

Evaluation of Static Time Analysis for CC Systems

Ola Eriksson
oen99001@student.mdh.se

2005-08-13

Department of Computer Science and Electronics
Mälardalen University, Västerås

And
CC Systems, Västerås

Supervisor at Mälardalen University: Andreas Ermedahl
Supervisor at CC Systems: Mattias Lång
Contact at CC Systems: Stefan Rönning

Examiner at Mälardalen University: Björn Lisper

 2

Abstract
Most processors today are embedded in products like mobile phones, microwave owens,
welding machines etc and are not used in PC’s as many believe. Since some of these
embedded computers are used in time-critical or safety-critical systems it is very important
that the behaviour of these systems are well known. One part of that is to know the Worst
Case Execution Time (WCET) of the different tasks in the embedded system. The traditional
method of finding the WCET of a task is by measuring the execution time of the task when it
is running on the target system. There are several problems with this approach. It is hard to
check that the time you have got is actually the WCET.

Today there is another possibility to find the WCET. You can use static timing analysis that
does not execute the program in order to find the WCET; instead it uses a model of the target
hardware and uses static methods to calculate the WCET. There are a few commercial static
WCET tools on the market and a few more academic ones, but so far no industry has started
to use these on a regular basis.

This work was done at CC-Systems (CCS) in Västerås [1]. CCS develops and delivers
electronic solutions and software for machines and vehicles in tough environments. This
means that some of their code is time-critical. The purpose of this thesis work was to find out
if it is possible to integrate the static WCET tool in CCS development tool chain and also to
see if CCS would benefit from it. If it was possible to do so they also wanted to know if they
must change their development process or make other changes to make it easier to analyse
their code by a static tool. CCS was also interested to know if the static tool could be of use in
other areas than WCET analysis, for example giving their simulation technique a correct
timing behaviour.

To be able to compare the results of the static WCET analysis considering effort and
accuracy, dynamic WCET analysis was also performed on the same code snippets as with the
static tool. The dynamic measurements was a part of another thesis [2] on CCS performed by
Yina Zhang. The purpose of her thesis was to evaluate different dynamic WCET analysis
methods and to see if any of the methods is well suited for CCS. She also evaluated what CCS
could do to make it easier to analyse their code with the selected WCET analysis method and
if they could use the WCET analysis methods for other things than just WCET analysis. One
part of her thesis was also to evaluate the currently used methods of finding WCET values on
CCS.

The overall conclusion of this thesis is that to be able to get both tight and safe WCET values
static methods should preferably be used. Dynamic methods can however help the static
method giving tighter WCET values since they can be used to give input to the static analysis,
for example give information about memory accesses. If general timing behaviour of the
system is wanted dynamic methods are prefered since today’s static methods can’t provide
this kind of information.

Keywords: WCET, Static Timing Analysis, Dynamic Timing Analysis, Method Comparison

 3

Acknowledgement
The work of this thesis was entirely made at CC-Systems in Västerås during the time January
2005 to June 2005. The work is the final part to receive a Master of Science in Computer
Engineering at Mälardalen University.

I want to start off by thanking my supervisor at the University, Andreas Ermedahl, for first of
all choosing me to do this thesis and also for all the help and advice during the time I worked
on this thesis. My supervisor at CC-Systems, Mattias Lång, also deserves a big thank you.
Despite the fact that he has been away from the office in Västerås a lot of the time I couldn’t
have made this thesis without his help. Stefan Rönning, another employee at CC-Systems, has
also been a great support.

The employees at AbsInt Angewandte Informatik GmbH also deserves my gratitude for
letting me use their tool for static WCET analysis (aiT) and also for giving me a course in
how to use it correctly that saved me a lot of time and effort. I especially want to thank Martin
Sicks at AbsInt for answering all my tricky questions about aiT and for giving the course
about aiT together with Florian Martin. I want to thank ARTIST2 [27] for providing the
financial means of the course.

Another person I have to thank is Yina Zhang who also did her thesis at CC-System at the
same time as me. Her thesis was about dynamic timing analysis. Therefore making it possible
to compare static methods with dynamic ones. We could also help each other since some
things were easier done with dynamic methods than static ones and vice versa. The biggest
advantage of doing the thesis at the same time as Yina was that you always had someone that
you could discuss things with and that helped a lot.

Finally I want to thank my friend Samuel Bjurhager for telling me that CC-Systems and
Mälardalen University was going to cooperate and that it therefore was an opportunity to
make a MSc thesis work at CC-Systems. It was this information that led me to contact
Andreas Ermedahl and gave me the chance to write my thesis at CC-Systems.

This research has been supported by the Advanced Software Technology Center (ASTEC) in
Uppsala [3]. ASTEC is a Vinnova [4] (Swedish Agency for Innovation Systems) initiative.

Västerås
2005-08-13

Ola Eriksson

 4

Abstract ... 2
Acknowledgement .. 3
1 Introduction ... 6

1.1 BACKGROUND ... 6
1.2 PURPOSE.. 7
1.3 WORST CASE EXECUTION TIME .. 7
1.4 RELATED WORKS.. 8
1.5 THESIS OUTLINE.. 11

2 Relevant technologies.. 12
2.1 THE EMBEDDED SYSTEM SOFTWARE DEVELOPMENT PROCESS 12
2.2 TASKING C166/ST10... 13
2.3 THE TARGET HARDWARE.. 13

2.3.1 The ESAB Circuit Boards ... 13
2.3.2 The C167CS-LM Microcontroller .. 14

2.4 STATIC WORST-CASE EXECUTION TIME ANALYSIS .. 15
2.4.1 Static Worst-Case Tools.. 16

2.5 DYNAMIC WORST-CASE EXECUTION TIME ANALYSIS .. 18
2.5.1 Dynamic Worst-Case Execution Time Hardware... 18
2.5.2 Dynamic Worst-Case Execution Time Software .. 19

2.6 TIME ACCURATE SIMULATION .. 19
2.7 THE ESAB WELDING SYSTEM.. 20

3 Problem description and method... 22
3.1 THE PROBLEM ... 22
3.2 METHODS.. 22

3.2.1 aiT Worst-Case Execution Time Analyser.. 22
3.2.2 Dynamic Methods ... 25

4 Solution... 27
4.1 ANALYSING EXECUTABLES WITH AIT ... 27

4.1.1 User annotations.. 28
4.1.2 Relative addressing ... 31

4.2 USING DYNAMIC METHODS TO MEASURE WCET .. 31
4.2.1 Setting up the Target System for Dynamic Measurements..................................... 31
4.2.2 Measuring Execution Time with an Oscilloscope... 32
4.2.3 Measuring Execution Time on with a Logic Analyzer ... 32

5 Code characteristics .. 34
5.1 THE WDS NODE.. 34

5.1.1 The CAN-interrupt .. 34
5.2 THE PSA NODE ... 35

5.2.1 The CAN-interrupt .. 36
5.2.2 The Regulator-interrupt... 37

5.3 COMPONENT-BASED CODE .. 39
5.3.1 The ACC code... 39

6 Static analysis with aiT ... 41
6.1 CAN-INTERRUPT... 41

6.1.1 CAN-interrupt on WDS .. 41
6.1.2 CAN-interrupt on PSA.. 44

6.2 REGULATOR-INTERRUPT ... 46

 5

6.2.1 Regulator-interrupt on PSA... 46
6.3 THE COMPONENT-BASED CODE .. 49

6.3.1 ACC... 49
7 Dynamic measurements.. 51

7.1 CAN-INTERRUPT... 51
7.1.1 CAN-interrupt on WDS .. 51
7.1.2 CAN-interrupt on PSA.. 52

7.2 REGULATOR-INTERRUPT ... 52
7.2.1 Regulator-interrupt on PSA... 52

8 Results .. 54
8.1 COMPARING STATIC AND DYNAMIC WCET ANALYSIS METHODS 54
8.2 COMPARING STATIC AND DYNAMIC WCET ANALYSIS RESULTS.................................... 55
8.3 USAGES OF WCET ANALYSIS METHODS FOR CC SYSTEMS .. 57

9 Conclusions .. 59
10 Future work ... 61
Bibliography ... 62

 6

1 Introduction

1.1 Background
Today most things contain some kind of embedded computer. They exist in cell-phones,
microwave owens, cars, toys and a lot of other electronic products.

Many things formerly controlled entirely by hardware are today controlled by software in
different kinds of distributed real-time systems. These kind of distributed real-time systems
have also replaced old mechanical solutions with for example fly-by-wire, drive-by-wire and
so on. A real-time system is a system with deadlines, i.e. everything has to be done before a
specific time. Sometimes it is also important not to be done too early. If you take an airbag for
example, it is equally important not to inflate it too soon compared to inflating it too late. A
distributed system is a system consisting of several nodes working together performing a task
and communicating through some kind of network.

Real-time systems have to be predictable in the sense that you know the maximum time for
something to be done and sometimes you also have to know the minimum time. This makes it
necessary to know the execution time of different parts of the software in the real-time
system. It is especially important to know the Worst Case Execution Time (WCET) since this
can have big effects on the rest of the system. The problem is to find the WCET for different
code snippets. The most commonly used way to find the WCET is by using dynamic
methods, i.e. making measurements on the code executing on the target. An easy way of
doing this is by using built in time-function to measure execution time, but it requires an
operating system (OS) and small embedded systems usually aren’t equipped with an OS.
Then you have to rely on different kind of hardware for making these kinds of measurements
like for example oscilloscopes, logic analysers and emulators. If the system have built-in
timers they can be used instead of hardware and for some processors there are also cycle-
accurate simulators available that can be used to obtain executions times. It is often very hard
to guarantee that the path generating the WCET actually has been found. It can also be very
hard to connect all parts needed to make the measurements and simulate a correct behaviour.
You are often forced to change the code to be able to make measurements and this can affect
the system in different ways (known as probe effect).

An alternative to dynamic timing analysis for obtaining the WCET is static timing analysis.
Static timing analysis uses a model of the target hardware and the program that runs on the
target and static methods to estimate WCET for a certain code snippet. There is no need to
execute the code when static timing analysis is used since the execution time is calculated and
not measured. This can make it easier to estimate the WCET and it also makes it possible to
estimate the WCET for systems that aren’t finished yet or were the hardware isn’t available.

CC-Systems (CCS) [1] is a company that develops and delivers electronic solutions and
software for machines and vehicles in tough environments. The company was founded 1991
and have now grown into a company with 130 co-worker situated at offices in Alfta; Sweden,
Uppsala; Sweden, Västerås; Sweden, Örnsköldsvik; Sweden and Tammerfors; Finland. Some
of their customers are Timberjack, John Deere, BAE Land Systems Hägglunds, ESAB, Atlas
Copco, Bromma Conquip and Rolls-Royce Marine. CCS wanted to know if it was possible to

 7

integrate the static WCET tool in their current tool chain to be able to calculate WCET and
also to improve their simulating technology.

The code that is analysed is code that is used in welding machines and some component-
based code. The company ESAB provides the code used in welding machines. The
component-based code is an Adaptive Cruise Control and it is part of a test to automatically
generate tasks from different components. The ESAB-code that is tested consists of two
interrupts and since the component-based code was much smaller all its tasks and components
were analysed. All the tested code was time-critical, however there were no explicit deadlines
for the interrupts in the ESAB-code.

1.2 Purpose
The purpose of this thesis was to find out if CC Systems (CCS) can benefit from using static
WCET analysis methods in their development process. Static WCET analysis was also
compared with dynamic WCET analysis methods to find out which method was best suited
for CCS. CCS was also interested in other uses for static WCET analysis. For example if it
was possible to get timing of code parts that could make their existing simulation technique
more time accurate. If the conclusion of the thesis was that static WCET analysis can be
integrated in CCS development process and that it would also be of great use to do so, CCS
wanted to find out how they can make it easier to integrate this method. One way of
simplifying the integration process could be to structure the source code in certain ways that
would make the static WCET analysis much easier.

Several calculations of WCET have been performed on CCS’s code in order to find out how
accurate and time consuming static WCET analysis is. To have something to compare the
WCET values to, dynamic measurements have also been performed on the same code
snippets. The measurements have been performed by Yina Zhang [2] who concurrently made
her MSc work at CCS, focusing on methods for dynamic timing analysis.

1.3 Worst Case Execution Time
The Worst Case Execution Time (WCET) has many definitions, the basic idea is however that
the WCET is the longest time a program will execute during normal operation. One problem
can be to determine what normal operation means. In this thesis normal operation means
operation without fatal errors such as hardware failure and other failures that would make the
system crash. Errors that won’t affect the operation of the system are often integrated in the
WCET.

The reason why WCET is important to know is that it is a parameter used when the resources
needed for the system are calculated. It is also very important to know the WCET for tasks
when the system is being scheduled since it represent the execution time needed if the system
is going to be guaranteed to be schedulable. In order for a WCET value to be of good use it
have to be both safe and tight. Safe means that the WCET value obtained is equal or greater
than the actual WCET. Static WCET tools obtain a safe WCET value by always assume the
worst case scenario when in doubt. Tight means that the WCET value should be as close to
the actual WCET as possible. This can be a problem for static WCET tools since they use
overestimations when in doubt. In order to assure good WCET estimations the tools and

 8

models used to calculate WCET have to generate values that are safe and tight [5]. It is
however always easier to produce safe values than tight ones.

Figure 1.1: Execution time distribution

Figure 1.1 above gives a good illustration why it is hard to find WCET values using
measurements. The values that are measured are the ones called possible execution times in
the figure. It is often hard to find the WCET by measurements since the probability that it
occurs is very low. Static WCET analysis on the other hand guarantees to generate a value
that is greater than or equal to the actual WCET value; the problem is that sometimes the
overestimation can be quite large. If not only a WCET value but also the execution time
distribution is wanted dynamic methods can give such information. A big trouble of finding
the WCET using dynamic methods is that a very large set of inputs has to be tried in order to
be able to guarantee that the WCET have been found and this is often virtually impossible.

The software behaviour of a program could make the execution time of the system variable
but also the hardware upon which the program runs can have that effect. Modern hardware is
gets more and more advanced with pipelines, caches, branch prediction and out of order
execution. All these features are there to lower the Average-Case Execution Time (ACET),
however they often increase the WCET or at least make it hard to find the WCET since the
system becomes much more complex. Static WCET analysis uses a hardware model of the
target hardware to mimic its timing behaviour. If the target system is very advanced the task
of making a model is almost impossible. In order to get a safe WCET value overestimations
are often used when the behaviour of advanced hardware is modelled. These overestimations
can in turn lead to a less tight but safe WCET value.

1.4 Related Works
This section will give some information about other studies of static WCET analysis tools.
For more information about static WCET analysis and the tools available see Section 2.4.

Susanna Byhlin has performed a MSc thesis [6] similar to this one. Her job was performed at
the company Volcano Communications Technologies AB (VCT). The purpose of her thesis
work was to examine if a static WCET analysis tool could be integrated into VCT’s
development environment. This would enable VCT to calculate WCET values and also to
reduce the development time and therefore also the development cost. The conclusions drawn

 9

by the author is that the static WCET tool used (aiT) had both advantages and drawbacks
compared to dynamic WCET analysis. A problem brought up by the author is the fact that
VCT uses a lot of different processors and compilers and static WCET tools for these
processors and compilers may not be developed in time. Another problem with static WCET
analysis according to the author is that static WCET analysis is still an area of research and
this can make is hard to assure tight and safe execution times. This thesis is also available as a
smaller article [7].

Daniel Sandell also used aiT to calculate WCET values in his MSc thesis [8]. The purpose of
his thesis was to find out if a WCET analysis tool could be used to derive WCET estimates on
the OSE operating system code. The second purpose was to see what improvements have to
be made in order to make WCET analysis tools more applicable to the demands of the
industry. The code snippets tested were system calls and disable interrupt regions. The result
from the WCET analysis is compared with values from the ARMulator, which is a hardware
model of an ARM-processor that can be used to calculate execution times. The conclusions
drawn by the author are that the code could be analysed with a WCET analysis tool and that
disable interrupt regions were well suited for these type of static WCET analyses. System
calls could also be analysed but demanded more work from the user. A summary of this thesis
is available as an article [9].

The MSc thesis by Samuel Peterson [10] is about porting a static WCET tool to the Renesas
H8/3292 processor. This processor is used in Lego Mindstorms, a kit used for building simple
lego robots, and is commonly used in education for real-time courses. The goal of the thesis
was to bring the WCET analysis technique into the education by introducing the ported
version of the Bound-T WCET analysis tool [11] in real-time system courses at Mälardalen
University. The conclusion drawn by the author is that is requires a lot of work to port a static
WCET analysis tool to a new host platform. Although this processor didn’t have any caches
or pipelines it had a quite large instruction set and a lot of addressing modes, which made the
implementation non-trivial.

