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ABSTRACT
Energy consumption of software is becoming an increas-
ingly important issue in designing mobile embedded systems
where batteries are used as the main power source. As a con-
sequence, recently, a number of promising techniques have
been proposed to optimize software for reduced energy con-
sumption. Such low-power software techniques require an
energy consumption model that can be used to estimate or
predict the energy consumed by software. We propose a
technique to derive an accurate energy consumption model
at the instruction level, combining an empirical method and
a statistical analysis technique. The result of the proposed
approach is given by a model equation that characterizes en-
ergy behavior of software based on the properties of the in-
structions. Experimental results show that the model equa-
tion can accurately estimate the energy consumption of ran-
dom instruction sequences, with an average error of 2.5 %.

Keywords
Low-power systems, instruction-level energy model, regres-
sion analysis

1. INTRODUCTION
Energy consumption of software has recently emerged as an
important metric of system performance with the increas-
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ing requirement for low-energy computing. Especially for
embedded systems, there is a high demand for optimization
techniques that enable energy reduction for software, since
an increasing number of applications are powered by batter-
ies. Therefore, recent studies have been focusing on develop-
ing techniques to reduce the energy consumption at various
levels, including program optimization for low power [10,
15, 20]. Such low-power program optimization techniques
require a detailed cost model represented in terms of energy
consumption to direct the decisions on program transforma-
tions.

We propose a technique to build an accurate energy con-
sumption model at the instruction level, which can be used
in estimating the energy consumption by a given sequence
of instructions. For the energy consumption model to be ap-
plicable to a program optimization framework, it must have
the following properties.

� Accuracy: The model should be able to estimate the
energy consumption accurately.

� Simplicity: The model should be constructed using sim-
ple properties visible at the instruction level, so that it
can be easily integrated into a program optimizer.

� Accountability: The model should be able to identify
the signi�cance of each factor that a�ects the energy con-
sumption, so that it can direct the optimization.

� Retargetability: The model building framework sho-
uld be general enough to be applied to a wide range of
di�erent target processors.

To construct the energy consumption model, we �rst assume
a model equation which is a linear combination of the factors
that can possibly a�ect the energy behavior of instructions.
Then we derive the unknown parameters of this equation
using a \black-box" or \stimulus-response" approach, where
we apply a set of test programs (stimulus) and observe the
energy consumption measured from the real hardware (re-
sponse). For this purpose, a statistical analysis technique
called linear regression analysis is used to �t the model equa-
tion to the actual energy behavior of the target processor.

The proposed approach gives a detailed instruction-level
characterization of the energy behavior of processors, en-
abling a simple but yet accurate estimation of software en-
ergy consumption. We expect that this information will



provide a base for aggressive program optimization for low
power, which becomes increasingly important in embedded
systems design. Furthermore, the availability of such a model
is essential in developing a systematic optimization frame-
work that considers di�erent optimization criteria at the
same time, such as code size, execution time, and energy
consumption.

The major contributions of this paper are as follows. First,
the technique provides a systematic approach for estimat-
ing software energy consumption based on a simple linear
model equation. Second, the resulting energy model can be
used to identify important factors that have signi�cance in
the energy consumption by instructions. Finally, the pro-
posed model building approach is generally applicable to a
wide variety of processors, since it is based on an empirical
method that does not require information about the proces-
sor implementation.

In this paper, we focus on estimating the energy consumed
inside the core of a RISC-style microprocessor by character-
izing the instructions executed on the processor. However,
we believe that a similar approach can be applied to model
the system-level energy behavior, by taking into account var-
ious components such as memory devices and peripherals.

The rest of the paper is organized as follows. Section 2 dis-
cusses previous works related to our research. In Section 3,
we describe in detail the proposed approach for deriving an
instruction-level energy consumption model. Our experi-
mental setup and results are presented in Section 4. Finally,
Section 5 concludes the paper by outlining possible future
extensions to this work.

