µs. Similarly for the execution of 169.8µs, the 

Regulator-interrupt took 112.92µs, so the CAN-interrupt took actually 169.8 – 112.92 = 56.88µs. 

Therefore, all three executions of the CAN-interrupt had in fact very similar execution times and were 

all between 56µs and 57µs.  

 

From these execution scenarios we also discovered that the different kinds of interrupts had different 

priorities. Obviously, the Regulator-interrupt had higher priority than the CAN-interrupt, and 

whenever a Regulator-interrupt occurred it could break in directly in the middle of a CAN-interrupt to 

be handled first.  

 

Was the longest execution time for a CAN-interrupt actually 57µs? So far all the measurements were 

done quite long time after the circuits began to run. Could the CAN-interrupt take longer time at the 

system start-up phase, when WDS and PSA communicated for the first time? With this question, new 

measurement was done right after the power supply was given to the circuits. A new execution time 

was caught and the result showed a significant difference: an execution time of 75.1µs. The next step 

was to make a new interpretation was done for this new time, with the goal to find out why the times 

differed about 18µs. The traces of the execution paths were compared, and the difference was because 

of a static variable was created. At the first time the PSA-node received a CAN message from the 

WDS-node, a static variable “EcanMessage mess” was created, which took about 18µs extra. But this 

only happened at the start-up phase for the communication between the two nodes. The same 

measurement was repeated several times and every time we got the more or less the same time of 

75.1µs. 

4.2.3 The Regulator-interrupt routine on the PSA-node 
 

For the measured PSA-circuit, two different kinds of welding methods could be chosen: MMA and 

Tig, using the menu on the display that was connected with the WDS-circuit. For different welding 

methods, the Regulator-interrupt routine would be different. We started by looking at the Regulator-



53 

interrupt routine for Tig, because the two Regulator-interrupts that were wrapped in CAN-interrupt 

were of this kind. 

 

TIG 

The execution times of these two Regulator-interrupts were at 128.16µs and 112.92µs; there was a 

15.24µs time difference between them. After studying the trace of these two executions, the reason for 

these extra 15µs was discovered: There was an if-statement in function SetInputValue(), where the 

execution with the longer time went in, but the other execution did not. Under the whole execution this 

function were called twice, and each time it took 7.5µs extra to go through the if-statement. Therefore, 

the total cost for the longer execution path was 15µs extra.  

 

Afterwards, we looked at the Regulator-interrupt in isolation. The trigger address was changed to 

000098h, which was the address to the Regulator-interrupt vector. The return address (X-pattern) was 

changed to 007A6C that we got from the aiT tool. This return address was checked up in CrossView 

too, which gave the same address. The measurements were done repeatedly, there were two times 

mostly caught: 128.1µs ± 0.5µs in about 95% of the total number of measurement made, and 113µs ± 

0.5µs.  The rest of times caught were all shorter than 128.1µs, so it was not so important to find out 

their execution paths since we were only interested in the longest one. 

 

MMA 

When we had finished the measurement of the TIG-method, we changed the welding method to MMA 

by alter the option on the display. The trigger and return address remained unchanged. Three different 

execution times were obtained: 99.5µs, 107.2µs and 113.5µs. Among them 98% of the measurements 

were around 99.5µs and 107.2µs. Actually we only got one measurement at 113.5µs. 

 

All the execution paths were, once again, found out. The difference between 99.5µs and 107.2µs 

depended on an if-statement in function SetinputValue() which calculating the current, where the 

execution at 107.2µs went in to the if-statement, but not the execution at 99.5µs.  

