
 
 
 

Evaluation of Static Time Analysis for CC Systems 
 
 
 
 

Ola Eriksson 
oen99001@student.mdh.se 

2005-08-13 
 
 
 
 
 

   
 
 
 
 

Department of Computer Science and Electronics 
Mälardalen University, Västerås 

And 
CC Systems, Västerås 

 
 
 
 
 
 
 
 

Supervisor at Mälardalen University: Andreas Ermedahl 
Supervisor at CC Systems: Mattias Lång 
Contact at CC Systems: Stefan Rönning 

Examiner at Mälardalen University: Björn Lisper 
 
 



   

 2

Abstract 
Most processors today are embedded in products like mobile phones, microwave owens, 
welding machines etc and are not used in PC’s as many believe. Since some of these 
embedded computers are used in time-critical or safety-critical systems it is very important 
that the behaviour of these systems are well known. One part of that is to know the Worst 
Case Execution Time (WCET) of the different tasks in the embedded system. The traditional 
method of finding the WCET of a task is by measuring the execution time of the task when it 
is running on the target system. There are several problems with this approach. It is hard to 
check that the time you have got is actually the WCET.  
 
Today there is another possibility to find the WCET. You can use static timing analysis that 
does not execute the program in order to find the WCET; instead it uses a model of the target 
hardware and uses static methods to calculate the WCET. There are a few commercial static 
WCET tools on the market and a few more academic ones, but so far no industry has started 
to use these on a regular basis. 
 
This work was done at CC-Systems (CCS) in Västerås [1]. CCS develops and delivers 
electronic solutions and software for machines and vehicles in tough environments. This 
means that some of their code is time-critical. The purpose of this thesis work was to find out 
if it is possible to integrate the static WCET tool in CCS development tool chain and also to 
see if CCS would benefit from it. If it was possible to do so they also wanted to know if they 
must change their development process or make other changes to make it easier to analyse 
their code by a static tool. CCS was also interested to know if the static tool could be of use in 
other areas than WCET analysis, for example giving their simulation technique a correct 
timing behaviour. 
 
To be able to compare the results of the static WCET analysis considering effort and 
accuracy, dynamic WCET analysis was also performed on the same code snippets as with the 
static tool. The dynamic measurements was a part of another thesis [2] on CCS  performed by 
Yina Zhang. The purpose of her thesis was to evaluate different dynamic WCET analysis 
methods and to see if any of the methods is well suited for CCS. She also evaluated what CCS 
could do to make it easier to analyse their code with the selected WCET analysis method and 
if they could use the WCET analysis methods for other things than just WCET analysis. One 
part of her thesis was also to evaluate the currently used methods of finding WCET values on 
CCS. 
 
The overall conclusion of this thesis is that to be able to get both tight and safe WCET values 
static methods should preferably be used. Dynamic methods can however help the static 
method giving tighter WCET values since they can be used to give input to the static analysis, 
for example give information about memory accesses. If general timing behaviour of the 
system is wanted dynamic methods are prefered since today’s static methods can’t provide 
this kind of information. 
 
Keywords: WCET, Static Timing Analysis, Dynamic Timing Analysis, Method Comparison 
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1 Introduction 

1.1 Background 
Today most things contain some kind of embedded computer. They exist in cell-phones, 
microwave owens, cars, toys and a lot of other electronic products. 
 
Many things formerly controlled entirely by hardware are today controlled by software in 
different kinds of distributed real-time systems. These kind of distributed real-time systems 
have also replaced old mechanical solutions with for example fly-by-wire, drive-by-wire and 
so on. A real-time system is a system with deadlines, i.e. everything has to be done before a 
specific time. Sometimes it is also important not to be done too early. If you take an airbag for 
example, it is equally important not to inflate it too soon compared to inflating it too late. A 
distributed system is a system consisting of several nodes working together performing a task 
and communicating through some kind of network. 
 
Real-time systems have to be predictable in the sense that you know the maximum time for 
something to be done and sometimes you also have to know the minimum time. This makes it 
necessary to know the execution time of different parts of the software in the real-time 
system. It is especially important to know the Worst Case Execution Time (WCET) since this 
can have big effects on the rest of the system. The problem is to find the WCET for different 
code snippets. The most commonly used way to find the WCET is by using dynamic 
methods, i.e. making measurements on the code executing on the target. An easy way of 
doing this is by using built in time-function to measure execution time, but it requires an 
operating system (OS) and small embedded systems usually aren’t equipped with an OS. 
Then you have to rely on different kind of hardware for making these kinds of measurements 
like for example oscilloscopes, logic analysers and emulators. If the system have built-in 
timers they can be used instead of hardware and for some processors there are also cycle-
accurate simulators available that can be used to obtain executions times. It is often very hard 
to guarantee that the path generating the WCET actually has been found. It can also be very 
hard to connect all parts needed to make the measurements and simulate a correct behaviour. 
You are often forced to change the code to be able to make measurements and this can affect 
the system in different ways (known as probe effect).  
 
An alternative to dynamic timing analysis for obtaining the WCET is static timing analysis. 
Static timing analysis uses a model of the target hardware and the program that runs on the 
target and static methods to estimate WCET for a certain code snippet. There is no need to 
execute the code when static timing analysis is used since the execution time is calculated and 
not measured. This can make it easier to estimate the WCET and it also makes it possible to 
estimate the WCET for systems that aren’t finished yet or were the hardware isn’t available.  
 
CC-Systems (CCS) [1] is a company that develops and delivers electronic solutions and 
software for machines and vehicles in tough environments. The company was founded 1991 
and have now grown into a company with 130 co-worker situated at offices in Alfta; Sweden, 
Uppsala; Sweden, Västerås; Sweden, Örnsköldsvik; Sweden and Tammerfors; Finland. Some 
of their customers are Timberjack, John Deere, BAE Land Systems Hägglunds, ESAB, Atlas 
Copco, Bromma Conquip and Rolls-Royce Marine. CCS wanted to know if it was possible to 
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integrate the static WCET tool in their current tool chain to be able to calculate WCET and 
also to improve their simulating technology. 
 
The code that is analysed is code that is used in welding machines and some component-
based code. The company ESAB provides the code used in welding machines. The 
component-based code is an Adaptive Cruise Control and it is part of a test to automatically 
generate tasks from different components. The ESAB-code that is tested consists of two 
interrupts and since the component-based code was much smaller all its tasks and components 
were analysed. All the tested code was time-critical, however there were no explicit deadlines 
for the interrupts in the ESAB-code. 

1.2 Purpose 
The purpose of this thesis was to find out if CC Systems (CCS) can benefit from using static 
WCET analysis methods in their development process. Static WCET analysis was also 
compared with dynamic WCET analysis methods to find out which method was best suited 
for CCS. CCS was also interested in other uses for static WCET analysis. For example if it 
was possible to get timing of code parts that could make their existing simulation technique 
more time accurate. If the conclusion of the thesis was that static WCET analysis can be 
integrated in CCS development process and that it would also be of great use to do so, CCS 
wanted to find out how they can make it easier to integrate this method. One way of 
simplifying the integration process could be to structure the source code in certain ways that 
would make the static WCET analysis much easier. 
 
Several calculations of WCET have been performed on CCS’s code in order to find out how 
accurate and time consuming static WCET analysis is. To have something to compare the 
WCET values to, dynamic measurements have also been performed on the same code 
snippets. The measurements have been performed by Yina Zhang [2] who concurrently made 
her MSc work at CCS, focusing on methods for dynamic timing analysis. 

1.3 Worst Case Execution Time 
The Worst Case Execution Time (WCET) has many definitions, the basic idea is however that 
the WCET is the longest time a program will execute during normal operation. One problem 
can be to determine what normal operation means. In this thesis normal operation means 
operation without fatal errors such as hardware failure and other failures that would make the 
system crash. Errors that won’t affect the operation of the system are often integrated in the 
WCET. 
 
The reason why WCET is important to know is that it is a parameter used when the resources 
needed for the system are calculated. It is also very important to know the WCET for tasks 
when the system is being scheduled since it represent the execution time needed if the system 
is going to be guaranteed to be schedulable. In order for a WCET value to be of good use it 
have to be both safe and tight. Safe means that the WCET value obtained is equal or greater 
than the actual WCET. Static WCET tools obtain a safe WCET value by always assume the 
worst case scenario when in doubt. Tight means that the WCET value should be as close to 
the actual WCET as possible. This can be a problem for static WCET tools since they use 
overestimations when in doubt. In order to assure good WCET estimations the tools and 
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models used to calculate WCET have to generate values that are safe and tight [5]. It is 
however always easier to produce safe values than tight ones. 
 

 
Figure 1.1: Execution time distribution 

 
Figure 1.1 above gives a good illustration why it is hard to find WCET values using 
measurements. The values that are measured are the ones called possible execution times in 
the figure. It is often hard to find the WCET by measurements since the probability that it 
occurs is very low. Static WCET analysis on the other hand guarantees to generate a value 
that is greater than or equal to the actual WCET value; the problem is that sometimes the 
overestimation can be quite large. If not only a WCET value but also the execution time 
distribution is wanted dynamic methods can give such information. A big trouble of finding 
the WCET using dynamic methods is that a very large set of inputs has to be tried in order to 
be able to guarantee that the WCET have been found and this is often virtually impossible.  
 
The software behaviour of a program could make the execution time of the system variable 
but also the hardware upon which the program runs can have that effect. Modern hardware is 
gets more and more advanced with pipelines, caches, branch prediction and out of order 
execution. All these features are there to lower the Average-Case Execution Time (ACET), 
however they often increase the WCET or at least make it hard to find the WCET since the 
system becomes much more complex. Static WCET analysis uses a hardware model of the 
target hardware to mimic its timing behaviour. If the target system is very advanced the task 
of making a model is almost impossible. In order to get a safe WCET value overestimations 
are often used when the behaviour of advanced hardware is modelled. These overestimations 
can in turn lead to a less tight but safe WCET value. 

1.4 Related Works 
This section will give some information about other studies of static WCET analysis tools. 
For more information about static WCET analysis and the tools available see Section 2.4. 
 
Susanna Byhlin has performed a MSc thesis [6] similar to this one. Her job was performed at 
the company Volcano Communications Technologies AB (VCT). The purpose of her thesis 
work was to examine if a static WCET analysis tool could be integrated into VCT’s 
development environment. This would enable VCT to calculate WCET values and also to 
reduce the development time and therefore also the development cost. The conclusions drawn 
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by the author is that the static WCET tool used (aiT) had both advantages and drawbacks 
compared to dynamic WCET analysis. A problem brought up by the author is the fact that 
VCT uses a lot of different processors and compilers and static WCET tools for these 
processors and compilers may not be developed in time. Another problem with static WCET 
analysis according to the author is that static WCET analysis is still an area of research and 
this can make is hard to assure tight and safe execution times. This thesis is also available as a 
smaller article [7]. 
 
Daniel Sandell also used aiT to calculate WCET values in his MSc thesis [8]. The purpose of 
his thesis was to find out if a WCET analysis tool could be used to derive WCET estimates on 
the OSE operating system code. The second purpose was to see what improvements have to 
be made in order to make WCET analysis tools more applicable to the demands of the 
industry. The code snippets tested were system calls and disable interrupt regions. The result 
from the WCET analysis is compared with values from the ARMulator, which is a hardware 
model of an ARM-processor that can be used to calculate execution times. The conclusions 
drawn by the author are that the code could be analysed with a WCET analysis tool and that 
disable interrupt regions were well suited for these type of static WCET analyses. System 
calls could also be analysed but demanded more work from the user. A summary of this thesis 
is available as an article [9]. 
 
The MSc thesis by Samuel Peterson [10] is about porting a static WCET tool to the Renesas 
H8/3292 processor. This processor is used in Lego Mindstorms, a kit used for building simple 
lego robots, and is commonly used in education for real-time courses. The goal of the thesis 
was to bring the WCET analysis technique into the education by introducing the ported 
version of the Bound-T WCET analysis tool [11] in real-time system courses at Mälardalen 
University. The conclusion drawn by the author is that is requires a lot of work to port a static 
WCET analysis tool to a new host platform. Although this processor didn’t have any caches 
or pipelines it had a quite large instruction set and a lot of addressing modes, which made the 
implementation non-trivial.  
 
Jakob Engblom, Andreas Ermedahl and Friedhelm Stappert have written a technical report 
about validating a WCET analysis method for embedded systems [5]. The report is a manual 
how to verify a WCET analysis method for an embedded processor. The author focuses on the 
safety of the analysis method but the tightness is also considered. In the report they verify 
their own WCET analysis method. The WCET analysis is composed of several components 
and each of these are tested separately. In order to verify the components, code with known 
WCET values were used to test the WCET analysis method on. To test one component in 
isolation all other components have to be made constant in some way. This is done by 
selecting certain input values that produce the WCET and then using them for all analyses. 
This will lead to a constant execution path, which makes the verification easier. The results 
they get from the components are compared to the known WCET’s and the traces they have 
gotten from running the code on a PC. The authors claim that after verifying their WCET 
analysis tool their calculation method is correct and their pipeline analysis is both tight and 
safe. 
 
A. Colin and I. Puaut have written a report about a static WCET analysis of the RTEMS Real-
Time Operating System [12]. The actual analysis has been performed by a student named 
Philippe Selo. The Heptane WCET analysis tool was used to analyse 12 system calls in the 
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RTEMS Real-Time Operating System. All the systems calls were dealing with task 
management and synchronization. The following properties were found in the code of 
RTEMS: small number of loops and no loop nesting, absence of recursion, small number of 
dynamic calls and high degree of reuse of functions. The main problem with the analyses was 
to find correct loop bounds. Only 25% of the loop bounds were trivial to find, the rest 
demanded deep studies of the source code of RTEMS. The loop bounds found were often 
very pessimistic since they depended upon the number of task in the system which had an 
upper bound that was much higher than the number of task that usually were in the system. 
Most of the dynamic calls could be replaced by static ones to simplify the analysis,  but 
according to the authors it was hard to find the function that was actually called. The authors 
summarises the report by saying that they think RTEMS is well suited for WCET analysis. 
 
An article [13] about testing the Debie software with the Bound-T static WCET analysis tool 
is written by N. Holsti, T. Långbacka and S. Saarinen. The Debie software is an ESA 
instrument that monitors space debris and micrometeoroids. The software consists of many 
different tasks and was already verified using measurements when the analysis with Bound-T 
was performed. This made it possible to compare the results of the different methods. The 
code had to be changed slightly in order for Bound-T to analyse it. Bound-T couldn’t for 
example analyse assignments of struct-values and the floating-point division including an 
irreducible loop structure. A total of 68 lines of code were changed. The number of 
annotations needed were 47 and 38 of them were for loops. Many of the loop annotations will 
be found by Bound-T automatically when it is completely developed. The result showed that 
the statically calculated values were slightly higher than the measured ones. Bound-T found 
several things that could lead to deadline misses, one of those was a poor implemented change 
in the code that increased interrupt blocking by 413 µs. The conclusion drawn by the authors 
is that Bound-T would have been very useful during the development of the Debie software 
since it would have been able to measure times early in the developing process. Moreover, 
recomputing WCET values would also have been much easier with Bound-T than with 
measurements says the authors. 
 
The aiT tool has been used on Airbus and the results have been published as an article [14] for 
the International Performance and Dependability Symposium 2003. The article was written by 
S. Thesing, H. Heckman, J. Souyris, F. Randimbivololona, M. Langenbach, R. Wilhelm and 
C. Ferdinand. The different phases used by aiT to determine the WCET are described together 
with the information on how the pipeline used by MCF 5307 is constructed. Some 
information on how the result can be safe is also given by describing abstract interpretation, 
the technique used in many phases of aiT. The WCET tool was ues in the DAEDALUS 
project. The things analysed were the precision and usability of the tool. A benchmark was 
used so that the results of the tool and the results from Airbus’ method1 could be compared. 
The overestimation was larger with Airbus’ method than with aiT. The result from the tool 
could also be proven to be safe since it was compared with real executions of the program. A 
strong point of the tool is that it can be used in the development process when hardware isn’t 
available yet. The conclusions drawn by the authors is that the aiT tool provide safe and tight 
WCET bounds and that it also can be applied to realistically sized programs an environments. 
 