2. RELATED WORK
Recently, attempts have been made to construct energy con-
sumption models for software. The previous approaches are
based either on functional simulation of the processor, or on
direct measurement of energy. In simulation-based methods,
energy consumed by software is estimated by calculating
the energy consumption of various components in the target
processor through simulations at di�erent levels. For exam-
ple, Mehta et al. [14] propose a power pro�ler that records
the information of the previous and the current states of
functional units, as well as the correlated switching capac-
itance. As an extension to this approach, Chen et al. [6]
present a technique that can estimate the cycle-level energy
consumption data based on hierarchical decomposition of
the architectural features of the target processor. A more
generalized form of an RT (register transfer) level energy
simulator called SimplePower is proposed in [22]. While the
above approaches are concentrated on modeling the target
architecture, Klass et al. [12] analyze the e�ect of sequential
execution of di�erent instructions, using a gate-level analysis
tool. In their approach, the inter-instruction energy e�ect is
modeled by additional energy consumption observed when
each instruction is executed after a NOP instruction. A
common drawback of these simulation-based energy models
is that they do not provide a mechanism that can calcu-
late the energy consumption of software directly from the
instruction sequence.

On the other hand, in the measurement-based approaches,

the energy consumption of software is characterized by ex-
amining the data obtained from real hardware. The advan-
tage of the measurement-based approaches is that the re-
sulting energy model is close to the actual energy behavior
of the processor, because the data is acquired from the hard-
ware itself. Tiwari et al. [19] describe a technique to model
the energy cost of software, based on the average current
drawn by the target processor. In this approach, the energy
model is given by a power cost table that records the unique
base cost for each instruction and the inter-instruction ef-
fects. The base cost for an instruction is de�ned as the
average current drawn by this instruction executed repeat-
edly in a tight loop, multiplied by the number of cycles
taken by each instance of the instruction. On the other
hand, the inter-instruction e�ect is de�ned as the additional
power cost incurred by executing di�erent instructions se-
quentially. However, recording this inter-instruction e�ect
signi�cantly increases the size of the power cost table, which
requires O(N2) space where N is the number of instructions
in the instruction set. To rectify this problem, a technique to
group the instructions into common classes [13] is proposed.
These techniques provide a simple framework for software
energy estimation by summarizing the energy consumption
by instructions in the form of a table. However, by relying
on the average current, they largely ignore the detailed im-
pacts of various factors that a�ect the energy consumption
at the instruction level. Moreover, these techniques do not
provide the information about the energy variation due to
various aspects of instructions such as the instruction fetch
address and the operand speci�ers.

In contrast to the above approaches based on the aver-
age current, Russell and Jacome [16] present a software en-
ergy estimation model based on instantaneous power mea-
sured by a digitizing oscilloscope. A technique to derive
more �ne-grained energy consumption is proposed by Chang
et al. [4], where they measure the cycle-level energy con-
sumption using a measurement hardware developed in the
research. They also analyze the impact of various proper-
ties of instructions on the energy consumption, based on
the measurement. Using this approach, it is shown that the
energy consumption of software is dependent on the prop-
erties of instructions, such as register numbers, immediate
operands, etc. However, their instruction-level energy char-
acterization of software does not give a framework that can
be used to estimate the energy consumption of a given se-
quence of instructions.

To explain the complex energy behavior of processors, statis-
tical analysis techniques are employed in energy estimation
of software. Gebotys et al. [8, 9] propose an energy esti-
mation and optimization technique for VLIW processors,
incorporating a statistical method for analyzing the func-
tional unit usage patterns of instructions. This approach
tries to predict the energy consumption of software using re-
gression analysis. The prediction is used to minimize the en-
ergy consumption with respect to the average current drawn.
Recent studies by Brandolese et al. [2] and Sami et al. [17]
also present techniques to estimate the software energy con-
sumption using a combination of functional decomposition
and a statistical analysis technique. These approaches are
focused on modeling the energy consumption in terms of
the usage of various functional units, mainly targeted for
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VLIW processors. The technique presented in this paper is
distinguished from the above approaches in that we concen-
trate on the properties of instructions rather than on the
functional units inside the processor.

In this paper, we aim at deriving an accurate energy con-
sumption model at the instruction level, combining an em-
pirical approach and a statistical analysis technique. By
using an empirical method, we eliminate the need for de-
tailed information about the target processor implementa-
tion. At the same time, the empirical approach provides re-
targetability of the model building framework, since it is not
dependent on a speci�c target processor. By using a statis-
tical analysis technique, we mathematically summarize the
relationship among a number of factors that interact in a
complex manner, each contributing to software energy con-
sumption.

