
Efficient System-Level Testing of Embedded Real-Time Software

Daniel Sundmark†, Anders Pettersson†, Sigrid Eldh†‡, Mathias Ekman†?, and Henrik Thane†
†MRTC, Mälardalen University, Box 883, SE-721 23 Västerås, Sweden

?Bombardier Transportation, Dept. PPC/ETS, SE-721 73, Västerås, Sweden
‡Ericsson,Älvsjö, Sweden
Daniel.Sundmark@mdh.se

Abstract

When developing complex embedded applications, the
software is often built in the form of subsystems or compo-
nents, which are later integrated and assembled to a full
system. Throughout all stages of development and assem-
bly, software testing is performed. On unit- or component-
level, the structure and run-time properties of the soft-
ware can fairly easily be predicted. This enables a thor-
ough testing based on the structure of the software (as
well as testing based on the intended functionality of the
software). However, in the later stages of the assembly
process, the structure of the software becomes more com-
plex and less obvious. Hence, the developers are forced
to base their testing solely on the intended functionality of
the software, leading to a reduced testing-induced quality
assurance. At the same time, bugs found in the later stages
of testing (i.e., integration- and system-level testing) are
significantly more costly to correct. Using dynamic and
static information of the software, this situation can be
significantly improved. This paper outlines a framework
for more efficient system-level testing of real-time software
for embedded applications.

1 Introduction

Premium quality software is coveted by all, but (us-
ing today’s state-of-the-practice tools) attainable by few.
Depending on the means of measurement, the costs of
software testing, debugging, and regression testing range
between 30–90% of the overall product life-cycle cost in
software development [8]. There is no simple remedy to
this situation, but a lot can be done by performing testing,
debugging, and system design in a more structured man-
ner.

Since testing is performed on several different levels
(e.g., unit level, integration level, and system level) during
software development, there is an abundance of methods
for different flavors of testing. Most techniques can, how-
ever, be categorized either as structural techniques (where
test cases are derived based on the structure of the soft-
ware) or funtional techniques (where test cases are derived

primarily based on the intended functionality of the soft-
ware). Traditionally, unit level testing is performed using
both structural and functional techniques while integration
and system level testing are mainly performed using func-
tional techniques. This is mainly due to the difficulties of
modeling the execution behavior of system-level software.

Since structural testing is non-trivial on the higher lev-
els of testing (i.e., integration and system testing), soft-
ware developers have little or no knowledge of the qual-
ity assurance achieved by a certain amount of testing. In
practice, this results in a situation where large parts of the
system behavior remain untested, while others are over-
reduntantly tested. Hence, for most software, functional
and structural testing are needed on all levels of system
verification.

1.1 Coverage
Coverage is an important aspect of thoroughness of the

testing. The main goal of testing is to find failures, and
coverage is a way to show how well tests has ”covered”
a special aspect of the system. There is a large amount
of different coverage techniques (e.g., control flow cover-
age, data flow coverage, and indata coverage). Some tech-
niques are pragmatic, while others rely on more formal-
ized definitions and models of the system behavior [19].

1.2 Embedded Real-Time Systems
Real-time systems are most often implemented as a set

of tasks, running on top of a real-time operating system. In
our work, we support two different task run-time models:

• Event-triggered transactions, where a chain of tasks
(a transaction) is triggered by an external event.
Within the transaction, tasks are triggered via inter-
task synchronization primitives, such as message
passing or semaphore operations.

• Strictly periodic time-triggered tasks, where a trans-
action can be seen as a periodically recurring pattern
of time-triggered priority-based scheduled tasks. In
general, we assume that systems corresponding to
this run-time model execute on a small embedded
microcontroller (e.g., a vehicular ECU [7]) without
jitter-inducing cache or pipeline support.



Testing (and debugging) of embedded real-time sys-
tems are primarily complicated by the following aspects:
First, the inherent non-determinism of real-time systems
(caused by race conditions, hardware interrupts, and in-
teraction with an external context) has a severe impact
on reproducibility and predictability. Second, the strict
real-time requirements complicate intrusive software in-
strumentation [6]. Third, the embedded nature of these
systems makes their run-time behavior hard to observe
when compared to, e.g., desktop applications.