                                                 
1 Which method that was used by Airbus is never explained in the article but it is probably some sort of dynamic 
method. 
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1.5 Thesis Outline 
Chapter 1 gives an introduction to the thesis including background, purpose, WCET, and 
related works. Chapter 2 includes information that is needed for a good understanding of the 
rest of the thesis such as the development process (Section 2.1) and compiler/linker (Section 
2.2) used by CC Systems (CCS). It also contains information about the target system analysed 
both concerning hardware (Section 2.3) and software (Section 2.7). Sections 2.4 and 2.5 give 
some general information about static and dynamic WCET analysis. The technique to make 
CCS simulations time accurate is described in Section 2.6. Chapter 3 talks about the problem 
(Section 3.1) and the methods (Section 3.2) used to solve them. Chapter 4 will give 
information about how the static tool aiT (Section 4.1) and dynamic analysis methods 
(Section 4.2) can be used to obtain WCET estimates. This chapter is meant to be used as a 
manual for these types of analyses. The code structure and characteristics of the code that is 
analysed is described in chapter 5. Chapter 6 goes into the actual analyses with aiT in this 
thesis and chapter 7 do the same but with the dynamic methods. In chapter 8 the results of the 
thesis are divided up into the three parts comparing methods (Section 8.1), comparing results 
(Section 8.2) and describing different usages of WCET analysis (Section 8.3). The results are 
based on the Chapters 6 and 7. The conclusions drawn in this thesis are presented in Chapter 9 
and finally future work is given in Chapter 10. 
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2 Relevant technologies 
This section will go through information that is needed to get a good understanding of the rest 
of the thesis. Section 2.1 will talk about the development process for software used by CC 
Systems (CCS). Section 2.2 give some information about compilers and linkers and especially 
about the compiler/linker used by CCS called Tasking. Target hardware of embedded systems 
is described in Section 2.3 and Section 2.3.1 and 2.3.2 give some deeper information about 
the circuit board used by the ESAB welding system and the microcontroller used in all the 
WCET analyses. Sections 2.4 and 2.5 are about static and dynamic WCET analysis and 
describes tools and hardware typically used in such analyses. In Section 2.6 the technique 
used to make CCS’s simulations system time accurate is described. 

2.1 The Embedded System Software Development Process 
Most companies that develops software use a special process to help the programmers and to 
ensure that the software live up to the demands of the buyer. The development process used 
by CC Systems (CCS) is called PUP (Process för Utveckling i Projekt2). The process is based 
on RUP (Rational Unified Process) and the different phases of PUP and RUP can be seen in 
figure 2.1. The following purposes of the phases are used in PUP. The purpose of the 
inception phase is to set the bounds of the project; gather the demands; create a first sketch of 
the system architecture; create a plan and a cost estimate of the project and find the risks of 
the project. The purpose with the Elaboration phase is to establish an architecture; reduce the 
risks; prepare tests for the entire project; create a plan for the Construction phase and adjust 
the cost estimates. The Construction phase’s purpose is to step by step create and deliver a 
system with more and more functionality; evaluate and use experiences from system 
evaluations; test, evaluate and estimate the quality of the system and prepare the users for 
receiving the system. The purpose of the final phase, the Transition phase, is to carry out final 
users tests and education; document experiences; correct the system and finish the project. 
The phases are divided in iterations and each iteration consists of a number of steps. The steps 
are gather requirements; analyze and design; implement and test. The number of iterations per 
phase can vary depending on the project. Each iteration is ended with an iteration evaluation. 
The reason for using iterations is that problems can be taken care of more quickly and the 
work of the testers is more evenly spread out throughout the project.  
 
 

 
Figure 2.1: The development phases used in PUP and RUP 

                                                 
2 This is a Swedish name and can be translated to “process for development in project” 
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2.2 TASKING C166/ST10 
To make the source-code understandable by the processor, the source-files have to be 
compiled and then linked together into an executable. To compile the source-code a compiler, 
who can translate the source-code into instructions that the processor can understand, have to 
be used. After the compilation the linker takes the object-files created by the compiler and 
turns them into an executable. Different compilers and linkers produce different executables 
and to be able to make a precise WCET estimation as possible the static tool must know 
which compiler and linker that was used and it also has to support it. The reason for this is 
that different compilers and linkers generate different information in the executable and this 
information is by the analysis tool. 
 
The compiler/linker used by CC Systems (CCS) to compile code for the Infineon C167CS-
LM processor is TASKING C166/ST10. This compiler/linker is the only one supported by 
aiT for the C167CS-LM processor used by CCS on the ESAB welding system (Section 2.7). 
TASKING supports a lot of processors but the version of aiT used only supports processors 
from Infineon with the C166 and ST10 CPU cores. TASKING C166/ST10 has a lot of 
compilator optimisations that can be used. There are 18 optimisations that can be individually 
turned on or off. To make it easier for the user there are a number of predefined groups of 
optimisations to choose from. They are: no optimisation, default optimisation, optimise for 
speed, optimise for size and custom optimisation. It is only in the custom optimisation 
category that the user can choose freely between the different optimisations. The optimisation 
group commonly used by CCS is the default optimisation group. The reason for CCS to 
choose this optimisation group is that it doesn’t affect the general structure of the code much 
and therefore makes it easier to test the functionality of the code.  
 
There are eight output file formats to choose from in TASKING. The one used for the 
analysed code is Motorola S records for EPROM programmers (.sre). This executable is later 
downloaded to the external EPROM-memory on the circuit board.  
 

2.3 The Target Hardware 
The hardware in embedded systems is often much simpler and have much less features than 
hardware in a PC. The reason for this is that an embedded system doesn’t demand the same 
processing power as a PC. Embedded systems also have a greater need to be predictable and 
basically the more features there are in the system with caches, out-of-order execution, branch 
prediction etc the less predictable the system becomes. The cost is also of great importance in 
embedded systems and that is another reason for using simpler hardware. Section 2.3.1 
contains information about the circuit board used the ESAB part of this thesis and Section 
2.3.2 contains information about the microcontroller used in this thesis. 
 
2.3.1 The ESAB Circuit Boards 
The circuit board used for the ESAB welding system is designed by ESAB. The 
microcontroller used is the Infineon SAK-C167CS-LM (see Section 2.3.2). The 
microcontroller itself has a small internal memory but since it is not enough for the welding 
system, extra memory has been added for the code and data. The external memory for 
program code is a 1 MB flash memory and the external memory for data is a 32 KB RAM. 
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The built-in frequency of the microcontroller is 25 MHz but ESAB have put a crystal on the 
circuit board to lower the frequency to 20 MHz instead. Depending on the use of the circuit 
board different peripherals can be attached. The peripherals can be displays, buttons, controls 
for valves etc. One of the ESAB Circuit Boards can be seen in Figure 2.2. 
 

 
Figure 2.2: One of the ESAB Circuit Boards (the WDS node) 

 
2.3.2 The C167CS-LM Microcontroller 
The microcontroller used in this thesis is the Infineon SAK-C167CS-LM, which is a part of 
the C166 microcontroller family. Below is a listing of some of the components in the 
microcontroller: 
 

• 16-bit CPU with 4-Stage Pipeline  
• CPU clock speed 25MHz  
• Two on-chip CAN modules version 2.0B active  
• Peripheral Event Controller (PEC)  
• Capture Compare Unit (2x16 channels)  
• 4-channel PWM unit  
• 24-channel 10Bit A/D Converter  
• Idle, Sleep and Power Down Mode with Flexible Power Management  
• Two Multi-Functional general purpose timer units with five 16-bit timers  
• Watchdog Timer and Oscillator Watchdog  
• Up to 111 General purpose I/O lines  
• Full Automotive Temperature Range: -40°C to +125°C 

 
Up to 16 MB of external RAM and/or ROM can also be connected to the microcontroller. The 
microcontroller have a feature called a jump cache, which allows the execution time of 
repeatedly performed jumps in a loop to be reduced from 2 cycles to 1 cycle. It also has a 
separate multiply and divide unit to speed up execution. 
 
Most instructions on the microcontroller take one machine cycle3 to execute but there are 
exceptions that take longer time. A multiplication of two 16-bit numbers takes 5 machine 
cycles. Indirect addressing also causes longer execution times. 
 
                                                 
3 One machine cycle is equal to two clock cycles i.e. one machine cycle is 80 ns on this microcontroller when it 
is running at 25 MHz. 
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2.4 Static Worst-Case Execution Time Analysis 
Static worst-case execution time analysis is a way to calculate the worst-case execution time 
without measuring it. In order to calculate the WCET for a code snippet, all properties of the 
code like upper loop bounds, infeasible paths, recursion depths etc. have to be known. A 
model of the hardware must also be used so that the timing behaviour of the target system can 
be mimicked. The hardware model can be very advanced if the system uses performance-
enhancing features like instruction caches, data caches, pipelines, branch prediction and out of 
order execution. There has been a lot of work on how these things affect static WCET 
analysis, for example [15] and [16]. Fortunately, most embedded system uses simple 
processors without caches, branch prediction and out-of-order execution. Almost all 
processors today have pipelines and so do embedded ones, but they usually only consists of a 
few steps compared to the many step processors of modern PC’s.  
 
Static WCET analysis is generally divided into different steps. There are different approaches 
to how the analysis is divided, which steps there are and how many. In [17] the analysis is 
divided into three steps and these steps will now be explained. The first step in the analysis is 
called flow analysis. This step is responsible for finding the flows of the system, i.e. all 
possible executions paths. It is also here flow constraints like loop bounds, infeasible paths, 
function calls, recursion depth is found automatically or given as input from the user. The 
program flow can be extracted from three different types of code; source code, intermediate 
code and object code. If the flow analysis is performed on source code there is a problem of 
knowing how the compiler will change the code when it is compiled, therefore it’s not very 
common to use source for the flow analysis. Intermediate code is used by some tools since it 
contains more information from the compiler that can make the analysis more precise but the 
drawback is that it is very compiler dependent. Commercial tools often use object code for 
their flow analysis since it is independent of which compiler is used. This makes it is easy to 
adapt the flow analysis to other compilers and hardware. 
 
The second step of static WCET analysis is low-level analysis. It is in this step the execution 
time for each basic block4 or instruction in the program is calculated. The low-level analysis 
is often divided into two parts called global low-level analysis and local low-level analysis. 
Local low-level analysis considers effect between instructions like pipeline overlap and also 
takes memory access speed into account. Global low-level analysis considers effects between 
basic blocks like instruction caches, data caches, branch prediction and translation look aside 
buffers (TLB’s). Global low-level analysis isn’t used to generate execution times but is 
instead used to capture effects of hardware features that needs to be modelled over the whole 
program. If the processor used is very complicated it might be hard to separate the global and 
local low-level analysis since for example data caches effects both the local and global part of 
the low-level analysis. 
 
The calculation step is responsible for calculating the overall WCET of the program by 
combining the results from the flow analysis step and the low-level analysis step. To be able 
to find the WCET the path that generates WCET must be found and there are different ways 
of finding this path. There are three methods commonly used and they are: path based 
calculation, tree based calculation and Implicit Path Enumeration Technique (IPET). The path 
                                                 
4 A basic block is a group of sequential instructions where instructions are executed if the first one of them is 
executed.  
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based calculation method simply calculates the execution time for all paths through the 
program and selects the one with the highest execution time as the WCET. A less time 
consuming approach is the tree-based calculation that uses a tree representation of the 
program that it traverses bottom-up, calculating the execution time of a node with the help of 
the execution time of its child nodes. The calculation method that is most commonly used is 
IPET since it can handle complex flow constraints. The idea is that each basic block has an 
execution time and a count variable. By setting different dependencies between count 
variables various flow constraints can be expressed. To find WCET the maximum value of 
the sum of all count variables multiplied with their execution time, considering dependencies, 
is calculated. To perform the actual calculation Integer Linear Programming (ILP) or 
constraint solving can be used. ILP is the most commonly used. 
 
To learn more about static WCET analysis read [16], [17] and [18]. 
 
2.4.1 Static Worst-Case Tools 
There aren’t a lot of static WCET tools available today. The ones that exist are either research 
prototypes or commercial tools. The things that separate the tools are the CPU’s supported 
and calculation method used. Some of the tools are also compiler dependent. 
 
One of the commercial WCET analysis tools now available is aiT Worst-Case Execution 
Time Analyser (aiT) from the German company AbsInt Angewandte Informatik GmbH [19]. 
AiT supports the processors ARM7, HCS12/STAR12, PowerPC MPC555, PowerPC 
MPC565, PowerPC MPC755, ColdFire MCF5307, Texas Instruments TMS320C33, Infineon 
C166 (only C167CS-LM) and Infineon ST10 (only ST10F269 and ST10F276).  
 
Bound-T is another commercial WCET analysis tool and is a product from the Finnish 
company Tidorum Ltd [11]. Bound-T was first developed at Space Systems Finland Ltd with 
support from the European Space Agency (ESA/ESTEC). The Bound-T supports several 
processors, including the Intel-8051 series, the ERC32 processor in the SPARC series, the 
DSP Analog Device processor ADSP-21020 and the Renesas H8/300 processor.  
 
The last commercial WCET analysis tool is RapiTime from Rapita Systems Ltd [20] and it is 
based on the research prototype pWCET. More information about pWCET can be found in 
[21]. RapiTime isn’t a strict static WCET analysis tool since it relies on dynamic methods to 
get the actual execution times. It doesn’t only produce a WCET value it also give a execution 
time distribution of the analysed code snippet. It uses traces from either a cycle accurate 
processor simulator or by executing the code on the target system to obtain execution time 
distributions for smaller code snippets and then combines them using static WCET analysis 
techniques. RapiTime isn’t restricted to be used on certain processors. 
 
One of the research prototypes is the WCET tool SWEET (SWEdish Execution time Tool) 
[22], [23], [17], presented by Andreas Ermedahl, Björn Lisper, Christer Sandberg and Jan 
Gustafsson. Jakob Engblom and Friedhelm Stappert have also been in involved in the low-
level analysis and calculation part of the tool. The tool is very modular to make it easier to 
change different parts of the analysis. They have implemented three different calculation 
methods that they can choose from; they are IPET, path based calculation and clustered. The 
supported processors are ARM9 and NEC V850E. The part of the tool that is currently being 
developed is a flow-analysis working on compiler-generated intermediate code. Thereby, the 
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flow-analysis becomes target independent. The result of the flow analysis is given as input to 
the low-level analysis and calculation steps of the analysis. 
 
Another research prototype is the Heptane (Hades Embedded Processor Timing AnalyzEr) 
WCET tool [24]. Heptane is published under the GNU GPL license, and is downloadable free 
of charge. It supports the processors Pentium I, MIPS and Renesas H8/300. At the moment 
Heptane works on C source code but work is on the way to make it work on disassembled 
binary. The people behind Heptane are Antoine Colin and Isabelle Puaut. More information 
about this tool can be found in [25]. 
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2.5 Dynamic Worst-Case Execution Time Analysis 
Dynamic worst-case execution time analysis is the traditional way of finding WCET of a 
program. There are a lot of methods for obtaining the WCET dynamically, and the thing they 
all have in common is that the time is measured on a program when it is executing. There are 
both benefits and drawbacks with that. One benefit is that all execution paths measured are 
possible paths through the program, which is something that cannot always be guaranteed 
with static analysis. The problem is to find the path that results in the WCET. It is impossible 
to force the execution to take a certain path without affecting the system, since the code have 
to be added or the original code have to be changed. Therefore theoretically all possible inputs 
have to be tried to find the WCET path. The problem here is that the number of different 
inputs often is too large to test within a reasonable time. The method usually practiced is to 
add a safety margin on the value measured to compensate for not finding the actual WCET. 
This isn’t a very good approach since the WCET on some system can be just a little bigger 
than the measured value and sometimes many times bigger. There is also the problem with 
interrupts pre-empting the code that is measured leading to incorrect values.  
 