Jakob Engblom, Andreas Ermedahl and Friedhelm Stappert have written a technical report
about validating a WCET analysis method for embedded systems [5]. The report is a manual
how to verify a WCET analysis method for an embedded processor. The author focuses on the
safety of the analysis method but the tightness is also considered. In the report they verify
their own WCET analysis method. The WCET analysis is composed of several components
and each of these are tested separately. In order to verify the components, code with known
WCET values were used to test the WCET analysis method on. To test one component in
isolation all other components have to be made constant in some way. This is done by
selecting certain input values that produce the WCET and then using them for all analyses.
This will lead to a constant execution path, which makes the verification easier. The results
they get from the components are compared to the known WCET’s and the traces they have
gotten from running the code on a PC. The authors claim that after verifying their WCET
analysis tool their calculation method is correct and their pipeline analysis is both tight and
safe.

A. Colin and I. Puaut have written a report about a static WCET analysis of the RTEMS Real-
Time Operating System [12]. The actual analysis has been performed by a student named
Philippe Selo. The Heptane WCET analysis tool was used to analyse 12 system calls in the

 10

RTEMS Real-Time Operating System. All the systems calls were dealing with task
management and synchronization. The following properties were found in the code of
RTEMS: small number of loops and no loop nesting, absence of recursion, small number of
dynamic calls and high degree of reuse of functions. The main problem with the analyses was
to find correct loop bounds. Only 25% of the loop bounds were trivial to find, the rest
demanded deep studies of the source code of RTEMS. The loop bounds found were often
very pessimistic since they depended upon the number of task in the system which had an
upper bound that was much higher than the number of task that usually were in the system.
Most of the dynamic calls could be replaced by static ones to simplify the analysis, but
according to the authors it was hard to find the function that was actually called. The authors
summarises the report by saying that they think RTEMS is well suited for WCET analysis.

An article [13] about testing the Debie software with the Bound-T static WCET analysis tool
is written by N. Holsti, T. Långbacka and S. Saarinen. The Debie software is an ESA
instrument that monitors space debris and micrometeoroids. The software consists of many
different tasks and was already verified using measurements when the analysis with Bound-T
was performed. This made it possible to compare the results of the different methods. The
code had to be changed slightly in order for Bound-T to analyse it. Bound-T couldn’t for
example analyse assignments of struct-values and the floating-point division including an
irreducible loop structure. A total of 68 lines of code were changed. The number of
annotations needed were 47 and 38 of them were for loops. Many of the loop annotations will
be found by Bound-T automatically when it is completely developed. The result showed that
the statically calculated values were slightly higher than the measured ones. Bound-T found
several things that could lead to deadline misses, one of those was a poor implemented change
in the code that increased interrupt blocking by 413 µs. The conclusion drawn by the authors
is that Bound-T would have been very useful during the development of the Debie software
since it would have been able to measure times early in the developing process. Moreover,
recomputing WCET values would also have been much easier with Bound-T than with
measurements says the authors.

The aiT tool has been used on Airbus and the results have been published as an article [14] for
the International Performance and Dependability Symposium 2003. The article was written by
S. Thesing, H. Heckman, J. Souyris, F. Randimbivololona, M. Langenbach, R. Wilhelm and
C. Ferdinand. The different phases used by aiT to determine the WCET are described together
with the information on how the pipeline used by MCF 5307 is constructed. Some
information on how the result can be safe is also given by describing abstract interpretation,
the technique used in many phases of aiT. The WCET tool was ues in the DAEDALUS
project. The things analysed were the precision and usability of the tool. A benchmark was
used so that the results of the tool and the results from Airbus’ method1 could be compared.
The overestimation was larger with Airbus’ method than with aiT. The result from the tool
could also be proven to be safe since it was compared with real executions of the program. A
strong point of the tool is that it can be used in the development process when hardware isn’t
available yet. The conclusions drawn by the authors is that the aiT tool provide safe and tight
WCET bounds and that it also can be applied to realistically sized programs an environments.

1 Which method that was used by Airbus is never explained in the article but it is probably some sort of dynamic
method.

 11

1.5 Thesis Outline
Chapter 1 gives an introduction to the thesis including background, purpose, WCET, and
related works. Chapter 2 includes information that is needed for a good understanding of the
rest of the thesis such as the development process (Section 2.1) and compiler/linker (Section
2.2) used by CC Systems (CCS). It also contains information about the target system analysed
both concerning hardware (Section 2.3) and software (Section 2.7). Sections 2.4 and 2.5 give
some general information about static and dynamic WCET analysis. The technique to make
CCS simulations time accurate is described in Section 2.6. Chapter 3 talks about the problem
(Section 3.1) and the methods (Section 3.2) used to solve them. Chapter 4 will give
information about how the static tool aiT (Section 4.1) and dynamic analysis methods
(Section 4.2) can be used to obtain WCET estimates. This chapter is meant to be used as a
manual for these types of analyses. The code structure and characteristics of the code that is
analysed is described in chapter 5. Chapter 6 goes into the actual analyses with aiT in this
thesis and chapter 7 do the same but with the dynamic methods. In chapter 8 the results of the
thesis are divided up into the three parts comparing methods (Section 8.1), comparing results
(Section 8.2) and describing different usages of WCET analysis (Section 8.3). The results are
based on the Chapters 6 and 7. The conclusions drawn in this thesis are presented in Chapter 9
and finally future work is given in Chapter 10.

 12

2 Relevant technologies
This section will go through information that is needed to get a good understanding of the rest
of the thesis. Section 2.1 will talk about the development process for software used by CC
Systems (CCS). Section 2.2 give some information about compilers and linkers and especially
about the compiler/linker used by CCS called Tasking. Target hardware of embedded systems
is described in Section 2.3 and Section 2.3.1 and 2.3.2 give some deeper information about
the circuit board used by the ESAB welding system and the microcontroller used in all the
WCET analyses. Sections 2.4 and 2.5 are about static and dynamic WCET analysis and
describes tools and hardware typically used in such analyses. In Section 2.6 the technique
used to make CCS’s simulations system time accurate is described.

2.1 The Embedded System Software Development Process
Most companies that develops software use a special process to help the programmers and to
ensure that the software live up to the demands of the buyer. The development process used
by CC Systems (CCS) is called PUP (Process för Utveckling i Projekt2). The process is based
on RUP (Rational Unified Process) and the different phases of PUP and RUP can be seen in
figure 2.1. The following purposes of the phases are used in PUP. The purpose of the
inception phase is to set the bounds of the project; gather the demands; create a first sketch of
the system architecture; create a plan and a cost estimate of the project and find the risks of
the project. The purpose with the Elaboration phase is to establish an architecture; reduce the
risks; prepare tests for the entire project; create a plan for the Construction phase and adjust
the cost estimates. The Construction phase’s purpose is to step by step create and deliver a
system with more and more functionality; evaluate and use experiences from system
evaluations; test, evaluate and estimate the quality of the system and prepare the users for
receiving the system. The purpose of the final phase, the Transition phase, is to carry out final
users tests and education; document experiences; correct the system and finish the project.
The phases are divided in iterations and each iteration consists of a number of steps. The steps
are gather requirements; analyze and design; implement and test. The number of iterations per
phase can vary depending on the project. Each iteration is ended with an iteration evaluation.
The reason for using iterations is that problems can be taken care of more quickly and the
work of the testers is more evenly spread out throughout the project.

Figure 2.1: The development phases used in PUP and RUP

2 This is a Swedish name and can be translated to “process for development in project”

 13

2.2 TASKING C166/ST10
To make the source-code understandable by the processor, the source-files have to be
compiled and then linked together into an executable. To compile the source-code a compiler,
who can translate the source-code into instructions that the processor can understand, have to
be used. After the compilation the linker takes the object-files created by the compiler and
turns them into an executable. Different compilers and linkers produce different executables
and to be able to make a precise WCET estimation as possible the static tool must know
which compiler and linker that was used and it also has to support it. The reason for this is
that different compilers and linkers generate different information in the executable and this
information is by the analysis tool.

The compiler/linker used by CC Systems (CCS) to compile code for the Infineon C167CS-
LM processor is TASKING C166/ST10. This compiler/linker is the only one supported by
aiT for the C167CS-LM processor used by CCS on the ESAB welding system (Section 2.7).
TASKING supports a lot of processors but the version of aiT used only supports processors
from Infineon with the C166 and ST10 CPU cores. TASKING C166/ST10 has a lot of
compilator optimisations that can be used. There are 18 optimisations that can be individually
turned on or off. To make it easier for the user there are a number of predefined groups of
optimisations to choose from. They are: no optimisation, default optimisation, optimise for
speed, optimise for size and custom optimisation. It is only in the custom optimisation
category that the user can choose freely between the different optimisations. The optimisation
group commonly used by CCS is the default optimisation group. The reason for CCS to
choose this optimisation group is that it doesn’t affect the general structure of the code much
and therefore makes it easier to test the functionality of the code.

There are eight output file formats to choose from in TASKING. The one used for the
analysed code is Motorola S records for EPROM programmers (.sre). This executable is later
downloaded to the external EPROM-memory on the circuit board.

2.3 The Target Hardware
The hardware in embedded systems is often much simpler and have much less features than
hardware in a PC. The reason for this is that an embedded system doesn’t demand the same
processing power as a PC. Embedded systems also have a greater need to be predictable and
basically the more features there are in the system with caches, out-of-order execution, branch
prediction etc the less predictable the system becomes. The cost is also of great importance in
embedded systems and that is another reason for using simpler hardware. Section 2.3.1
contains information about the circuit board used the ESAB part of this thesis and Section
2.3.2 contains information about the microcontroller used in this thesis.

2.3.1 The ESAB Circuit Boards
The circuit board used for the ESAB welding system is designed by ESAB. The
microcontroller used is the Infineon SAK-C167CS-LM (see Section 2.3.2). The
microcontroller itself has a small internal memory but since it is not enough for the welding
system, extra memory has been added for the code and data. The external memory for
program code is a 1 MB flash memory and the external memory for data is a 32 KB RAM.

 14

The built-in frequency of the microcontroller is 25 MHz but ESAB have put a crystal on the
circuit board to lower the frequency to 20 MHz instead. Depending on the use of the circuit
board different peripherals can be attached. The peripherals can be displays, buttons, controls
for valves etc. One of the ESAB Circuit Boards can be seen in Figure 2.2.

Figure 2.2: One of the ESAB Circuit Boards (the WDS node)

2.3.2 The C167CS-LM Microcontroller
The microcontroller used in this thesis is the Infineon SAK-C167CS-LM, which is a part of
the C166 microcontroller family. Below is a listing of some of the components in the
microcontroller:

• 16-bit CPU with 4-Stage Pipeline
• CPU clock speed 25MHz
• Two on-chip CAN modules version 2.0B active
• Peripheral Event Controller (PEC)
• Capture Compare Unit (2x16 channels)
• 4-channel PWM unit
• 24-channel 10Bit A/D Converter
• Idle, Sleep and Power Down Mode with Flexible Power Management
• Two Multi-Functional general purpose timer units with five 16-bit timers
• Watchdog Timer and Oscillator Watchdog
• Up to 111 General purpose I/O lines
• Full Automotive Temperature Range: -40°C to +125°C

Up to 16 MB of external RAM and/or ROM can also be connected to the microcontroller. The
microcontroller have a feature called a jump cache, which allows the execution time of
repeatedly performed jumps in a loop to be reduced from 2 cycles to 1 cycle. It also has a
separate multiply and divide unit to speed up execution.

Most instructions on the microcontroller take one machine cycle3 to execute but there are
exceptions that take longer time. A multiplication of two 16-bit numbers takes 5 machine
cycles. Indirect addressing also causes longer execution times.

3 One machine cycle is equal to two clock cycles i.e. one machine cycle is 80 ns on this microcontroller when it
is running at 25 MHz.

 15

2.4 Static Worst-Case Execution Time Analysis
Static worst-case execution time analysis is a way to calculate the worst-case execution time
without measuring it. In order to calculate the WCET for a code snippet, all properties of the
code like upper loop bounds, infeasible paths, recursion depths etc. have to be known. A
model of the hardware must also be used so that the timing behaviour of the target system can
be mimicked. The hardware model can be very advanced if the system uses performance-
enhancing features like instruction caches, data caches, pipelines, branch prediction and out of
order execution. There has been a lot of work on how these things affect static WCET
analysis, for example [15] and [16]. Fortunately, most embedded system uses simple
processors without caches, branch prediction and out-of-order execution. Almost all
processors today have pipelines and so do embedded ones, but they usually only consists of a
few steps compared to the many step processors of modern PC’s.

Static WCET analysis is generally divided into different steps. There are different approaches
to how the analysis is divided, which steps there are and how many. In [17] the analysis is
divided into three steps and these steps will now be explained. The first step in the analysis is
called flow analysis. This step is responsible for finding the flows of the system, i.e. all
possible executions paths. It is also here flow constraints like loop bounds, infeasible paths,
function calls, recursion depth is found automatically or given as input from the user. The
program flow can be extracted from three different types of code; source code, intermediate
code and object code. If the flow analysis is performed on source code there is a problem of
knowing how the compiler will change the code when it is compiled, therefore it’s not very
common to use source for the flow analysis. Intermediate code is used by some tools since it
contains more information from the compiler that can make the analysis more precise but the
drawback is that it is very compiler dependent. Commercial tools often use object code for
their flow analysis since it is independent of which compiler is used. This makes it is easy to
adapt the flow analysis to other compilers and hardware.

The second step of static WCET analysis is low-level analysis. It is in this step the execution
time for each basic block4 or instruction in the program is calculated. The low-level analysis
is often divided into two parts called global low-level analysis and local low-level analysis.
Local low-level analysis considers effect between instructions like pipeline overlap and also
takes memory access speed into account. Global low-level analysis considers effects between
basic blocks like instruction caches, data caches, branch prediction and translation look aside
buffers (TLB’s). Global low-level analysis isn’t used to generate execution times but is
instead used to capture effects of hardware features that needs to be modelled over the whole
program. If the processor used is very complicated it might be hard to separate the global and
local low-level analysis since for example data caches effects both the local and global part of
the low-level analysis.

The calculation step is responsible for calculating the overall WCET of the program by
combining the results from the flow analysis step and the low-level analysis step. To be able
to find the WCET the path that generates WCET must be found and there are different ways
of finding this path. There are three methods commonly used and they are: path based
calculation, tree based calculation and Implicit Path Enumeration Technique (IPET). The path

4 A basic block is a group of sequential instructions where instructions are executed if the first one of them is
executed.

 16

based calculation method simply calculates the execution time for all paths through the
program and selects the one with the highest execution time as the WCET. A less time
consuming approach is the tree-based calculation that uses a tree representation of the
program that it traverses bottom-up, calculating the execution time of a node with the help of
the execution time of its child nodes. The calculation method that is most commonly used is
IPET since it can handle complex flow constraints. The idea is that each basic block has an
execution time and a count variable. By setting different dependencies between count
variables various flow constraints can be expressed. To find WCET the maximum value of
the sum of all count variables multiplied with their execution time, considering dependencies,
is calculated. To perform the actual calculation Integer Linear Programming (ILP) or
constraint solving can be used. ILP is the most commonly used.

To learn more about static WCET analysis read [16], [17] and [18].

2.4.1 Static Worst-Case Tools
There aren’t a lot of static WCET tools available today. The ones that exist are either research
prototypes or commercial tools. The things that separate the tools are the CPU’s supported
and calculation method used. Some of the tools are also compiler dependent.

One of the commercial WCET analysis tools now available is aiT Worst-Case Execution
Time Analyser (aiT) from the German company AbsInt Angewandte Informatik GmbH [19].
AiT supports the processors ARM7, HCS12/STAR12, PowerPC MPC555, PowerPC
MPC565, PowerPC MPC755, ColdFire MCF5307, Texas Instruments TMS320C33, Infineon
C166 (only C167CS-LM) and Infineon ST10 (only ST10F269 and ST10F276).

Bound-T is another commercial WCET analysis tool and is a product from the Finnish
company Tidorum Ltd [11]. Bound-T was first developed at Space Systems Finland Ltd with
support from the European Space Agency (ESA/ESTEC). The Bound-T supports several
processors, including the Intel-8051 series, the ERC32 processor in the SPARC series, the
DSP Analog Device processor ADSP-21020 and the Renesas H8/300 processor.

The last commercial WCET analysis tool is RapiTime from Rapita Systems Ltd [20] and it is
based on the research prototype pWCET. More information about pWCET can be found in
[21]. RapiTime isn’t a strict static WCET analysis tool since it relies on dynamic methods to
get the actual execution times. It doesn’t only produce a WCET value it also give a execution
time distribution of the analysed code snippet. It uses traces from either a cycle accurate
processor simulator or by executing the code on the target system to obtain execution time
distributions for smaller code snippets and then combines them using static WCET analysis
techniques. RapiTime isn’t restricted to be used on certain processors.