1.3 Contribution
Before, during, and after testing we aquire significant

amounts of information of the static and dynamic prop-
erties of the software (the obvious test results set aside).
Such information includes source code, execution logs,
knowledge of the external system context, etc. When per-
forming testing, we have the possibility of using such in-
formation in order to improve on the effectiveness and
precision of future testing. In our research, our goal is to
develop methods for integration and system level testing
that use this information as intelligently as possible (see
Figure 1).

This paper outlines a framework (or rather, a set of
methods) for using this information in order to achieve
a more efficient system-level testing of real-time software
for embedded applications. This framework further ac-
centuates and clarifies the importance of predictable, ob-
servable, and reproducible software behavior.

2 Analysing Static and Dynamic System In-
formation for Efficient System Testing

In Figure 1, an overview sketch of our testing frame-
work is shown. The framework consists of a set of analy-
sis and test methods aimed at establishing reliable struc-
tural coverage criteria for system-level testing (thus reduc-
ing the cost and increasing the quality of embedded real-
time system testing). The remainder of this section will
briefly describe a number of these methods.

2.1 Interleaved Control Flow Test Coverage
Control flow graphs are generally used as abstract mod-

els of the internal run-time behavior of software. Tradi-
tional control flow graphs display all possible execution
selections for a piece of software (e.g., a function or a
simple sequential program) and serve as the foundation
for several different formal coverage critera (as described
in Section 1.1). A major problem of control flow analy-
sis is that most software products do not conform to the
structure of a function or a simple sequential program. Is-
sues like pseudo-parallellism, parallellism, and interrupts
bring another dimension to control flow analysis, a dimen-
sion that often proves too complex to handle.

Embedded real-time systems constitute a resource-
constrained subset of concurrent systems with more rig-
orous control on execution behavior. These factors some-

System A N A L Y S I S

E F F I C I E N T
T E S T I N G

Tested
System

Run-time 
information

System A N A L Y S I S

E F F I C I E N T
T E S T I N G

Tested
System

Run-time 
information

Figure 1. Analysis for efficient embedded
real-time system testing.

what reduce the run-time complexity allowing otherwise
too-complex methods to be used. In our work, we pro-
pose the use of Interleaved Control Flow Analysis (ICFA)
in order to reduce developer’s lack of knowledge regard-
ing system-level test coverage. The basis for our ICFA
is the Interleaved Control Flow Graph (ICFG), a system-
level model of execution behavior (as in [16]), but with
task-level granularity (as in [1]).

The ICFG constitutes a solid ground for more
structure-based testing on integration- and system level,
as well as providing a possibility of performing control
flow coverage testing on system-level.

2.2 Regression Test Selection
Regression testing is the process of re-testing test cases

following system changes. Looking at software prod-
ucts from a life-cycle perspective, regression testing is re-
quired during software maintenance, where functionality
is added or bugs are corrected. Basically, whenever soft-
ware is altered there is a need to verify the alterations, but
also to ensure that the changes have not corrupted other
parts of the intended functionality of the software. In order
to do this, there is a need for a strategy for deciding which
test cases to re-test [11]. Ball [1] proposes the use of an
intersection graph where automated control flow analysis
of the control flow graphs of a programbeforeandafter
changes aids in selecting test cases for re-testing.

As many structural testing methods, the intersection
graph analysis is constructed to operate on unit-level test-
ing. Within our framework, we intend to adapt this inter-
section graph analysis on our ICFG:s in order to decide
which parts of a multi-tasking real-time system need re-
testing following changes (see Figure 2).

2.3 Data Flow Analysis
Test coverage on control flow does not solely cover all

aspects of the system behavior. Equally important is the
data flow coverage. Data flow coverage is often based on
dependencies between definition and usages of variables



Old
System

New
SystemC H A N G E S

A N A L Y S I S

E F F I C I E N T
R E G R E S S I O N

T E S T I N G

Tested
System

Run-time 
informationOld

System

New
SystemC H A N G E S

A N A L Y S I S

E F F I C I E N T
R E G R E S S I O N

T E S T I N G

Tested
System

Run-time 
information

Figure 2. Using knowledge from previous
testing round for efficient regression test-
ing.

(i.e., def-use dependencies). Information of the data flow
can be derived by using data flow analysis [4, 9].