3. INSTRUCTION-LEVEL ENERGY
MODEL

The energy consumed in a microprocessor is dependent on
the internal organization and implementation of the proces-
sor. Therefore, one possible approach for estimating the
energy consumption of software is to perform a circuit-level
simulation of the target processor with the program as the
input to the simulation. However, this simulation-based en-
ergy estimation is not practical for program optimization for
reduced energy consumption for a number of reasons. For
example, evaluating the impact of even a slight change in an
instruction sequence requires rerunning the whole simula-
tion process, which has substantial complexity. This makes
the simulation-based method inapplicable to program opti-
mization, which requires frequent cost evaluation of a num-
ber of optimization candidates. Moreover, the circuit-level
implementation data for o�-the-shelf microprocessors are
not generally available, which makes the simulation-based
approach more diÆcult to apply.

Therefore, to obtain an energy consumption model that can
be incorporated into a program optimization framework, we
propose a technique to derive an accurate energy consump-
tion model at the instruction level. The proposed energy
model can estimate the energy cost of software using the
properties of instructions. Figure 1 shows our approach
for deriving the instruction-level energy consumption model.
Instead of relying on information about the processor imple-
mentation, we use an empirical approach, where the model
is based on the actual energy consumption data measured

from real hardware. That is, we regard the implementation
of the target processor as a \black box" whose internals are
not known, and assume that the only accessible information
is the responses of this black box for a set of stimuli. In other
words, we measure the energy consumption of the target pro-
cessor when it executes a set of test programs, and try to
derive an energy model by reasoning about the relationship
between the instruction sequence and the measured energy.
This empirical method signi�cantly simpli�es the process of
model construction, since it does not require modeling of
complex internal circuits of the target processor. Further-
more, the proposed method also enhances the retargetability
of the approach, since the technique is not dependent on the
implementation of a speci�c processor. Of course, the whole
measurement procedure should be repeated when the en-
ergy consumption model is to be retargeted to a di�erent
processor. However, the model building framework itself is
retargetable in the sense that the technique to derive the
model equation can be applied to di�erent processors with-
out any major modi�cation.

Note, however, that our approach is not con�ned to measure-
ment-based construction of the energy model. That is, the
technique can also derive the energy model using the data
obtained from energy simulators that give information about
cycle-level energy consumption, when the simulator for the
target processor is already available. In this case, the pro-
posed technique signi�cantly reduces the time complexity of
energy estimation, since once the model has been derived,
we can estimate the energy consumption without the need
for running the simulation for the instruction sequence un-
der investigation. Also, the technique can provide the in-
formation about the various factors that a�ect the energy
consumption of instructions in an abstract form of a model
equation, which is impossible when we rely entirely on sim-
ulation in estimating the software energy consumption.

To derive the energy model by summarizing the data gath-
ered from measurement or simulation, we use a statistical
analysis technique called regression analysis [5]. First, we
assume a hypothetical model equation with unknown pa-
rameters, which is a function of model variables de�ned in
terms of various aspects of instructions. The model variables
are the factors that may a�ect the energy consumption of
instructions, whose values are extracted from the test pro-
grams by examining the instruction sequence. Then, the
regression analysis determines the parameters of the model
equation by investigating the combinations of the measured
energy and the values of the model variables. This pro-
cedure is called model �tting [5], whose result is a �tted
model equation that explains the relationship between the
model variables and the energy behavior of the target pro-
cessor. Using this �tted model equation, we can estimate
the energy consumption of a given instruction sequence. In
addition, the regression analysis will produce a set of statis-
tical results, which can be used in re�ning the model as well
as in measuring the quality of the �tted model equation.

In Section 3.1, we describe how the hypothetical model equa-
tion is constructed at the instruction level by introducing a
set of energy formulas and model variables. In Section 3.2,
we explain how we can derive the parameters of the model
equation using linear regression analysis.
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3.1 Energy Model Equation
In general, the energy consumption of a CMOS processor
is dependent on the switching activity in a clock cycle as
well as the current charge/discharge state of the circuit [4].
Speci�cally, the energy consumed in a clock cycle is propor-
tional to (1) the number of bit ips in the internal signals
in that clock cycle, and (2) the number of logical 1's (or
the number of 0's, alternatively) in the signals. Since the
internal signals in a processor are controlled by instruction
execution, we conjecture that the energy consumption can
be modeled by a combination of properties visible at the
instruction level. This motivates us to de�ne the model
equation in terms of the currently executing instruction and
the previously executed instruction at various stages in the
execution pipeline.