One of the research prototypes is the WCET tool SWEET (SWEdish Execution time Tool)
[22], [23], [17], presented by Andreas Ermedahl, Björn Lisper, Christer Sandberg and Jan
Gustafsson. Jakob Engblom and Friedhelm Stappert have also been in involved in the low-
level analysis and calculation part of the tool. The tool is very modular to make it easier to
change different parts of the analysis. They have implemented three different calculation
methods that they can choose from; they are IPET, path based calculation and clustered. The
supported processors are ARM9 and NEC V850E. The part of the tool that is currently being
developed is a flow-analysis working on compiler-generated intermediate code. Thereby, the

 17

flow-analysis becomes target independent. The result of the flow analysis is given as input to
the low-level analysis and calculation steps of the analysis.

Another research prototype is the Heptane (Hades Embedded Processor Timing AnalyzEr)
WCET tool [24]. Heptane is published under the GNU GPL license, and is downloadable free
of charge. It supports the processors Pentium I, MIPS and Renesas H8/300. At the moment
Heptane works on C source code but work is on the way to make it work on disassembled
binary. The people behind Heptane are Antoine Colin and Isabelle Puaut. More information
about this tool can be found in [25].

 18

2.5 Dynamic Worst-Case Execution Time Analysis
Dynamic worst-case execution time analysis is the traditional way of finding WCET of a
program. There are a lot of methods for obtaining the WCET dynamically, and the thing they
all have in common is that the time is measured on a program when it is executing. There are
both benefits and drawbacks with that. One benefit is that all execution paths measured are
possible paths through the program, which is something that cannot always be guaranteed
with static analysis. The problem is to find the path that results in the WCET. It is impossible
to force the execution to take a certain path without affecting the system, since the code have
to be added or the original code have to be changed. Therefore theoretically all possible inputs
have to be tried to find the WCET path. The problem here is that the number of different
inputs often is too large to test within a reasonable time. The method usually practiced is to
add a safety margin on the value measured to compensate for not finding the actual WCET.
This isn’t a very good approach since the WCET on some system can be just a little bigger
than the measured value and sometimes many times bigger. There is also the problem with
interrupts pre-empting the code that is measured leading to incorrect values.

The first problem encountered when doing dynamic measurements is to get the target system
connected so that it works like intended. This often much trickier than it seems since it can be
hard to get a hold of all hardware required. Most embedded systems interact with the
environment and that can be hard to simulate correctly. A problem that can occur during
development of the system is that all the code needed for running the system may not even be
available since its not ready yet or it is being developed by a different company. The hardware
can also be under development. Once the target system is correctly connected it is rather easy
to do different measurements. It is also possible to record execution times of a code snippet
over a longer period of time and then get statistics of the execution time so that things like
jitter and average execution time can be calculated but it is still no guarantee that the WCET
has been found. Instead of just measuring execution time, dynamic timing analysis can also be
used to get different kind of traces by measuring the address bus or data bus. This is very
helpful way of finding the execution path.

The problem with dynamic WCET analysis is to be able to guarantee that the WCET value
obtained is safe. As can be seen in Figure 1.1 all the values that can be measured are less than
or equal to the actual WCET which means that a safety margin probably has to be added to
the WCET value measured to make sure the value is safe. It is however hard to estimate how
big the safety margin should be. Since the correctness of the WCET estimate is hard to
validate it is also hard to get a tight value. If the system is very small and simple and all inputs
can be tested, then dynamic measurement should come up with a value that is exactly equal to
the WCET. This means it is both safe and tight but these kinds of system is very rare if not
non-existent.

2.5.1 Dynamic Worst-Case Execution Time Hardware
The most common way of finding WCET dynamically is by using an oscilloscope or a logic
analyser. The oscilloscope is the cheapest options but it is also the most limited tool. The
easiest way of finding WCET with an oscilloscope is by using a pin on the processor, for
example setting it high when the execution starts and then setting it low when it ends and
measuring the time in between. This method makes it impossible to see which path has been

 19

executed and it can also affect the system slightly. If instead a logic analyser is used the same
type of measuring can be made but there is also other possibilities. The entire address bus can
be measured so that the execution time can be found by just calculating the time between the
address of the first instruction of the code measured and the last one. A trace of the execution
can also be saved so that the execution path can be found.

An emulator can also be used to measure execution time if it’s time accurate. Most emulators
are able to produce traces so that the execution path can be found in the same way as with the
logic analyser. The problem with emulators is that they can only emulate the behaviour of one
or a couple of processors and they are rather expensive to purchase. They can also, depending
on the actual emulator, need some modification of the circuit board. This makes it hard to
validate that its timing behaviour corresponds to the timing of the real board.

If the execution time is expected to be several minutes or even hours a simple stopwatch
could actually be used to measure the execution time. This kind of long execution time is
however very unusual in embedded systems. Pictures of different dynamic measurement
hardware can be seen in Figure 2.3

Figure 2.3: A logic analyser, an emulator and an oscilloscope

2.5.2 Dynamic Worst-Case Execution Time Software
If the embedded system uses an operating system (OS), built in system calls for getting the
current time can be used to measure execution time. There are also systems without an OS
that can have accessible counters but they might be a bit trickier to use. A function call to get
the current time can be added in the beginning of the code that is going to be tested. The same
is then done in the end of the code. The execution time can then easily be found by
subtracting the start time from the end time. This method has a few drawbacks. It is hard to
know if the code is pre-empted by other programs, the added code affects the system and the
system call to get the time may not have a granularity fine enough to measure the code
correctly. It may have a lot of drawbacks but it is probably the fastest way to get an execution
time for a program and if the program isn’t very time critical this method is probably accurate
enough too.

2.6 Time Accurate Simulation
Time Accurate Simulation is the result of a Master thesis at CC-Systems (CCS) 2001 [26]. It
is based on the existing simulation technology at CCS.

Time Accurate Simulation is used to extend an existing simulation technique to be able to
handle time accurate simulations and not just function accurate simulations. To be able to
simulate a system on a PC the hardware dependent code has been replaced with code that

 20

simulates the hardware on the PC. In order to get a time accurate behaviour, breakpoints are
added in the code to slow down the execution to the speed of the target system. The
breakpoints takes the target time elapsed from the last breakpoint as an in-parameter. The time
is used to synchronize the execution of the nodes of the system and can also be used to slow
down the execution of the system to the speed of the target system.

There are more advantages of this technique than just a time accurate behaviour. It can be
used to slow down or speed up the execution of the system by simple multiplying the system
clock with a constant. If the constant is less than one the system is running in slow motion and
if the constant is bigger than one the system is running faster than on target. It is also possible
to step through the execution of the system one breakpoint at a time. This can be very helpful
if you want to study some part of the execution of the system extra carefully. If the only thing
of interest is the synchronisation it is possible to run the system in full speed, i.e. only
compare times between the nodes and ignore the system clock.

It is possible to simulate different system nodes and each node can also consists of several
threads and/or interrupts. The problem with several threads or interrupts in a node is that they
use the same CPU and therefore competes for CPU time. When one thread on a node executes
the target system time for all the threads/interrupts on that node increases. To be able to
implement this the first registered process on a node is called the parent and all other
processes on that node have to name that process as their parent. This enables all the
processes on the same node to have the same target system time. But since the
synchronisation is built upon the fact that the process with the smallest target system time get
to execute a problem comes up. In order to select which process on the node is going to
execute all processes have priorities. The process with the highest priority gets to execute first
when several processes have the same smallest target system time. If there are interrupts in
the system, they are simply given a higher priority than the main process to ensure that they
get to run before the main process.

To add Time Accurate Simulation to an existing simulation technique, the DLL-file has to be
added to the project and then there are just a few extra function calls needed. All the processes
of the system have to be registered with a call to the function TimeSyncRegisterUnit, which
takes a string with the name of the process and a priority as in-parameters. To start the
synchronisation with the other processes one of the functions TimeSyncStart or
TimeSyncStartTime must be called. They take the handle returned from the register function
call and the target system time of the process as in-parameters. If the target system time isn’t
given the global system time is used instead. To be able to get the time accurate behaviour
you then add breakpoint in the code with the target time elapsed from the last breakpoint and
the handle as in-parameters. The breakpoint function is called Tsbreak. When a process is
terminated or wants to leave the synchronisation it have to be unregistered or else it will cause
a deadlock in the entire system. To unregister the handle to the process is sent as an in-
parameter to the function TSunregister.

2.7 The ESAB Welding System
The ESAB welding system is a modular system consisting of up to four different types of
permanent nodes and one service node connected via CAN5. Depending on the kind of

5 Controller Area Network. The most commonly used communication bus for embedded systems.

 21

welding system different nodes are used and sometimes there are several nodes of the same
type present in the system. One of the two types of permanent nodes always present in a
welding system is the Man Machine Communication (MMC). The MMC is the master node
in the system and holds information about the entire system and it is also responsible for all
interaction with the user through the display and buttons. The second permanent node type
that always is present is the PowerSource A (PSA) node, where A is the version. It is
responsible for the power supply to the welding process. The first of the two types of
permanent nodes that isn’t always present is the Remote Control (RC) node; it is used to
replace the MMC node when the welder is far away from the actual welding unit. The last
type of permanent node is the Wire Feeder (WF) node. The WF node is responsible for
feeding wire during the welding phase if the current welding method uses wire. If there are
several nodes of the same type in the system it usually is several WF nodes present
responsible for different kind of wire (different materials or dimensions). The fifth and final
node type is the ESAT node. It is used for services or for upgrading the software in the
system. The node isn’t actually a separate piece of hardware but software running on a PC
and communicating with the other nodes through a CAN-card in the computer. The structure
of the system can be seen in figure 2.4.

Figure 2.4: The nodes of the ESAB Welding System

Each permanent node has basically the same basic structure. They all use the C167CS
processor and they have no operating system (OS). The code is object oriented (C++) and is
constructed like a big loop and interrupts. One of the interrupts is responsible for receiving
CAN-messages and putting them into a buffer. There are also timers that can be used to
trigger interrupts. For example a time triggered interrupt is used on the PSA node to control
the power to the welding process. The main loop is a bit different depending on which type of
node it is. There are some things that all nodes do in their main loop. First they check their
incoming buffer if there are any new CAN-messages, if there are any they send them to the
correct class to be processed. Then the outgoing buffer is checked for CAN-messages, if there
are any they are sent over the CAN-network. The outgoing CAN-messages are often
responses to incoming CAN-messages or they are notifications of changing states possibly
due to input from the welder.

The thing that is unique for the MMC node in the loop is that it starts the loop by checking if
the welder have pushed a button or turned a knob. If that is the case it lets the current state
handle it. The PSA node also has some extra tasks to perform. It has to control a water pump
and if the hardware supports a trigger that also has to be handled. These are just some of the
things preformed by the nodes but they are the most important ones.

’MMC’

Powersource
’PSA’

Wirefeeder
’WF’

Remotecontrol
’RC’

PC
ESAT

CAN bus

 22

3 Problem description and method
The question that CC Systems wants an answer to is if they could benefit from using dynamic
or static WCET analysis in their development process. This chapter will go into the problem
and the methods used to solve it. It will also give a description of the aiT Worst-Case
Execution Time Analyser tool and the dynamic methods used.

3.1 The Problem
As mentioned above the purpose of this thesis is to find out if CC systems (CCS) could
benefit from using dynamic or static WCET analysis in their development process. The
purpose of this thesis was to use static WCET analysis methods to test how easy to use and
how precise answers they give. Another thesis performed by Yina Zhang [2], also at CCS,
looked into the use of dynamic WCET measurements. These methods were then compared to
see which one that were best suited to be used by CCS in their development process. CCS
also wants to know if the could write their code in a certain way to make it easier to use these
methods. They are also interested in a way of making their current simulation technique more
time accurate.

To evaluate static and dynamic WCET analysis CCS provided time-critical code to do tests
on. The code that was chosen was interrupts from the ESAB welding system. These interrupts
were chosen because they were time-critical and of a suitable size for this kind of evaluation.
Some component-based code was also tested to be able to see if this kind of code would be
different from testing ordinary code.

3.2 Methods
There are only a few commercial WCET tools available today (see Section 2.4.1). This is a
reason why static WCET analysis isn’t more widely used in the industry. The reason for
choosing the aiT Worst-Case Execution Time Analyser (aiT) for this thesis is that it supports
processors used by many of the projects at CC Systems (CCS), including the infineon
C167CS-LM processor used in the nodes in the ESAB welding system. Another reason for
choosing aiT is that the company behind aiT, AbsInt, work within the ASTEC [3] project
together with Mälardalen University.

The same codes, which was analysed using aiT, was also analysed using dynamic methods as
a MSc thesis work made by Yina Zhang [2]. This made it possible to compare different
WCET methods both concerning accuracy and the work effort required to obtain WCET
values.

3.2.1 aiT Worst-Case Execution Time Analyser
The aiT Worst-Case Execution Time Analyser (aiT) was initially developed by Saarland
University and AbsInt. The research related to WCET analysis at Saarland University started
in 1995. AbsInt Angewandte Informatik GmbH was founded in February 1998. It is a spin-off
from the Department of Compiler Construction and Programming Languages at Saarland
University, Germany. AiT is pronounced I T. AiT supports the processors ARM7,
HCS12/STAR12, PowerPC MPC555, PowerPC MPC565, PowerPC MPC755, ColdFire
MCF5307, Texas Instruments TMS320C33, Infineon C166 (only C167CS-LM) and Infineon
ST10 (only ST10F269 and ST10F276). AiT has also been awarded a 2004 European

 23

Information Society Technology (IST) Prize. Some of the companies that have used aiT are:
Airbus, Bosch, DaimlerChrysler and Ford.

AiT uses object code to produce WCET estimates, but AiT doesn’t only produce WCET-
values. It also has a good graphical interface, which can be used to see the structure of the
code from the call-graph (see figure 3.1) from functions down to single instructions. The
program that displays the graphs is named aiSee (pronounced I See). The graph can be
produced with and without execution times and the graph is a basic call-tree when it is
opened. Each function can then be opened to reveal the basic blocks6 of the function. The
basic blocks can in turn be opened so that the individual instructions can be viewed; this
enables the user to get both a good overview and also to get down on a very detailed level. If
the user requires, each basic block can be viewed in a such way that all the pipelines stages
the instructions go through are visible. In the call-graph the loops are also displayed as
functions. Instead of seeing a loop as a bit of code running several times in a function it is
represented as a function that calls itself recursively (see figures 3.4 and 3.5).

Figure 3.1: Call-graph with WCET displayed

A nice feature of aiT is that source code can be added to the graph, so the user can see which
basic block represent which line of source code. Figures 3.2 and 3.3 shows basic blocks
without and with showing source code. Displaying the source code in the graph makes the job
of interpreting the graph much easier. Some source code lines become several basic blocks
when compiled and then only the first basic block is labelled with the source code line and the
others are marked empty, this is done so that the user isn’t confused by the same source code
appearing several times.

6 A basic block is a group of sequential instructions where all instructions are executed if the first one of them is
executed.

 24

 Figure 3.2: Basic block labelled Figure 3.3: Basic blocks labelled with
 with addresses source code

To separate the different types of basic blocks the basic blocks are coloured. The first basic
block of each function is called the entry block and is coloured green. The last block in the
function is labelled end and is called the exit block and is also green. All ordinary blocks in
the graph are blue. Loop calls are represented by a block that is a sort of greenish blue and
labelled with the name of the loop. All these types of nodes can be viewed in Figure 3.4.
Edges also have different colours so that they can be distinguished. The most important edges
for the user are the true and false edges, true edges are green and false edges are dark red. The
colours of these edges is the only way of knowing if jump-instructions are performed on not.
The colours of the edges represent the condition in the object code. As illustrated in Figure
3.3 this is often the opposite of the condition in the source-code. If the graph displays WCET,
the WCET path marked by red edges as illustrated in Figure 3.1. The user can customize the
colour scheme if the default colours aren’t satisfactory. The WCET graph also displays the
WCET contributions of functions together with the execution time of each basic block. All
these features makes the graphical interface very useful, not only to show the WCET, but
also to help the user understand the structure of the code, and to visualize the timing
contributions of different code parts. More details on how aiT is used to analyse the WCET of
different programs are given in Section 4.1.

 25

Figure 3.4: Basic blocks with Figure 3.5: Loop function

 instructions visible with instructions visible

3.2.2 Dynamic Methods
As mentioned earlier, another master thesis was also performed at CC Systems (CCS) by
Yina Zhang [2] with the goal of finding and testing different methods of dynamic WCET
analysis. This made it possbiel to compare her results and the results in this thesis in order to
find which method or methods that are best suited to be used by CC Systems. This section
will details on the methods she looked into and the methods selected for the comparison.