Another area where the result of the data flow analysis
can be used is to reduce the complexity of control flow
graphs. By separating possibly valid paths from non-valid
paths we are able to prune program-level and system-level
control flow graphs from paths describing infeasible soft-
ware behavior. Examples of such analysis might be the
inclusion of initial semaphore values, which will prune
several infeasible paths from the graph, lowering the com-
plexity of subsequent analysis.

2.4 Replay-Based Coverage Instrumentation
In order to establish coverage criteria based on task-

level control flow, there is a need for observing the con-
trol flow path traversed by the execution of the program.
In general, such observability requires significant instru-
mentation of the source code at the basic block level. For
sequential software, this kind of instrumentation will not
perturb the functional outcome of the tests. However, in
real-time systems, the prolonged execution time may sig-
nificantly affect the non-deterministic constructs of the ex-
ecution (e.g., race conditions) [6].

We intend to investigate the possibilities of using De-
terministic Replay [13] in order to perform low-level cov-
erage instrumentation on replay executions, where race
conditions and timing can be deterministically reproduced
regardless of intrusive probing. For this purpose, there are
also methods available to dynamically add coverage in-
strumentation code to existing running applications. In
particular, a tool-library called DynInst [2] permits the in-
sertion of code into a running application. A mutating ap-
plication may attach to a running application, create a new
bit of code and insert it into the application. There is no
need to re-compile, re-link or even re-start the application.
By using this approach, the coverage instrumentation can
be extended and removed in a deeper level for blocks of

interest, without having to prepare the original application
at all [17].

3 Related Work

There exist numerous tools and techniques for testing
of generel purpose computer software. The majority of
these have been developed for solitary (non real-time) se-
quential programs. As a consequence, they are not ap-
plicable to industrial real-time systems, since they disre-
gard issues of timing and concurrency. Also, most of these
tools depend on the assumption that the system is devel-
oped from scratch and that there is no legacy code to ac-
count for.

In multi-tasking execution, where tasks are competing
for resources due to concurrent execution, tasks test re-
peatiblity (reproducibility) is not always guaranteed. Re-
producibility is essential for regression testing and cyclic
debugging, where the same test cases are run repeatedly
with the intention of verifying modified program code or
to track down errors [5]. It is common for real-time soft-
ware to have a non-reproducible behavior. Under such
circumstances, iving the same input and same internal
state to a program is not sufficient, since race conditions
and interrupts may give different execution orderings from
the same initial state [12, 18]. An aspect of this non-
determinism is intrusive observations caused, e.g., by tem-
porary additions of program code for diagnostics, which
incurs a probe-effect [6] by changing the race conditions
in the system. We have previously published methods that
address the problem of testing concurrent real-time soft-
ware during the system integration phases [10, 16].

As for execution replay, an early version of our Deter-
ministic Replay technique, which supported replay of in-
terrupts, preemption of tasks and distributed transactions
is described in [15]. However, this work assumed the ex-
istence of special off-line versions of real-time operating
systems (RTOS), which is not a plausible assumption for
current commercial real-time operating systems. Recently
we have elaborated on this work and published a num-
ber of papers were we have made it possible to make use
of the replay debugging technology also for standard re-
altime operating systems and development environments
[13].

There exist other approaches that do not rely on special
compilers or hardware, but they can only replay concur-
rent program execution events like rendezvous (after code
transformations) [3, 14]. This means that they cannot han-
dle real-time specific events like preemptions, asynchro-
nous interrupts or mutual exclusion operations.

4 Conclusions

In this article we have outlined a framework for in-
creasing efficiency and quality in embedded real-time sys-
tem testing. In addition, we have briefly described the
contents of the framework (a number of analysis methods



suitable for implementation within the framework). As the
next step in our research, we intend to formalize the analy-
sis methods described in this paper (up to date, the algo-
rithm for deriving the ICFG of a real-time system has been
formulated and submitted for publication). Furthermore,
we intend to implement the methods as prototype tools.
Using these methods and tools, our intention is to perform
two case studies. The first of these case studies will be
performed in conjunction with an undergraduate course in
real-time systems at Mälardalen University. This study
will be aimed towards small, embedded real-time robotics
systems. The second case study will be performed on a
full-scale industrial real-time system. It is our intention
that some of our methods at this point have evolved to
such an extent that they are able to handle more complex
systems (e.g., vehicular systems or robot controllers).