More generally, for a pipelined processor, the energy con-
sumed in a clock cycle is determined by the instructions
that currently occupy each of the pipeline stages and those
that previously occupied each of the stages. Assuming the
energy consumed in a clock cycle is the sum of the energy
consumed in all the pipeline stages, we calculate the energy
consumption for a clock cycle by a simple equation. Let S
be the set of all the pipeline stages and Is(i) the instruction
occupying pipeline stage s in clock cycle i. Then the energy
consumed at clock cycle i is given by

Ei =
X

s2S

es(Is(i); Is(i� 1)) ; (1)

where es(X;Y ) denotes the energy consumed in pipeline
stage s when instruction X is executed in that stage, pre-
ceded by instruction Y .

For example, consider the pipelined execution scenario shown
in Figure 2, where we have three stages: IF (instruction
fetch), ID (instruction decode), and EX (execute). Assume
that an instruction sequence of A, B, C, D, and E is executed
sequentially. The energy consumed in clock cycle 4 is calcu-
lated by

E4 = eIF(D; C) + eID(C; B) + eEX(B; A) : (2)

We model the energy consumed at pipeline stage s by
instruction X executed after instruction Y , denoted by
es(X;Y ), using the properties of instructions X and Y .
Speci�cally, we de�ne a set of model variables in terms of
the binary representation of the factors that are assumed to
inuence the energy consumption. Examples of instruction-
level model variables include:

� instruction fetch address, which can a�ect the energy

consumption of the address bus when the instruction is
fetched,

� instruction bit encoding, which can a�ect the energy con-
sumption of the instruction register and the pipeline
latches,

� operand speci�ers, such as register numbers and the im-
mediates, which can a�ect the energy consumption of
instruction decoding and execution, and

� data values, which can a�ect the energy consumption of
arithmetic and logical execution units.

Assume that we have identi�ed all the model variables that
have signi�cance in the energy consumption. If we let V be
the set of all the model variables, es(X;Y ) is given by

es(X;Y ) = B
X
s +
X

v2V

f
X
s (vX ; vY ) ; (3)

where vX and vY denote the model variable v de�ned by
instructions X and Y , respectively. The term BX

s gives the
base cost for instruction X at pipeline stage s, which corre-
sponds to the portion of the energy consumed by instruction
X at stage s, regardless of the previous state of the pipeline.
On the other hand, the function fXs (vX ; vY ) gives the varia-
tion of energy consumption according to the model variable
v de�ned by the two instructions X and Y .

Based on the observation that the energy consumption is
proportional to the number of bit ips and the number of
logical 1's in the internal signals, we de�ne the energy vari-
ation function as

f
X
s (vX ; vY ) = H

v=X
s � h(vX ; vY ) +W

v=X
s � w(vX) ; (4)

where h(i; j) denotes the Hamming distance between two bi-
nary numbers i and j, and w(i) denotes the weight (number

of 1's) of a binary number i. In Equation 4, H
v=X
s andW

v=X
s

are unknown coeÆcients that characterize the energy con-
sumption of instruction X at pipeline stage s, with regard
to model variable v.

Note that we have a linear equation system for energy con-
sumption in a clock cycle, with a number of unknown pa-

rameters, i.e., H
v=X
s 's, W

v=X
s 's and BX

s 's. We call these
parameters characterizing parameters, since they describe
the characteristics of the energy behavior of the target pro-
cessor. In the next step of our proposed approach, the best
estimates of these unknown parameters are determined by
linear regression analysis.

It is possible that the number of such characterizing parame-
ters is very large, depending on the number of pipeline stages
and the number of di�erent instructions. Moreover, the set
of the characterizing parameters possibly includes those that
are insigni�cant or even irrelevant to energy consumption,
which possibly degrade the model accuracy. Therefore, to
rectify this problem, the regression analysis uses two tech-
niques based on statistical model testing, in addition to de-
riving the values of the characterizing parameters. First, we
identify those parameters that have little or no signi�cance
and eliminate them, to reduce the number of characterizing
parameters and enhance the model accuracy at the same
time. Second, we merge those characterizing parameters for
all the instructions or for a group of instructions, when the



behavior of di�erent instructions in the same group is sim-
ilar with respect to one or more model variables. These
techniques, together with the process of deriving the values
of the characterizing parameters, are presented below.

