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ABSTRACT 
Research at the Computer Architecture Laboratory (CAL) at 
Mälardalen Real-Time Research Centre (MRTC), Mälardalen 
University, has been performed in implementing a real-time 
kernel in hardware in order to increase system predictability, 
determinism and performance. The first article was published in 
1991 and since then the real-time kernel has been further 
developed, adjusted to multiprocessor systems and been exposed 
to different kinds of benchmarks and comparisons to software 
implemented real-time operating systems. It has also been 
developed to a commercial product as an intellectual property 
component. This article is a survey focusing on describing 
previous work on the real-time kernel at CAL, also covering most 
important related work and the conclusions drawn from the 
research over the years.  
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1. INTRODUCTION 
A real-time system is a system that reacts on events in the 
environment and executes functions based on these within a 
precise time. In these systems, time is a vital parameter and the 
behaviour of the system is only considered correct if the correct 
result is presented within a specified time limit. Real-time 
systems are classified in soft- and hard real-time systems. Soft 
real-time systems can tolerate timing failure to a certain degree 
while a hard real-time system must fulfil both functional and 
timing demands completely or it could lead to disastrous events. 
[1] A real-time operating system (RTOS) is an operating system 
that is implemented for real-time systems in order to simplify 
design, execution and maintenance of real-time systems and 
applications. The RTOS provides the designer with a 
programming interface to the underlying hardware. [2] 

The most common way of implementing real-time operating 
systems is to do it completely in software. In the Computer 
Architecture Laboratory (CAL) at Mälardalen Real-Time 
Research Centre (MRTC), Mälardalen University, research has 
been performed on a real-time kernel in hardware, i.e. it is 
implemented in VHDL and used in integrated circuits, Field 
Programmable Gate Arrays (FPGA) or Application Specific 
Integrated Circuit (ASIC). The FPGA technology, released in 
1985 introduced flexibility to the field of integrated circuits. An 
FPGA can be reprogrammed an infinite number of times and this 
has made it possible to implement established software algorithms 
in hardware, in this research that is the real-time kernel activities. 
[3] This means that scheduling, inter process communication, 
interrupt management, resource management, synchronization 

and time management control are implemented in hardware. This 
makes it possible to utilise hardware characteristics such as 
parallelism and determinism that consequently decreases system 
overhead, improves predictability and increases response time. 

The first article was published in 1991 [4] describing how the 
kernel is implemented in a single processor system.  Since then 
the real-time kernel has been further developed, adjusted to 
multiprocessor systems and been exposed to different kinds of 
benchmarks and comparisons to software implemented RTOS. It 
has also been developed to a commercial product as an 
intellectual property component [5].  

There have been a few similar publications on real-time kernels 
implemented in hardware but most related work is special purpose 
RTOS co-processors or RTOS standard processors. 

This paper is organized as follows. Section 2 is an overview of the 
real-time kernel developed at CAL. Section 3 covers the research-
projects where the CAL kernel has been in focus, section 4 
describes related work of other research projects and section 5 is a 
summary of conclusions from mainly previous work but also from 
related work. 

2. OVERVIEW 
A real-time kernel handles an operating system’s scheduling 
activities. In the real-time kernel developed at CAL, this is 
implemented in hardware and is used together with a software 
driver of 2 Kb code (also called API, Application Programmers 
Interface) which makes it possible for the programmer to utilise 
the hardware, i.e. handle the service calls to the kernel. 
The hardware part together with the software driver makes a 
complete RTOS kernel. It can also be used together with another 
pure software RTOS, working as an operating system accelerator. 
The scheduling in hardware is pre-emptive and is executed in 
parallel to the CPU and the CPU is interrupted only when a task 
switch is to take place. The communication with the CPU is 
carried out through registers. 
Except for the first prototype, the kernel is communicating with 
the CPU through the bus. The outer technology dependent bus 
interface can be adjusted to support any CPU. 
During the years of development, the real-time kernel has had 
many configurations but generally it consists of internal 
components (see figure1); an interface, a scheduler, an interrupt 
handler, a resource manager and a time manager that as a whole 
supports 16 tasks or more, priority levels, external interrupts, 
semaphores, flags, watchdogs, timers for delay and periodic start 
of tasks.  