The first problem encountered when doing dynamic measurements is to get the target system 
connected so that it works like intended. This often much trickier than it seems since it can be 
hard to get a hold of all hardware required. Most embedded systems interact with the 
environment and that can be hard to simulate correctly. A problem that can occur during 
development of the system is that all the code needed for running the system may not even be 
available since its not ready yet or it is being developed by a different company. The hardware 
can also be under development. Once the target system is correctly connected it is rather easy 
to do different measurements. It is also possible to record execution times of a code snippet 
over a longer period of time and then get statistics of the execution time so that things like 
jitter and average execution time can be calculated but it is still no guarantee that the WCET 
has been found. Instead of just measuring execution time, dynamic timing analysis can also be 
used to get different kind of traces by measuring the address bus or data bus. This is very 
helpful way of finding the execution path. 
 
The problem with dynamic WCET analysis is to be able to guarantee that the WCET value 
obtained is safe. As can be seen in Figure 1.1 all the values that can be measured are less than 
or equal to the actual WCET which means that a safety margin probably has to be added to 
the WCET value measured to make sure the value is safe. It is however hard to estimate how 
big the safety margin should be. Since the correctness of the WCET estimate is hard to 
validate it is also hard to get a tight value. If the system is very small and simple and all inputs 
can be tested, then dynamic measurement should come up with a value that is exactly equal to 
the WCET. This means it is both safe and tight but these kinds of system is very rare if not 
non-existent. 
 
2.5.1 Dynamic Worst-Case Execution Time Hardware 
The most common way of finding WCET dynamically is by using an oscilloscope or a logic 
analyser. The oscilloscope is the cheapest options but it is also the most limited tool. The 
easiest way of finding WCET with an oscilloscope is by using a pin on the processor, for 
example setting it high when the execution starts and then setting it low when it ends and 
measuring the time in between. This method makes it impossible to see which path has been 
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executed and it can also affect the system slightly. If instead a logic analyser is used the same 
type of measuring can be made but there is also other possibilities. The entire address bus can 
be measured so that the execution time can be found by just calculating the time between the 
address of the first instruction of the code measured and the last one. A trace of the execution 
can also be saved so that the execution path can be found.  
 
An emulator can also be used to measure execution time if it’s time accurate. Most emulators 
are able to produce traces so that the execution path can be found in the same way as with the 
logic analyser. The problem with emulators is that they can only emulate the behaviour of one 
or a couple of processors and they are rather expensive to purchase. They can also, depending 
on the actual emulator, need some modification of the circuit board. This makes it hard to 
validate that its timing behaviour corresponds to the timing of the real board. 
 
If the execution time is expected to be several minutes or even hours a simple stopwatch 
could actually be used to measure the execution time. This kind of long execution time is 
however very unusual in embedded systems. Pictures of different dynamic measurement 
hardware can be seen in Figure 2.3 
 

 
Figure 2.3: A logic analyser, an emulator and an oscilloscope 

 
2.5.2 Dynamic Worst-Case Execution Time Software 
If the embedded system uses an operating system (OS), built in system calls for getting the 
current time can be used to measure execution time. There are also systems without an OS 
that can have accessible counters but they might be a bit trickier to use. A function call to get 
the current time can be added in the beginning of the code that is going to be tested. The same 
is then done in the end of the code. The execution time can then easily be found by 
subtracting the start time from the end time. This method has a few drawbacks. It is hard to 
know if the code is pre-empted by other programs, the added code affects the system and the 
system call to get the time may not have a granularity fine enough to measure the code 
correctly. It may have a lot of drawbacks but it is probably the fastest way to get an execution 
time for a program and if the program isn’t very time critical this method is probably accurate 
enough too.  

2.6 Time Accurate Simulation 
Time Accurate Simulation is the result of a Master thesis at CC-Systems (CCS) 2001 [26]. It 
is based on the existing simulation technology at CCS. 
 
Time Accurate Simulation is used to extend an existing simulation technique to be able to 
handle time accurate simulations and not just function accurate simulations. To be able to 
simulate a system on a PC the hardware dependent code has been replaced with code that 
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simulates the hardware on the PC. In order to get a time accurate behaviour, breakpoints are 
added in the code to slow down the execution to the speed of the target system. The 
breakpoints takes the target time elapsed from the last breakpoint as an in-parameter. The time 
is used to synchronize the execution of the nodes of the system and can also be used to slow 
down the execution of the system to the speed of the target system.  
 
There are more advantages of this technique than just a time accurate behaviour. It can be 
used to slow down or speed up the execution of the system by simple multiplying the system 
clock with a constant. If the constant is less than one the system is running in slow motion and 
if the constant is bigger than one the system is running faster than on target. It is also possible 
to step through the execution of the system one breakpoint at a time. This can be very helpful 
if you want to study some part of the execution of the system extra carefully. If the only thing 
of interest is the synchronisation it is possible to run the system in full speed, i.e. only 
compare times between the nodes and ignore the system clock.  
 
It is possible to simulate different system nodes and each node can also consists of several 
threads and/or interrupts. The problem with several threads or interrupts in a node is that they 
use the same CPU and therefore competes for CPU time. When one thread on a node executes 
the target system time for all the threads/interrupts on that node increases. To be able to 
implement this the first registered process on a node is called the parent and all other 
processes on that node have to name that process as their parent. This enables all the 
processes on the same node to have the same target system time. But since the 
synchronisation is built upon the fact that the process with the smallest target system time get 
to execute a problem comes up. In order to select which process on the node is going to 
execute all processes have priorities. The process with the highest priority gets to execute first 
when several processes have the same smallest target system time. If there are interrupts in 
the system, they are simply given a higher priority than the main process to ensure that they 
get to run before the main process. 
 
To add Time Accurate Simulation to an existing simulation technique, the DLL-file has to be 
added to the project and then there are just a few extra function calls needed. All the processes 
of the system have to be registered with a call to the function TimeSyncRegisterUnit, which 
takes a string with the name of the process and a priority as in-parameters. To start the 
synchronisation with the other processes one of the functions TimeSyncStart or 
TimeSyncStartTime must be called. They take the handle returned from the register function 
call and the target system time of the process as in-parameters. If the target system time isn’t 
given the global system time is used instead. To be able to get the time accurate behaviour 
you then add breakpoint in the code with the target time elapsed from the last breakpoint and 
the handle as in-parameters. The breakpoint function is called Tsbreak. When a process is 
terminated or wants to leave the synchronisation it have to be unregistered or else it will cause 
a deadlock in the entire system. To unregister the handle to the process is sent as an in-
parameter to the function TSunregister.  

2.7 The ESAB Welding System 
The ESAB welding system is a modular system consisting of up to four different types of 
permanent nodes and one service node connected via CAN5. Depending on the kind of 
                                                 
5 Controller Area Network. The most commonly used communication bus for embedded systems. 
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welding system different nodes are used and sometimes there are several nodes of the same 
type present in the system. One of the two types of permanent nodes always present in a 
welding system is the Man Machine Communication (MMC). The MMC is the master node 
in the system and holds information about the entire system and it is also responsible for all 
interaction with the user through the display and buttons. The second permanent node type 
that always is present is the PowerSource A (PSA) node, where A is the version. It is 
responsible for the power supply to the welding process. The first of the two types of 
permanent nodes that isn’t always present is the Remote Control (RC) node; it is used to 
replace the MMC node when the welder is far away from the actual welding unit. The last 
type of permanent node is the Wire Feeder (WF) node. The WF node is responsible for 
feeding wire during the welding phase if the current welding method uses wire. If there are 
several nodes of the same type in the system it usually is several WF nodes present 
responsible for different kind of wire (different materials or dimensions). The fifth and final 
node type is the ESAT node. It is used for services or for upgrading the software in the 
system. The node isn’t actually a separate piece of hardware but software running on a PC 
and communicating with the other nodes through a CAN-card in the computer. The structure 
of the system can be seen in figure 2.4. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: The nodes of the ESAB Welding System 
 
Each permanent node has basically the same basic structure. They all use the C167CS 
processor and they have no operating system (OS). The code is object oriented (C++) and is 
constructed like a big loop and interrupts. One of the interrupts is responsible for receiving 
CAN-messages and putting them into a buffer. There are also timers that can be used to 
trigger interrupts. For example a time triggered interrupt is used on the PSA node to control 
the power to the welding process. The main loop is a bit different depending on which type of 
node it is. There are some things that all nodes do in their main loop. First they check their 
incoming buffer if there are any new CAN-messages, if there are any they send them to the 
correct class to be processed. Then the outgoing buffer is checked for CAN-messages, if there 
are any they are sent over the CAN-network. The outgoing CAN-messages are often 
responses to incoming CAN-messages or they are notifications of changing states possibly 
due to input from the welder.  
 
The thing that is unique for the MMC node in the loop is that it starts the loop by checking if 
the welder have pushed a button or turned a knob. If that is the case it lets the current state 
handle it. The PSA node also has some extra tasks to perform. It has to control a water pump 
and if the hardware supports a trigger that also has to be handled. These are just some of the 
things preformed by the nodes but they are the most important ones. 
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3 Problem description and method 
The question that CC Systems wants an answer to is if they could benefit from using dynamic 
or static WCET analysis in their development process. This chapter will go into the problem 
and the methods used to solve it. It will also give a description of the aiT Worst-Case 
Execution Time Analyser tool and the dynamic methods used. 

3.1 The Problem 
As mentioned above the purpose of this thesis is to find out if CC systems (CCS) could 
benefit from using dynamic or static WCET analysis in their development process. The 
purpose of this thesis was to use static WCET analysis methods to test how easy to use and 
how precise answers they give. Another thesis performed by Yina Zhang [2], also at CCS, 
looked into the use of dynamic WCET measurements. These methods were then compared to 
see which one that were best suited to be used by CCS in their development process. CCS 
also wants to know if the could write their code in a certain way to make it easier to use these 
methods. They are also interested in a way of making their current simulation technique more 
time accurate.  
 
To evaluate static and dynamic WCET analysis CCS provided time-critical code to do tests 
on. The code that was chosen was interrupts from the ESAB welding system. These interrupts 
were chosen because they were time-critical and of a suitable size for this kind of evaluation. 
Some component-based code was also tested to be able to see if this kind of code would be 
different from testing ordinary code. 

3.2 Methods 
There are only a few commercial WCET tools available today (see Section 2.4.1). This is a 
reason why static WCET analysis isn’t more widely used in the industry. The reason for 
choosing the aiT Worst-Case Execution Time Analyser (aiT) for this thesis is that it supports 
processors used by many of the projects at CC Systems (CCS), including the infineon 
C167CS-LM processor used in the nodes in the ESAB welding system. Another reason for 
choosing aiT is that the company behind aiT, AbsInt, work within the ASTEC [3] project 
together with Mälardalen University. 
 
The same codes, which was analysed using aiT, was also analysed using dynamic methods as 
a MSc thesis work made by Yina Zhang [2]. This made it possible to compare different 
WCET methods both concerning accuracy and the work effort required to obtain WCET 
values. 
 
 
3.2.1 aiT Worst-Case Execution Time Analyser 
The aiT Worst-Case Execution Time Analyser (aiT) was initially developed by Saarland 
University and AbsInt. The research related to WCET analysis at Saarland University started 
in 1995. AbsInt Angewandte Informatik GmbH was founded in February 1998. It is a spin-off 
from the Department of Compiler Construction and Programming Languages at Saarland 
University, Germany. AiT is pronounced I T. AiT supports the processors ARM7, 
HCS12/STAR12, PowerPC MPC555, PowerPC MPC565, PowerPC MPC755, ColdFire 
MCF5307, Texas Instruments TMS320C33, Infineon C166 (only C167CS-LM) and Infineon 
ST10 (only ST10F269 and ST10F276). AiT has also been awarded a 2004 European 
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Information Society Technology (IST) Prize. Some of the companies that have used aiT are: 
Airbus, Bosch, DaimlerChrysler and Ford. 
 
AiT uses object code to produce WCET estimates, but AiT doesn’t only produce WCET-
values. It also has a good graphical interface, which can be used to see the structure of the 
code from the call-graph (see figure 3.1) from functions down to single instructions. The 
program that displays the graphs is named aiSee (pronounced I See). The graph can be 
produced with and without execution times and the graph is a basic call-tree when it is 
opened. Each function can then be opened to reveal the basic blocks6 of the function. The 
basic blocks can in turn be opened so that the individual instructions can be viewed; this 
enables the user to get both a good overview and also to get down on a very detailed level. If 
the user requires, each basic block can be viewed in a such way that all the pipelines stages 
the instructions go through are visible. In the call-graph the loops are also displayed as 
functions. Instead of seeing a loop as a bit of code running several times in a function it is 
represented as a function that calls itself recursively (see figures 3.4 and 3.5).  
 

 
Figure 3.1: Call-graph with WCET displayed 

 
A nice feature of aiT is that source code can be added to the graph, so the user can see which 
basic block represent which line of source code. Figures 3.2 and 3.3 shows basic blocks 
without and with showing source code. Displaying the source code in the graph makes the job 
of interpreting the graph much easier. Some source code lines become several basic blocks 
when compiled and then only the first basic block is labelled with the source code line and the 
others are marked empty, this is done so that the user isn’t confused by the same source code 
appearing several times.  

 
 

                                                 
6 A basic block is a group of sequential instructions where all instructions are executed if the first one of them is 
executed. 
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 Figure 3.2: Basic block labelled Figure 3.3: Basic blocks labelled with  
 with addresses source code 

 
 
To separate the different types of basic blocks the basic blocks are coloured. The first basic 
block of each function is called the entry block and is coloured green. The last block in the 
function is labelled end and is called the exit block and is also green. All ordinary blocks in 
the graph are blue. Loop calls are represented by a block that is a sort of greenish blue and 
labelled with the name of the loop. All these types of nodes can be viewed in Figure 3.4. 
Edges also have different colours so that they can be distinguished. The most important edges 
for the user are the true and false edges, true edges are green and false edges are dark red. The 
colours of these edges is the only way of knowing if jump-instructions are performed on not. 
The colours of the edges represent the condition in the object code. As illustrated in Figure 
3.3 this is often the opposite of the condition in the source-code. If the graph displays WCET, 
the WCET path marked by red edges as illustrated in Figure 3.1. The user can customize the 
colour scheme if the default colours aren’t satisfactory. The WCET graph also displays the 
WCET contributions of functions together with the execution time of each basic block. All 
these features makes the graphical interface very useful,  not only to show the WCET, but 
also to help the user understand the structure of the code, and to visualize the timing 
contributions of different code parts. More details on how aiT is used to analyse the WCET of 
different programs are given in Section 4.1. 
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Figure 3.4: Basic blocks with  Figure 3.5: Loop function

 instructions visible with instructions visible 
 

 
3.2.2 Dynamic Methods 
As mentioned earlier, another master thesis was also performed at CC Systems (CCS) by 
Yina Zhang [2] with the goal of finding and testing different methods of dynamic WCET 
analysis. This made it possbiel to compare her results and the results in this thesis in order to 
find which method or methods that are best suited to be used by CC Systems. This section 
will details on the methods she looked into and the methods selected for the comparison. 
 
The easiest way of doing dynamic WCET analysis is by using the internal clock in the CPU 
by calling time-functions in the operating system (OS). Unfortunately the ESAB welding 
system doesn’t have an OS so therefore these methods could be excluded right away. There 
was also a possibility to use a CPU emulator to be able to a get time-stamped trace of the 
execution. The emulators Yina found that supported the C167CS-LM processor were however 
too expensive for CCS to invest in. Some other methods were examined, but were classified 
as too advanced for this purpose. The two methods finally selected were using an oscilloscope 
and a logic analyser. These are two of the most commonly used methods to acquire the 
WCET of a program. 
 
The oscilloscope is very limited since it can only measure one or maybe two things 
simultaneously. This makes it hard to do any advanced measurements with several measuring 
points or to measure an entire bus. Basically the only way of measuring execution time with 
an oscilloscope is to set a bit high in the code where the measurement should start and then set 
the bit low when the measurement should end. The execution time is the period during which 
the pin is high and that time can easily be read on the display of the oscilloscope. This method 
makes it very hard to see which path the execution has followed. 
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When a logic analyser is used the possibilities are much greater. It is often possible to 
measure more then a hundred different points on the circuit board simultaneously. This makes 
it possible to monitor an entire bus, for example the address bus. It is also possible to measure 
several measuring points in the code simultaneously, allowing the user to keep track of 
several things at once. This the user to get information not only about the total execution time, 
but also execution times of smaller blocks inside the code. This can be useful if you want to 
find places in the code that take long time to execute and maybe optimise that code so that it 
runs faster. 
 