3.2 Regression Analysis for Energy Model
Regression analysis is a statistical method for investigating
functional relationships among variables [5]. The relation-
ship is expressed in the form of an equation or a model
connecting a response variable with one or more predictor
variables. That is, when we denote the response variable
by y and the set of predictor variables by x1; x2; : : : ; xp,
the true relationship between y and x1; x2; : : : ; xp can be
approximated by a regression model

y = f(x1; x2; : : : ; xp) + " ; (5)

where " is assumed to be an error representing the discrep-
ancy in the approximation. In our case of deriving the en-
ergy model, the response corresponds to the energy com-
sumption measured in each cycle, and the predictors to the
Hamming distances and the weights of the model variables. 1

When the relationship between the response and the set of
predictors is assumed to be linear, the method for construct-
ing the regression model is called linear regression analysis.
That is, a linear regression model is expressed by an equa-
tion

y = �0 + �1x1 + �2x2 + � � �+ �pxp + " ; (6)

where �0, �1, : : : , �p are constants and called regression co-
eÆcients. The best estimates of these regression coeÆcients,
i.e., the ones that lead to the model equation that best ex-
plains the relationship between the response and the pre-
dictors, are determined by investigating a number of sample
combinations of the response and the predictors. The most
common method used in �nding the regression coeÆcients
is called the least square method [5], which is the one that
we use in our analysis.

In our case, �nding the best estimates of the regression co-
eÆcients corresponds to determining the values of the char-
acterizing parameters in our model equation. Compared to
many other applications of statistical analysis, our case lends
us the bene�t of being able to freely set the values of the
predictor variables, by using carefully written test programs.
This means that we can determine a subset of characterizing
parameters independently of the others, and use the values
of these parameters later in the analyses for other param-
eters yet to be determined. For example, we can change
the instruction fetch address while �xing all the other fac-
tors such as operand speci�ers and all the data values, by
repeatedly executing the same instructions. Then we can
determine the impact of register numbers, for example, by
executing the same instructions with di�erent register num-
bers but with all the other factors �xed. Here, we calculate
the value for the response variable by subtracting the vari-
ation due to the changes in the fetch address, which has
been previously analyzed, from the measured energy value.
Similarly, using the set of previously determined values of

1We also introduce a set of indicator or dummy variables [5]
that can only take a boolean value, to express the base cost
for each instruction in the form of a linear combination.

characterizing parameters, we can analyze the other param-
eters separately from the others. This stepwise derivation
of characterizing parameters not only enhances the accu-
racy of the model by reducing the possible errors incurred
in regression, but also keeps the complexity of the regression
analysis low by decomposing the whole problem into several
subproblems.

In addition to deriving the values of the characterizing pa-
rameters, we identify and remove those predictors that have
little or no signi�cance in the energy consumption, based
on the statistical measures given by the regression analysis.
This is done by testing a null hypothesis H0 : �i = 0 against
the alternative H1 : �i 6= 0 for each regression coeÆcient �i.
The best model is selected using a model testing technique
called the t-test [5]. Intuitively, to assess the signi�cance of
each predictor, we compare the model with a speci�c char-
acterizing parameter set to zero with another model with
the parameter set to the value derived from the regression
analysis. Removing the predictors that are insigni�cant or
even irrelevant to the energy consumption increases the ac-
curacy of the resulting model equation, and also maintains
the model complexity at a reasonable level.

In addition, we can reduce the complexity of the model equa-
tion further by merging speci�c characterizing parameters
for all the instructions, or for a group of selected instruc-
tions. This is done by testing a null hypothesis H0 : �i =
�j = � � � = �k against the alternative H1 : �i 6= �j 6= � � � 6=
�k for a combination of selected regression coeÆcients �i, �j ,
: : : , �k. The model that best explains our measured energy
values is selected based on a model testing technique called
the F -test [5]. Intuitively, to check if a group of instructions
should be merged or not with respect to a speci�c character-
izing parameter, we compare a model with the same char-
acterizing parameters for di�erent instructions and another
model with di�erent characterizing parameters for di�erent
instructions. For example, we naturally assume that the im-
pacts of fetch address or register numbers are identical for all
the instructions, while the impact of data values is di�erent
from one instruction to another. For our target processor,
this assumption is validated using the technique explained
above, in the regression analysis phase of the model deriva-
tion.

Besides the �tted model equation, the regression analysis
also produces statistical measures that can be used to as-
sess the validity of the model. The common measure of the
quality of �t, i.e., the accuracy of the resulting model equa-
tion, is the coeÆcient of determination denoted by R2 [5].
Intuitively, it is interpreted as the proportion of the total
variability in the response variable that is accounted for by
the set of predictor variables. In the rest of this paper, we
will use this R2 value for evaluating the quality of our energy
model equation.