The easiest way of doing dynamic WCET analysis is by using the internal clock in the CPU
by calling time-functions in the operating system (OS). Unfortunately the ESAB welding
system doesn’t have an OS so therefore these methods could be excluded right away. There
was also a possibility to use a CPU emulator to be able to a get time-stamped trace of the
execution. The emulators Yina found that supported the C167CS-LM processor were however
too expensive for CCS to invest in. Some other methods were examined, but were classified
as too advanced for this purpose. The two methods finally selected were using an oscilloscope
and a logic analyser. These are two of the most commonly used methods to acquire the
WCET of a program.

The oscilloscope is very limited since it can only measure one or maybe two things
simultaneously. This makes it hard to do any advanced measurements with several measuring
points or to measure an entire bus. Basically the only way of measuring execution time with
an oscilloscope is to set a bit high in the code where the measurement should start and then set
the bit low when the measurement should end. The execution time is the period during which
the pin is high and that time can easily be read on the display of the oscilloscope. This method
makes it very hard to see which path the execution has followed.

 26

When a logic analyser is used the possibilities are much greater. It is often possible to
measure more then a hundred different points on the circuit board simultaneously. This makes
it possible to monitor an entire bus, for example the address bus. It is also possible to measure
several measuring points in the code simultaneously, allowing the user to keep track of
several things at once. This the user to get information not only about the total execution time,
but also execution times of smaller blocks inside the code. This can be useful if you want to
find places in the code that take long time to execute and maybe optimise that code so that it
runs faster.

The methods finally chosen by Yina were to use an oscilloscope and a logic analyser. The
oscilloscope was used to measure execution time by setting a bit high in code where the
measurement was started and setting the bit low in the code where the measurement was
ended and then measure the time in between. When the logic analyser was used to measure
execution time it was connected to the address-bus and then traces of the execution could be
extracted and analysed. This made it possible not only to get execution times but also to see
which path that was executed. Information on how the actual measurements were performed
can be found in Section 4.2.

 27

4 Solution
The solution that was selected for this thesis to calculate the WCET was the aiT Worst-Case
Execution Time Analyser (aiT) from AbsInt. How to use aiT to calculate the WCET is
described in Section 4.1 below. The methods chosen by Yina Zhang in [2] to dynamically
measure WCET were using an oscilloscope and a logic analyzer, described in Sections 4.2.2
and 4.2.3 respectively. Section 4.2.1 gives some brief information on how to set up the target
system was set up for the dynamic measurements.

4.1 Analysing Executables with aiT
The aiT tool is used for calculating WCET for a piece of code, but in order to do so it requires
input from the user. Different inputs are required, basically because of the differences in the
hardware supported by the different aiT versions. The version of aiT used in this thesis
supports microcontrollers with an Infineon C166 or a ST Microelectronics ST10 processor
core. The hardware specific input needed for this version of aiT is for example which
processor core is used, which X-Bus features are enabled/disabled and the memory
configuration.

The user could also give software inputs, basically annotations used to control, restrict or
direct the flow of the program. These annotations are described in Section 4.1.1. The
executable also has to be added to aiT in the correct format. The executable formats supported
by this version of aiT are the IEEE-695, the ELF, the COFF and the XCOFF file formats. The
format that was used in this thesis was the IEEE-695 format, since it was the only supported
formats that could be produced by TASKING. It is also important to use the same version of
TASKING that was used during the development of the code; otherwise it is often impossible
to compile the program. Another important thing was to set the correct addresses for the
Context Pointer, System Stack Pointer, User Stack Pointer and the Data Page Pointers. They
can have a big impact on the WCET value. The data page pointers are used by the Infineon
processor to access memory. The memory is divided into different pages and depending on
the amount of memory used these pointers can have fixed or changing values.

The first thing to do when calculating WCET for a code snippet is to learn the code so that
annotations for loop bounds, recursion depth, infeasible paths etc can be correctly given. One
way of learning how the code is meant to work is to create a combined call-graph and control-
flow graph in aiT using the “Compute CFG” feature. This can give a better overview of the
code compared to examining it in the compiler. To start the actual WCET calculations in aiT
all the hardware-inputs have to be correctly set. When TASKING is used most of the
necessary hardware-settings can be found under the EDE-menu in TASKING. The values of
the different pointers should also be set. It is not necessary to set them manually and
sometimes aiT finds their values itself. However, if aiT can’t find them it can result in
overestimations of the WCET if they aren’t set manually. The values of these pointers can
often be found in the map-file created when the program is compiled and linked together.

The next step is to create the ais-file that contains all the annotations. There are a couple of
annotations most frequently used when calculating the WCET. These are annotations for the
clock frequency, the compiler used and the annotation for the context specification. None of
them are really necessary but very useful. When these annotations have been added to the ais-
file it is basically a matter of trial-and-error to find out which annotations that have to be used.

 28

The user can try to specify all the annotations needed from the beginning but since aiT can
find many of these itself it is better to let it do so. When it is time to let aiT try to calculate the
WCET there are two possibilities to do so, one is to select “Analyze” and one is to select
“Visualize”. The Analyze choice calculates the WCET and creates a combined call-graph and
control-flow graph. The WCET for the entire code snippet is displayed in a separate box as
can be seen in Figure 3.1. The WCET contribution of the functions can also be seen as well as
the execution time for basic blocks with different contexts. The Visualize choice does the
same as the Analyse option but it also provides access to the pipeline states of the basic
blocks.

If aiT can’t find for example a loop bound it will fail to calculate WCET and display the
message “This problem is unbounded” and then the user has to give an annotation for that
loop. If the user has given contradicting annotations aiT will display the message “This
problem is infeasible” and the user has to remove the contradicting annotation. When aiT has
managed to calculate a WCET value it is important to check that the execution path is correct
and doesn’t include infeasible paths or other things that can’t happen when the software is
running on the target. If the path leading to the WCET isn’t possible, more annotations to
restrict the flow of the program have to be added. When the execution path that yields the
WCET is correct there are two choices, either accept the WCET value obtained or use extra
annotations, for example memory-accesses, to get a more tight WCET value. It is a good idea
to save the graphs and the ais-files so that the calculations can be saved for future use. This
make it possible to reuse most of the annotations if the code is changed and a new WCET
value needs to be calculated.

4.1.1 User annotations
There are many user annotations in aiT. All of the annotations are used to make the
calculation of WCET possible and to give WCET that are values as tight as possible. Some
annotations can be given directly in the source-code, but the most common way of giving
annotations is by writing them in ais-file. The annotations in the ais-file are written after each
other and ended by a semicolon. The following list contains some of the annotations that can
be specified in the ais-file. All of the annotations used in the thesis are described below.

Clock rate: This annotation allows aiT to convert the WCET value from clock-cycles to units
of time. This annotation is optional but it saves the user from having to calculate the WCET
from clock-cycles to real time. The following example sets the clock rate to 20 MHz.

clock exactly 20 MHz;

Compiler: This annotation is used to specify which compiler is used. Knowing which
compiler is used makes the job of the executable reader easier. This annotation should always
be present. The following example selects TASKING as the compiler.

compiler "c166-tasking";

Context specification: This is one of the most important annotations. It is used to limit the
number and depth of the calling contexts7 used. This is done since the number of contexts can

7 Calling contexts are the calling history of functions i.e. the calls from the start of the analysis to the point when
the function was called.

 29

otherwise be almost infinite and this will make the WCET calculation to take very long time.
First there are two kinds of context calculation, called limited and flexible. Flexible enables
loop bounds to be automatically detected while limited only accepts loop bounds given by the
user. Since automatic loop bound analysis is often desired only the flexible version will be
explained here. There are three attributes to the interproc flexible annotation and
two of them are optional. The only attribute that has to be given is the max-length one. It
restricts the maximum length of the call string i.e. how many calls backwards that are saved.
The optional attributes are default-unroll and max-unroll. Default-unroll is used to limit the
automatic loop bound analysis. If the a loop bound cannot be found by aiT this attribute will
make it stop trying when is has reached the value set by default-unroll. The higher this value
is the longer time the analysis may take but the higher loop bounds may be found
automatically. Max-unroll is a way of limiting the calculation of execution time of loop
iterations dependent on contexts. The value set by max-unroll is the number of different
execution times that will be calculated for the iterations of a loop. This is to reduce the
required analysis time. If this value is low the WCET estimation will be less tight than if the
value is high, but this is mostly true if caches are used and this in not the case for the
processor used in this thesis. Default-unroll and max-unroll doesn’t affect the number of
iterations of the loop, they only affect the number of loop contexts. All these attributes limit
individual loops. The following example of a interproc flexible annotation will
make aiT allow call strings that are 3 calls deep (max-length), automatically find loop bounds
not bigger than 5 (default-unroll) and to calculate up to 4 different execution times for loop
iterations (max-unroll).

interproc flexible, max-length = 3, max-unroll = 4, default-
unroll = 5;

Stop decoding: AiT normally ends the WCET analysis when the function containing the
entry point is left. If for some reason the user wants to end the analysis somewhere else, this
annotation can be used. The following example ends the analysis at page 2 (hex) and CPU
address 5a3e (hex).

end 0x2:0x5a3e;

Targets of computed calls and branches: There are annotations to tell aiT the target of
unresolved branches and calls. They can be useful when inheritance is used and aiT doesn’t
know which method to call. The example below tells aiT that the call at address 0x2:0x5a3e
calls address 0x0:0x14c1.

instruction 0x2:0x5a3e calls 0x0:0x14c1;

Properties of calls and functions: Some calls and functions immediately return or never
return. This can be expressed by the user using annotations. If it is a call that never return the
annotation instruction 0x2:0x5a3e never returns; can be used and if it is a
function that immediately return the annotation snippet 0x0:0x14c1 immediately
return; can be used. The following examples are a function that doesn’t return and a call
that immediately return. Snippet is used to reference a bigger part of the code such as a
function or a basic block.

snippet 0x0:0x14c1 never returns;
instruction 0x2:0x5a3e immediately return;

 30

Memory accesses: In order to get tighter WCET values memory accesses that aiT can’t find
the correct address for can be specified by the user. Some processors have instructions that
can do several memory accesses, in this case the user can specify in which step which address
is used by adding for example “in step 2” after the annotation. Exact memory addresses aren’t
necessary since it is possible to give an interval or even an array as the target of a memory
access. The following examples are one instruction that accesses memory 0x0:0x14c1 and
another instruction that access memory in a range in step 2.

instruction 0x3:0x4a72 accesses 0x0:0x14c1;
instruction 0x3:0x781d accesses 0x0:0x1400 .. 0x0:0x1500 in
step 2;

Known register values: If register values are known when an instruction is executed this can
be expressed for aiT in a way similar to the memory accesses annotations. This can be helpful
when for example an enumeration is used to declare a state; then this annotation can be used
to tell which state is active before a switch-statement depending on the state is executed. The
example below is an instruction that has the value of r4 equal to 45 and the value of r7
between 12 and 99 when it starts its execution.

instruction 0x3:0x4a72 is entered with r4 = 45, r7 = 12 .. 99;

Not-analysed and external function: If a function isn’t available in the executable its
execution time can be given by the user. The user can also give execution time for functions
that he knows the execution time for. The execution time can be specified in either cycles or
time units. The following examples are an external function and an internal function that a
user has specified the execution time for.

snippet “function1” is external and takes 455 ns;
snippet “function2” is not analysed and takes 2333 cycles;

Infeasible code: If there is code that never will be executed this annotation can be used. It can
be very useful if the system has a special function for error handling and errors aren’t
supposed to be included in the analysis. Infeasibility is propagated through the control-flow
graph; if a block is only reachable from an infeasible block that block is infeasible too. The
following example will avoid errors being included in the analysis (if the function that
handles errors is called errorhandler).

snippet “errorhandler” is never executed;

Values of conditions: This annotation tells aiT that a condition is always true or always false.
The example is a condition that is always true.

condition 0x3:0x4a72 is always true;

Recursion depth: This annotation restricts recursion. The restriction bound can be a max
and/or a min or an exactly value. The example is a function has a recursion depth of max 2.

recursion “Function2” max 2;

Loop bounds: There are ways of giving both global and local loop bounds but only the
annotation for local ones will be mentioned in detail here. Global loop bounds are used to set

 31

bounds on several loops at the same time (this can be rather risky) and local loop bounds are
set for individual loops. The bound is a value telling aiT how many times the loop body is
executed and a qualifier telling aiT if the loop test is at the beginning or end of the loop. Both
the value and the qualifier refers to the executable and not to the source-code. The bound can
be a max and/or a min or an exactly value. The example below is a loop that iterates between
3 and 6 times and the loop test is in the beginning.

Alt1: loop 0x3:0x4a72 min 3 max 6 begin;
Alt2: loop 0x3:0x4a72 begin min 3 max 6;

Relative execution counts: This annotation (flow) is useful to express known relations
between the execution count of different basic blocks. It can be useful when setting loop
bounds for loops with several entry points since they can’t be bounded by the ordinary loop
bound annotation. This annotation can however be used for other things as well. It can for
example be used to tell aiT how many times a certain instruction or block is executed in total
by giving a relation between it and the entry point of the analysis. The actual relation can be a
max and/or a min or an exactly value. If the relation between execution counts applies to all
contexts cumulatively the qualifier sum should be used and if it applies to each context
individually the qualifier to use is each. If the relation is between two program points not in
the same function the qualifier sum must be used. The example below tells aiT that instruction
0x3:0x4a72 runs twice as much as instruction 0x0:0x14c1 in every context.

Flow each 0x3:0x4a72 / 0x0:0x14c1 is exactly 2;

4.1.2 Relative addressing
Instead of using absolute addressing, a paged address containing a page number and a CPU
address, relative addressing can also be used. Relative addressing can address instruction
relative to the start point of a function. The relative address is given in the form “Target + n
Things” or “Target - n Things”. Target can be for example a paged address or a function and
Thing can refer to for example instructions, calls, branches, returns and bytes. So “function1”
+ 3 instructions refers to the third instruction in function1, therefore “function1” + 1
instructions is the same as just “function1”. Several things can also be added or subtracted,
for example “function1” + 3 calls – 2 instructions is the instruction before the third call in
function function1. It is best to use relative addressing since it requires less amount of
annotation work if the code is changed. The relative address should still be valid if the
executable becomes different but the absolute address is probably invalid.

4.2 Using Dynamic Methods to Measure WCET
This section gives a brief overview on how to measure execution time with an oscilloscope
and a logic analyser. For more detailed information see [2].

4.2.1 Setting up the Target System for Dynamic Measurements
To be able to do dynamic measurements the target system must first be set up correctly.
Connecting things like power supplies and communication cables is something that has to be
done. To be able to get as close to the real thing as possible as much as possible of peripheral
devices, such as for example sensors and actuators have to be connected. It is very important
to make sure that system behaves like it would in its real environment or at least as close to it
as possible. The last thing to do before measuring is to download the actual software that is
going to be measured on the target system. It can also be a good idea to add monitoring on

 32

things that can be of interest. For example a CAN-listener to monitor CAN-messages or
multimeter to measure voltage or current can be useful. When all this is done it is a matter of
connecting the actual measuring equipment and start the measurements. How to do this is
explained in Sections 4.2.2 and 4.2.3.

4.2.2 Measuring Execution Time with an Oscilloscope
The oscilloscope used in this study was a Hameg Digital Storage Scope HM205-2. The
method chosen for measuring with the oscilloscope was to set a pin on the processor high in
the code where the measurement was going to start and then set the same bit low where the
measurement should end and then measure the time in between. The problem was that it was
impossible to measure on the processor since the pins were to small and it was a big risk of
short-circuiting them. There are however 3 Light Emitting Diodes (LEDs) on the circuit board
used for showing error messages etc. Each one of these could shine green and/or red or not at
all. This means that there were 6 places to measure on since these LEDs weren’t used in the
code that was going to be measured. Start and stop-points are then inserted in the code as
functions writing to the correct pin. The program then has to be recompiled and linked and
then downloaded to the memory on the circuit board. It is then just a matter of running the
code that is going to be measured. This can be a problem if the code to be measured is an
interrupt and it is triggered by an external event. Then that event has to be triggered in some
way for example by sending a CAN-message or by setting a bit high. The LEDs can also be
used to indicate which path that was executed. A signal can be sent to make the LED shine
green if an if-statement is true and red if it isn’t. In this way one if-statement per LED can be
tested for each compilation. It can be a bit problematic if the program is large to find all path-
selections made.

The drawback of this method of measuring execution time is that it introduces a probe-effect.
Probe-effect means that by inserting code for measurements the system itself is affected and
in complex system this can give very strange effects like timing errors or other things that
affect the system. The code inserted for actual measuring isn’t very big and shouldn’t affect
the system much but if the user want to affect the execution path by changing values of
variables or something similar this can have bigger consequences.