The methods finally chosen by Yina were to use an oscilloscope and a logic analyser. The 
oscilloscope was used to measure execution time by setting a bit high in code where the 
measurement was started and setting the bit low in the code where the measurement was 
ended and then measure the time in between. When the logic analyser was used to measure 
execution time it was connected to the address-bus and then traces of the execution could be 
extracted and analysed. This made it possible not only to get execution times but also to see 
which path that was executed. Information on how the actual measurements were performed 
can be found in Section 4.2. 
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4 Solution 
The solution that was selected for this thesis to calculate the WCET was the aiT Worst-Case 
Execution Time Analyser (aiT) from AbsInt. How to use aiT to calculate the WCET is 
described in Section 4.1 below. The methods chosen by Yina Zhang in [2] to dynamically 
measure WCET were using an oscilloscope and a logic analyzer, described in Sections 4.2.2 
and 4.2.3 respectively. Section 4.2.1 gives some brief information on how to set up the target 
system was set up for the dynamic measurements. 

4.1 Analysing Executables with aiT 
The aiT tool is used for calculating WCET for a piece of code, but in order to do so it requires 
input from the user. Different inputs are required, basically because of the differences in the 
hardware supported by the different aiT versions. The version of aiT used in this thesis 
supports microcontrollers with an Infineon C166 or a ST Microelectronics ST10 processor 
core. The hardware specific input needed for this version of aiT is for example which 
processor core is used, which X-Bus features are enabled/disabled and the memory 
configuration.  
 
The user could also give software inputs, basically annotations used to control, restrict or 
direct the flow of the program. These annotations are described in Section 4.1.1. The 
executable also has to be added to aiT in the correct format. The executable formats supported 
by this version of aiT are the IEEE-695, the ELF, the COFF and the XCOFF file formats. The 
format that was used in this thesis was the IEEE-695 format, since it was the only supported 
formats that could be produced by TASKING. It is also important to use the same version of 
TASKING that was used during the development of the code; otherwise it is often impossible 
to compile the program. Another important thing was to set the correct addresses for the 
Context Pointer, System Stack Pointer, User Stack Pointer and the Data Page Pointers. They 
can have a big impact on the WCET value. The data page pointers are used by the Infineon 
processor to access memory. The memory is divided into different pages and depending on 
the amount of memory used these pointers can have fixed or changing values. 
 
The first thing to do when calculating WCET for a code snippet is to learn the code so that 
annotations for loop bounds, recursion depth, infeasible paths etc can be correctly given. One 
way of learning how the code is meant to work is to create a combined call-graph and control-
flow graph in aiT using the “Compute CFG” feature. This can give a better overview of the 
code compared to examining it in the compiler. To start the actual WCET calculations in aiT 
all the hardware-inputs have to be correctly set. When TASKING is used most of the 
necessary hardware-settings can be found under the EDE-menu in TASKING. The values of 
the different pointers should also be set. It is not necessary to set them manually and 
sometimes aiT finds their values itself. However, if aiT can’t find them it can result in 
overestimations of the WCET if they aren’t set manually. The values of these pointers can 
often be found in the map-file created when the program is compiled and linked together.  
 
The next step is to create the ais-file that contains all the annotations. There are a couple of 
annotations most frequently used when calculating the WCET. These are annotations for the 
clock frequency, the compiler used and the annotation for the context specification. None of 
them are really necessary but very useful. When these annotations have been added to the ais-
file it is basically a matter of trial-and-error to find out which annotations that have to be used. 



   

 28

The user can try to specify all the annotations needed from the beginning but since aiT can 
find many of these itself it is better to let it do so. When it is time to let aiT try to calculate the 
WCET there are two possibilities to do so, one is to select “Analyze” and one is to select 
“Visualize”. The Analyze choice calculates the WCET and creates a combined call-graph and 
control-flow graph. The WCET for the entire code snippet is displayed in a separate box as 
can be seen in Figure 3.1. The WCET contribution of the functions can also be seen as well as 
the execution time for basic blocks with different contexts. The Visualize choice does the 
same as the Analyse option but it also provides access to the pipeline states of the basic 
blocks. 
 
If aiT can’t find for example a loop bound it will fail to calculate WCET and display the 
message “This problem is unbounded” and then the user has to give an annotation for that 
loop. If the user has given contradicting annotations aiT will display the message “This 
problem is infeasible” and the user has to remove the contradicting annotation. When aiT has 
managed to calculate a WCET value it is important to check that the execution path is correct 
and doesn’t include infeasible paths or other things that can’t happen when the software is 
running on the target. If the path leading to the WCET isn’t possible, more annotations to 
restrict the flow of the program have to be added. When the execution path that yields the 
WCET is correct there are two choices, either accept the WCET value obtained or use extra 
annotations, for example memory-accesses, to get a more tight WCET value. It is a good idea 
to save the graphs and the ais-files so that the calculations can be saved for future use. This 
make it possible to reuse most of the annotations if the code is changed and a new WCET 
value needs to be calculated. 
 
4.1.1 User annotations 
There are many user annotations in aiT. All of the annotations are used to make the 
calculation of WCET possible and to give WCET that are values as tight as possible. Some 
annotations can be given directly in the source-code, but the most common way of giving 
annotations is by writing them in ais-file. The annotations in the ais-file are written after each 
other and ended by a semicolon. The following list contains some of the annotations that can 
be specified in the ais-file. All of the annotations used in the thesis are described below. 
 
Clock rate: This annotation allows aiT to convert the WCET value from clock-cycles to units 
of time. This annotation is optional but it saves the user from having to calculate the WCET 
from clock-cycles to real time. The following example sets the clock rate to 20 MHz. 
 

clock exactly 20 MHz; 
 
Compiler: This annotation is used to specify which compiler is used. Knowing which 
compiler is used makes the job of the executable reader easier. This annotation should always 
be present. The following example selects TASKING as the compiler. 
 

compiler "c166-tasking";  
 
Context specification: This is one of the most important annotations. It is used to limit the 
number and depth of the calling contexts7 used. This is done since the number of contexts can 

                                                 
7 Calling contexts are the calling history of functions i.e. the calls from the start of the analysis to the point when 
the function was called. 
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otherwise be almost infinite and this will make the WCET calculation to take very long time. 
First there are two kinds of context calculation, called limited and flexible. Flexible enables 
loop bounds to be automatically detected while limited only accepts loop bounds given by the 
user. Since automatic loop bound analysis is often desired only the flexible version will be 
explained here. There are three attributes to the interproc flexible annotation and 
two of them are optional. The only attribute that has to be given is the max-length one. It 
restricts the maximum length of the call string i.e. how many calls backwards that are saved. 
The optional attributes are default-unroll and max-unroll. Default-unroll is used to limit the 
automatic loop bound analysis. If the a loop bound cannot be found by aiT this attribute will 
make it stop trying when is has reached the value set by default-unroll. The higher this value 
is the longer time the analysis may take but the higher loop bounds may be found 
automatically. Max-unroll is a way of limiting the calculation of execution time of loop 
iterations dependent on contexts. The value set by max-unroll is the number of different 
execution times that will be calculated for the iterations of a loop. This is to reduce the 
required analysis time. If this value is low the WCET estimation will be less tight than if the 
value is high, but this is mostly true if caches are used and this in not the case for the 
processor used in this thesis. Default-unroll and max-unroll doesn’t affect the number of 
iterations of the loop, they only affect the number of loop contexts. All these attributes limit 
individual loops. The following example of a interproc flexible annotation will 
make aiT allow call strings that are 3 calls deep (max-length), automatically find loop bounds 
not bigger than 5 (default-unroll) and to calculate up to 4 different execution times for loop 
iterations (max-unroll). 
 

interproc flexible, max-length = 3, max-unroll = 4, default-
unroll = 5; 
 
Stop decoding: AiT normally ends the WCET analysis when the function containing the 
entry point is left. If for some reason the user wants to end the analysis somewhere else, this 
annotation can be used. The following example ends the analysis at page 2 (hex) and CPU 
address 5a3e (hex). 
 

end 0x2:0x5a3e; 
 
Targets of computed calls and branches: There are annotations to tell aiT the target of 
unresolved branches and calls. They can be useful when inheritance is used and aiT doesn’t 
know which method to call. The example below tells aiT that the call at address 0x2:0x5a3e 
calls address 0x0:0x14c1. 
 
instruction 0x2:0x5a3e calls 0x0:0x14c1; 
 
Properties of calls and functions: Some calls and functions immediately return or never 
return. This can be expressed by the user using annotations. If it is a call that never return the 
annotation instruction 0x2:0x5a3e never returns; can be used and if it is a 
function that immediately return the annotation snippet 0x0:0x14c1 immediately 
return; can be used. The following examples are a function that doesn’t return and a call 
that immediately return. Snippet is used to reference a bigger part of the code such as a 
function or a basic block. 
 

snippet 0x0:0x14c1 never returns; 
instruction 0x2:0x5a3e immediately return; 
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Memory accesses: In order to get tighter WCET values memory accesses that aiT can’t find 
the correct address for can be specified by the user. Some processors have instructions that 
can do several memory accesses, in this case the user can specify in which step which address 
is used by adding for example “in step 2” after the annotation. Exact memory addresses aren’t 
necessary since it is possible to give an interval or even an array as the target of a memory 
access. The following examples are one instruction that accesses memory 0x0:0x14c1 and 
another instruction that access memory in a range in step 2. 
 

instruction 0x3:0x4a72 accesses 0x0:0x14c1; 
instruction 0x3:0x781d accesses 0x0:0x1400 .. 0x0:0x1500 in 
step 2; 
 
Known register values: If register values are known when an instruction is executed this can 
be expressed for aiT in a way similar to the memory accesses annotations. This can be helpful 
when for example an enumeration is used to declare a state; then this annotation can be used 
to tell which state is active before a switch-statement depending on the state is executed. The 
example below is an instruction that has the value of r4 equal to 45 and the value of r7 
between 12 and 99 when it starts its execution. 
 

instruction 0x3:0x4a72 is entered with r4 = 45, r7 = 12 .. 99; 
 
Not-analysed and external function: If a function isn’t available in the executable its 
execution time can be given by the user. The user can also give execution time for functions 
that he knows the execution time for. The execution time can be specified in either cycles or 
time units. The following examples are an external function and an internal function that a 
user has specified the execution time for. 
 

snippet “function1” is external and takes 455 ns; 
snippet “function2” is not analysed and takes 2333 cycles; 
 
Infeasible code: If there is code that never will be executed this annotation can be used. It can 
be very useful if the system has a special function for error handling and errors aren’t 
supposed to be included in the analysis. Infeasibility is propagated through the control-flow 
graph; if a block is only reachable from an infeasible block that block is infeasible too. The 
following example will avoid errors being included in the analysis (if the function that 
handles errors is called errorhandler). 
 

snippet “errorhandler” is never executed; 
 
Values of conditions: This annotation tells aiT that a condition is always true or always false. 
The example is a condition that is always true. 
 

condition 0x3:0x4a72 is always true; 
 
Recursion depth: This annotation restricts recursion. The restriction bound can be a max 
and/or a min or an exactly value. The example is a function has a recursion depth of max 2. 
 

recursion “Function2” max 2;  
 
Loop bounds: There are ways of giving both global and local loop bounds but only the 
annotation for local ones will be mentioned in detail here. Global loop bounds are used to set 
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bounds on several loops at the same time (this can be rather risky) and local loop bounds are 
set for individual loops. The bound is a value telling aiT how many times the loop body is 
executed and a qualifier telling aiT if the loop test is at the beginning or end of the loop. Both 
the value and the qualifier refers to the executable and not to the source-code. The bound can 
be a max and/or a min or an exactly value. The example below is a loop that iterates between 
3 and 6 times and the loop test is in the beginning. 
 

Alt1: loop 0x3:0x4a72 min 3 max 6 begin;   
Alt2: loop 0x3:0x4a72 begin min 3 max 6;    
 
Relative execution counts: This annotation (flow) is useful to express known relations 
between the execution count of different basic blocks. It can be useful when setting loop 
bounds for loops with several entry points since they can’t be bounded by the ordinary loop 
bound annotation. This annotation can however be used for other things as well. It can for 
example be used to tell aiT how many times a certain instruction or block is executed in total 
by giving a relation between it and the entry point of the analysis. The actual relation can be a 
max and/or a min or an exactly value. If the relation between execution counts applies to all 
contexts cumulatively the qualifier sum should be used and if it applies to each context 
individually the qualifier to use is each. If the relation is between two program points not in 
the same function the qualifier sum must be used. The example below tells aiT that instruction 
0x3:0x4a72 runs twice as much as instruction 0x0:0x14c1 in every context. 
 

Flow each 0x3:0x4a72 / 0x0:0x14c1 is exactly 2; 
 
4.1.2 Relative addressing 
Instead of using absolute addressing, a paged address containing a page number and a CPU 
address, relative addressing can also be used. Relative addressing can address instruction 
relative to the start point of a function. The relative address is given in the form “Target + n 
Things” or “Target - n Things”. Target can be for example a paged address or a function and 
Thing can refer to for example instructions, calls, branches, returns and bytes. So “function1” 
+ 3 instructions refers to the third instruction in function1, therefore “function1” + 1 
instructions is the same as just “function1”. Several things can also be added or subtracted, 
for example “function1” + 3 calls – 2 instructions is the instruction before the third call in 
function function1. It is best to use relative addressing since it requires less amount of 
annotation work if the code is changed. The relative address should still be valid if the 
executable becomes different but the absolute address is probably invalid. 

4.2 Using Dynamic Methods to Measure WCET 
This section gives a brief overview on how to measure execution time with an oscilloscope 
and a logic analyser. For more detailed information see [2]. 
 
4.2.1 Setting up the Target System for Dynamic Measurements 
To be able to do dynamic measurements the target system must first be set up correctly. 
Connecting things like power supplies and communication cables is something that has to be 
done. To be able to get as close to the real thing as possible as much as possible of peripheral 
devices, such as for example sensors and actuators have to be connected. It is very important 
to make sure that system behaves like it would in its real environment or at least as close to it 
as possible. The last thing to do before measuring is to download the actual software that is 
going to be measured on the target system. It can also be a good idea to add monitoring on 
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things that can be of interest. For example a CAN-listener to monitor CAN-messages or 
multimeter to measure voltage or current can be useful. When all this is done it is a matter of 
connecting the actual measuring equipment and start the measurements. How to do this is 
explained in Sections 4.2.2 and 4.2.3. 
 
4.2.2 Measuring Execution Time with an Oscilloscope 
The oscilloscope used in this study was a Hameg Digital Storage Scope HM205-2. The 
method chosen for measuring with the oscilloscope was to set a pin on the processor high in 
the code where the measurement was going to start and then set the same bit low where the 
measurement should end and then measure the time in between. The problem was that it was 
impossible to measure on the processor since the pins were to small and it was a big risk of 
short-circuiting them. There are however 3 Light Emitting Diodes (LEDs) on the circuit board 
used for showing error messages etc. Each one of these could shine green and/or red or not at 
all. This means that there were 6 places to measure on since these LEDs weren’t used in the 
code that was going to be measured. Start and stop-points are then inserted in the code as  
functions writing to the correct pin. The program then has to be recompiled and linked and 
then downloaded to the memory on the circuit board. It is then just a matter of running the 
code that is going to be measured. This can be a problem if the code to be measured is an 
interrupt and it is triggered by an external event. Then that event has to be triggered in some 
way for example by sending a CAN-message or by setting a bit high. The LEDs can also be 
used to indicate which path that was executed. A signal can be sent to make the LED shine 
green if an if-statement is true and red if it isn’t. In this way one if-statement per LED can be 
tested for each compilation. It can be a bit problematic if the program is large to find all path-
selections made.  
 