4. EXPERIMENTAL RESULTS
To demonstrate the validity of our approach for deriving an
energy consumption model at the instruction level, we per-
formed a set of experiments. In Section 4.1, we apply our
proposed technique to derive the model equation for our
target processor ARM7TDMI [1], using the cycle-accurate
high-precision measurement hardware described in [4]. Then,
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in Section 4.2, we estimate the energy consumption of a
randomly-generated program using the model equation de-
rived from our analysis.

4.1 Energy Model for ARM7TDMI Processor
Core

We applied our proposed technique for energy model con-
struction to the ARM7TDMI processor core. The target
processor has a three-stage pipeline similar to the one shown
in Figure 2. We derived an energy consumption model for
the ARM data-processing instructions that have one of the
following two instruction formats [7].

op Rd, Rn, Rm
op Rd, Rn, #imm

Here, op speci�es the opcode for the instruction, and Rd,
Rn, and Rm speci�es the destination register, the �rst source
operand register, and the second source operand register,
respectively. Instead of the second source operand register,
an immediate value can be designated as the second operand
with the #imm �eld speci�ed.

We de�ned a set of model variables at the instruction level,
in terms of (1) instruction fetch address, (2) register num-
bers, (3) immediate operand, and (4) data values. We mea-
sured the energy consumption by executing a set of test
programs on the target processor, to derive the values of
various characterizing parameters in the model equation.

As previously mentioned in Section 3.2, we decompose the
problem into several subproblems and derive the di�erent
characterizing parameters in a number of steps, for the sake
of model accuracy and analysis simplicity. Figure 3 illus-
trates this problem decomposition using sample instruction
sequences similar to the ones used in the derivation of char-
acterizing parameters. In the �rst set of test programs, we
executed the same instructions at di�erent program loca-
tions with the same operand speci�ers and the same data
values, to derive the parameters for the Hamming distance
and the weight of the instruction fetch address (denoted

by FA). Using the regression analysis, we derived H
FA=�
IF =

2:7164 (pJ) andW
FA=�
IF = �3:4378 (pJ), which can be merged

for all the instructions under consideration. In this case, the
coeÆcient of determination was R2 = 0:9814, which means
that the model variable FA was capable of explaining more
than 98 % of the energy variation due to the changes in
the instruction fetch address. The results indicate that the

Table 1: Base Costs for Di�erent Instructions

Pipeline Stage
Instruction IF ID EX

add 300.7668 317.0254 327.9964
sub 298.1403 200.3411 189.3604
and 300.1020 272.6019 330.8285
eor 298.5258 419.6961 332.0663

H
op=�
s 3.3085 11.7114 0.3015

(units: pJ, R2 = 0:9699)

energy consumption is proportional to the number of bit
switches in the fetch address, and negatively proportional
to the number of 1's in the fetch address. With this in-
formation available, we can apply program optimization for
low energy such as code replacement, where frequently ex-
ecuted instructions are placed in program addresses with
small Hamming distances and a large number of 1's.

To derive the base costs for various instructions at each of
the three pipeline stages, we executed another set of test
programs. The test program consists of an instruction mix
of di�erent instructions, with the same operand speci�ers
and the same data values for all the instructions. To elim-
inate the e�ect of changes in the instruction fetch address,
we calculated the energy variation due to the fetch address
using the parameter values derived in the previous analy-
sis step, and subtracted it from the measured energy value.
Table 1 presents the results from our regression analysis for
four sample instructions. 2 We also analyzed the impact of
the opcode on the energy consumption, and the results show
that the energy is proportional to the Hamming distance of
the opcode, as shown in the last row of the table. The re-
sults indicate that the energy consumed at the IF stage is
not substantially di�erent from one instruction to another,
as shown in the second column of the table. However, in
stages ID and EX, the energy consumption of di�erent in-
structions are substantially diverse. For example, the sub

instruction consumes much less energy in the ID and the EX
stages than the other instructions, while the eor instruction
consumes much more energy in the ID stage. This large dif-
ference of the base costs for di�erent instructions and the
tendency of increase in the energy consumption with the

2Due to the space limitation, we only present the results for
four instructions, although we derived the parameters for
all the data-processing instructions in the ARM instruction
set [7].