 
Figure 1. Example of the CAL real-time kernel architecture. 1 

[5] 
The Interrupt Service Routines (ISR) of external interrupts have 
priorities and are handled and scheduled like ordinary tasks. 

3. PREVIOUS WORK 
This section covers research-projects at the CAL where the real-
time kernel has been involved. It is presented with the kernel in 
focus. 

3.1 Realising a real-time kernel for single 
processor systems  
Obtaining absolute timing determinism is one of the main reasons 
given why the kernel was implemented in hardware [4] [6].  The 
first prototype of the kernel, FASTCHART, was a µ-processor 
with an integrated hardware kernel in one chip. In the second 
prototype, FASTCHARD, the kernel was implemented as a 
separate unit on a stand-alone chip, adjusted to a CPU [7]. Further 
developments have been implemented based on the second 
approach.  
The FASTCHARD was a part of a minor real-time system 
consisting of a CPU, main memory and I/O ports. The system bus 
and an interrupt line connected the CPU and FASTCHARD. Eight 
external interrupts were connected; it contained seven registers 
and task-queues implemented in Random Access Memory 
(RAM). 

3.2 Multiprocessor real-time kernel in 
hardware 
When the hardware kernel was introduced into multiprocessor 
systems it was called real-time unit (RTU). The first version with 
support for multiprocessor systems was called RTU94, followed 
by RTU95. Both RTU94 and RTU95 could handle three CPUs 
(see figure 2). More functionality and improvements were added. 
The number of function calls was increased to include 
semaphores, event flags and watchdogs and a real-time clock for 
continuous supervision of time was added. This means that all 
administration of resources that have any kind of time 
dependency has to be supported by the RTU, e.g. distribution of 
CPU time, semaphores, flags and sorting of queues. [8] 

                                                                 
1 TDBI – Technology Dependent BusInterface, GBI – Generic 

Bus Interface 

 
Figure 2. RTU in multiprocessor system architecture. [9] 

To support a multiprocessor environment, the RTU was 
implemented to consist of one scheduler for each CPU and tasks 
could be initialised to execute on a fixed CPU (local task), or on 
any CPU (global task). There was one ready queue for each CPU 
and one queue for the global tasks. Each scheduler checks both 
the local and the global queues. [10] Since the RTU has 
knowledge of the load of each CPU it can be used for dynamic 
load balancing. [8] In [9] the RTU was presented as a co-
processor in multiprocessor environments. 
In [11], [12] and [13] the RTU was used in a research project in 
multiprocessor systems called Scalable Architecture for Real-
Time Applications (SARA). The SARA-system is based on the 
idea to incorporate as many parts of a real-time operating system 
into hardware as possible. The scalability of the SARA-system 
could be used in the transition from a single processor system into 
a multiprocessor system. The RTU handled the scheduling of the 
system. In [11] the RTU based dynamic scheduling decisions on 
extra observability in the form of load information from bus-
monitors. 

3.3 Benchmarking and comparisons 
In [14] and [15] the hardware kernel, the RTU, is used together 
with a pure software RTOS and is handling the scheduling 
activities. This results in the hardware kernel accelerating the 
software RTOS. Figure 3 illustrates the RTUs placement in the 
system.  

 
Figure 3. Overview of a software and hardware implemented 

real-time kernel solution. [9] 

3.3.1 Benchmarking of application response time 
and clock tick administration 
In [14], the real-time kernel is called “booster” and the 
functionality is reduced to merely consist of the scheduling part 
(not semaphores, flags etc.). It is used together with a RTOS 
implemented in software. Benchmark of a model of a 



telecommunication application running in three different systems 
was performed. The systems were:  

1. A processor supervised by a commercial single 
processor RTOS.  

2. A processor supervised by a RTOS with the booster.  
3. Two processors supervised by a RTOS with the booster.  

Application response time and RTOS overhead for clock tick 
administration was measured with and without data located in 
local or global accessed memory, or cache memory.  
The conclusions were that a real-time kernel in hardware 
(booster) decreases the application response time, a fast memory 
system decreases the difference in using and not using a hardware 
kernel and the clock tick administration is zero when using a 
hardware kernel. 