 

When we studied the execution path more in detail we discovered that another type of interrupt had 

occurred in the middle of the Regulator-interrupt, which took about 6µs extra to handle. From the map 

file, we found the address on the interrupt vector; it was an “ADCInterrupt” whose function was 

unknown to us. The only thing we know about the ADCInterrupt was that it had a higher priority than 

the Regulator-interrupt. 
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Another interesting thing that happened when we measured the execution time for the MMA welding 

method, was that sometimes we got very large time variations, such as, 820µs, 672µs, 533µs, 188µs 

etc. But after the path was found out, it showed that for all of these “strange” times, there had been a 

DisableInterruptTimer6() call occurring. That is to say, the Regulator-interrupt was turned off directly 

when it occurred. The system first finished execution of the code in main-loop that was running before 

the Regulator-interrupt, and then it took care of the interrupt.  For example, for the execution time at 

820µs: the Regulator-interrupt was turned off in 721.4µs, thus actually the Regulator-interrupt took 

only about 99µs. Therefore, if we ignore the time spent when the interrupt was disabled, all the 

execution time was below 108µs. 

 

4.2.4 Results of Measurement on PSA-node 
 

All the measurements on PSA-node reported on so far were totally non-intrusive. There was not a 

single line of program code changed or inserted for probing. The results of measurements are 

summarised in Table 4.2.4: 

 

Type of interrupt Time measured Conditions 

  

CAN-interrupt 56.5µs±0.5µs Under normal execution. 

 75.0µs±0.5µs Under the start-up phase. 

  

Regulator-interrupt:  

Method TIG 113µs±0.5µs Under normal execution. 

 128.1µs±0.5µs Under normal execution. 

  

Method MMA 99.5µs±0.5µs Under normal execution. 

 107.2µs±0.5µs Under normal execution. 

Table 4.2.4 Summary for measured results for CAN-interrupt and Regulator-interrupt at the PSA-node 

 

There was large variations in the measured times. The reason for this was that it could take different 

time to access memory from execution to execution, and bit-flip occurred with slightly different 

frequency. Hence the execution time could vary with several hundreds nanoseconds.  

 

4.3 WCET Estimations by aiT 
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One of the purposes of this thesis was to find out which measuring methods CC-System could use in 

their future work, how difficult it would be to use the method and how accurate the result could be. In 

this section, some general description will therefore be given to the readers about how the WCET was 

estimated by using the static time analysis tool aiT. The results measured by the oscilloscope, were 

also compared with the WCET estimations made by aiT, see Section 5.2. The WCET estimation by 

aiT was another Master Thesis [16] that was done by Ola Eriksson at CCS in conjunction with this 

thesis. 

 

The aiT Worst-Case Execution Time Analyse is designed and developed by the AbsInt Angewandte 

Informatik GmbH in Germany. It is a commercial WCET analysis tool, and belongs to the category of 

static timing analysis method.  

 

The WCET analysis in aiT is divided into six steps: first aiT reads the executable file; the executable 

format supported by this version of aiT is the IEEE-695, the ELF, the COFF and the XCOFF file 

formats. The format that was used was the IEEE-695 format, which was the only one of the supported 

formats that could be produced by TASKING. The second step is the construction of call graph and 

control-flow graph based on the executable file. The third step is called loop bound analysis, which 

tries to determine bounds on the number of loop iterations. The fourth step was called value analysis, 

which tried to statically determine possible values of register at different program points. The fifth step 

is called pipeline analysis; there the WCETs of the basic blocks2 were computed. The last step is 

called path analysis, which derives the overall WCET from the block WCET. [30] 

 

Before the WCET analysis could begin, some hardware information and software information, as well 

as the loop bounds and other flow information were required by aiT. Hardware inputs included, for 

example: which processor core that was used, which X-Bus features that were enabled/disabled and 

the memory configuration. The software information, which is also called user annotations, included: 

compiler used, context specification, memory accesses, known register values, known loop bounds, 

etc. The latter information was used to for example control, restrict or direct the flow of the program, 

making the calculated WCET bounds more accurate. The file that the user used to give annotations is 

called an ais-file. The annotations given by the user are very important, since most of the cases the 

estimation results depend very much on how the annotations are given. For example: if aiT could not 

find the loop bound automatically and the user did not give the loop bound in the ais-file either, then 

the WCET analysis would fail. Too large loop bound would cause overestimation of WCET, and too 

small loop bound would cause underestimation of WCET. For more information about the aiT tool 

                                                 
2 A basic block is a sequence of instructions that have consecutive addresses and are executed sequentially, 
without any branching of control flow. 
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please see [16]. Regarding the annotations for the CAN-interrupt on the WDS-node, Ola gave different 

annotations for those three types of messages. See his report [16] for more detailed information.  