The drawback of this method of measuring execution time is that it introduces a probe-effect. 
Probe-effect means that by inserting code for measurements the system itself is affected and 
in complex system this can give very strange effects like timing errors or other things that 
affect the system. The code inserted for actual measuring isn’t very big and shouldn’t affect 
the system much but if the user want to affect the execution path by changing values of 
variables or something similar this can have bigger consequences.  
 
4.2.3 Measuring Execution Time on with a Logic Analyzer 
The logic analyser used in this study is called Hewlett Packard 1670D. There are many ways 
of measuring execution times with a logic analyser. However for this study the logic analyser 
was connected to the address-bus. First the problem was to connect the logic analyser to the 
address bus on the circuit board. It wasn’t possible to connect the logic analyser directly to the 
address-bus on the microcontroller since the distance between its pins was too small. There 
are adapters available to connect the logic analyzer directly to the microcontroller but these 
are rather expensive and hard to connect. It is also possible to custom make a circuit-board 
were all pins from the address-bus are connected to some kind of port that the logic analyzer 
can be connected to. It this case the easiest way of connecting the logic analyzer to the 
address-bus was by using the Flash-memory on the circuit board. There are adapters for this 
too but it is possible to use the clips that come with the logic analyzer and connect them 
individually to the pins of the memory corresponding to the address-bus. To find out which 
pins correspond to the address-bus on the Flash-memory chip the connecting diagram of the 
chip had to be examined. In this case the memory chip was an AM29F800BB chip with the 
connecting diagram illustrated in Figure 4.1. One thing to consider when listening to the 
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address-bus of the chip is that it can address either bytes or words. If the pin labelled BYTE# 
in Figure 4.1 is set at logic ‘1’ the device is in word-configuration. In this case the word-
configuration was used. This means that A0 on the Flash-chip is connected to A1 from the 
microcontroller since the lowest bit is of no interest when addressing words. When the logic 
analyzer is properly connected to the address-pins on the memory-chip the settings of the 
logic analyzer have to be set. The pins that are going to be monitored have to be set together 
with the trigger address to start the trace recording. The trigger address can be the start of the 
function that is going to be measured or the address in the interrupt-vector where the address 
to the actual interrupt-routine is. To be able to measure the execution time the address of the 
return-instruction can be searched by the logic analyzer. The actual trace can be downloaded 
on a floppy and then examined on a computer so that the execution path of the trace can be 
revealed. The addresses of the trace have to be translated in some way to the instruction of the 
object-code and this can be done with a control-flow graph of the program or by using a 
debugger. The control-flow graph gives a better overview of the program than the debugger. 
 

 
Figure 4.1: The connecting diagram of the AM29F800BB chip 

 
The advantages of this method compared to using the oscilloscope is that no code has to be 
inserted to be able to measure execution time. The actual execution path can also be found 
and that gives a much clearer image of what has actually been measured and can reveal things 
like interrupts that preempts execution of the measured code. This wouldn’t be detected by 
the oscilloscope and can therefore make the longest measured execution time actually not 
valid at all. If the user has to force a ceratin path by inserting new he might also introduce a 
probe-effect. However, knowing the execution path alows the user to only force the execution 
where he knows that it takes the “wrong” way.  
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5 Code characteristics 
This chapter will give a short description of the structure of the analysed code snippets and 
also give some characteristics of the code. 
 

5.1 The WDS node 
WDS stands for Weld Data unit Small. The WDS node is a MMC node and it is the master 
node in the system. It holds information about the entire system and it is also responsible for 
all interaction with the user through the display and buttons. For more information about the 
WDS node see Section 2.7. 
 
The following code characteristics have been found for the WDS node: 
• 126 C++ source-code files. Between 30 and 2400 line of code per file including comments. 

There is a file with 13000 lines but it contains only icons written as char-arrays. 
• 133 header-files with between 20 and 600 lines each. 
• About 1100 functions 
• The code itself doesn’t contain assembler routines but there are some library routines 

written in assembler, for example floating-point additions and type casts. 
• Switch-statements are commonly used since many parts of the node can be considered as 

state-machines and the switch-statements are there to make sure that the correct state is 
run. 

• Recursion doesn’t seem to occur or are used scarcely.  
• There are 119 for-loops in the node. 10 of them are nested and 2 levels deep. 15 loop tests 

are dependent on functions calls (many of the functions only return a register value). 
There are no for-loops tests dependent on pointers or triangular for-loops. At least 3 for-
loops contain a switch-statement. 

• 119 while-loops. No nested while-loops. 10 loop tests are dependent on functions calls. 7 
pointer dependent loop tests. 57 of the while-loops were non-terminating loops designed 
to halt the execution of the system if a serious error occurs. The system would then be 
rebooted when a watchdog timer expires. 

 
5.1.1 The CAN-interrupt 
The basic call structure of the CAN-interrupt on the WDS-node can be seen in Figure 5.1. 
There are 3 different types of messages that can be received. They are: STATUS, MESSAGE 
and MESSAGE15. MESSAGE is an ordinary CAN-message, STATUS is message from the 
actual CAN-controller informing of an error and MESSAGE15 is used for service messages 
from the ESAT node (see Section 2.7 for information about the ESAT node). The function 
ReadInterruptIdentifier() tells GetMessageFromCanController() which 
type of message that has been received and then GetMessageFromCanController() 
either checks which error that has occurred if it is of STATUS type or receives the message if 
it is of MESSAGE or MESSAGE15 type. There are switch-statements in the functions 
GetMessageFromCanController() and PutMsgOnBuffer() that depend on which 
message that have been received. The function Interrupt() is also dependent on if the 
message is an ordinary CAN-message (MESSAGE or MESSAGE15) or not. The reason that 
there are two sets of functions named CheckWarning() and CheckBusOff() is that the 
set marked (C) contains methods in the ECan-class while the two marked (CM) are methods 
in the ECanMessage-class. The functions in the ECan-class read from the CAN-controller to 
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see if the bus is off or if there is a warning, while the functions in the ECanMessage-class just 
returns values of booleans. The Instance() functions are responsible for making sure that 
there exists just a single instance of a class and it also returns a handle to that instance. If an 
instance of the class doesn’t exist it has to be created and this means a big call-tree with a lot 
of calls to library routines like malloc etc. that are very hard to analyse. The function 
AddAndLogError() is responsible for logging errors and acting upon them, it also has a 
large call-tree that isn’t shown in the picture. The interrupt is designed to be able to receive up 
to 6 messages at the same time. This is implemented by a for-loop in the function 
Interrupt() calling the function PutMesssageOnBuffer() up to 6 times. The 
reason why several CAN-messages can be received during one interrupt is messages will not 
cause a new interrupt and therefore otherwise be lost. The loop is a for-loop that iterates 6 
times but it also contains a return that is executed if an empty message or a STATUS message 
is received. 
 

 
Figure 5.1: The call-tree of the CAN-interrupt on the WDS-node 

 
 

The following code characteristics have been found for the CAN-interrupt on the WDS node8: 
• 129 functions of which 42 are non-library functions. The call-depth9 is 22.  
• 65 loops of which 10 are in non-library functions. Most loops are very simple. No loop-tests 

are dependent on pointers or functions results. No nested loops. Two of the loops are often 
terminated by a break-instruction in the loop, which makes the loops a bit harder to 
analyse. 

• No dynamic branches. 
• No recursion. 
 

5.2 The PSA node 
This node is responsible for adjusting the power when welding. For more information about 
the PSA node see Section 2.7. 
 
The following code characteristics have been found for the PSA node: 

                                                 
8 Instantiation of static variables isn’t included since it contain only library-code that isn’t analysed. 
9 Call-depth means how many levels of functions are called i.e. how long the calling context is. 
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• 41 C++ source-code files. Between 40 and 2400 line of code per file including comments. 
Most of the files have less than 400 lines of code. 

• 40 header-files up to 400 lines each. Most of them have less then 100 lines. 
• There are about 500 functions. 
• The code itself doesn’t contain assembler routines but there are some library routines 

written in assembler that are used for example for floating-point additions and type casts. 
• Switch-statements are commonly used, since many parts of the node can be considered as 

state-machines, and the switch-statements are there to make sure that the correct state is 
run. 

• Recursion doesn’t seem to occur very often. There is recursion in the library function fflush 
and the recursion depth in that function is up to 5. The recursion depth was found by 
studying the code. 

• There are 64 for-loops in the node. Many for-loops are identical and placed in several cases 
in the same switch-statement. 3 of them are nested and 2 levels deep. Basically all loop 
tests were simple integer comparisons. 

• 58 while-loops. No nested while-loops. Basically all loop tests were simple integer 
comparisons but some loop tests are however dependent on pointers. About half of the 
while-loops were designed to wait for something to be ready (while(busy)). 

 
5.2.1 The CAN-interrupt 
The basic call structure of the CAN-interrupt on the PSA-node can be seen in figure 5.2. The 
structure is a bit different from the one on the WDS-node but the basically the same functions 
are used. The same three types of CAN-messages as in WDS-node are used (see Section 
5.1.1). The only difference is that MESSAGE15 on the PSA-node is used for boot messages 
when in simulation mode. The function Interrupt() contains a loop in the same way as 
on the WDS-node but it is very different in structure since it is responsible for calling most of 
the other functions involved in reading CAN-messsages from the CAN-controller. The loop 
receiving CAN-messages is terminated when there are no more messages to receive (a empty 
message is received) or the loop limit is reached (6 iterations). The function 
ReadInterruptIdentifier() is called first in every iteration and returns the type of 
the message. A switch-statement is then used to receive the message if it is a MESSAGE or 
MESSAGE15 and to check which error it is if it is a STATUS-message. The Instance() 
function has the same function as on the WDS node but here a static variable is used instead 
of a dynamically allocated variable. The code to create the variable is however as hard to 
analyse as on the WDS node. 
 

 
Figure 5.2: The call-tree of the CAN-interrupt on the PSA-node 
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The following code characteristics have been found for the CAN-interrupt on the PSA node10: 
• 14 functions of which all are non-library functions. The call-depth is 5. 
• 1 loop. It is a simple for-loop that iterates 6 times (for(i=0;i<6;i++)) but is also has a return 

statement inside the loop making it terminate when there are no more messages to receive. 
• No dynamic branches. 
• No recursion. 
 
5.2.2 The Regulator-interrupt 
The regulator-interrupt is a periodic interrupt responsible for adjusting the power to the 
welding process and it also starts and stops the welding-process depending on the inputs it 
gets. The actual structure of the interrupt depends on the welding-method currently used. 
Each welding method has it own Regulator() function, the regulator-function that is 
associated with the current welding-method is then called by the Regulator-interrupt. This is 
done by inheritance since all welding-method classes inherit from the class EMethod. All the 
different regulator-interrupts are constructed as state machines with different states depending 
on if the system is actually welding or not, if the system is overheated or if it is idle etc. The 
states that is used for the Mma-welding method are IDLE, START1, START2, WELDING, 
STOP and OVERTEMP. The welding method Tig has over 20 states. The basic structure of 
the regulator-interrupt when the Mma and Tig welding methods are used can be seen in 
Figures 5.3 and 5.4 respectively11. If Mma is used then the current- and voltage-values are 
first read and then a function for determining the state is executed. The current state and the 
values of current and voltage are considered when determining the new state. If the state is 
changed messages can be sent to inform the WDS node that the welding current will be turned 
on or off. When this is done the actual welding process is regulated in another function called 
CalculateCurrent(). This function uses the current state and the values of current and 
voltage read to do adjustments to the welding process by changing the current. The structure 
when Tig is used is a bit different. First a function called PulseTimer() is called. It is 
responsible for adjusting pulse welding if that is activated. Then the function State() is 
called and the first thing it does is to read the current- and voltage-values. It then both 
regulates the welding-process and changes state if necessary. Since Tig welding involves gas 
the gas-valve is also regulated in the State() function. Messages are sent to the WDS node 
to inform about changes including opening and closing the gas valve. 
 

                                                 
10 Instantiation of static variables isn’t included since it contains only library-code that isn’t analysed. 
11 The dots in the figure represent other functions being called that aren’t depicted since the graph would be too 
big. 
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Figure 5.3: The call-tree of the Regulator-interrupt with Mma 

 
 

 
Figure 5.4: The call-tree of the Regulator-interrupt with Tig 

 
 

The following code characteristics have been found for the Regulator-interrupt if Mma is used 
as the welding method: 
• 30 functions of which 21 are non-library functions. The call-depth is 11.  
• 7 loops of which 2 are in non-library functions. One of the non-library loops is very simple; 

it is just a for-loop copying data that iterates 8 times. The other loop is a bit trickier. It is a 
while-loop that iterates as long as the function BusyAdInj() is true but it also has an 
upper loop bound of 100000 times. 

• No dynamic branches. 
• No recursion. 
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5.3 Component-based Code 
5.3.1 The ACC code 
ACC stands for Adaptive Cruise Control and is a part of a project to build components in C-
code and then automatically combine them into different tasks. The reason for testing this 
code with static WCET analysis is to see if there are any specific problems with testing just 
component-based software and also to see how much overhead there is in the tasks. Since the 
ACC code was just a way of testing if the conversion from components to tasks worked the 
code is very simple. The code has never been used as a real ACC but it has been downloaded 
to a target system for tests. In order to get some load on the system they have added some 
loops in some of the components that doesn’t actually do any work. The tasks are formed by a 
number of components put together. Only components that have the same period or for other 
reason can execute after each other can be put together to form a task. The components are 
put together in tasks as illustrated in Figure 5.5.  
 
This is the design of the system: 
SpeedLimit: responsible for adapting the speed to current speed limit if there is one and also 
triggers ObjectRecognition. 
 

ObjectRecognition: responsible for detecting if it is a obstacle in front of the vehicle and adapt 
the speed or even brake according to the relative speed to the obstacle. It also triggers Mode 
Switch and informs Mode Switch if BrakeFunc is needed or not. 
 

Mode Switch: is used to trigger the execution of the ACC Controller assembly and the Brake 
Assist component, based on the current system mode (ACC Enabled, Brake Pedal Used) and 
information from Object Recognition. 
 

BrakeFunc: responsible for braking the vehicle hard if an obstacle may cause a collision. 
 

LoggerOutput: responsible for all logging and display the ACC status for the driver. 
 

ACC Controller: this assembly is responsible for calculating the throttle level. It consists of 
the two assemblies Distance Controller and Speed Controller.  
 

Distance Controller: this assembly is responsible for adjusting the throttle level according to 
the distance to any obstacle in front of the vehicle. It consists of the two components 
CalcDistOutput and UpdateDistState. 
 

Speed Controller: this assembly is responsible for adjusting the throttle level according to the 
speed limit. It consists of the two components CalcSpeedOutput and UpdateSpeedState. 
 

CalcDistOutput: is responsible for adjusting the throttle level according to the distance to any 
obstacle in front of the vehicle. 
 

UpdateDistState: responsible for updating the distance state. 
 

CalcSpeedOutput: responsible for setting the speed to the selected speed or the maximum 
speed allowed if the selected speed is higher than the maximum speed allowed. 
 

UpdateSpeedState: responsible for updating the speed state. 
 
The ACC code is very simple in its structure so it hasn’t been investigated for different kinds 
of characteristics. 
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Figure 5.5: The ACC application implementation 
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6 Static analysis with aiT 
This chapter is about the actual analysis performed using aiT. It will describe for each code 
snippet which problems that came up and how they were solved.  
 
All the analyses below contains three basic annotations. One is to specify that the compiler 
TASKING is used, one is to set the clock rate to 20 MHz and the last is to set the context 
specifications. The three annotations are the ones written below. There can be some different 
parameters to the interproc flexible annotations but nothing that would affect the 
WCET value in a big way.  
 
clock exactly 20 MHz; 
compiler "c166-tasking"; 
interproc flexible, max-length = 3, max-unroll = 8, default-
unroll = 8; 
 
The internal clock frequency of the microcontroller is 25 MHz but ESAB have put a crystal 
on the circuit board changing the clock frequency to 20 MHz instead. It is very important to 
have the correct clock frequency set because aiT recalculates the time from cycles to time by 
simply dividing the cycles with the clock frequency and aiT has no way of knowing if the 
clock rate is set correctly or not. 
 