4.2.3 Measuring Execution Time on with a Logic Analyzer
The logic analyser used in this study is called Hewlett Packard 1670D. There are many ways
of measuring execution times with a logic analyser. However for this study the logic analyser
was connected to the address-bus. First the problem was to connect the logic analyser to the
address bus on the circuit board. It wasn’t possible to connect the logic analyser directly to the
address-bus on the microcontroller since the distance between its pins was too small. There
are adapters available to connect the logic analyzer directly to the microcontroller but these
are rather expensive and hard to connect. It is also possible to custom make a circuit-board
were all pins from the address-bus are connected to some kind of port that the logic analyzer
can be connected to. It this case the easiest way of connecting the logic analyzer to the
address-bus was by using the Flash-memory on the circuit board. There are adapters for this
too but it is possible to use the clips that come with the logic analyzer and connect them
individually to the pins of the memory corresponding to the address-bus. To find out which
pins correspond to the address-bus on the Flash-memory chip the connecting diagram of the
chip had to be examined. In this case the memory chip was an AM29F800BB chip with the
connecting diagram illustrated in Figure 4.1. One thing to consider when listening to the

 33

address-bus of the chip is that it can address either bytes or words. If the pin labelled BYTE#
in Figure 4.1 is set at logic ‘1’ the device is in word-configuration. In this case the word-
configuration was used. This means that A0 on the Flash-chip is connected to A1 from the
microcontroller since the lowest bit is of no interest when addressing words. When the logic
analyzer is properly connected to the address-pins on the memory-chip the settings of the
logic analyzer have to be set. The pins that are going to be monitored have to be set together
with the trigger address to start the trace recording. The trigger address can be the start of the
function that is going to be measured or the address in the interrupt-vector where the address
to the actual interrupt-routine is. To be able to measure the execution time the address of the
return-instruction can be searched by the logic analyzer. The actual trace can be downloaded
on a floppy and then examined on a computer so that the execution path of the trace can be
revealed. The addresses of the trace have to be translated in some way to the instruction of the
object-code and this can be done with a control-flow graph of the program or by using a
debugger. The control-flow graph gives a better overview of the program than the debugger.

Figure 4.1: The connecting diagram of the AM29F800BB chip

The advantages of this method compared to using the oscilloscope is that no code has to be
inserted to be able to measure execution time. The actual execution path can also be found
and that gives a much clearer image of what has actually been measured and can reveal things
like interrupts that preempts execution of the measured code. This wouldn’t be detected by
the oscilloscope and can therefore make the longest measured execution time actually not
valid at all. If the user has to force a ceratin path by inserting new he might also introduce a
probe-effect. However, knowing the execution path alows the user to only force the execution
where he knows that it takes the “wrong” way.

 34

5 Code characteristics
This chapter will give a short description of the structure of the analysed code snippets and
also give some characteristics of the code.

5.1 The WDS node
WDS stands for Weld Data unit Small. The WDS node is a MMC node and it is the master
node in the system. It holds information about the entire system and it is also responsible for
all interaction with the user through the display and buttons. For more information about the
WDS node see Section 2.7.

The following code characteristics have been found for the WDS node:
• 126 C++ source-code files. Between 30 and 2400 line of code per file including comments.

There is a file with 13000 lines but it contains only icons written as char-arrays.
• 133 header-files with between 20 and 600 lines each.
• About 1100 functions
• The code itself doesn’t contain assembler routines but there are some library routines

written in assembler, for example floating-point additions and type casts.
• Switch-statements are commonly used since many parts of the node can be considered as

state-machines and the switch-statements are there to make sure that the correct state is
run.

• Recursion doesn’t seem to occur or are used scarcely.
• There are 119 for-loops in the node. 10 of them are nested and 2 levels deep. 15 loop tests

are dependent on functions calls (many of the functions only return a register value).
There are no for-loops tests dependent on pointers or triangular for-loops. At least 3 for-
loops contain a switch-statement.

• 119 while-loops. No nested while-loops. 10 loop tests are dependent on functions calls. 7
pointer dependent loop tests. 57 of the while-loops were non-terminating loops designed
to halt the execution of the system if a serious error occurs. The system would then be
rebooted when a watchdog timer expires.

5.1.1 The CAN-interrupt
The basic call structure of the CAN-interrupt on the WDS-node can be seen in Figure 5.1.
There are 3 different types of messages that can be received. They are: STATUS, MESSAGE
and MESSAGE15. MESSAGE is an ordinary CAN-message, STATUS is message from the
actual CAN-controller informing of an error and MESSAGE15 is used for service messages
from the ESAT node (see Section 2.7 for information about the ESAT node). The function
ReadInterruptIdentifier() tells GetMessageFromCanController() which
type of message that has been received and then GetMessageFromCanController()
either checks which error that has occurred if it is of STATUS type or receives the message if
it is of MESSAGE or MESSAGE15 type. There are switch-statements in the functions
GetMessageFromCanController() and PutMsgOnBuffer() that depend on which
message that have been received. The function Interrupt() is also dependent on if the
message is an ordinary CAN-message (MESSAGE or MESSAGE15) or not. The reason that
there are two sets of functions named CheckWarning() and CheckBusOff() is that the
set marked (C) contains methods in the ECan-class while the two marked (CM) are methods
in the ECanMessage-class. The functions in the ECan-class read from the CAN-controller to

 35

see if the bus is off or if there is a warning, while the functions in the ECanMessage-class just
returns values of booleans. The Instance() functions are responsible for making sure that
there exists just a single instance of a class and it also returns a handle to that instance. If an
instance of the class doesn’t exist it has to be created and this means a big call-tree with a lot
of calls to library routines like malloc etc. that are very hard to analyse. The function
AddAndLogError() is responsible for logging errors and acting upon them, it also has a
large call-tree that isn’t shown in the picture. The interrupt is designed to be able to receive up
to 6 messages at the same time. This is implemented by a for-loop in the function
Interrupt() calling the function PutMesssageOnBuffer() up to 6 times. The
reason why several CAN-messages can be received during one interrupt is messages will not
cause a new interrupt and therefore otherwise be lost. The loop is a for-loop that iterates 6
times but it also contains a return that is executed if an empty message or a STATUS message
is received.

Figure 5.1: The call-tree of the CAN-interrupt on the WDS-node

The following code characteristics have been found for the CAN-interrupt on the WDS node8:
• 129 functions of which 42 are non-library functions. The call-depth9 is 22.
• 65 loops of which 10 are in non-library functions. Most loops are very simple. No loop-tests

are dependent on pointers or functions results. No nested loops. Two of the loops are often
terminated by a break-instruction in the loop, which makes the loops a bit harder to
analyse.

• No dynamic branches.
• No recursion.

5.2 The PSA node
This node is responsible for adjusting the power when welding. For more information about
the PSA node see Section 2.7.

The following code characteristics have been found for the PSA node:

8 Instantiation of static variables isn’t included since it contain only library-code that isn’t analysed.
9 Call-depth means how many levels of functions are called i.e. how long the calling context is.

 36

• 41 C++ source-code files. Between 40 and 2400 line of code per file including comments.
Most of the files have less than 400 lines of code.

• 40 header-files up to 400 lines each. Most of them have less then 100 lines.
• There are about 500 functions.
• The code itself doesn’t contain assembler routines but there are some library routines

written in assembler that are used for example for floating-point additions and type casts.
• Switch-statements are commonly used, since many parts of the node can be considered as

state-machines, and the switch-statements are there to make sure that the correct state is
run.

• Recursion doesn’t seem to occur very often. There is recursion in the library function fflush
and the recursion depth in that function is up to 5. The recursion depth was found by
studying the code.

• There are 64 for-loops in the node. Many for-loops are identical and placed in several cases
in the same switch-statement. 3 of them are nested and 2 levels deep. Basically all loop
tests were simple integer comparisons.

• 58 while-loops. No nested while-loops. Basically all loop tests were simple integer
comparisons but some loop tests are however dependent on pointers. About half of the
while-loops were designed to wait for something to be ready (while(busy)).

5.2.1 The CAN-interrupt
The basic call structure of the CAN-interrupt on the PSA-node can be seen in figure 5.2. The
structure is a bit different from the one on the WDS-node but the basically the same functions
are used. The same three types of CAN-messages as in WDS-node are used (see Section
5.1.1). The only difference is that MESSAGE15 on the PSA-node is used for boot messages
when in simulation mode. The function Interrupt() contains a loop in the same way as
on the WDS-node but it is very different in structure since it is responsible for calling most of
the other functions involved in reading CAN-messsages from the CAN-controller. The loop
receiving CAN-messages is terminated when there are no more messages to receive (a empty
message is received) or the loop limit is reached (6 iterations). The function
ReadInterruptIdentifier() is called first in every iteration and returns the type of
the message. A switch-statement is then used to receive the message if it is a MESSAGE or
MESSAGE15 and to check which error it is if it is a STATUS-message. The Instance()
function has the same function as on the WDS node but here a static variable is used instead
of a dynamically allocated variable. The code to create the variable is however as hard to
analyse as on the WDS node.

Figure 5.2: The call-tree of the CAN-interrupt on the PSA-node

 37

The following code characteristics have been found for the CAN-interrupt on the PSA node10:
• 14 functions of which all are non-library functions. The call-depth is 5.
• 1 loop. It is a simple for-loop that iterates 6 times (for(i=0;i<6;i++)) but is also has a return

statement inside the loop making it terminate when there are no more messages to receive.
• No dynamic branches.
• No recursion.

5.2.2 The Regulator-interrupt
The regulator-interrupt is a periodic interrupt responsible for adjusting the power to the
welding process and it also starts and stops the welding-process depending on the inputs it
gets. The actual structure of the interrupt depends on the welding-method currently used.
Each welding method has it own Regulator() function, the regulator-function that is
associated with the current welding-method is then called by the Regulator-interrupt. This is
done by inheritance since all welding-method classes inherit from the class EMethod. All the
different regulator-interrupts are constructed as state machines with different states depending
on if the system is actually welding or not, if the system is overheated or if it is idle etc. The
states that is used for the Mma-welding method are IDLE, START1, START2, WELDING,
STOP and OVERTEMP. The welding method Tig has over 20 states. The basic structure of
the regulator-interrupt when the Mma and Tig welding methods are used can be seen in
Figures 5.3 and 5.4 respectively11. If Mma is used then the current- and voltage-values are
first read and then a function for determining the state is executed. The current state and the
values of current and voltage are considered when determining the new state. If the state is
changed messages can be sent to inform the WDS node that the welding current will be turned
on or off. When this is done the actual welding process is regulated in another function called
CalculateCurrent(). This function uses the current state and the values of current and
voltage read to do adjustments to the welding process by changing the current. The structure
when Tig is used is a bit different. First a function called PulseTimer() is called. It is
responsible for adjusting pulse welding if that is activated. Then the function State() is
called and the first thing it does is to read the current- and voltage-values. It then both
regulates the welding-process and changes state if necessary. Since Tig welding involves gas
the gas-valve is also regulated in the State() function. Messages are sent to the WDS node
to inform about changes including opening and closing the gas valve.

10 Instantiation of static variables isn’t included since it contains only library-code that isn’t analysed.
11 The dots in the figure represent other functions being called that aren’t depicted since the graph would be too
big.

 38

Figure 5.3: The call-tree of the Regulator-interrupt with Mma

Figure 5.4: The call-tree of the Regulator-interrupt with Tig

The following code characteristics have been found for the Regulator-interrupt if Mma is used
as the welding method:
• 30 functions of which 21 are non-library functions. The call-depth is 11.
• 7 loops of which 2 are in non-library functions. One of the non-library loops is very simple;

it is just a for-loop copying data that iterates 8 times. The other loop is a bit trickier. It is a
while-loop that iterates as long as the function BusyAdInj() is true but it also has an
upper loop bound of 100000 times.

• No dynamic branches.
• No recursion.

 39

5.3 Component-based Code
5.3.1 The ACC code
ACC stands for Adaptive Cruise Control and is a part of a project to build components in C-
code and then automatically combine them into different tasks. The reason for testing this
code with static WCET analysis is to see if there are any specific problems with testing just
component-based software and also to see how much overhead there is in the tasks. Since the
ACC code was just a way of testing if the conversion from components to tasks worked the
code is very simple. The code has never been used as a real ACC but it has been downloaded
to a target system for tests. In order to get some load on the system they have added some
loops in some of the components that doesn’t actually do any work. The tasks are formed by a
number of components put together. Only components that have the same period or for other
reason can execute after each other can be put together to form a task. The components are
put together in tasks as illustrated in Figure 5.5.

This is the design of the system:
SpeedLimit: responsible for adapting the speed to current speed limit if there is one and also
triggers ObjectRecognition.

ObjectRecognition: responsible for detecting if it is a obstacle in front of the vehicle and adapt
the speed or even brake according to the relative speed to the obstacle. It also triggers Mode
Switch and informs Mode Switch if BrakeFunc is needed or not.

Mode Switch: is used to trigger the execution of the ACC Controller assembly and the Brake
Assist component, based on the current system mode (ACC Enabled, Brake Pedal Used) and
information from Object Recognition.

BrakeFunc: responsible for braking the vehicle hard if an obstacle may cause a collision.

LoggerOutput: responsible for all logging and display the ACC status for the driver.

ACC Controller: this assembly is responsible for calculating the throttle level. It consists of
the two assemblies Distance Controller and Speed Controller.

Distance Controller: this assembly is responsible for adjusting the throttle level according to
the distance to any obstacle in front of the vehicle. It consists of the two components
CalcDistOutput and UpdateDistState.

Speed Controller: this assembly is responsible for adjusting the throttle level according to the
speed limit. It consists of the two components CalcSpeedOutput and UpdateSpeedState.

CalcDistOutput: is responsible for adjusting the throttle level according to the distance to any
obstacle in front of the vehicle.

UpdateDistState: responsible for updating the distance state.

CalcSpeedOutput: responsible for setting the speed to the selected speed or the maximum
speed allowed if the selected speed is higher than the maximum speed allowed.

UpdateSpeedState: responsible for updating the speed state.

The ACC code is very simple in its structure so it hasn’t been investigated for different kinds
of characteristics.

 40

<<Assembly>>
ACC Controllers

<<Assembly>>
Distance

Controller

<<Assembly>>
Speed

Controller

Distance

Control

Relative
Speed

Max
Speed

<<Assembly>>
Distance

Controller

<<SaveComp>>
Calc Output

<<SaveComp>>
Update State

<<Assembly>>
Speed

Controller

<<SaveComp>>
Calc Output

<<SaveComp>>
Update State

Distance
Relative
Speed

Max
Speed

Current
Speed

Current
Speed

Control

Road Signs Enabled

Current Speed

Road Sign Speed
ACC Max Speed

Distance

ACC Enabled

Brake Pedal Used

<<Assembly>>50 Hz

10 Hz

Brake Signal

Throttle

Brake Assist

<<SaveComp>>

Logger
HMI Outputs

<<SaveComp>>

Object
Recognition

<<SaveComp>>

Mode Switch

<<Switch>>

ACC
Controller

<<Assembly>>

Brake Assist

ACC

Max Speed

ACC Application
Speed Limit

<<SaveComp>>

Figure 5.5: The ACC application implementation

 41

6 Static analysis with aiT
This chapter is about the actual analysis performed using aiT. It will describe for each code
snippet which problems that came up and how they were solved.

All the analyses below contains three basic annotations. One is to specify that the compiler
TASKING is used, one is to set the clock rate to 20 MHz and the last is to set the context
specifications. The three annotations are the ones written below. There can be some different
parameters to the interproc flexible annotations but nothing that would affect the
WCET value in a big way.

clock exactly 20 MHz;
compiler "c166-tasking";
interproc flexible, max-length = 3, max-unroll = 8, default-
unroll = 8;

The internal clock frequency of the microcontroller is 25 MHz but ESAB have put a crystal
on the circuit board changing the clock frequency to 20 MHz instead. It is very important to
have the correct clock frequency set because aiT recalculates the time from cycles to time by
simply dividing the cycles with the clock frequency and aiT has no way of knowing if the
clock rate is set correctly or not.

It is also important to tell aiT the addresses of the Context Pointer, System Stack Pointer, User
Stack Pointer and the Data Page Pointers since it can have a big influence on the WCET value
obtained. Several of these values can be found in the map-file that is created after the
compilation and linking of the program. It isn’t always important to know the exact address of
the pointer since aiT uses this information to see how long time it takes to access these
pointers and this is only affected by which memory the pointers are in and not the exact
adress.

More information about the different annotations used can be found in Section 4.1.1.

6.1 CAN-interrupt
The CAN-interrupt is responsible for taking CAN-messages from the CAN-controller and
placing them in an incoming buffer that can later be read by the main loop (see Section 2.7 for
information about the ESAB Welding System).