 

The aiT tool could not only give the WCET estimation, but also provided a graphical interface, which 

could be used to see the code’s structure from a call-graph. The call-graph could be shown in different 

levels of detail:  just functions, basic blocks in function, or instructions in basic blocks. The execution 

time of each basic block could also be viewed either in clock cycles or the corresponding absolute 

time. The call-graph was very useful; it can simply help the user to have a complete view of the whole 

program code structure, and even give a trace of the worst-case execution path. The program that used 

to show the call-graph was called aiSee, also developed by AbsInt Angewandte Informatik GmbH. 

Following are examples of figures provided by the aiT Tool. 

 

 

 

 
 

Figure 4.3a Call-graph with WCET provided by aiT. (The red arrows show the worst-case execution path) 
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Figure 4.3b Basic blocks with their start addresses  

 

 

 

 

 
Figure 4.3c Basic blocks with source codes shown 
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Figure 4.3d Basic blocks with instructions shown 

 

4.4 Effort made to make the measurement result and aiT WCET estimation comparable  
 
The results in Section 4.2.4 had been obtained in a non-intrusive way, but after studying their 

execution paths and comparing them to the worst-case execution path that we got from aiT, we 

discovered that the code had not taken the worth-case path reported by aiT for any of the execution 

times obtained. This was because that under the test environment, it was not possible to make the 

system behave in the worst way or to end up in the most complicate state. However, in order to be able 

to compare the measured time with the aiT’s time estimations, we must make them have more or less 

the same execution path. To direct the programs to go as similar paths as possible, changes were made 

both in the program code (Section 4.4.1) and extra annotations were added to aiT’s ais file (Section 

4.4.2).  

 

4.4.1 Directs program code according aiT WCET estimation’s path  
 

It was difficult to direct the execution for the measurement, every time the code got changed, new 

executable files had to be generated, both for the target hardware and for aiT. Furthermore, we did not 

know whether the changes could affect other parts of the system and the kind of consequences it could 

get. Therefore, only the code for Regulator-interrupt in the MMA method was changed according to 

the worst-case execution path obtained by aiT.  

 

The WCET estimation using aiT for the Regulator-interrupt for MMA was 321.2µs without memory 

annotations and 314.7µs with memory annotations. First we compared the execution paths without 
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changing anything in the MMA code. The main difference between the measurements and aiT 

estimation was the paths taken in different case-statement in functions State() and CalculateCurrent(): 

the measurements took “case: OVERTEMP” in State() and “case: STOP” in CalculateCurrent(); while 

aiT took “case: START2 ” in State() and “case: WELDING” in CalculateCurrent(). The code was 

therefore modified so that the new execution went in the same branches as in aiT’s estimation. A new 

measurement was done; and a time of 216.8µs was obtained. The execution path of this new time was 

analysed, and then compared with the path in aiT, but the paths still differed in four places, all of them 

being if-statements. For example, there was an if-statement where the “m_bShortCircuitControl” was 

checked, and aiT estimation assumed that the short circuit was not true, but under the execution it was 

in fact a short circuit, and because of this the executions differed from the estimation. Therefore this 

216.8µs was still not the longest time either. Then the program code was manipulated further so that in 

all those four if-statements the execution made exactly same decisions as aiT. The new code was 

compiled and downloaded to the node and aiT program. Measurements were once again repeatedly 

made, and two kinds of execution times were obtained: either around 260.2 µs or about 285µs. First 

the execution path of 285µs was compared with aiT’s estimation, there were still a few places, where 

the paths differed, and all of them were nested if-statement. Later on, the execution path for 260.2µs 

was compared with the one for 285µs; the difference was also a nested if-statement. However, for that 

if-statement, the 285µs measurement had the same selection as aiT, but not the 260.2µs measurement.  