It is also important to tell aiT the addresses of the Context Pointer, System Stack Pointer, User 
Stack Pointer and the Data Page Pointers since it can have a big influence on the WCET value 
obtained. Several of these values can be found in the map-file that is created after the 
compilation and linking of the program. It isn’t always important to know the exact address of 
the pointer since aiT uses this information to see how long time it takes to access these 
pointers and this is only affected by which memory the pointers are in and not the exact 
adress. 
 
More information about the different annotations used can be found in Section 4.1.1.  

6.1 CAN-interrupt 
The CAN-interrupt is responsible for taking CAN-messages from the CAN-controller and 
placing them in an incoming buffer that can later be read by the main loop (see Section 2.7 for 
information about the ESAB Welding System).  
 
6.1.1 CAN-interrupt on WDS 
The structure of this code together with its characteristics of it is described in Section 5.1.1. 
This code was pretty hard to understand at first since it has an advanced structure. The 
executable file is quite large so each analysis takes about 24 minutes (the conversion from 
executable to flow information take most of this time); so it was very time consuming to find 
the correct annotations. As described in Section 5.1.1 there are three types of CAN-messages 
that can be received. They are MESSAGE, MESSAGE15 and STATUS. The WCET have been 
calculated for the handling of all three types of messages. These three analyses will be 
described separately below. All analyses have also been performed on compiled code with 
different types of optimisations and the times can be seen in Table 6.1. 
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MESSAGE 
The most important message type is MESSAGE since it is by far the most common type 
received. To be able to get a correct WCET value 4 loop bounds had to be set manually by 
annotations. One of them was on a malloc-function that isn’t included in the final WCET path 
and the others are simple for-loops with fixed iteration counts. All errors are handled by the 
function _AddAndLogError__12ErrorHandlerFUcN21() and since errors shouldn’t 
be included in the analysis the following annotation was used: 
 
snippet "_AddAndLogError__12ErrorHandlerFUcN21" is never 
executed; 
 
This annotation means that all execution paths leading to the function 
_AddAndLogError__12ErrorHandlerFUcN21() being called are excluded from the 
analysis. This is a much better way than to manually for each error-check say that an error 
hasn’t occurred. In the function Instance() in the class Communication an instance of the 
class Communication is created if there isn’t already one created. The creation of the instance 
is pretty advanced since the command new is used which means dynamic memory with calls 
to malloc etc. Therefore it was assumed that the instance was already created and this was 
done with the following annotation saying that a jmp-instruction should always be performed 
that jumps over the code that creates the instance. The function Instance() is called from 
several places in the code and the variable is only created the first time so therefore it is 
acceptable to exclude this part from the analyses. Dynamic measurements also confirmed that 
this code isn’t executed. 
 
condition "_Instance__13CommunicationSFv" + 1 branch is always 
true; 
 
The hardest thing was to make aiT calculate how long it would take to receive just one 
message. The CAN-interrupt can receive up to 6 messages on one interrupt but since it almost 
every time only receives one message only that scenario was analysed. If no flow-annotations 
was made it calculated the worst case which of course is receiving 6 messages but since that 
probably never happens and since CC Systems was more interested in the normal case 
(receiving one message) flow annotations that forced aiT to only receive one message was 
made. Since the structure of the code was pretty advanced flow-annotations had to be made in 
three different functions. Most of the flow-annotations used were to set a relative execution 
count for a basic block compared to the first instruction in the interrupt, which means that for 
each time the interrupt is executed the basic block will be executed for the stated amount of 
times. The first two flow annotations had to be made in the Interrupt() function telling 
aiT that the loop in Interrupt() would iterate 2 times, one time to receive an ordinary 
message and the second receiving an empty message and therefore terminate the loop and the 
entire interrupt. In the function PutMessageOnBuffer() three annotations had to be 
made. Two of them were flow-annotations telling aiT to receive a CAN-message one time 
and to receive an empty message the other time PutMessageOnBuffer() was called. 
The third annotation was to force aiT not to think that the message received was a STATUS 
message, as it would do without the annotation since it represented the WCET path in 
PutMessageOnBuffer(). The third annotation simple said that the function 
CheckBusOff() wasn’t called and since that call is just in the STATUS path that path was 
excluded from the WCET path and the MESSAGE path was selected by aiT instead. The final 
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function where flow-annotation had to be made was the function 
GetMessageFromCanController(). In this function three flow-annotations had to be 
used. The first flow-annotations were to make the function execute a basic block containing a 
jmp-instruction both times the function was called. The two other flow-annotations was to 
make the function select the path corresponding to receiving a MESSAGE one of the times the 
function get executed and also make the function receive an empty message the second time it 
is called. Since the basic annotations for compiler, clock frequency and context specification 
were used the total number of annotations to get a WCET value for receiving a single CAN-
message of the type MESSAGE was 17. Different compiler optimisations were also analysed 
to see how much extra work it would create to change optimisations. The same annotations 
were used but the parameters in the annotations in form of addresses had to be changed. Since 
the structure of the code didn’t change very much this was a relatively easy job. The times for 
all the analysis of receiving a CAN-message of the type MESSAGE with different 
optimisations can be seen in Table 6.1. 
 
MESSAGE15 
The message type MESSAGE15 on the WDS node is used for receiving service messages 
from the ESAT node (see Section 2.7). The annotations used to get a WCET value on this 
type of message are pretty much the same as analysing a message of type MESSAGE. There is 
one address in one of the flow-annotations that is different. This annotation tells aiT to use the 
path that calls the function ReadMessageObject15() instead of 
ReadMessageObject(). The total number of annotations is therefore 17 just as in the 
case with the message type MESSAGE. When different compiler optimisations were tested the 
number of annotations didn’t change but the addresses in the annotations changed. The 
optimisation ‘speed’ required most work since some loops and jumps changed quite a bit. The 
optimisation ‘size’ didn’t require much job since the structure was pretty much the same of 
with default optimisation. The times for all the analysis of receiving a CAN-message of the 
type MESSAGE15 with different optimisations can be seen in Table 6.1. 
 
STATUS 
This message type is used by the CAN-controller itself to send messages telling the system 
that something is wrong. There are two types of errors that can occur and they are warning 
and bus off. Warning means that there has been trouble in sending a message and bus off 
means that there have been so many warnings that there must be a more permanent fault on 
the bus. First a STATUS message with warning and bus off both being false was analysed 
despite the fact that this couldn’t happen. This was done because the code to handle the errors 
was very complex to analyse. To simulate to aiT that a STATUS message was received lesser 
annotations was demanded since the loop in the function Interrupt() is immediately 
terminated when a STATUS message have been received. This means that the functions 
PutMessageOnBuffer() and GetMessageFromCanController() are only called 
once instead of twice when receiving MESSAGE and MESSAGE15 type messages. There are 
only 4 flow-annotations here compared to 7 with the other two types. There were still flow-
annotations in all three functions Interrupt(), PutMessageOnBuffer() and 
GetMessageFromCanController() but there was just one in each of the functions 
PutMessageOnBuffer() and GetMessageFromCanController(). To get a 
WCET value of the STATUS message when both warning and bus off is false required 13 
annotations. To be able to get a correct WCET value the case with both bus off and warning 
being true was also analysed. This was much trickier since it involved much more code and 
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the code was also much more complex. The WCET path when warning and bus off were both 
false involved 12 different functions while the execution path when both warning and bus off 
were true involves 32 different functions. The reason for this amount of functions is that each 
error on the WDS-node is logged and acted upon. 5 annotations were added to avoid 
instantiation of different classes as described for the Communication class above. The biggest 
trouble was however to set loop bounds on a loop that was called two times with different 
loop bounds. AiT didn’t have a way of giving context dependent loop bounds at that point so 
that was a big problem. After some consultation with AbsInt the problem was solved by 
giving register-values were this function was called using annotations and then aiT could 
calculate different loop bounds for the different executions of the function. This only works 
with library routines where a pattern was implemented12 and since the function in question 
was memcpy() this approach could be used. The user must however know which register 
corresponds to which parameter and aiT also have to implement a pattern for just that 
function to make it work. When the case with both warning and bus off was tested correctly 
there were no problem testing when just one of them occurred. One extra annotation had to be 
added so that aiT would exclude either warning or bus off from the analysis. The number of 
annotations needed to analyse STATUS when both warning and bus off were true were 22. 
When different optimisations were used some loops were changed when the optimisation 
‘speed’ was used and all addresses that were given with absolute addresses had to be changed. 
There were also some trouble with the loop in Interrupt() when the optimisation ‘size’ 
was used, but is was pretty easy to fix. The times for all the analysis of receiving a STATUS 
CAN-message with different optimisations can be seen in Table 6.1. 
 

WCET Message type 
Default opt Speed opt Size opt 

STATUS (warning = busoff = 0) 71,75 µs 71,25 µs 72,00 µs
STATUS (warning = busoff = 1) 21,089 ms 16,667 ms 21,080 ms
STATUS (warning =1, busoff = 0) 10,223 ms   
STATUS (warning = 0, busoff = 1) 10,223 ms   
MESSAGE (one message with 8 byte data) 146,75 µs 145,90 µs 147,20 µs
MESSAGE15 (one message with 8 byte data) 139,85 µs 131,50 µs 140,80 µs

Table 6.1: WCET for CAN-interrupt on WDS with different optimisations 
 

 
6.1.2 CAN-interrupt on PSA 
The structure of this code together with its characteristics is described in Section 5.2.1. This 
code was much easier to analyse than the CAN-interrupt on the WDS node since the code 
structure seem more carefully constructed. In this interrupt flow-annotations only had to be 
made in the Interrupt() function which simplifies the analysis a lot. As in the CAN-
interrupt on the WDS there are three types of messages that can be received and each of them 
is analysed separately. These three analyses will be described below. All analyses have also 
been performed with different types of optimisations and the resulting times can be seen in 
Table 6.2. 
 

                                                 
12 The pattern is constructed by absInt and they have constructed patterns for some of the more common library 
routines 
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MESSAGE 
This is the most common message type. Three flow-annotations are used in the 
Interrupt() function to make aiT simulate the receiving of a CAN-message of type 
MESSAGE. There are 2 static variables that are created the first time they are used and this 
process is pretty complex. Since it only happens the first time the code is executed the 
variables are assumed to be already created. The annotations used for not creating the 2 static 
variables are 2 “condition is always true” annotations. The total number of annotations used 
for obtaining a WCET value with this type of CAN-message is 8. The creation of one of the 
static variables has also been analysed. This add 48 µs to WCET, which is almost a 50 % 
increase. To analyze this message type with the optimization ‘size’ the same annotations are 
used if relative addresses have been used. If absolute addresses have been used the addresses 
have changed slightly and the addresses in the annotations have to be changed. If the 
optimization ‘speed’ is used the structure of the code is changed and the flow-annotations 
have to be changed. When all annotations needed were written the analysis required 2 
annotations less than with default optimization and optimization ‘size’. The times for all the 
analysis of receiving a CAN-message of the type MESSAGE with different optimisations can 
be seen in Table 6.2. 
 
MESSAGE15 
This message type is only used as a boot message when the system is simulated and is 
therefore never used on the read target. The reason for analysing this type of message is to see 
how difficult it is to analyse the different types of messages. The annotations for this type of 
message are the same as for an ordinary CAN-message. The only thing that differs is an 
address in one of the annotations telling aiT to call function ReadMessageObject15() 
instead of ReadMessageObject(). When the optimisation is changed to optimise for 
‘size’ all relative addresses have to be changed but apart from that the annotations are the 
same. If the optimisation ‘speed’ is used the flow-annotations have to be changed since the 
code structure is different. There is one flow-annotation less with optimisation ‘speed’ than 
with the other two optimisations. There was also a problem giving one of the flow-annotation 
a relative address since there was a hole in the code, therefore the address had to be given 
from the end of the function by using the following address:  
"_IntCan1__Fv" / "_Interrupt__13CommunicationFv" + 1 return - 3 call.  
 
The times for all the analysis of receiving a CAN-message of the type MESSAGE15 with 
different optimisations can be seen in Table 6.2. 
 
STATUS 
It is much easier to analyse the STATUS message type on this node compared to analysing it 
on the WDS node. Much less code is involved here and there is also no error handler here 
which logs the error and tries to handle it in some way. The only thing done when there is a 
warning or bus off STATUS message is to set a variable to true. The only annotations required 
except the three standard ones are two flow-annotations and two condition-annotations. The 
condition-annotations are only there to exclude the creation of the two static variables 
mentioned above. So in total 7 annotations are needed to calculate the WCET for this code 
with the default optimisation set. To analyse the code with the optimisation ‘size’ the only 
thing that had to be changed were absolute addresses and that wasn’t a very hard considering 
the few annotations needed. When the optimisation ‘speed’ is used the same type of changes 
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with the absolute addresses had to be made. The times for all the analyses when receiving a 
STATUS CAN-message with different optimisations can be seen in Table 6.2. 
 
 

WCET Message type 
Default opt Speed opt Size opt 

STATUS (warning = busoff = 1) 38,30 µs 37,35 µs 38,50 µs
MESSAGE (one message with 8 byte data) 73,55 µs 72,40 µs 73,75 µs
MESSAGE15 (one message with 8 byte data) 63,70 µs 62,55 µs 63,90 µs

Table 6.2: WCET for CAN-interrupt on PSA with different optimisations 
 

6.2 Regulator-interrupt 
The regulator-interrupt is responsible for controlling the welding process. It calculates the 
correct current and also controls gas-valves and other peripherals such as the Wire Feeder 
node. The regulator-interrupt is constructed as a state-machine with the state representing 
different welding-states such as overtemp and stop and start welding. Section 6.2.1 will go 
into the actual analysis of the regulator-interrupt on the PSA node. 
 
6.2.1 Regulator-interrupt on PSA 
The structure of this code along with its characteristics is described in Section 5.2.2. Another 
approach was used when analyzing this code compared to analyzing the code for the CAN-
interrupt on the different nodes PSA and WDS nodes. An ais-file was constructed for each 
welding method that covered all test-cases and then the annotations not needed for that 
specific test-case were simply commented out. Analyses were made on the Tig and Mma 
welding methods and these analyses are described separately below.  
 
To select which welding method to use, a subclass to the class EMethod is called in the code. 
There is one subclass for each welding method. The user has to specify which welding 
method to use by giving an annotation telling aiT which function is called in the function 
IntRegulatorTimer(). The annotation looks like this if the method Mma is used: 
 
instruction "_IntRegulatorTimer__5PMainFv" + 1 call calls 
"_Regulator__4EMmaFv"; 
 
Mma 
This welding method was analysed deeply. Figure 5.3 describes the call-tree of the Regulator-
interrupt with the Mma welding method. The functions State and 
CalculateCurrent() have both a switch-statement that runs different code depending 
on the current state. The function State() can also change the current state. The problem of 
this analysis was to make aiT choose the correct states. AiT didn’t understand that if the state 
STOP was used in State() it should also be used in CalculateCurrent() so this had 
to be done manually. To achieve this an annotation that basically said STOP in State(), 
also means STOP in CalculateCurrent() had to be added. The annotations looked like 
this: 
 
flow sum "_CalculateCurrent__4EMmaFv" + 0x356 bytes / 
"_State__4EMmaFv" + 43 branch is exactly 1; 
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The annotation says that the code corresponding to the state STOP in State() will be 
executed equally often as the code corresponding to the state STOP in 
CalculateCurrent(). To make it a bit easier to understand it can be looked at as an 
equation where X/Y=1 equals X=Y. This had to be done for all 6 states in the Mma welding 
process. To be able to control if the state was changed in State() annotations were added 
to prevent the execution to enter if-statements that would change the state. These annotations 
could then easily be commented out if the analysis should include a change of state. If the 
state should change in State() an annotation had to be made in order to inform aiT of 
which state to use in CalculateCurrent(). This annotation could look like this: 
 
flow sum "_IntRegulatorTimer__Fv" / 
"_CalculateCurrent__4EMmaFv" + 1 call is exactly 1; 
 
This annotation says that the code corresponding to the state START1 in 
CalculateCurrent() should be executed as many times as the actual Regulator-
interrupt function i.e. one time. The final information needed by aiT is which state should be 
used in State() and this is done in the same way as in the annotations above.  
 