6.1.1 CAN-interrupt on WDS
The structure of this code together with its characteristics of it is described in Section 5.1.1.
This code was pretty hard to understand at first since it has an advanced structure. The
executable file is quite large so each analysis takes about 24 minutes (the conversion from
executable to flow information take most of this time); so it was very time consuming to find
the correct annotations. As described in Section 5.1.1 there are three types of CAN-messages
that can be received. They are MESSAGE, MESSAGE15 and STATUS. The WCET have been
calculated for the handling of all three types of messages. These three analyses will be
described separately below. All analyses have also been performed on compiled code with
different types of optimisations and the times can be seen in Table 6.1.

 42

MESSAGE
The most important message type is MESSAGE since it is by far the most common type
received. To be able to get a correct WCET value 4 loop bounds had to be set manually by
annotations. One of them was on a malloc-function that isn’t included in the final WCET path
and the others are simple for-loops with fixed iteration counts. All errors are handled by the
function _AddAndLogError__12ErrorHandlerFUcN21() and since errors shouldn’t
be included in the analysis the following annotation was used:

snippet "_AddAndLogError__12ErrorHandlerFUcN21" is never
executed;

This annotation means that all execution paths leading to the function
_AddAndLogError__12ErrorHandlerFUcN21() being called are excluded from the
analysis. This is a much better way than to manually for each error-check say that an error
hasn’t occurred. In the function Instance() in the class Communication an instance of the
class Communication is created if there isn’t already one created. The creation of the instance
is pretty advanced since the command new is used which means dynamic memory with calls
to malloc etc. Therefore it was assumed that the instance was already created and this was
done with the following annotation saying that a jmp-instruction should always be performed
that jumps over the code that creates the instance. The function Instance() is called from
several places in the code and the variable is only created the first time so therefore it is
acceptable to exclude this part from the analyses. Dynamic measurements also confirmed that
this code isn’t executed.

condition "_Instance__13CommunicationSFv" + 1 branch is always
true;

The hardest thing was to make aiT calculate how long it would take to receive just one
message. The CAN-interrupt can receive up to 6 messages on one interrupt but since it almost
every time only receives one message only that scenario was analysed. If no flow-annotations
was made it calculated the worst case which of course is receiving 6 messages but since that
probably never happens and since CC Systems was more interested in the normal case
(receiving one message) flow annotations that forced aiT to only receive one message was
made. Since the structure of the code was pretty advanced flow-annotations had to be made in
three different functions. Most of the flow-annotations used were to set a relative execution
count for a basic block compared to the first instruction in the interrupt, which means that for
each time the interrupt is executed the basic block will be executed for the stated amount of
times. The first two flow annotations had to be made in the Interrupt() function telling
aiT that the loop in Interrupt() would iterate 2 times, one time to receive an ordinary
message and the second receiving an empty message and therefore terminate the loop and the
entire interrupt. In the function PutMessageOnBuffer() three annotations had to be
made. Two of them were flow-annotations telling aiT to receive a CAN-message one time
and to receive an empty message the other time PutMessageOnBuffer() was called.
The third annotation was to force aiT not to think that the message received was a STATUS
message, as it would do without the annotation since it represented the WCET path in
PutMessageOnBuffer(). The third annotation simple said that the function
CheckBusOff() wasn’t called and since that call is just in the STATUS path that path was
excluded from the WCET path and the MESSAGE path was selected by aiT instead. The final

 43

function where flow-annotation had to be made was the function
GetMessageFromCanController(). In this function three flow-annotations had to be
used. The first flow-annotations were to make the function execute a basic block containing a
jmp-instruction both times the function was called. The two other flow-annotations was to
make the function select the path corresponding to receiving a MESSAGE one of the times the
function get executed and also make the function receive an empty message the second time it
is called. Since the basic annotations for compiler, clock frequency and context specification
were used the total number of annotations to get a WCET value for receiving a single CAN-
message of the type MESSAGE was 17. Different compiler optimisations were also analysed
to see how much extra work it would create to change optimisations. The same annotations
were used but the parameters in the annotations in form of addresses had to be changed. Since
the structure of the code didn’t change very much this was a relatively easy job. The times for
all the analysis of receiving a CAN-message of the type MESSAGE with different
optimisations can be seen in Table 6.1.

MESSAGE15
The message type MESSAGE15 on the WDS node is used for receiving service messages
from the ESAT node (see Section 2.7). The annotations used to get a WCET value on this
type of message are pretty much the same as analysing a message of type MESSAGE. There is
one address in one of the flow-annotations that is different. This annotation tells aiT to use the
path that calls the function ReadMessageObject15() instead of
ReadMessageObject(). The total number of annotations is therefore 17 just as in the
case with the message type MESSAGE. When different compiler optimisations were tested the
number of annotations didn’t change but the addresses in the annotations changed. The
optimisation ‘speed’ required most work since some loops and jumps changed quite a bit. The
optimisation ‘size’ didn’t require much job since the structure was pretty much the same of
with default optimisation. The times for all the analysis of receiving a CAN-message of the
type MESSAGE15 with different optimisations can be seen in Table 6.1.

STATUS
This message type is used by the CAN-controller itself to send messages telling the system
that something is wrong. There are two types of errors that can occur and they are warning
and bus off. Warning means that there has been trouble in sending a message and bus off
means that there have been so many warnings that there must be a more permanent fault on
the bus. First a STATUS message with warning and bus off both being false was analysed
despite the fact that this couldn’t happen. This was done because the code to handle the errors
was very complex to analyse. To simulate to aiT that a STATUS message was received lesser
annotations was demanded since the loop in the function Interrupt() is immediately
terminated when a STATUS message have been received. This means that the functions
PutMessageOnBuffer() and GetMessageFromCanController() are only called
once instead of twice when receiving MESSAGE and MESSAGE15 type messages. There are
only 4 flow-annotations here compared to 7 with the other two types. There were still flow-
annotations in all three functions Interrupt(), PutMessageOnBuffer() and
GetMessageFromCanController() but there was just one in each of the functions
PutMessageOnBuffer() and GetMessageFromCanController(). To get a
WCET value of the STATUS message when both warning and bus off is false required 13
annotations. To be able to get a correct WCET value the case with both bus off and warning
being true was also analysed. This was much trickier since it involved much more code and

 44

the code was also much more complex. The WCET path when warning and bus off were both
false involved 12 different functions while the execution path when both warning and bus off
were true involves 32 different functions. The reason for this amount of functions is that each
error on the WDS-node is logged and acted upon. 5 annotations were added to avoid
instantiation of different classes as described for the Communication class above. The biggest
trouble was however to set loop bounds on a loop that was called two times with different
loop bounds. AiT didn’t have a way of giving context dependent loop bounds at that point so
that was a big problem. After some consultation with AbsInt the problem was solved by
giving register-values were this function was called using annotations and then aiT could
calculate different loop bounds for the different executions of the function. This only works
with library routines where a pattern was implemented12 and since the function in question
was memcpy() this approach could be used. The user must however know which register
corresponds to which parameter and aiT also have to implement a pattern for just that
function to make it work. When the case with both warning and bus off was tested correctly
there were no problem testing when just one of them occurred. One extra annotation had to be
added so that aiT would exclude either warning or bus off from the analysis. The number of
annotations needed to analyse STATUS when both warning and bus off were true were 22.
When different optimisations were used some loops were changed when the optimisation
‘speed’ was used and all addresses that were given with absolute addresses had to be changed.
There were also some trouble with the loop in Interrupt() when the optimisation ‘size’
was used, but is was pretty easy to fix. The times for all the analysis of receiving a STATUS
CAN-message with different optimisations can be seen in Table 6.1.

WCET Message type
Default opt Speed opt Size opt

STATUS (warning = busoff = 0) 71,75 µs 71,25 µs 72,00 µs
STATUS (warning = busoff = 1) 21,089 ms 16,667 ms 21,080 ms
STATUS (warning =1, busoff = 0) 10,223 ms  
STATUS (warning = 0, busoff = 1) 10,223 ms  
MESSAGE (one message with 8 byte data) 146,75 µs 145,90 µs 147,20 µs
MESSAGE15 (one message with 8 byte data) 139,85 µs 131,50 µs 140,80 µs

Table 6.1: WCET for CAN-interrupt on WDS with different optimisations

6.1.2 CAN-interrupt on PSA
The structure of this code together with its characteristics is described in Section 5.2.1. This
code was much easier to analyse than the CAN-interrupt on the WDS node since the code
structure seem more carefully constructed. In this interrupt flow-annotations only had to be
made in the Interrupt() function which simplifies the analysis a lot. As in the CAN-
interrupt on the WDS there are three types of messages that can be received and each of them
is analysed separately. These three analyses will be described below. All analyses have also
been performed with different types of optimisations and the resulting times can be seen in
Table 6.2.

12 The pattern is constructed by absInt and they have constructed patterns for some of the more common library
routines

 45

MESSAGE
This is the most common message type. Three flow-annotations are used in the
Interrupt() function to make aiT simulate the receiving of a CAN-message of type
MESSAGE. There are 2 static variables that are created the first time they are used and this
process is pretty complex. Since it only happens the first time the code is executed the
variables are assumed to be already created. The annotations used for not creating the 2 static
variables are 2 “condition is always true” annotations. The total number of annotations used
for obtaining a WCET value with this type of CAN-message is 8. The creation of one of the
static variables has also been analysed. This add 48 µs to WCET, which is almost a 50 %
increase. To analyze this message type with the optimization ‘size’ the same annotations are
used if relative addresses have been used. If absolute addresses have been used the addresses
have changed slightly and the addresses in the annotations have to be changed. If the
optimization ‘speed’ is used the structure of the code is changed and the flow-annotations
have to be changed. When all annotations needed were written the analysis required 2
annotations less than with default optimization and optimization ‘size’. The times for all the
analysis of receiving a CAN-message of the type MESSAGE with different optimisations can
be seen in Table 6.2.

MESSAGE15
This message type is only used as a boot message when the system is simulated and is
therefore never used on the read target. The reason for analysing this type of message is to see
how difficult it is to analyse the different types of messages. The annotations for this type of
message are the same as for an ordinary CAN-message. The only thing that differs is an
address in one of the annotations telling aiT to call function ReadMessageObject15()
instead of ReadMessageObject(). When the optimisation is changed to optimise for
‘size’ all relative addresses have to be changed but apart from that the annotations are the
same. If the optimisation ‘speed’ is used the flow-annotations have to be changed since the
code structure is different. There is one flow-annotation less with optimisation ‘speed’ than
with the other two optimisations. There was also a problem giving one of the flow-annotation
a relative address since there was a hole in the code, therefore the address had to be given
from the end of the function by using the following address:
"_IntCan1__Fv" / "_Interrupt__13CommunicationFv" + 1 return - 3 call.

The times for all the analysis of receiving a CAN-message of the type MESSAGE15 with
different optimisations can be seen in Table 6.2.

STATUS
It is much easier to analyse the STATUS message type on this node compared to analysing it
on the WDS node. Much less code is involved here and there is also no error handler here
which logs the error and tries to handle it in some way. The only thing done when there is a
warning or bus off STATUS message is to set a variable to true. The only annotations required
except the three standard ones are two flow-annotations and two condition-annotations. The
condition-annotations are only there to exclude the creation of the two static variables
mentioned above. So in total 7 annotations are needed to calculate the WCET for this code
with the default optimisation set. To analyse the code with the optimisation ‘size’ the only
thing that had to be changed were absolute addresses and that wasn’t a very hard considering
the few annotations needed. When the optimisation ‘speed’ is used the same type of changes

 46

with the absolute addresses had to be made. The times for all the analyses when receiving a
STATUS CAN-message with different optimisations can be seen in Table 6.2.

WCET Message type
Default opt Speed opt Size opt

STATUS (warning = busoff = 1) 38,30 µs 37,35 µs 38,50 µs
MESSAGE (one message with 8 byte data) 73,55 µs 72,40 µs 73,75 µs
MESSAGE15 (one message with 8 byte data) 63,70 µs 62,55 µs 63,90 µs

Table 6.2: WCET for CAN-interrupt on PSA with different optimisations

6.2 Regulator-interrupt
The regulator-interrupt is responsible for controlling the welding process. It calculates the
correct current and also controls gas-valves and other peripherals such as the Wire Feeder
node. The regulator-interrupt is constructed as a state-machine with the state representing
different welding-states such as overtemp and stop and start welding. Section 6.2.1 will go
into the actual analysis of the regulator-interrupt on the PSA node.

6.2.1 Regulator-interrupt on PSA
The structure of this code along with its characteristics is described in Section 5.2.2. Another
approach was used when analyzing this code compared to analyzing the code for the CAN-
interrupt on the different nodes PSA and WDS nodes. An ais-file was constructed for each
welding method that covered all test-cases and then the annotations not needed for that
specific test-case were simply commented out. Analyses were made on the Tig and Mma
welding methods and these analyses are described separately below.

To select which welding method to use, a subclass to the class EMethod is called in the code.
There is one subclass for each welding method. The user has to specify which welding
method to use by giving an annotation telling aiT which function is called in the function
IntRegulatorTimer(). The annotation looks like this if the method Mma is used:

instruction "_IntRegulatorTimer__5PMainFv" + 1 call calls
"_Regulator__4EMmaFv";

Mma
This welding method was analysed deeply. Figure 5.3 describes the call-tree of the Regulator-
interrupt with the Mma welding method. The functions State and
CalculateCurrent() have both a switch-statement that runs different code depending
on the current state. The function State() can also change the current state. The problem of
this analysis was to make aiT choose the correct states. AiT didn’t understand that if the state
STOP was used in State() it should also be used in CalculateCurrent() so this had
to be done manually. To achieve this an annotation that basically said STOP in State(),
also means STOP in CalculateCurrent() had to be added. The annotations looked like
this:

flow sum "_CalculateCurrent__4EMmaFv" + 0x356 bytes /
"_State__4EMmaFv" + 43 branch is exactly 1;

 47

The annotation says that the code corresponding to the state STOP in State() will be
executed equally often as the code corresponding to the state STOP in
CalculateCurrent(). To make it a bit easier to understand it can be looked at as an
equation where X/Y=1 equals X=Y. This had to be done for all 6 states in the Mma welding
process. To be able to control if the state was changed in State() annotations were added
to prevent the execution to enter if-statements that would change the state. These annotations
could then easily be commented out if the analysis should include a change of state. If the
state should change in State() an annotation had to be made in order to inform aiT of
which state to use in CalculateCurrent(). This annotation could look like this:

flow sum "_IntRegulatorTimer__Fv" /
"_CalculateCurrent__4EMmaFv" + 1 call is exactly 1;

This annotation says that the code corresponding to the state START1 in
CalculateCurrent() should be executed as many times as the actual Regulator-
interrupt function i.e. one time. The final information needed by aiT is which state should be
used in State() and this is done in the same way as in the annotations above.

An example of an analysis could be to measure the WCET for the state START1 used in both
State() and CalculateCurrent(). To do this, an annotation had to be used to inform
aiT which state was active in State(). The annotations that tell aiT that the state START1
should be used in CalculateCurrent(), if it is used in State(), also had to be given.
Two annotations telling aiT not to execute the if-statements changing the state from START1
to STOP or START2 in State() were also needed. The annotations looked as follows (the
lines that start with a ‘#’ are just comments):

##Use START1 in state()
flow sum "_IntRegulatorTimer__Fv" / "_State__4EMmaFv" + 17
branch is exactly 1;
##START1 in CalculateCurrent() if START1 in State()
flow sum "_CalculateCurrent__4EMmaFv" + 1 call /
"_State__4EMmaFv" + 17 branch is exactly 1;
##Not to change to state STOP
condition "_State__4EMmaFv" + 20 branch is always true;
##Not to change to state START2
condition "_State__4EMmaFv" + 23 branch is always true;

In addition to these types of annotations there were also annotations for 3 loop-bounds and 2
annotations for turning of error handling. There was also one annotation that was used to give
the correct register value to one instruction. In total there were 35 annotations in the ais-file
but on average only 14 of them were used in one analysis and the rest was commented out. 10
of the ones used were always present and was used for loop-bounds and other things that were
constant between the different analyses.

When using the optimization ‘speed’ 12 annotations had to be changed and for all of them the
reason was that the addresses changed because of changes to the code-structure. If the
addresses had been absolute all addresses had to be changed. There were also a problem with
holes in the code and that made it necessary to give 2 addresses relative to the end of the

 48

functions instead of the beginning. The compiler itself also created a new loop and that loop
had to be bounded by an annotation. The optimization ‘size’ didn’t demand any changes of
the annotations compared to using default optimization. The only thing that changed when the
optimization ‘size’ was used was the addresses, they all changed by a fixed number of bytes.

The times for all the analysis of the regulator-interrupt on the PSA node using MMA with
different optimisations can be seen in Table 6.3.