 

In fact, if we continued manipulating the program code, so that the execution could go exactly the 

same path as the aiT estimation, the execution time could become more and more closer to the 

estimation, but it was still not possible to get the same execution time as the estimation. This is 

because aiT sometimes makes some overestimations. Moreover, it was absolutely not sure that the 

execution path that we got from the aiT estimation was feasible, because it depended very much on the 

annotations given in the ais file. That is to say, if incorrect annotation was given to aiT, the calculated 

worst-case execution path it found could not be really trustable. 

4.4.2 Directing aiT according to the measurement’s execution path  
 

As mentioned above, it was very difficult to direct the measurement to follow the same execution path 

that we got from aiT. Fortunately, on the other hand, it was relatively easy for aiT to estimate the 

execution times according the execution paths we had in our measurement. Although they were not the 

WCET, it could give an idea roughly how much overestimation that was made in the estimated 

execution times. 

 

There were several ways to direct the execution path in aiT. Some examples are: flow-annotations 

could be used to adjust the execution path in the for-loop or a switch-statement; value of conditions 
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could be used to decide the execution path for an if-else-statement. For detailed information on how to 

give annotations to direct the aiT execution, please see [16].  

 

During the measurements, we also discovered that the address trace that we got from the logic 

analyzer could provide valuable help to the aiT annotations. For example, we could see from the 

address trace the addresses that were accessed when reading or writing data in certain instructions. 

Later on we used the map file to see which memory interval these addresses belonged to, and gave the 

interval in the annotation for the instruction. Thereby, the estimated execution time for the instruction 

could be improved, i.e. get closer to the measured time. This is because when aiT doesn’t know which 

parts of memory to access, it will use the worst memory accessing time. 

 

Some settings in the aiT program, such as addresses to the register pointer and the stack pointer were 

also added to improve the estimation.   

 

 



61 

 

5. Result 

In this chapter we will give some comparisons between the dynamic methods and static methods 

tested in this thesis. The advantages and disadvantages of each kind of methods will be discussed in 

aspects of difficulty and accuracy. The measurement results will also be compared to each other.  

5.1 Dynamic Methods VS. Static Methods 

 
Dynamic Methods 

Advantages: 

1. If there have been only changes in the program code and the test environment remains 

unchanged, it is easy to make new measurements. 

2. Dynamic measurements can also give other timing behaviours of the system, such as ACET, 

and people can get a distribution of the execution times. 

3. Easy to measure execution time for different kind of optimisations of the same code. 

4. Do not require any detailed knowledge of the program code.  

5. The execution path of every measured execution time is feasible.  

Disadvantages: 

1. Many preparations have to be done before the measurement and the quality of the measured 

result relies very much on having the test environment correctly set up.  In order to get tight 

and believable result, all the relevant hardware components must be connected and work 

properly, which was not always possible. For example, if the components are developed and 

manufactured in different places. 

2. With some methods, it is difficult to see if there has been interference included in the 

measured result. For example, if there has been pre-emption or delayed time function calls 

happening during the measurement. Only those methods that provide time traces can show the 

execution path. 

3. It is never guaranteed that the longest execution time measured is the actual WCET. The 

WCET happens very rarely and the conditions to make it happen are normally unknown.  

4. Can cause probe effects. 

 

Static Methods 

Advantages: 

1. The only thing needed to begin the WCET estimation is the static WCET analysis tool and 

executable program. 

2. No probe effect. 
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3. User can get a complete view of the program by the help of the call- and control-flow graphs 

that are provided by many of the static timing analysis tools. 

4. Guaranteed safe WCET estimates, if correct annotations are given. 

Disadvantages: 

1. Requires good knowledge of both program code and the static tool. Wrong annotations can 

generate a non-feasible WCET estimate. Tight and safe WCET estimates require accurate 

settings both in the static tool and in the annotation file. 