References

[1] T. Ball. On the Limit of Control Flow Analysis for
Regression Test Selection. InProceedings of the
ACM International Symposium on Software Testing
and Analysis (ISSTA), pages 134–142, 1998.

[2] B. Buck and J. K. Hollingsworth. An API for
Runtime Code Patching.The International Jour-
nal of High Performance Computing Applications,
14(4):317–329, Winter 2000.

[3] R. H. Carver and K.-C. Tai. Replay and testing for
concurrent programs. InIEEE Software, volume
8(2), pages 66–74, 1991.

[4] Z. Chen, B. Xu, H. Yang, K. Liu, and J. Zhang. An
Approach to Analyzing Dependency of Concurrent
Programs. InAPAQS ’00: Proceedings of the The
First Asia-Pacific Conference on Quality Software
(APAQS’00), page 39, Washington, DC, USA, 2000.
IEEE Computer Society.

[5] S. Chung, H. S. Kim, H. S. Bae, and D. G. L. Yong
Rae Kwon. Testing of concurrent programs after
specification changes. InProceedings IEEE Interna-
tional Conference on Software Maintanence (ICSM
’99), pages 199–208, 1999.

[6] J. Gait. A probe effect in concurrent programs. In
Software - Practice and Experience, volume 16(3),
pages 225–233, Mars 1986.

[7] A. Möller, J. Fröberg, and M. Nolin. Industrial Re-
quirements on Component Technologies for Embed-
ded Systems. InProceedings of the 7th International
Symposium on Component-based Software Engi-
neering (CBSE7), pages 146–161. Springer Verlag,
May 2004.

[8] NIST. The Economic Impacts of Inadequate In-
frastructure for Software Testing., May 2002.

[9] H. D. Pande and W. Landi. Interprocedural Def-Use
associations in C programs. InTAV4: Proceedings of
the symposium on Testing, analysis, and verification,
pages 139–153, New York, NY, USA, 1991. ACM
Press.

[10] A. Pettersson and H. Thane. Testing of Multi-
Tasking Real-Time Systems with Critical Sections.
In Proceedings of Ninth International Conference
on Real-Time and Embedded Computing Systems
amd Applications, Tainan City, Taiwan, R.O.C, 18-
20 February 2003.

[11] G. Rothermel and M. J. Harrold. Analyzing regres-
sion test selection techniques. InProceedings. Com-
munications of the ACM, volume 41(5), pages 81–
86, 1998.

[12] W. Schütz. Fundamentals issues in testing distrib-
uted real-time systems. InReal-Time Systems, vol-
ume 7, pages 129–157, Boston, 1994. Kluwer Aca-
demic Publisher.

[13] D. Sundmark. Deterministic Replay Debugging of
Embedded Real-Time Systems using standard com-
ponents. Licentiate Thesis 24, Mälardalen Real-
Time Research Centre, MRTC, March 2004.

[14] K.-C. Tai, R. Carver, and E. Obaid. Debugging Con-
current Ada Programs by Deterministic Execution.
In IEEE Transactions on Software Engineering, vol-
ume 17(1), pages 45–63, January 1991.

[15] H. Thane and H. Hansson. Using Deterministic Re-
play for Debugging of Distributed Real-Time Sys-
tems. InProceedings of the 12th Euromicro Confer-
ence on Real-Time Systems, June 2000.

[16] H. Thane and H. Hansson. Testing Distributed Real-
Time Systems. InJournal of Microprocessors and
Microsystems, pages 463–478. Elsevier, 2001.

[17] M. M. Tikir and J. K. Hollingsworth. Efficient in-
strumentation for code coverage testing. InISSTA
’02: Proceedings of the 2002 ACM SIGSOFT inter-
national symposium on Software testing and analy-
sis, pages 86–96, New York, NY, USA, 2002. ACM
Press.

[18] J. J. P. Tsai, K.-Y. Fang, and Y.-D. Bi. On real-
time software testing and debugging. InProceedings
of Fourteenth Annual International Computer Soft-
ware and Application Conference, pages 512–518,
Oct 1990.

[19] F. Zhu, S. Rayadurgam, and W.-T. Tsai. Automat-
ing regression testing for real-time software in a dis-
tributed environment. InProceedings of First Inter-
national Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 98), pages 373–382,
20-22 April 1998.