3.3.2 Comparison of SoC architectures with 
associated RTOS - in hardware, hardware/software 
and pure software 
In [15], the real-time kernel in hardware, here referred to as the 
Real-Time Unit (RTU), was used in a performance comparison 
with two other RTOSes: a pure software Atalanta RTOS2, and a 
hardware/software RTOS composed of part of Atlanta RTOS 
interfaced to a System-on-a-Chip Lock Cache3 hardware 
(SoCLC). The SoCLC is a hardware support to accelerate 
software locks and semaphores in a software RTOS [16]. All 
systems contained three processors running a database application 
with many different task level synchronization scenarios. A 
framework to generate the three system configurations was used. 
In measuring the average-case simulation time, the RTU system 
showed best performance, a 50% speed-up over case performing 
on 6 tasks and 36% speed-up performing on 30 tasks, compared to 
the pure software RTOS. The RTU system also had best 
performance when number of clock-cycles spent on 
communication, context switch and computation was measured.  

3.3.3 Comparison of hardware RTOS and software 
RTOS 
In [17] a performance comparison between the real-time kernel in 
hardware and a corresponding kernel in software, in a 
multiprocessor system, was done. The software kernel was 
especially implemented for this comparison using almost the same 
API as the hardware kernel uses.  
The speed-up achieved with the hardware kernel was 2.6 times. 
Other important results were that the time for creating tasks in the 
software kernel increases with number of tasks while it is constant 
in the hardware kernel. This is because of list management that 
increases with number of tasks in a software kernel.  
It was discovered that the software kernel was faster when tasks 
was created on a master node, since it can draw benefits from 
using system cache in this case while the hardware kernel suffers 
from Peripheral Component Interconnect (PCI) bus access 
latencies. 
                                                                 
2 An open source multiprocessor RTOS developed at the Georgia 

Institute of Technology, USA.  
3 Developed at the Georgia Institute of Technology, USA. 

3.4 Realising special purpose hardware 
components utilising the real-time kernel in 
hardware 
Having the kernel implemented in hardware makes it possible to 
create other hardware components that can benefit from the fact 
that they can be integrated to the kernel in different useful 
aspects. 

3.4.1 Monitoring RTOS kernel activities 
Multiprocess Application Monitor (MAMon) [2] is a non-
intrusive monitor that gives observability into the execution of a 
single- or multiprocessor system supporting the real-time kernel 
in hardware. MAMon is an integrated solution to on-chip 
monitoring of system-level events in real-time systems. The 
observability comes from a probe unit, which is integrated at the 
rtl-level of the hardware kernel, detecting and collecting events 
regarding process execution, communication, synchronisation and 
I/O interrupt activities. Collected events are time stamped and 
transferred to a separate computer system hosting an event 
database and a set of monitoring application tools that shows the 
results graphically.  

3.4.2 Interprocess Communication Support 
[18] describes a hardware implementation of asynchronous 
Interprocess Communication (IPC) in an RTU based architecture. 
It was investigated how performance and message flow in a 
message intense system could be increased by adding some 
functionality, like message priority, to the IPC functions and 
implement it in an RTU architecture. This resulted in an IPC-
RTU, the ordinary RTU with an augmentated instruction set. The 
IPC implementation supported message priority, priority 
inheritance on message arrival and task time-out on message 
send/receive. The IPC administration, sorting message queues etc. 
was placed in the RTU. The conclusions were that it is possible to 
implement IPC in hardware but that the design becomes too big to 
fit into one FPGA. 

3.5 Hardware kernel energy consumption 
In order to study the RTUs impact on system energy 
consumption, an energy characterisation of the RTU was 
performed in [19]. The results obtained showed that the power 
consumption is independent of what function the RTU performs 
and that power consumption during idle periods are 
approximately the same as during system calls. The conclusion 
was that the RTU needs to be power optimised, using techniques 
such as gated clocking, in order to beat a SW based RTOS. For 
applications that use the RTOS functions extensively, a power 
optimised RTOS hardware accelerator, like the RTU, would be 
justified.    