2. New annotations have to be made for every change in the program code or every kind of 

optimisation of the program code. 

3. The types of processors and compilers supported by the static tools are limited. Static tools 

cannot analyse all kinds of systems. 

4. There will always be overestimation. Too large overestimations will make the WCET estimate 

non-usable. The overestimations also make it hard to see if the obtained estimate corresponds 

to any actually possible execution that could be obtained by measurements. 
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5.2 Dynamic Methods’ Results VS. Static Methods’ Results 
 

• CAN-interrupt in WDS-node 
 

Message Type Conditions Dynamic 
Measurement 

Static 
Measurement 

Difference 

   
MESSAGE 1 byte data 111 µs 116.15 µs 4.6 %

 8 byte data 135 µs 143.80 µs 6.5 %

MESSAGE15 1 byte data 102 µs 109.25 µs 7.1 %

 8 byte data 130 µs 136.90 µs 5.3 %

STATUS Warning and Bus-Off are both false 60 µs 71.75µs 19.6 %

 One of Warning or Bus-Off is true  4.8ms 10.223ms 113.0%

 Warning and Bus-Off are both true 9.75ms 21.089ms 116.3%

Table 5.2a Comparison of the measured execution times and the aiT estimates of the CAN-interrupt at the WDS-node 
 
 
Table 5.2a shows the comparison of the measured execution times and the aiT execution time 

estimates of the CAN-interrupt at the WDS-node. The differences between the measured execution 

time and the aiT execution time estimates are given in percentages. For the normal messages, the 

differences are between 4.6% and 7.1%, which is acceptable, because aiT always does overestimation 

when there is uncertainty at for example, memory access. For the STATUS message, on the other 

hand, the differences are quite big. The reason for this is that, when there was a STATUS message 

sent out, some error-handling functions were called, it was quite allot codes for those error-handling 

functions, and a lot of possible execution paths through the codes, aiT took the worst execution time. 

But since we used an oscilloscope as the execution time measuring method, we could not see which 

execution path the measured execution time has taken, so we could not direct the aiT to go the same 

execution path as the measured execution time. Therefore, the measured execution times and the aiT 

estimates had probably taken different execution paths. 
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• CAN-interrupt and Regulator-interrupt in PSA-node 

   

Without memory annotations With memory annotations
Interrupt type Dynamic measurement Static 

measurement
Difference Static 

measurement 
Difference

Can 56.5µs±0.5µs 58.60 µs 2.8 %  

 75.0µs±0.5µs 79.00 µs 4.6 %  

Regulator MMA 99.5µs±0.5µs 104.00 µs 4.0 % 102.90 µs 2.9 %

 107.2µs±0.5µs 113.45 µs 5.3 % 110.60 µs 2.7 %

 285µs±0.5µs 321.20 µs 12.5% 314.70 µs 10.2%

Regulator TIG 113µs±0.5µs 119.30 µs 5.1 % 117.10 µs 3.2 %

 128.1µs±0.5µs 138.20 µs 7.5 % 132.50 µs 3.0 %

Table 5.2b Comparison of the measured execution times and the aiT estimates of the interrupts at the PSA-node 
 

Table 5.2b shows the comparison of the measured execution times and the aiT estimates of the CAN-

interrupt and Regulator –interrupt at the PSA-node. The differences are also given in percentages. As 

show in the table, the differences are between 2.7% and 12.5%, which is acceptable. One thing should 

be noticed here, the measured execution time of 285µs of the Regulator MMA interrupt was obtained 

by modifying the program codes so that the execution would go the same path as the aiT estimate, and 

rest of the execution times had the aiT tool direct the execution time estimates to go the same 

execution paths as the measured execution times by altering the annotations in the ais files. As we can 

see in the Table 5.2b, even after we had tried to let the aiT execution time estimates and the measured 

execution times go the same execution path, with additionally memory annotations in the ais files, 

there were still differences between the measured execution times and the aiT estimates. The reasons 

for this are probably due to that, there were still small differences on the execution paths, and we were 

not able to give all the memory accessing annotations to the aiT tool.  
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5.3 Other Usages of Dynamic and Static Measuring Methods 
 
The dynamic and static time analysis methods could be used in other areas. In this section we focus on 

the methods that have been used in this thesis and discuss other possible usages. 