WCET State in State() State in Calculate()
Default opt Speed opt Size opt

IDLE IDLE 118,95 µs 119,45 µs 119,15 µs
IDLE START1 149,50 µs 149,75 µs 149,70 µs
START1 START1 138,05 µs 137,85 µs 
START1 STOP 153,80 µs  
START1 START2 186,85 µs  
START2 START2 138,05 µs 137,85 µs 138,25 µs
START2 WELDING 326,40 µs  
START2 STOP 153,80 µs  
WELDING WELDING 264,25 µs 260,05 µs 
WELDING STOP 155,80 µs 152,30 µs 
STOP STOP 114,35 µs  
STOP IDLE 116,25 µs  
OVERTEMP OVERTEMP 113,15 µs  
OVERTEMP IDLE 117,1 µs  

Table 6.3: WCET for regulator-interrupt on PSA using MMA3 with different optimisations

Tig
This welding method wasn’t completely analysed. It was only analysed to be able to have
values to compare with the results from the dynamic measurements in [2]. Figure 5.4 depicts
the call-tree of the Regulator-interrupt with the Tig welding method. This welding method
only has one function that is dependent on the current state and this made the analysis much
easier. Compared to the Mma welding method, another approach has been used to select the
current state. The state is represented by an enumeration which in turn depends on which code
to be executed in the switch-statement. In order to force aiT to execute a certain state the
register representing the enumeration before the switch-statement has to be set to the correct
value. The annotation below forces aiT to execute state START2 since it is represented by the
value 10 in the enumeration and the enumeration is in register 7.

instruction "_State__4ETigFv" + 2 call + 7 instruction is
entered with r7 = 10;

Two calls had to be annotated to call the correct function. A constructor that contains complex
code like malloc was given an execution time and was therefore not analysed further. Three
loop bounds were set by annotations and three annotations for turning off error handling were
used.

 49

6.3 The Component-based Code
Component-based code was tested to see if there were any particular problem when analysing
this kind of code compared to other code. The code that was chosen for this analysis is code
for an adaptive cruise control. The structure of this code is described in Section 5.3.1.

6.3.1 ACC
This code was very easy to test since it wasn’t constructed to be an advanced adaptive cruise
control, but rather a part of a project to build components in C-code and then automatically
combine them into different tasks. Both the individual components and the tasks have been
analysed so that overhead can be measured. The only extra annotation needed to analyse the
components, besides the three for clock rate, context specification and compiler, is an
annotation for loop bound in some of the components. The only purpose of this loop is to
simulate load on the system. When the task are analysed the loop bound-annotations for the
included components have to be added. Which components that are located in which task can
be seen in figure 6.5. An annotation to end the analysis also has to be added in each task
analysis since they all contain a loop that never ends. A branch instruction has to be redirected
so that all functions are included in the analysis. One of the task analyses also includes an
extra loop bound-annotation and an annotation to inform aiT that a function never returns.
The results of the analyses can be seen in Figures 6.4 and 6.5.

Component WCET
objectRecognition 4806,0 µs
speedLimit 14,5 µs
BrakeFunc 4240,0 µs
loggerOutput 41,9 µs
calcDistOutput 4261,0 µs
updateDistState 9,3 µs
calcSpeedOutput 19,1 µs
updateSpeedState 11,0 µs

Table 6.4: WCET for the different components in ACC

 50

 WCET
Task0: 4494,7 µs
 updateSpeedState 11,0 µs
 calcSpeedOutput 19,1 µs
 updateDistState 9,3 µs
 calcDistOutput 4261,0 µs
 overhead 194,3 µs

Task2: 5316,8 µs
 objectRecognition 4806,0 µs
 speedLimit 14,5 µs
 overhead 496,3 µs

Task3: 4354,8 µs
 BrakeFunc 4240,0 µs
 overhead 114,8 µs

Task4: 247,7 µs
 loggerOutput 41,9 µs
 Overhead 205,8 µs

Table 6.5: WCET for the different tasks in ACC

 51

7 Dynamic measurements
Dynamic measurements were done on the same code as the static ones. The purpose was to
compare both the actual methods and the results. The dynamic measurements were performed
by Yina Zhang in another MSc thesis work. This chapter will only give brief information on
the made measurements. For more detailed information about the measurements, see Yinas
thesis [2].

7.1 CAN-interrupt
The CAN-interrupt is responsible for taking CAN-messages from the CAN-controller and
placing them in a queue. The CAN-interrupts on both the WDS and PSA node was analysed
with dynamic methods. CC Systems has developed an own CAN-card that is connected to the
computer and that can monitor the traffic on a CAN-bus and also send CAN-messages on the
same bus. The software tool that let the user send CAN-messages and monitor CAN-traffic
has been developed by CC Systems and is called CanTool.

7.1.1 CAN-interrupt on WDS
An oscilloscope was chosen to analyse the CAN-interrupt on the WDS node. The code
characteristics and structure of this interrupt can be seen in Section 5.1.1. The WDS-node is
responsible for the communication with the welder through the display and with buttons etc.
It also has control over the system state. When this node was analysed it wasn’t connected to
any other nodes in the system so CanTool (se Section 7.1) was used to send CAN-messages to
trigger the CAN-interrupt. The power to this node usually comes from the PSA-node but
since it wasn’t connected to the system a power supply have to be connected. The power
supply was set to 12 V DC and was connected to the WDS node through the CAN-interface
since it is where the power from the PSA comes. A machine-ID also have to be set for the
node so that it knew which type of display and which buttons that was used. The card must
first be reset by pressing down a couple of the buttons at the same time. Then a CAN-message
was sent to set the machine-ID and this was done using CanTool.

To be able to measure execution times on the node the software has to be downloaded to it.
Before this could be done extra code was added to turn on and off Light Emitting Diodes
(LEDs). When the CAN-interrupt was called a red LED was lit and when the interrupt was
finished a green LED was lit. This means that if the green LED was lit at least one CAN-
message has been received. After adding these codepieces the entire code was compiled and
linked. The resulting code was then downloaded on the memory of the circuit board through a
serial port on the circuit board connected to a serial port on the computer. Now the system
was ready to be analysed. A probe was attached to the LED that was lit when the interrupt
starts and then a CAN-message was sent using CanTool to trigger the oscilloscope. Then the
time was measured on the screen of the oscilloscope when the signal was high (the LED is
lit). The precision is down to microseconds and this is enough for these measurements. All
three types of CAN-messages were analysed. To be able to analyse a STATUS message the
code had to be somewhat changed to simulate that s STATUS message has been received. For
information about the actual execution times see [2]. There were also some attempts to use the
LEDs to indicate which execution path that was taken but it proved to be pretty hard since
there weren’t many LEDs compared to possible execution paths.

 52

7.1.2 CAN-interrupt on PSA
This interrupt was analysed with a logic analyser connected to the address bus. The code
characteristics and structure of this interrupt can be seen in Section 5.2.1. The PSA node is
responsible for regulating the actual welding process by regulating the current and turning gas
valves on and off etc. The PSA node can’t boot without the WDS node being present since it
rely on the WDS node to answer a CAN-message it send during the boot process. The WDS
and PSA nodes were therefore connected to each other via the CAN-interfaces, as they would
be in the real system. The voltage needed by the PSA node is 42 V AC and this was supplied
from a special power supply connected to a port on the PSA node. The power supply that was
used when analysing the WDS node wasn’t needed anymore since it now got its voltage
through the CAN-interface from the PSA-node. There was some trouble when the logic
analyser was connected to the address bus. Firstly, the only pins big enough to connect the
pins on were on the memory chip. But since the memory chip was addressed word-wise and
not byte-wise, the clip from the logic analyser that represented bit 0 of the address bus wasn’t
connected at all and the second clip from the logic analyser was connected to address pin 0 on
the memory chip. This was done to be able to get the correct addresses.

Since the address bus was monitored the code didn’t have to be changed before it was
compiled, linked and downloaded. The software was downloaded on the same way as on the
WDS node. To analyse the CAN-interrupt either the start-address of the actual trigger or the
address in the interrupt vector associated with the CAN-interrupts could be used as a trigger
in the logic analyser. When a CAN-message had been received a trace of all addresses on the
address bus was saved in the logic analyser. The execution time could easily be found by
simply finding the last address of interrupt and see which time it had relative to the time of the
trigger address occurring on the bus. The time is presented in ns and the smallest sampling
rate possible was 8 ns. The trace could also be downloaded on a floppy disk so that it could be
further analysed on a computer. Since the entire trace was saved the execution path could also
be analysed with the help of a debugger or a control-flow graph.

There was a problem with testing the message types STATUS and MESSAGE15. The boot up
process demanded the node to be able to send ordinary messages (MESSAGE) so the code
couldn’t be forced to always interpret a message as MESSAGE15 or STATUS message. The
MESSAGE15 message isn’t very interesting to analyse anyway since it is only used as a boot
message when simulating. Since there is a constant flow of messages from the WDS node to
the PSA node the CanTool was never needed to trigger this CAN-interrupt.

7.2 Regulator-interrupt
The regulator-interrupt is responsible for regulating the actual welding process by regulating
the current and turning gas valves on and off etc. The interrupt is constructed as a state-
machine with the state representing different welding-states such as overtemp and stop and
start welding.

7.2.1 Regulator-interrupt on PSA
This interrupt was analysed with a logic analyser connected to the address bus in the same
way as for the CAN-interrupt on this node. The code characteristics and structure of this
interrupt can be seen in Section 5.2.2. The system had exactly the same setup as when the

 53

CAN-interrupt was measured on this node. The WDS node that was used during the testing
supported the welding methods Mma and Tig so these were the only welding methods that
could be analysed using dynamic methods. Since the correct peripherals weren’t connected a
correct welding process couldn’t be simulated. Some of the different states could be measured
but only states that are used when the system isn’t in welding mode. The state that was
analysed without changing the code when the Mma welding method was used was overtemp.
When Tig was used the only state that could be analysed without changing the code was idle.

 54

8 Results
This chapter will go into the results of the thesis. In Section 8.1 the different methods are
compared in order to see how time consuming they are and how hard it is to obtain a good
WCET estimation. Section 8.2 will compare the results from dynamic and static analysis to
see how big the overestimation of the static analysis is likely to be. Potential uses for these
methods beside WCET analysis are discussed in Section 8.3.

8.1 Comparing Static and Dynamic WCET Analysis methods
CC Systems wanted to find out which analysis method that is best suited for their needs. It
should be relatively easy to obtain WCET values and the values should be proven to be
reasonable accurate. The general timing behavior of the program was also of interest.

It takes some time to get familiar with the aiT WCET tool, where to find all the settings,
which annotations there are, how do they work and so on. It also took some time to be able to
get the executable in a format that could be read by aiT. Once all the settings were correct and
the correct executable has been loaded into the toolit is quite easy to do WCET calculation. It
was often similar problems with loop bounds etc that occured in every analysis. The result
produced by aiT can’t just be accepted directly since it may include impossible paths or error-
handling routines that shouldn’t be included etc. This means that the user must have a very
good understanding of the code in order to get a correct WCET value. A big advantage of this
method is that it is very easy to redo the calculations, since all that is needed are different
files. This is very useful if an error in the analysis is detected or the program code is changed.
Thereby, the user doesn’t have to start from scratch and redo all work for every new analysis.
The graphs presented by aiT are very useful and can be used to see the structure of the code,
understanding the code, finding out the path that lead to the WCET and also getting the
execution time of each individual basic block.

An advantage that all dynamic analysis methods share is that they only give execution times
on possible execution paths. With aiT the user can’t be absolutely sure about the execution
path leading to the WCET is possible if the program isn’t very simple or dynamic
measurement can confirm it. Dynamic methods can also give a general view of the timing
behavior of a system with best case execution time and average case execution time. The
execution times obtained can even be used to create a graph of the execution time distribution
of the analysed code snippet. This sort of information cannot be given by aiT. A big problem
with dynamic measurement is that the system must be connected and all needed hardware
parts have to be present and working properly. Sometimes it can be very hard to do this and
perhaps the hardware or other codes needed aren’t developed yet. When aiT is used the only
thing that is needed is the code to be analysed. The biggest problem when using dynamic
measurement is that is hard or even impossible to guarantee that the execution time measured
is the WCET value. Often it is very hard to generate the worst case since it may only occur
rarely. To make sure that a value can be used as a WCET value a safety margin is often added
to the measured value to make sure that it is greater than the WCET. But there is no way of
knowing how big the safety margin should be to ensure a safe WCET value.

The oscilloscope is one of the most frequently used ways of obtaining WCET values. Once
the system is set up it is pretty easy to measure different code snippets. The problem is that
the code usually has to be changed between each measurement. The fact that the code has to

 55

be changed in order to measure can mean that the system behavior is affected. Another
problem is that it is very hard to see which execution path that was measured or if
preemptions have occured.

The logic analyzer can be used in the same way as an oscilloscope and has then the same
advantages and disadvantages. In this thesis the logic analyzer was however connected to the
address bus in order to obtain WCET estimations. If the address bus is monitored there is no
need to change the code in order to do measurements and this is a big advantage compared to
using an oscilloscope. Since all traffic on the address bus can be recorded it is also possible,
but not very easy, to see which path that was executed. Since all memory accesses are time
stamped the execution times for different code pieces can be calculated separately. It is also
easy to do many different measurements on the same code since the only thing that has to be
changed is the trigger address.

8.2 Comparing Static and Dynamic WCET Analysis results
To be able to compare the results of different methods the same code were measured using
both dynamic and static WCET analysis methods. This was done to see how much
overestimation aiT introduced and also to see if the dynamic methods could find the WCET
path. The term overestimation is only valid if the path that leads to the WCET is analysed and
this wasn’t always the case here. But the time difference can give a hint about the
overestimations of aiT if the same execution path is analysed with both static and dynamic
methods.

The first values that were compared were the values for the CAN-interrupt on the WDS node.
Since the dynamic measurement method used for this code was the oscilloscope the execution
path was hard to find out but there weren’t many different paths to execute so the values
should be comparable with the ones obtained by the static method. The three different
message types were compared and the two types MESSAGE and MESSAGE15 were compared
with 1 byte of data and with 8 bytes of data. The STATUS message had to be faked so it
might be hard to validate the times for this type of message. The different values and the
difference between the values can be seen in Table 8.1. The difference was between 4 and 8
percent for the two types of ordinary CAN-messages (MESSAGE and MESSAGE15) and that
could be considered as acceptable. The execution path for the message type MESSAGE and
MESSAGE15 was forced at one place in the code in aiT to better correspond to the path taken
when the dynamic measurements were made. The differences of the STATUS messages are
between 19 and 117 percent and that should be considered as being too much. It wasn’t
possible to get a good WCET value using aiT when the STATUS message type was analysed.
There are three possible scenarios when a STATUS message is received. The message can be
informing the system that a warning has occurred, the bus is off or both. The code to handle
these errors was hard to analyse with aiT. The analyses of these errors could include errors or
impossible paths and that could be the reason to the big differences. The path taken by the
oscilloscope for these errors could also be different since we didn’t have all the information
about which path was taken when the dynamic measurements was made. The values where
both warning and bus off was false in the table should correspond to the same execution path
and the difference here was much lower than for the other cases. However this scenario
couldn’t actually happen on the real system. So even if the execution path leading to the

 56

values from the oscilloscope wasn’t completely known the values from the static method
seem pretty accurate for the ordinary message types.

Message
Type

Conditions Dynamic
measurement

Static
measurement

Difference

MESSAGE 1 byte of data 111 µs 116,15 µs 4,6 %
 8 bytes of data 135 µs 143,80 µs 6,5 %
MESSAGE15 1 byte of data 102 µs 109,25 µs 7,1 %
 8 bytes of data 130 µs 136,90 µs 5,3 %
STATUS warning = bus off = 0 60 µs 71,75 µs 19,6 %
 warning = bus off = 1 9,75 ms 21,089 ms 116,3 %
 warning =1, bus off = 0 4,80 ms 10,223 ms 113,0 %
 warning = 0, bus off = 1 4,80 ms 10,223 ms 113,0 %

Table 8.1: Comparison of execution times of the CAN-interrupt on the WDS node

The dynamic measurements on the PSA node were made by the logic analyser. The execution
path of the dynamic measurements was extracted from the traces and then aiT was forced to
execute the same path so that the execution time could be compared correctly. The execution
path in aiT was changed with different types of flow-annotations. The different values and the
difference between the values can be seen in Table 8.2. The analysis is made both with and
without memory annotations. The memory annotations are based on information from the
traces and they tell aiT where some of the instructions read and write in memory. These
annotations have a big influence on the execution times and there are still instructions without
memory annotations that aiT doesn’t know which parts of memory they access. This means
that it is possible to get tighter values but it is a very time consuming job and there is no
simple way of knowing that the memory accesses always access the same parts of memory.
As seen in the table the difference is between 3 and 8 percent and that is acceptable. The
difference is between 1 and 5 percent lower when memory annotations are used. The reason
that the CAN-interrupt hasn’t been analysed with memory annotations is that the difference
was so low without memory annotations and that most of the destinations of memory accesses
were found automatically by aiT.