4. RELATED WORK 
The related work section is limited to research projects of hard 
real-time systems.  
The related work of the real-time kernel includes two projects 
also implementing kernel activities in hardware, TRON-project 
and F-timer solution, and research in utilising co-processors to 
accelerate scheduling; special purpose RTOS co-processors or 
standard RTOS co-processors.  



4.1 The TRON-project 
The Real-time Operating System Nucleus project (TRON) with 
the aim of creating an ideal computer architecture, started in 
1984. The Industrial TRON (µITRON) is a subproject of TRON 
and is an architecture for the real-time operating system for 
embedded computers. It is used as the real-time multitasking 
operating system for intelligent objects. [20] 
[21] presents a high performance real-time OS using VLSI 
technology. The solution consists of a hardware part, called 
“silicon TRON”, and a software part, called µITRON. The 
concept is illustrated in figure 4. 

 
Figure 4. The concept of the Silicon OS. [21] 

The hardware part implements the scheduler with the system call 
functions and the software part implements other system call 
functions and interface processes between applications and the 
hardware part. The Silicon TRON together with the µITRON is 
called a “Silicon OS”. Like the CAL kernel, this solution also 
communicates with the CPU with register and interrupts for task 
switch. 
The time measurements on system calls regarding flags and 
semaphores showed that the system call processing time in 
hardware can be reduced to 130 to 1880 times faster than a 
conventional implementation in software. 

The latest article presented in 2003 on µITRON is a pure software 
solution and does not use the hardware part “Silicon Tron”. [22] 

4.2 F-Timer 
[23] presents a hardware architecture for real-time operating 
systems support using special hardware components implemented 
in one FPGA.  
The F-Timer is a co-processor that communicates with the 
microprocessor and releases the processor of the tasks time 
management. The F-Timer hardware architecture handles external 
asynchronous interrupts and scheduling of tasks with priority. All 
tasks are programmed and when the execution time of a certain 
task is reached, the microprocessor is interrupted and the correct 
task is available at the bus. It can handle 32 tasks. 
A similar software solution, based on a microcontroller, was 
created for comparison. Measuring the performance, the 
conclusion was that the software solution was 18 times worse than 
the F-Timer hardware architecture solution. 

4.3 The Spring Scheduling Co-processor 
The Spring scheduling co-processor (SSCoP) is a VLSI (Very 
Large Scale Integration) accelerator for distributed multiprocessor 
real-time systems. It can be used for both static and on-line 
scheduling. The SSCoP accelerates the execution of the critical 
activity of the Spring scheduling algorithms used by the Spring 
operating system kernel. It speeds up the algorithm by three 

orders of magnitude [24]. The resulting reduction in scheduling 
latency will enable real-time systems to handle tasks with shorter 
deadlines compared to scheduling done in software. 
The Spring kernel is for example based on the ideas of integrated 
CPU scheduling and resource allocation in use of the scheduler in 
a planning mode, enhancing the system determinism. There is a 
scheduler on the main system node and an application dispatcher 
for each application node in the system, which is responsible for 
the dispatching for the application tasks. The scheduler and 
applications dispatcher processes are designed to run in parallel. 
Concurrent execution of the scheduler and the multiple 
dispatchers are achieved by reserving a set of tasks for each 
dispatcher, where the scheduler is not free to reschedule the tasks 
reserved for the dispatchers. Each dispatcher has tasks to execute 
while the scheduler is trying to reschedule the remaining tasks to 
guarantee the new task. [25] 
The Spring co-processor is designed to plan work dynamically 
into the future to meet the deadline of currently active tasks. 
Some of the differences between the CAL real-time kernel and 
the Spring co-processor is that it only guarantee that the tasks in 
the executing state are those with highest priority among all the 
tasks in the ready state. [9] 

4.4 MARS 
The Maintainable Real-Time System project (MARS) [26], is a 
distributed computer system that consists of a number of 
autonomous, fail-silent node computers. They are interconnected 
by a real-time network. Each node is a self-contained computer 
with a local real-time clock and an interface to the real-time 
network. It is controlled by the MARS Operating System and 
executes a set of application tasks. Communication among 
components and tasks is achieved by exchanging broadcast 
messages. There is no explicit synchronisation between tasks, all 
component activities are implicitly synchronized using the global 
time. 
The tasks and messages are scheduled prior to the run time of the 
application, statically scheduled, in a way that guarantees that all 
deadlines will be met. 
Special for MARS is a set of actively redundant components, 
combined to form a Fault-Tolerant Unit (FTU). The FTU handles 
the nodes failures. 