 

Both the logic analyzer and aiT could be used to make the “Time Accurate Simulation” simulator 

(TAS) to work better. Time Accurate Simulation was another Master thesis performed at CCS 2001 

[31]. It is based on the existing simulation technology that has been developed by CCS. During the 

developing-phase of a program code, CCS uses TAS to simulate the functional behavior of the system. 

A PC is used to simulate the program that should be run on a target node, and normally the simulated 

program always works faster than the processor on the target circuit. In order to make the execution 

behavior of the program code more like on a real target processor, timing accurate management has 

been added to this simulator. Basically, TAS will provide timing information that tells the PC how 

long a certain piece of simulated code should take to run. The thesis [31] focused on how to add the 

time accurate behavior to the system but not on how to obtain the proper execution times needed to 

make the simulation time accurate. Both the dynamic and static time analysis methods could be used 

to obtain the proper execution time. However, there is a difference in what type of timing each method 

could provide. From the aiT tool, only a possible overestimated WCET could be obtained. If the 

WCET is given as the interrupt execution time, it will mean that every time the interrupt will execute 

for the longest possible time, which is not true in reality. Therefore it is better to use ACET (average-

case execution time) obtained by the measurements, which will give a normal and more likely 

behavior of the simulation. Moreover, this will not cause much overhead. The easiest way to get 

ACET is to use a logic analyzer that is connected to the address bus, to measure the execution time of 

the interrupt over and over again. Exactly like what we did in this thesis. Each execution time should 

be saved, and then divide the total execution time by the number of measurements made. The more 

measurements that are done, the better the ACET will be. 

 

The address traces produced by the logic analyzer are very helpful because they can give a processor 

activity list sorted by time. From this list people can easily see how and when the program code is 

executed, and whether the functions are executed exactly in the way that they are designed or planned 

to be.  If there has been an error, the trace can also help us to find out why it happened and even how 

the error has affected other parts of the system. There are many other advantages by using a logic 

analyzer, such as a way to observe the number of loop iterations or the depth of the recursive function 

calls, which are important information when developing the software. We can also supervise the   

memory accesses made using the logic analyzer. For example, we can see whether there has been an 

illegal access in a protected memory area.  
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One advantage of aiT is that it has a well-developed graphical interface, and can provide a very clear 

and easy handled control flow graph of the whole program. This can help the user of the software 

developer to have a complete view of the whole system. For instance, from the graph we can see 

which function that is calling which function; all the possible execution paths in the program and the 

input’s influence on the path choices. All this information is very valuable for the programmers and 

software developers. AiT also enables us to do temporal testing in parallel with the programming. 

Once one task in the system is implemented, we can do the WCET analysis directly for this task. Then 

the WCET obtained could be used as a parameter in the scheduling of the system. 

 

The times from the logic analyzer and aiT could also be used to find places in the code, which are 

time-consuming and suitable for optimization.  

 

 

 



67 

6. Conclusions 

 

All three methods tested for timing analysis: the oscilloscope, the logic analyzer and the aiT WCET 

analysis tool, can be used separately by CC-Systems for its program development. However, none of 

them is the single best method.  

• An oscilloscope has limited amount of measuring points and limited granularity. It is difficult 

to see what has happened in small functions or if there has been pre-emptions, so it is not easy 

to find the exact execution path using the oscilloscope. The measured results have rather 

coarse time resolution and cannot be guaranteed to be the WCET.  

• A logic analyzer is a much better option for a detailed timing behaviour analysis. It can 

observe several measuring points simultaneously, and give results on a level of single 

instructions. The activity trace of the address-bus can be used in both functional testing and 

temporal testing. Furthermore, the measurements can be done in a totally non-intrusive way. 