An example of an analysis could be to measure the WCET for the state START1 used in both 
State() and CalculateCurrent(). To do this, an annotation had to be used to inform 
aiT which state was active in State(). The annotations that tell aiT that the state START1 
should be used in CalculateCurrent(), if it is used in State(), also had to be given. 
Two annotations telling aiT not to execute the if-statements changing the state from START1 
to STOP or START2 in State() were also needed. The annotations looked as follows (the 
lines that start with a ‘#’ are just comments):  
 
##Use START1 in state() 
flow sum "_IntRegulatorTimer__Fv" / "_State__4EMmaFv" + 17 
branch is exactly 1; 
##START1 in CalculateCurrent() if START1 in State() 
flow sum "_CalculateCurrent__4EMmaFv" + 1 call / 
"_State__4EMmaFv" + 17 branch is exactly 1; 
##Not to change to state STOP 
condition "_State__4EMmaFv" + 20 branch is always true; 
##Not to change to state START2 
condition "_State__4EMmaFv" + 23 branch is always true; 
 
In addition to these types of annotations there were also annotations for 3 loop-bounds and 2 
annotations for turning of error handling. There was also one annotation that was used to give 
the correct register value to one instruction. In total there were 35 annotations in the ais-file 
but on average only 14 of them were used in one analysis and the rest was commented out. 10 
of the ones used were always present and was used for loop-bounds and other things that were 
constant between the different analyses.  
 
When using the optimization ‘speed’ 12 annotations had to be changed and for all of them the 
reason was that the addresses changed because of changes to the code-structure. If the 
addresses had been absolute all addresses had to be changed. There were also a problem with 
holes in the code and that made it necessary to give 2 addresses relative to the end of the 
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functions instead of the beginning. The compiler itself also created a new loop and that loop 
had to be bounded by an annotation. The optimization ‘size’ didn’t demand any changes of 
the annotations compared to using default optimization. The only thing that changed when the 
optimization ‘size’ was used was the addresses, they all changed by a fixed number of bytes. 
 
The times for all the analysis of the regulator-interrupt on the PSA node using MMA with 
different optimisations can be seen in Table 6.3. 
 

WCET State in State() State in Calculate() 
Default opt Speed opt Size opt 

IDLE IDLE 118,95 µs 119,45 µs 119,15 µs
IDLE START1 149,50 µs 149,75 µs 149,70 µs
START1 START1 138,05 µs 137,85 µs  
START1 STOP 153,80 µs   
START1 START2 186,85 µs   
START2 START2 138,05 µs 137,85 µs 138,25 µs
START2 WELDING 326,40 µs   
START2 STOP 153,80 µs   
WELDING WELDING 264,25 µs 260,05 µs  
WELDING STOP 155,80 µs 152,30 µs  
STOP STOP 114,35 µs   
STOP IDLE 116,25 µs   
OVERTEMP OVERTEMP 113,15 µs   
OVERTEMP IDLE 117,1 µs   

Table 6.3: WCET for regulator-interrupt on PSA using MMA3 with different optimisations  
 
 

Tig 
This welding method wasn’t completely analysed. It was only analysed to be able to have 
values to compare with the results from the dynamic measurements in [2]. Figure 5.4 depicts 
the call-tree of the Regulator-interrupt with the Tig welding method. This welding method 
only has one function that is dependent on the current state and this made the analysis much 
easier. Compared to the Mma welding method, another approach has been used to select the 
current state. The state is represented by an enumeration which in turn depends on which code 
to be executed in the switch-statement. In order to force aiT to execute a certain state the 
register representing the enumeration before the switch-statement has to be set to the correct 
value. The annotation below forces aiT to execute state START2 since it is represented by the 
value 10 in the enumeration and the enumeration is in register 7.  
 
instruction "_State__4ETigFv" + 2 call + 7 instruction is 
entered with r7 = 10; 
 
Two calls had to be annotated to call the correct function. A constructor that contains complex 
code like malloc was given an execution time and was therefore not analysed further. Three 
loop bounds were set by annotations and three annotations for turning off error handling were 
used. 
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6.3 The Component-based Code 
Component-based code was tested to see if there were any particular problem when analysing 
this kind of code compared to other code. The code that was chosen for this analysis is code 
for an adaptive cruise control. The structure of this code is described in Section 5.3.1.  
 
6.3.1 ACC 
This code was very easy to test since it wasn’t constructed to be an advanced adaptive cruise 
control, but rather a part of a project to build components in C-code and then automatically 
combine them into different tasks. Both the individual components and the tasks have been 
analysed so that overhead can be measured. The only extra annotation needed to analyse the 
components, besides the three for clock rate, context specification and compiler, is an 
annotation for loop bound in some of the components. The only purpose of this loop is to 
simulate load on the system. When the task are analysed the loop bound-annotations for the 
included components have to be added. Which components that are located in which task can 
be seen in figure 6.5. An annotation to end the analysis also has to be added in each task 
analysis since they all contain a loop that never ends. A branch instruction has to be redirected 
so that all functions are included in the analysis. One of the task analyses also includes an 
extra loop bound-annotation and an annotation to inform aiT that a function never returns. 
The results of the analyses can be seen in Figures 6.4 and 6.5.  
 

Component WCET 
objectRecognition 4806,0 µs
speedLimit 14,5 µs
BrakeFunc 4240,0 µs
loggerOutput 41,9 µs
calcDistOutput 4261,0 µs
updateDistState 9,3 µs
calcSpeedOutput 19,1 µs
updateSpeedState 11,0 µs

Table 6.4: WCET for the different components in ACC 
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 WCET 
Task0: 4494,7 µs 
  updateSpeedState 11,0 µs 
  calcSpeedOutput 19,1 µs 
  updateDistState 9,3 µs 
  calcDistOutput 4261,0 µs 
  overhead 194,3 µs 
  
Task2: 5316,8 µs 
  objectRecognition 4806,0 µs 
  speedLimit 14,5 µs 
  overhead 496,3 µs 
  
Task3: 4354,8 µs 
  BrakeFunc 4240,0 µs 
  overhead 114,8 µs 
  
Task4: 247,7 µs 
  loggerOutput 41,9 µs 
  Overhead 205,8 µs 

Table 6.5: WCET for the different tasks in ACC 
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7 Dynamic measurements 
Dynamic measurements were done on the same code as the static ones. The purpose was to 
compare both the actual methods and the results. The dynamic measurements were performed 
by Yina Zhang in another MSc thesis work. This chapter will only give brief information on 
the made measurements. For more detailed information about the measurements, see Yinas 
thesis [2].  

7.1 CAN-interrupt 
The CAN-interrupt is responsible for taking CAN-messages from the CAN-controller and 
placing them in a queue. The CAN-interrupts on both the WDS and PSA node was analysed 
with dynamic methods. CC Systems has developed an own CAN-card that is connected to the 
computer and that can monitor the traffic on a CAN-bus and also send CAN-messages on the 
same bus. The software tool that let the user send CAN-messages and monitor CAN-traffic 
has been developed by CC Systems and is called CanTool. 
 
7.1.1 CAN-interrupt on WDS 
An oscilloscope was chosen to analyse the CAN-interrupt on the WDS node. The code 
characteristics and structure of this interrupt can be seen in Section 5.1.1. The WDS-node is 
responsible for the communication with the welder through the display and with buttons etc. 
It also has control over the system state. When this node was analysed it wasn’t connected to 
any other nodes in the system so CanTool (se Section 7.1) was used to send CAN-messages to 
trigger the CAN-interrupt. The power to this node usually comes from the PSA-node but 
since it wasn’t connected to the system a power supply have to be connected. The power 
supply was set to 12 V DC and was connected to the WDS node through the CAN-interface 
since it is where the power from the PSA comes. A machine-ID also have to be set for the 
node so that it knew which type of display and which buttons that was used. The card must 
first be reset by pressing down a couple of the buttons at the same time. Then a CAN-message 
was sent to set the machine-ID and this was done using CanTool.  
 
To be able to measure execution times on the node the software has to be downloaded to it. 
Before this could be done extra code was added to turn on and off Light Emitting Diodes 
(LEDs). When the CAN-interrupt was called a red LED was lit and when the interrupt was 
finished a green LED was lit. This means that if the green LED was lit at least one CAN-
message has been received. After adding these codepieces the entire code was compiled and 
linked. The resulting code was then downloaded on the memory of the circuit board through a 
serial port on the circuit board connected to a serial port on the computer. Now the system 
was ready to be analysed. A probe was attached to the LED that was lit when the interrupt 
starts and then a CAN-message was sent using CanTool to trigger the oscilloscope. Then the 
time was measured on the screen of the oscilloscope when the signal was high (the LED is 
lit). The precision is down to microseconds and this is enough for these measurements. All 
three types of CAN-messages were analysed. To be able to analyse a STATUS message the 
code had to be somewhat changed to simulate that s STATUS message has been received. For 
information about the actual execution times see [2]. There were also some attempts to use the 
LEDs to indicate which execution path that was taken but it proved to be pretty hard since 
there weren’t many LEDs compared to possible execution paths. 
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7.1.2 CAN-interrupt on PSA 
This interrupt was analysed with a logic analyser connected to the address bus. The code 
characteristics and structure of this interrupt can be seen in Section 5.2.1. The PSA node is 
responsible for regulating the actual welding process by regulating the current and turning gas 
valves on and off etc. The PSA node can’t boot without the WDS node being present since it 
rely on the WDS node to answer a CAN-message it send during the boot process. The WDS 
and PSA nodes were therefore connected to each other via the CAN-interfaces, as they would 
be in the real system. The voltage needed by the PSA node is 42 V AC and this was supplied 
from a special power supply connected to a port on the PSA node. The power supply that was 
used when analysing the WDS node wasn’t needed anymore since it now got its voltage 
through the CAN-interface from the PSA-node. There was some trouble when the logic 
analyser was connected to the address bus. Firstly, the only pins big enough to connect the 
pins on were on the memory chip. But since the memory chip was addressed word-wise and 
not byte-wise, the clip from the logic analyser that represented bit 0 of the address bus wasn’t 
connected at all and the second clip from the logic analyser was connected to address pin 0 on 
the memory chip. This was done to be able to get the correct addresses. 
 
Since the address bus was monitored the code didn’t have to be changed before it was 
compiled, linked and downloaded. The software was downloaded on the same way as on the 
WDS node. To analyse the CAN-interrupt either the start-address of the actual trigger or the 
address in the interrupt vector associated with the CAN-interrupts could be used as a trigger 
in the logic analyser. When a CAN-message had been received a trace of all addresses on the 
address bus was saved in the logic analyser. The execution time could easily be found by 
simply finding the last address of interrupt and see which time it had relative to the time of the 
trigger address occurring on the bus. The time is presented in ns and the smallest sampling 
rate possible was 8 ns. The trace could also be downloaded on a floppy disk so that it could be 
further analysed on a computer. Since the entire trace was saved the execution path could also 
be analysed with the help of a debugger or a control-flow graph.  
 
There was a problem with testing the message types STATUS and MESSAGE15. The boot up 
process demanded the node to be able to send ordinary messages (MESSAGE) so the code 
couldn’t be forced to always interpret a message as MESSAGE15 or STATUS message. The 
MESSAGE15 message isn’t very interesting to analyse anyway since it is only used as a boot 
message when simulating. Since there is a constant flow of messages from the WDS node to 
the PSA node the CanTool was never needed to trigger this CAN-interrupt. 

7.2 Regulator-interrupt 
The regulator-interrupt is responsible for regulating the actual welding process by regulating 
the current and turning gas valves on and off etc. The interrupt is constructed as a state-
machine with the state representing different welding-states such as overtemp and stop and 
start welding. 
 
7.2.1 Regulator-interrupt on PSA 
This interrupt was analysed with a logic analyser connected to the address bus in the same 
way as for the CAN-interrupt on this node. The code characteristics and structure of this 
interrupt can be seen in Section 5.2.2. The system had exactly the same setup as when the 
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CAN-interrupt was measured on this node. The WDS node that was used during the testing 
supported the welding methods Mma and Tig so these were the only welding methods that 
could be analysed using dynamic methods. Since the correct peripherals weren’t connected a 
correct welding process couldn’t be simulated. Some of the different states could be measured 
but only states that are used when the system isn’t in welding mode. The state that was 
analysed without changing the code when the Mma welding method was used was overtemp. 
When Tig was used the only state that could be analysed without changing the code was idle.  
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8 Results 
This chapter will go into the results of the thesis. In Section 8.1 the different methods are 
compared in order to see how time consuming they are and how hard it is to obtain a good 
WCET estimation. Section 8.2 will compare the results from dynamic and static analysis to 
see how big the overestimation of the static analysis is likely to be. Potential uses for these 
methods beside WCET analysis are discussed in Section 8.3. 

8.1 Comparing Static and Dynamic WCET Analysis methods 
CC Systems wanted to find out which analysis method that is best suited for their needs. It 
should be relatively easy to obtain WCET values and the values should be proven to be 
reasonable accurate. The general timing behavior of the program was also of interest. 
 
It takes some time to get familiar with the aiT WCET tool, where to find all the settings, 
which annotations there are, how do they work and so on. It also took some time to be able to 
get the executable in a format that could be read by aiT. Once all the settings were correct and 
the correct executable has been loaded into the toolit is quite easy to do WCET calculation. It 
was often similar problems with loop bounds etc that occured in every analysis. The result 
produced by aiT can’t just be accepted directly since it may include impossible paths or error-
handling routines that shouldn’t be included etc. This means that the user must have a very 
good understanding of the code in order to get a correct WCET value. A big advantage of this 
method is that it is very easy to redo the calculations, since all that is needed are different 
files. This is very useful if an error in the analysis is detected or the program code is changed. 
Thereby, the user doesn’t have to start from scratch and redo all work for every new analysis. 
The graphs presented by aiT are very useful and can be used to see the structure of the code, 
understanding the code, finding out the path that lead to the WCET and also getting the 
execution time of each individual basic block. 
 
An advantage that all dynamic analysis methods share is that they only give execution times 
on possible execution paths. With aiT the user can’t be absolutely sure about the execution 
path leading to the WCET is possible if the program isn’t very simple or dynamic 
measurement can confirm it. Dynamic methods can also give a general view of the timing 
behavior of a system with best case execution time and average case execution time. The 
execution times obtained can even be used to create a graph of the execution time distribution 
of the analysed code snippet. This sort of information cannot be given by aiT. A big problem 
with dynamic measurement is that the system must be connected and all needed hardware 
parts have to be present and working properly. Sometimes it can be very hard to do this and 
perhaps the hardware or other codes needed aren’t developed yet. When aiT is used the only 
thing that is needed is the code to be analysed. The biggest problem when using dynamic 
measurement is that is hard or even impossible to guarantee that the execution time measured 
is the WCET value. Often it is very hard to generate the worst case since it may only occur 
rarely. To make sure that a value can be used as a WCET value a safety margin is often added 
to the measured value to make sure that it is greater than the WCET. But there is no way of 
knowing how big the safety margin should be to ensure a safe WCET value. 
 
The oscilloscope is one of the most frequently used ways of obtaining WCET values. Once 
the system is set up it is pretty easy to measure different code snippets. The problem is that 
the code usually has to be changed between each measurement. The fact that the code has to 
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be changed in order to measure can mean that the system behavior is affected. Another 
problem is that it is very hard to see which execution path that was measured or if 
preemptions have occured.  
 
The logic analyzer can be used in the same way as an oscilloscope and has then the same 
advantages and disadvantages. In this thesis the logic analyzer was however connected to the 
address bus in order to obtain WCET estimations. If the address bus is monitored there is no 
need to change the code in order to do measurements and this is a big advantage compared to 
using an oscilloscope. Since all traffic on the address bus can be recorded it is also possible, 
but not very easy, to see which path that was executed. Since all memory accesses are time 
stamped the execution times for different code pieces can be calculated separately. It is also 
easy to do many different measurements on the same code since the only thing that has to be 
changed is the trigger address.  
 

8.2 Comparing Static and Dynamic WCET Analysis results 
To be able to compare the results of different methods the same code were measured using 
both dynamic and static WCET analysis methods. This was done to see how much 
overestimation aiT introduced and also to see if the dynamic methods could find the WCET 
path. The term overestimation is only valid if the path that leads to the WCET is analysed and 
this wasn’t always the case here. But the time difference can give a hint about the 
overestimations of aiT if the same execution path is analysed with both static and dynamic 
methods. 
 