4.5 A holistic approach to real-time system 
design 
The research in [27] is focusing on a holistic approach to real-
time system design instead of certain parts. The research project is 
designed in a set of layers where predictable behaviour is a focus 
at every layer. In the hardware layer, the parallel computer 
hardware architecture consists of one main processor and three 
co-processors in an asymmetrical multiprocessor concept: 

• Main processor 

• Kernel co-processor 

• Arithmetic co-processor 

• Data access co-processor 
The main processor is the task processor and it is an 
independently operating control system on which the application 



programs are run. The operating system kernel services are 
migrated out to the specialized kernel co-processor. It recognises 
external signals, administrates time events and monitors access to 
shared variables and synchronisers. An arithmetic co-processor is 
provided to support numerically intensive computation and finally 
there is an external data access processor that supports external 
variables and peripheral device access. This co-processor also 
handles the saving of contents occurring during a context switch. 
The co-processors are connected point-to-point with each other. 

4.6 HARTIK 
HARTIK [28] is a hard real-time kernel for programming robot 
tasks with explicit time constraints and guaranteed execution. It is 
specifically designed to develop predictable robotics applications. 
To adjust to multi-sensor robotic systems and to be flexible in 
expressing timing constraints, HARTIK handles four types of 
tasks; hard tasks, sporadic tasks, soft tasks and non-real-time 
tasks. Also a dynamic pre-emptive scheduling with guarantee is 
used, the system performs a schedulability analysis to see if a 
critical task is to meet its timing constraints and if it is not, the 
programmer is notified. A particular one-to-many 
communications mechanism is used, the Cyclic Asynchronous 
Buffer (CAB), which is designed for the communication among 
periodic activities and eliminates unpredicted delays.  

5. CONCLUSIONS 
Implementing a real-time kernel in hardware makes it possible to 
draw benefits from hardware characteristics such as parallelism 
and determinism.  
The execution time of real-time functions gets deterministic and 
task switch can be performed without any CPU time delay. [6] 
[23] When real-time kernels are implemented in software, one of 
the disadvantages is that the execution time for the service calls 
will have a minimum and a maximum time. The time gap can be 
big and the worst-case time is one of the factors that will decide 
the utilisation factor of the system. The scheduling time varies 
with the number of tasks and scheduling algorithm and must be 
bounded by a pessimistic worst case execution time, which 
decrease the determinism. In hardware, the time gap can be 
designed to be close to 0, which leads to predictable time 
behaviour, simpler timing analysis of the system and almost no 
overhead. It is also easier to debug tasks since different protection 
modes are not required. [29] [10] [15] [30] 
A hardware kernel executes in parallel to the CPU, which relieves 
pressure from the CPU which gets almost 100% execution time 
for the application tasks. There is less software code in memory 
since the functionality is implemented in hardware instead. [7] 
[23] 
A software OS will generate a clock tick interrupt to the CPU 
when it is executed. Also when the lists of tasks (queues) are 
worked at and new periodic delay times are calculated for the 
tasks. With the hardware kernel in the system, it checks all queues 
concurrently and only generates an interrupt to the CPU when 
there is to be a task switch. [29] [31] 
Another advantage of having the kernel in hardware is the 
possibility to use complex scheduling algorithms, unlimited of 
different queue types without any performance loss. Also there is 
an improved understandability and complexity reduction when the 
system is divided into parts. [29] [10]  

Hardware based RTOS is not energy efficient compared to 
software RTOS. Even during idle periods there are big amounts of 
power wasted due to unwanted activity triggered by the clock. 
[18] Power consumption of FPGAs is not ideal, when low power 
design is an issue. [23] 
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