The shortcoming of the logic analyzer is that the measured result cannot be guaranteed to be 

the WCET. 

• The aiT tool can do the WCET analysis without the target system and the result is guaranteed 

to be a safe WCET estimate. But it requires that the user to have a very good understanding of 

both the aiT tool and the program code; otherwise the quality of the estimated results can be 

seriously affected and resulting in large overestimations.  

 

However, a better way to do the WCET analysis is probably to combine the dynamic measurement 

with the static analysis so that the two kinds of methods are able to compensate each other. From the 

static method, we may get a complete view of the code executed together with the possible longest 

execution path. Using dynamic methods we can find out if this path is feasible or not, and the required 

conditions/inputs for the program for going this longest path. If we can, somehow, make sure that 

these required conditions are fulfilled, and afterwards measure the execution time of this path by a 

dynamic measuring tool, e.g. a logic analyzer, then we will be able to say, with high confidence, that 

we have found the actual WCET of the program. On the other hand, the dynamic measurement can 

provide useful information, such as addresses for annotations of memory, to get tighter static analysis 

results.  

 

A dynamic method, such as a logic analyzer can also be used to get other timing behaviours of the 

system, such as ACET. The ACET can be used by the Time Accurate Simulation in order to get a 

more reliable simulation for CCS’s program development.  
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7. Designing and Creating Code for Analysability 

 

It is very important is to think about the analysability already in the design-phase of the system and 

through the whole development of software the developers should have the analysability on their 

mind. Following are some suggestions: 

• Implement different functionality in tasks instead of using a big loop with different kinds of 

interrupts. Minimize the amount of interprocess communication, synchronization and resource 

sharing.  

• Avoid using recursive function calls, deep-nested if-else-statements and switch-statements, 

thereby making the code structure as simple as possible.  

• Avoid using pointers in branch-conditions and loop-conditions, thereby making the code as 

predictable as possible. 

• Avoid returns in the middle of the code and organize the error-handlers in a simple and clear 

way, such as throw and catch commands.  

• Write comments as detailed as possible, thereby helping other programmers to more easily 

understand the code. 
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8. Future Work 

 

Due to the limited amount of time and the limitation of the testing environment there are many things 

that could have been done better or tested in more detail. 

 

When comparing our results for the WDS-node, there are quite large difference between the measured 

results and the static estimations of aiT. The reason for this is still unsure. Is it an unacceptable high 

overestimation by aiT, or are the measured results are really far from the real WCET?   

 

In order to make the measured results comparable to the aiT’s estimations, when measuring the 

Regulator-interrupt of the MMA method on the PSA-node, the program code could be even further 

directed according to the aiT’s execution path. There are still places where the execution trace differs 

from the static execution path. Since the execution times did not differ too much, we didn’t bother to 

alter the code to make it act exactly like the aiT’s execution path.  

 

The same effort should be done for all other codes that were tested. That is to say, all the measured 

execution paths should be compared with aiT’s execution paths to discover the differences, the code 

should then be directed to go the worse-case path obtained by aiT, in order to see if it is possible to 

obtain the WCET by measurement and to compare the measured results with the estimations obtained 

by aiT.   

 

A logic analyzer should be also used to measure the code of the CAN-interrupt on the WDS-node; in 

order to find out if there has been any other interrupts that pre-empted the CAN-interrupt.  

 

The time analysis using Linux time function rdtsc() should also be tested more throughoutly. In this 

thesis, only some general descriptions are given to the reader. However, neither real tests nor 

measurements were done to evaluate the difficulty and accuracy of the method. Moreover, a list of all 

available time functions should be made to compare their portability, overhead and resolution. 

Furthermore, comparisons of time functions of different operating systems, or different versions of the 

same operating system can also be interesting to make.  Another thing that should also be interesting 

to evaluate is how much the program needs to be modified so that these time functions can be applied 

in CCS’ product development. 
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