Without memory
annotations

With memory annotations

Which interrupt
Dynamic
measurement13

Static
measurement

Difference Static
measurement

Difference

Can 56,3 µs 58,60 µs 4,1 %  
 75,1 µs 79,00 µs 5,2 %  
Regulator Mma 99,5 µs 104,00 µs 4,5 % 102,90 µs 3,4 %
 107,2 µs 113,45 µs 5,8 % 110,60 µs 3,2 %
Regulator Tig 112,8 µs 119,30 µs 5,8 % 117,10 µs 3,8 %
 128,0 µs 138,20 µs 8,0 % 132,50 µs 3,5 %

Table 8.2: Comparison of execution times on the PSA node

13 The values from the logic analyzer varies with about 0,5 µs so the values in the table aren’t exact values

 57

It was very hard to find the WCET path with dynamic measurements. Yina tried to force the
execution to take the path aiT chose as the WCET path, but this required a lot of modification
on the code. This could affect the system behaviour and it was also not certain that the
execution times are correct. The overestimation of that analysis was 12,5 percent without
memory annotations and 10,2 percent with memory annotations and that is much more than
the differences in Table 8.2. The reason could be that the executed code was much larger than
the code snippets analysed in Table 8.2. This could lead to bigger overestimations in aiT.

The values in Table 8.2 was the result of much work to give annotations to aiT since there is
no way for aiT to know that the values are correct. The aiT tool was also improved during the
thesis and this helped to lower the differences.

8.3 Usages of WCET analysis methods for CC Systems
CC Systems (CCS) wanted to know if the methods tested in this and Yina’s thesis could be
used for other things than just WCET analysis.

The times from the logic analyser and aiT can be used to find places in the code that is extra
time-consuming and therefore a good place to optimise the code if optimisation is needed.
The times can also be used to make simulations more time accurate. CCS has developed their
own simulation technology that they uses to be able to simulate the functional behaviour of an
implemented system before they download it to the target system. Time accurate behaviour
has been added to this technique. This work has been done in another thesis [26] described in
Section 2.6. The thesis focused on how to add the time accurate behaviour to the system but
not on how to obtain the execution times needed to make the simulation time accurate. Times
for entire interrupts can be obtained by all the methods used in this and Yina’s thesis.
However to get a good timing behaviour it is not enough to give a WCET value for the entire
interrupt. The best thing is probably to give execution times for every basic block in the code
to ensure a good timing behaviour, but this can introduce too much overhead in the system.
There is a balance on how small pieces of code that should be measured. Both aiT and the
logic analyser attached to the address bus can be used to obtain execution times for such kinds
of small code snippets. The problem of suing aiT for obtaining timing for smaller code
snippets is that all the times have potential overestimations and that can be a problem if the
average rather than the worst behaviour is going to be simulated. The overestimations are
however not very big as can be seen in Section 8.2. The logic analyser gives correct times but
it can be hard to analyse all needed code pieces, without manipulating the system i.e.
changing the code to force it to take different execution paths. With aiT it is easy to force the
execution to take a specific path without affecting the system.

A part of the thesis has focused on giving the CAN-interrupts on both the PSA and WDS
nodes, and the regulator-interrupt (when Mma is used) on the PSA node, correct timing
behaviour. Breakpoints14 were added in the code to give it the correct timing behaviour.
Breakpoints were for example placed in large if-statements so that the timing behaviour
would be different if the if-statement was entered or not. Breakpoints with different times
were also added in the different case-statements so that the execution times would be different
depending on which case-statement that was executed. All this was done to be able to get as

14 See Section 2.6 for more information about breakpoints and Time Accurate Simulation.

 58

correct timing behaviour as possible. One problem that was encountered was to get the
interrupts associated with the main loop of the system i.e. share the same CPU-time. Different
threads must be created and associated with the correct parent in order to make the simulation
behave correctly. Once all the breakpoints were added and the interrupts were using the same
CPU time as the rest of the node, the Time Accurate Simulation made it possible to step
through the execution one breakpoint at a time. It was also possible to pause, speed up or slow
down the execution. The times for the breakpoints were taken from aiT but times obtained by
the logic analyser could also have been used.

WCET analyses methods could also be used to obtain other times than just WCET. Best Case
Execution Time (BCET) or Average Case Execution Time (ACET) could also be interesting
to know. AiT can’t be used in a good way to obtain BCET since it sometimes overestimated
the WCET and therefore can’t provide a safe BCET value. The way of finding BCET is
however not very different from finding WCET, but aiT is currently no supporting BCET
computation. It is also impossible for aiT to calculate things like ACET since it haven’t got a
clue on the likelihood of different execution paths. To be able to analyse the general timing
behaviour of the system and obtain values of BCET and ACET dynamic measurements are
better suited than aiT. There can be a problem to obtain the BCET with dynamic
measurements since it hard to find the path leading to it. However, in comparison to aiT there
are no overestimations made, so the value will at least be closer to the real BCET value.

The traces produced by the logic analyser can be used to do functional testing or to correct
functional errors. If a trace has captured an error it is easy to see the execution path and find
the place in the code where the error occurs. These kinds of errors can often also be found
with the help of a debugger but if the errors depend on some hardware failure the only way of
finding the error might be to execute the code on the target system, and then a logic analyzer
attached to the address bus can provide assistance in finding the error.

One advantage of aiT is that it is relatively easy to force the execution to take a certain path
without affecting the system. This is useful if all possible execution paths in the system or all
basic blocks should be analysed. Since the execution path leading up to the execution time in
aiT is visible it is easy to see that all different paths or at least all basic blocks have been
analysed. If aiT is used to get execution times for Time Accurate Simulation this approach is
a good way of making sure that all the execution times needed actually have been calculated.

 59

9 Conclusions
A part of the purpose of the thesis was to find out if it is possible to integrate the static WCET
tool in CC Systems (CCS) development tool chain (see Section 2.1). The three methods tested
in this and Yina’s thesis [2] i.e. aiT, logic analyser and oscilloscope could all be used as a part
of the development process at CCS. AiT can be used during the implementation part of the
development process since it doesn’t require a target system while the oscilloscope and logic
analyser cannot be used until the target system is available. AiT is also the best method if a
safe WCET value is desired. The values produced by aiT are also relatively tight so
overestimations aren’t a big problem. The overestimations are also getting smaller and
smaller since aiT is constantly improved. There can be some problem to set all the correct
settings in aiT so it can therefore be a good idea to compare the times with traces from a logic
analyser or an emulator so that the results can be verified. The aiT tool could be integrated in
the Construction phase of the development15 and used in every iteration to evaluate the
WCET of different parts of the system. A final timing analysis could also be made in the
Transition phase and for that analysis a logic analyser or aiT could be used. The best result
should however be obtained if both a logic analyser and aiT are used in the Transition phase.

To get times for CCS time accurate simulation aiT can be used during the development phase
so that the worst possible timing behaviour is simulated. Once the system is downloaded on
the target system a logic analyser can be used to get an even more accurate and tight timing
behaviour. If the result from aiT can be considered tight enough the logic analyser wouldn’t
be needed to give these times but that depends on how time accurate the simulation have to
be.

The logic analyser could be used when the general timing behaviour with ACET etc. is
examined. It can also be used to give the execution time distribution of the different parts of
the system. This would however demand that the system is running as it would in its real
environment.

The traces produced by the logic analyser could also help to get tighter WCET estimates with
aiT since it can for example show which parts of memory that certain instructions access.

The only thing where the oscilloscope is useful is when the system is functional and a fast
WCET estimation is needed. The result from the oscilloscope is however undetailed and can’t
even be proven to just include the execution time of the code that should be measured, i.e. it
can’t show if a pre-emption has occurred. Using the oscilloscope also requires changing the
code and that can affect the code and it also take some time to change the code and compile
and link it between each new measurement.

The conclusion is that a combination of a static tool and a logic analyser is the best way to go
since they can complement each other. AiT’s strength is that it produces safe WCET
estimates (as can be seen in Table 8.2) and the strength of the logic analyser is that it captures
the overall timing behaviour of the system. The traces from the logic analyser can be used to
get tighter WCET estimates by aiT and the graphs produced by aiT can be used to interpret
the traces from the logic analyser.

15 For more information about the development process at CC Systems, see Section 2.1

 60

CCS was also interested in ways of making the WCET analysis as easy as possible. The
following rules should be applied if aiT is going to be used for WCET estimations. When the
code is developed the basic rules for programming embedded systems apply. The code-
structure should be as easy as possible, goto-statements shouldn’t be used and returns and
breakpoints in the middle of loops should be used as infrequently as possible. Pointers should
also be avoided as much as possible. Recursion and especially indirect recursion shouldn’t be
used if possible. Dynamic memory should be avoided as much as possible since the functions
malloc and calloc are hard to analyse. The code should be well commented so that someone
else than the programmer can understand the code and do WCET calculations. Loop bounds
should be specified in the code if possible and if they aren’t too obvious. All loops that are
included in the WCET calculations have to have an upper bound so no non-terminating loops
are allowed in the analysed code. The program flow should if possible be controlled from as
few functions as possible to make the WCET analysis easier.

The object oriented programming approach used in the ESAB-code complicated the analyses
somewhat. The dynamic memory allocations used at some places in the code made the
analyses harder and inheritance also caused some problems. Object-oriented code is easier to
learn so that is a plus. Overall you can say that there are both benefits and drawbacks with
object-orientated code. The conclusion is that object-oriented code can be analysed with aiT if
it is somewhat simple and doesn’t contain too much inheritance and dynamic memory
allocation.

The person that do these analyses in the future should preferable be the person that wrote the
code or at least someone who have some idea how it is constructed. If this isn’t possible the
person that performs the analyses should be able to contact the person who wrote the code. It
is very hard to get tight WCET values if the person performing the analysis doesn’t have a
good understanding of the code. The goal of doing static analyses by pressing a button and
then the WCET value pops up is currently just a utopia and will probably never happen.
However, in the future the static WCET analysis tools will probably be even better in finding
loop bounds automatically and giving tighter WCET values

 61

10 Future work
The regulator-interrupt hasn’t been tested with all different welding methods so there are a lot
of work that can be done in that area. All the different welding methods have different states
and if all states and state-transition are to be tested there are a lot of analyses that have to be
done.

If the entire ESAB welding system is going to be simulated time accurately there are a lot of
calculations or measurements that have to be done. The code doesn’t have to be studied as
thoroughly as when WCET analysis are made but almost. If the entire ESAB welding system
can be simulated time accurately it means that there are not many tests that have to be done on
the target system since the timing behavior can be tested on a PC instead. It is very time
consuming to test different execution paths so that all basic blocks are analyzed. It would
therefore be great if aiT could give execution times for all basic blocks at ones.

AiT could of course also be used to calculate the WCET for other systems than just the ESAB
welding system. The same goes for the logic analyzer.

Something that would decrease the workload would be if aiT could take a trace from a logic
analyzer and display which path in the graph that it represents.

There is a problem when simulating periodic interrupts with the Time Accurate Simulation.
The only way to make it work is to start a new simulation thread that pretends to execute for
the time between the executions of the periodic task and it is a bit hard to make this work. It
would be much better if a special type of sleep could be implemented that didn’t affect the
execution of the other treads and also could be paused, slowed down or speeded up as well as
every thing else that is simulated with Time Accurate Simulation.

The aiT tool is very user friendly but it could get even better. It would be great if aiT could
automatically find the relative address of instructions so that the user doesn’t have to calculate
that himself since it can be very error-prone. It would also be good if context-sensitive loop
bounds could be set. The graphical presentation could also be improved by showing flow
constraints set by the user and show places where aiT can’t find the destination of memory
accesses. It would also be useful if the actual analysis in aiT could be paused since it
sometimes may take a long time and the user may want to do something else that requires a
lot of CPU-time for a short while. Another thing that would be very useful would be if the
project file from Tasking could be loaded directly into aiT so that all settings were read from
it. This would save a lot of trouble with finding and applying the correct settings.

 62

Bibliography

[1] CC-Systems (CCS) company homepage (2005)
 URL: http://www.cc-systems.com/

[2] Zhang, Y.: Evaluation of Methods for Dynamic Time Analysis for CC Systems AB.

Master´s thesis, Mälardalen University, Västerås, Sweden (2005)

[3] ASTEC WWW homepage
 URL: http://www.astec.uu.se

[4] Vinnova WWW homepage

URL: http://www.vinnova.se

[5] Engblom, J., Ermedahl, A., Stappert, F.: Validating a Worst-Case Execution Time
Analysis Method for an Embedded Processor. Uppsala University, Dept. of Information
Technology. Technical Report 2001-030. (Dec 2001)

[6] Byhlin, S.: Evaluation of Static Time Analysis for Volcano Communications
Technologies AB. Master´s thesis, Mälardalen University, Västerås, Sweden (Sept 2004)

[7] Byhlin, S., Ermedahl, A., Gustafsson, J., Lisper B.: Applying Static WCET Analysis to

Automotive Communication Software. Euromicro Conference of Real-Time Systems,
(ECRTS'05). (July 2005)

[8] Sandell, D.: Evaluating Static Worst-Case Execution-Time Analysis for a Commercial

Real-Time Operating System. Master´s thesis, Mälardalen University, Västerås, Sweden
(2004)

[9] Daniel Sandell, Andreas Ermedahl, Jan Gustafsson, Björn Lisper: Static Timing Analysis

of Real-Time Operating System Code. In: Proc 1st International Symposium on
Leveraging Applications of Formal Methods (ISOLA´04) (Oct 2004)

[10] Peterson, S.: Porting the Bound-T WCET tool to Lego Mindstorms and the Asterix

RTOS. Master´s thesis, Mälardalen University, Västerås, Sweden (2005)

[11] Bound-T WCET tool and Tidorum company WWW homepage (2005)
 URL: http://www.tidorum.fi

[12] Colin, A., Puaut, I.: Worst-Case Timing analysis of the RTEMS Real-Time Operating

System. Research report IRISA, NoPI1277, (Nov 1999)

[13] Holsti, N., Långbacka T., Saarinen S.: Using a Worst-Case Execution-Time Tool for

Real-Time Verification of the DEBIE software. In Proc. of the DASIA 2000 Conference
(Data Systems in Aerospace 2000, ESA SP-457), (Sep 2000)

 63

[14] Thesing, S., Heckman, H., Souyris, J., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: An Abstract Interpretation-based Timing Validation of
Hard Real-Time Avionics Software. International Performance and Dependability
Symposium 2003 (IPDS03), (2003)

[15] Healy, C., Arnold, R., Müller, F., Whalley, D., Harmon, M.: Bounding Pipeline and

Instruction Cache Performance. IEEE Transactions on Computers 48 (1999)

[16] Thesing, S.: Safe and Precise WCET Determination by Abstract Interpretation of

Pipeline Models. PhD thesis, Universität des Saarlandes, Saarbrücken Germany, 2004

[17] Ermedahl, A.: A Modular Tool Architecture for Worst-Case Execution Time Analysis.

PhD thesis, Uppsala Univeristy, Dept. of Information Technology, Box 325, Uppsala,
Sweden. (2003), ISBN 91-554-5671-5.

[18] Engblom, J., Ermedahl, A., Stappert, F.: A Worst-Case Execution-Time Analysis Tool

Prototype for Embedded Real-Time Systems. In: Workshop on Real-Time Tools
(RTTOOLS'2001), affiliated to CONCUR'2001. (Aug 2001)

[19] AbsInt Angewandte Informatik GmbH company WWW homepage
 URL: http://www.absint.com/

[20] Rapita Systems Ltd company homepage
 URL: http://www.rapitasystems.com/

[21] Bernat, G., Colin, A. Petters, S.: pWCET: A tool for probabilistic Worst-Case Execution

Time Analysis of Real-Time Systems. Technical Report YCS-2003-353, Department of
Computer Science, University of York, UK (Feb 2003)

[22] Gustafsson, J., Lisper, B., Sandberg, C. Bermudo, N.: A Tool for Automatic Flow

Analysis of C-programs for WCET Calculation. In: 8th IEEE International Workshop on
Object-oriented Real-time Dependable Systems (WORDS 2003). (2003)

[23] Gustafsson, J., Ermedahl, A., Lisper, B.: Towards a Flow Analysis for Embedded

System C Programs . In: 8th IEEE International Workshop on Object-oriented Realtime
Dependable Systems (WORDS 2005), (Feb 2005).

[24] Heptane WCET Tool WWW homepage
 URL: http://www.irisa.fr/aces/work/heptane-demo/heptane.html

[25] Colin, A., Puaut, I.: A modular & Retargetable Framework for Tree-based WCET

Analys. Research report IRISA, NoPI1386, (Mar 2001)

[26] Nilsson, M.: Time Accurate Simulation, Master´s thesis, Uppsala University, Sweden

(2001)

[27] ARTIST2 WWW homepage
 URL: http://homepageartist.cs.uni-sb.de