The first values that were compared were the values for the CAN-interrupt on the WDS node. 
Since the dynamic measurement method used for this code was the oscilloscope the execution 
path was hard to find out but there weren’t many different paths to execute so the values 
should be comparable with the ones obtained by the static method. The three different 
message types were compared and the two types MESSAGE and MESSAGE15 were compared 
with 1 byte of data and with 8 bytes of data. The STATUS message had to be faked so it 
might be hard to validate the times for this type of message. The different values and the 
difference between the values can be seen in Table 8.1. The difference was between 4 and 8 
percent for the two types of ordinary CAN-messages (MESSAGE and MESSAGE15) and that 
could be considered as acceptable. The execution path for the message type MESSAGE and 
MESSAGE15 was forced at one place in the code in aiT to better correspond to the path taken 
when the dynamic measurements were made. The differences of the STATUS messages are 
between 19 and 117 percent and that should be considered as being too much. It wasn’t 
possible to get a good WCET value using aiT when the STATUS message type was analysed. 
There are three possible scenarios when a STATUS message is received. The message can be 
informing the system that a warning has occurred, the bus is off or both. The code to handle 
these errors was hard to analyse with aiT. The analyses of these errors could include errors or 
impossible paths and that could be the reason to the big differences. The path taken by the 
oscilloscope for these errors could also be different since we didn’t have all the information 
about which path was taken when the dynamic measurements was made. The values where 
both warning and bus off was false in the table should correspond to the same execution path 
and the difference here was much lower than for the other cases. However this scenario 
couldn’t actually happen on the real system. So even if the execution path leading to the 
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values from the oscilloscope wasn’t completely known the values from the static method 
seem pretty accurate for the ordinary message types. 
 

Message 
Type 

Conditions Dynamic  
measurement

Static  
measurement  

Difference

MESSAGE 1 byte of data 111 µs 116,15 µs 4,6 %
 8 bytes of data 135 µs 143,80 µs 6,5 %
MESSAGE15 1 byte of data 102 µs 109,25 µs 7,1 %
 8 bytes of data 130 µs 136,90 µs 5,3 %
STATUS warning = bus off = 0 60 µs 71,75 µs 19,6 %
 warning = bus off = 1 9,75 ms 21,089 ms 116,3 %
 warning =1, bus off = 0 4,80 ms 10,223 ms 113,0 %
 warning = 0, bus off = 1 4,80 ms 10,223 ms 113,0 %

Table 8.1: Comparison of execution times of the CAN-interrupt on the WDS node  
 
The dynamic measurements on the PSA node were made by the logic analyser. The execution 
path of the dynamic measurements was extracted from the traces and then aiT was forced to 
execute the same path so that the execution time could be compared correctly. The execution 
path in aiT was changed with different types of flow-annotations. The different values and the 
difference between the values can be seen in Table 8.2. The analysis is made both with and 
without memory annotations. The memory annotations are based on information from the 
traces and they tell aiT where some of the instructions read and write in memory. These 
annotations have a big influence on the execution times and there are still instructions without 
memory annotations that aiT doesn’t know which parts of memory they access. This means 
that it is possible to get tighter values but it is a very time consuming job and there is no 
simple way of knowing that the memory accesses always access the same parts of memory. 
As seen in the table the difference is between 3 and 8 percent and that is acceptable. The 
difference is between 1 and 5 percent lower when memory annotations are used. The reason 
that the CAN-interrupt hasn’t been analysed with memory annotations is that the difference 
was so low without memory annotations and that most of the destinations of memory accesses 
were found automatically by aiT. 
 

Without memory 
annotations 

With memory annotations

Which interrupt 
Dynamic 
measurement13 

Static 
measurement 

Difference Static 
measurement 

Difference

Can 56,3 µs 58,60 µs 4,1 %   
 75,1 µs 79,00 µs 5,2 %   
Regulator Mma 99,5 µs 104,00 µs 4,5 % 102,90 µs 3,4 %
 107,2 µs 113,45 µs 5,8 % 110,60 µs 3,2 %
Regulator Tig 112,8 µs 119,30 µs 5,8 % 117,10 µs 3,8 %
 128,0 µs 138,20 µs 8,0 % 132,50 µs 3,5 %

Table 8.2: Comparison of execution times on the PSA node 
 

                                                 
13 The values from the logic analyzer varies with about 0,5 µs so the values in the table aren’t exact values 
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It was very hard to find the WCET path with dynamic measurements. Yina tried to force the 
execution to take the path aiT chose as the WCET path, but this required a lot of modification 
on the code. This could affect the system behaviour and it was also not certain that the 
execution times are correct. The overestimation of that analysis was 12,5 percent without 
memory annotations and 10,2 percent with memory annotations and that is much more than 
the differences in Table 8.2. The reason could be that the executed code was much larger than 
the code snippets analysed in Table 8.2. This could lead to bigger overestimations in aiT. 
 
The values in Table 8.2 was the result of much work to give annotations to aiT since there is 
no way for aiT to know that the values are correct. The aiT tool was also improved during the 
thesis and this helped to lower the differences. 
 

8.3 Usages of WCET analysis methods for CC Systems 
CC Systems (CCS) wanted to know if the methods tested in this and Yina’s thesis could be 
used for other things than just WCET analysis.  
 
The times from the logic analyser and aiT can be used to find places in the code that is extra 
time-consuming and therefore a good place to optimise the code if optimisation is needed. 
The times can also be used to make simulations more time accurate. CCS has developed their 
own simulation technology that they uses to be able to simulate the functional behaviour of an 
implemented system before they download it to the target system. Time accurate behaviour 
has been added to this technique. This work has been done in another thesis [26] described in 
Section 2.6. The thesis focused on how to add the time accurate behaviour to the system but 
not on how to obtain the execution times needed to make the simulation time accurate. Times 
for entire interrupts can be obtained by all the methods used in this and Yina’s thesis. 
However to get a good timing behaviour it is not enough to give a WCET value for the entire 
interrupt. The best thing is probably to give execution times for every basic block in the code 
to ensure a good timing behaviour, but this can introduce too much overhead in the system. 
There is a balance on how small pieces of code that should be measured. Both aiT and the 
logic analyser attached to the address bus can be used to obtain execution times for such kinds 
of small code snippets. The problem of suing aiT for obtaining timing for smaller code 
snippets is that all the times have potential overestimations and that can be a problem if the 
average rather than the worst behaviour is going to be simulated. The overestimations are 
however not very big as can be seen in Section 8.2. The logic analyser gives correct times but 
it can be hard to analyse all needed code pieces, without manipulating the system i.e. 
changing the code to force it to take different execution paths. With aiT it is easy to force the 
execution to take a specific path without affecting the system.  
 
A part of the thesis has focused on giving the CAN-interrupts on both the PSA and WDS 
nodes, and the regulator-interrupt (when Mma is used) on the PSA node, correct timing 
behaviour. Breakpoints14 were added in the code to give it the correct timing behaviour. 
Breakpoints were for example placed in large if-statements so that the timing behaviour 
would be different if the if-statement was entered or not. Breakpoints with different times 
were also added in the different case-statements so that the execution times would be different 
depending on which case-statement that was executed. All this was done to be able to get as 
                                                 
14 See Section 2.6 for more information about breakpoints and Time Accurate Simulation. 
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correct timing behaviour as possible. One problem that was encountered was to get the 
interrupts associated with the main loop of the system i.e. share the same CPU-time. Different 
threads must be created and associated with the correct parent in order to make the simulation 
behave correctly. Once all the breakpoints were added and the interrupts were using the same 
CPU time as the rest of the node, the Time Accurate Simulation made it possible to step 
through the execution one breakpoint at a time. It was also possible to pause, speed up or slow 
down the execution. The times for the breakpoints were taken from aiT but times obtained by 
the logic analyser could also have been used. 
  
WCET analyses methods could also be used to obtain other times than just WCET. Best Case 
Execution Time (BCET) or Average Case Execution Time (ACET) could also be interesting 
to know. AiT can’t be used in a good way to obtain BCET since it sometimes overestimated 
the WCET and therefore can’t provide a safe BCET value. The way of finding BCET is 
however not very different from finding WCET, but aiT is currently no supporting BCET 
computation. It is also impossible for aiT to calculate things like ACET since it haven’t got a 
clue on the likelihood of different execution paths. To be able to analyse the general timing 
behaviour of the system and obtain values of BCET and ACET dynamic measurements are 
better suited than aiT. There can be a problem to obtain the BCET with dynamic 
measurements since it hard to find the path leading to it. However, in comparison to aiT there 
are no overestimations made, so the value will at least be closer to the real BCET value.  
 
The traces produced by the logic analyser can be used to do functional testing or to correct 
functional errors. If a trace has captured an error it is easy to see the execution path and find 
the place in the code where the error occurs. These kinds of errors can often also be found 
with the help of a debugger but if the errors depend on some hardware failure the only way of 
finding the error might be to execute the code on the target system, and then a logic analyzer 
attached to the address bus can provide assistance in finding the error. 
 
One advantage of aiT is that it is relatively easy to force the execution to take a certain path 
without affecting the system. This is useful if all possible execution paths in the system or all 
basic blocks should be analysed. Since the execution path leading up to the execution time in 
aiT is visible it is easy to see that all different paths or at least all basic blocks have been 
analysed. If aiT is used to get execution times for Time Accurate Simulation this approach is 
a good way of making sure that all the execution times needed actually have been calculated. 
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9 Conclusions 
A part of the purpose of the thesis was to find out if it is possible to integrate the static WCET 
tool in CC Systems (CCS) development tool chain (see Section 2.1). The three methods tested 
in this and Yina’s thesis [2] i.e. aiT, logic analyser and oscilloscope could all be used as a part 
of the development process at CCS. AiT can be used during the implementation part of the 
development process since it doesn’t require a target system while the oscilloscope and logic 
analyser cannot be used until the target system is available. AiT is also the best method if a 
safe WCET value is desired. The values produced by aiT are also relatively tight so 
overestimations aren’t a big problem. The overestimations are also getting smaller and 
smaller since aiT is constantly improved. There can be some problem to set all the correct 
settings in aiT so it can therefore be a good idea to compare the times with traces from a logic 
analyser or an emulator so that the results can be verified. The aiT tool could be integrated in 
the Construction phase of the development15 and used in every iteration to evaluate the 
WCET of different parts of the system. A final timing analysis could also be made in the 
Transition phase and for that analysis a logic analyser or aiT could be used. The best result 
should however be obtained if both a logic analyser and aiT are used in the Transition phase.  
 
To get times for CCS time accurate simulation aiT can be used during the development phase 
so that the worst possible timing behaviour is simulated. Once the system is downloaded on 
the target system a logic analyser can be used to get an even more accurate and tight timing 
behaviour. If the result from aiT can be considered tight enough the logic analyser wouldn’t 
be needed to give these times but that depends on how time accurate the simulation have to 
be. 
 
The logic analyser could be used when the general timing behaviour with ACET etc. is 
examined. It can also be used to give the execution time distribution of the different parts of 
the system. This would however demand that the system is running as it would in its real 
environment. 
 
The traces produced by the logic analyser could also help to get tighter WCET estimates with 
aiT since it can for example show which parts of memory that certain instructions access. 
 
The only thing where the oscilloscope is useful is when the system is functional and a fast 
WCET estimation is needed. The result from the oscilloscope is however undetailed and can’t 
even be proven to just include the execution time of the code that should be measured, i.e. it 
can’t show if a pre-emption has occurred. Using the oscilloscope also requires changing the 
code and that can affect the code and it also take some time to change the code and compile 
and link it between each new measurement. 
 
The conclusion is that a combination of a static tool and a logic analyser is the best way to go 
since they can complement each other. AiT’s strength is that it produces safe WCET 
estimates (as can be seen in Table 8.2) and the strength of the logic analyser is that it captures 
the overall timing behaviour of the system. The traces from the logic analyser can be used to 
get tighter WCET estimates by aiT and the graphs produced by aiT can be used to interpret 
the traces from the logic analyser.  
 
                                                 
15 For more information about the development process at CC Systems, see Section 2.1 
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CCS was also interested in ways of making the WCET analysis as easy as possible. The 
following rules should be applied if aiT is going to be used for WCET estimations. When the 
code is developed the basic rules for programming embedded systems apply. The code-
structure should be as easy as possible, goto-statements shouldn’t be used and returns and 
breakpoints in the middle of loops should be used as infrequently as possible. Pointers should 
also be avoided as much as possible. Recursion and especially indirect recursion shouldn’t be 
used if possible. Dynamic memory should be avoided as much as possible since the functions 
malloc and calloc are hard to analyse. The code should be well commented so that someone 
else than the programmer can understand the code and do WCET calculations. Loop bounds 
should be specified in the code if possible and if they aren’t too obvious. All loops that are 
included in the WCET calculations have to have an upper bound so no non-terminating loops 
are allowed in the analysed code. The program flow should if possible be controlled from as 
few functions as possible to make the WCET analysis easier.  
 
The object oriented programming approach used in the ESAB-code complicated the analyses 
somewhat. The dynamic memory allocations used at some places in the code made the 
analyses harder and inheritance also caused some problems. Object-oriented code is easier to 
learn so that is a plus. Overall you can say that there are both benefits and drawbacks with 
object-orientated code. The conclusion is that object-oriented code can be analysed with aiT if 
it is somewhat simple and doesn’t contain too much inheritance and dynamic memory 
allocation.  
 
The person that do these analyses in the future should preferable be the person that wrote the 
code or at least someone who have some idea how it is constructed. If this isn’t possible the 
person that performs the analyses should be able to contact the person who wrote the code. It 
is very hard to get tight WCET values if the person performing the analysis doesn’t have a 
good understanding of the code. The goal of doing static analyses by pressing a button and 
then the WCET value pops up is currently just a utopia and will probably never happen. 
However, in the future the static WCET analysis tools will probably be even better in finding 
loop bounds automatically and giving tighter WCET values  
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10 Future work 
The regulator-interrupt hasn’t been tested with all different welding methods so there are a lot 
of work that can be done in that area. All the different welding methods have different states 
and if all states and state-transition are to be tested there are a lot of analyses that have to be 
done. 
 
If the entire ESAB welding system is going to be simulated time accurately there are a lot of 
calculations or measurements that have to be done. The code doesn’t have to be studied as 
thoroughly as when WCET analysis are made but almost. If the entire ESAB welding system 
can be simulated time accurately it means that there are not many tests that have to be done on 
the target system since the timing behavior can be tested on a PC instead. It is very time 
consuming to test different execution paths so that all basic blocks are analyzed. It would 
therefore be great if aiT could give execution times for all basic blocks at ones. 
 
AiT could of course also be used to calculate the WCET for other systems than just the ESAB 
welding system. The same goes for the logic analyzer. 
 
Something that would decrease the workload would be if aiT could take a trace from a logic 
analyzer and display which path in the graph that it represents. 
 
There is a problem when simulating periodic interrupts with the Time Accurate Simulation. 
The only way to make it work is to start a new simulation thread that pretends to execute for 
the time between the executions of the periodic task and it is a bit hard to make this work. It 
would be much better if a special type of sleep could be implemented that didn’t affect the 
execution of the other treads and also could be paused, slowed down or speeded up as well as 
every thing else that is simulated with Time Accurate Simulation. 
 
The aiT tool is very user friendly but it could get even better. It would be great if aiT could 
automatically find the relative address of instructions so that the user doesn’t have to calculate 
that himself since it can be very error-prone. It would also be good if context-sensitive loop 
bounds could be set. The graphical presentation could also be improved by showing flow 
constraints set by the user and show places where aiT can’t find the destination of memory 
accesses. It would also be useful if the actual analysis in aiT could be paused since it 
sometimes may take a long time and the user may want to do something else that requires a 
lot of CPU-time for a short while. Another thing that would be very useful would be if the 
project file from Tasking could be loaded directly into aiT so that all settings were read from 
it. This would save a lot of trouble with finding and applying the correct settings. 
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