Table 2: Parameters for Register Numbers

Pipeline Stage
Variable Type IF ID EX

Rd H 0.8632 7.6405 0.8358
W 0.6373 2.7714 0.5032

Rn H 1.3448 3.9167 1.0192
W 1.5510 3.4022 1.1363

Rm H 0.8676 6.5098 1.4356
W 2.2035 3.4690 �0:4734

(units: pJ, R2 = 0:9206)

increase in the Hamming distance of the opcode indicates
that the energy consumption of software can be reduced by
applying instruction selection and/or instruction scheduling
techniques tailored for low energy [18, 21]. Speci�cally, the
energy consumption can be signi�cantly reduced by select-
ing the instructions with low base costs when more than
one choices are possible for the same execution semantics.
Moreover, careful scheduling of instructions can save a sub-
stantial portion of energy consumed in the processor core, by
reducing the number of bit switches in the opcodes of adja-
cent instructions. For example, reducing one opcode bit ip
on average will save approximately 15.32 pJ of energy per
instruction (the sum of savings in the three stages), which
amounts to about 1.2 % of the total energy consumed in
the processor core. Although this is a small fraction of the
energy consumed by the processor core, much more energy
savings are expected when we consider di�erent parts of the
system as well, e.g., instruction cache, main memory, and
the interconnect bus.

To derive the characterizing parameters for register num-
bers, we executed still another set of test programs where
the same instructions are executed with changes in the reg-
ister numbers, i.e., Rd, Rn, and Rm. Again, to eliminate the
e�ects of instruction fetch addresses, we calculated the vari-
ation due to the fetch address and subtracted it from the
measurement data. Table 2 summarizes the results from
our regression analysis. We successfully derived the param-
eter values for the Hamming distance and the weight of each
register number in each of the pipeline stages, which can be
merged for all the instructions under consideration. The re-
sults indicate that most of the energy variation due to the
register numbers are in the ID stage, as can be induced from
the large coeÆcient values in the fourth column of the table.
Especially, the most signi�cant factors are the Hamming dis-
tances of Rd and Rm, which have the largest coeÆcient values.
This information can be used in program optimization tech-
niques such as register assignment and/or register relabeling
for low energy [3, 11]. Speci�cally, if we reduce one bit ip in
each of the three register numbers on average, the resulting
energy savings will be approximately 24.43 pJ per instruc-
tion, which corresponds to about 1.9 % of the total energy.
Again, the expected energy savings by the techniques for
reducing bit switches in the register numbers become much
larger when we take into account the memory subsystem,
since the register numbers a�ect the energy consumption of
various levels of memory hierarchy and the interconnect bus
as well.

Table 3: Parameters for Data Values

Pipeline Stage
Instruction Variable Type ID EX

src1 W 3.9338 6.6084
add src2 W 0.1757 7.3158

dest W { 3.6336
src1 W 8.8073 5.9504

sub src2 W 9.5822 8.3584
dest W { 4.8764
src1 W 8.6790 8.6559

and src2 W 0.4085 9.3909
dest W { �2:3031
src1 W 2.7462 7.0900

eor src2 W �1:3005 7.5799
dest W { 2.8201

(units: pJ, R2 = 0:9706)

Similarly, we executed a set of test programs with random
data values to derive the coeÆcients for data values. Table 3
shows the results from our regression analysis for four sample
instructions, where src1 and src2 denote the �rst and the
second source operands, respectively, while dest denotes the
destination operand. The results show that the variables
de�ned in terms of data values have signi�cance only in the
weights, not in the Hamming distances. This phenomenon is
presumably due to the precharge-and-evaluation scheme [4]
used in the dynamic CMOS implementation of the target
processor. Note that the weight of the destination operand
in the ID stage is omitted in the table since the computation
result will not be generated until the EX stage. Also note
that, unlike the results from the previous analysis steps,
di�erent instructions have di�erent parameter values for the
model variables de�ned in terms of data values. This is due
to the fact that di�erent instructions behave di�erently with
respect to data values, according to the operation speci�ed
by the instructions. We conjecture that this di�erence in
energy behavior is due to the di�erent ways of utilizing the
functional units by di�erent instructions.

Likewise, we performed regression analysis on the impacts of
the immediate operand, which turned out to have only sig-
ni�cance in the Hamming distance in the IF and ID stages.

The coeÆcient values derived are H
imm=�
IF = 4:0638 (pJ),

and H
imm=�
ID = 8:9803 (pJ), respectively, with the R2 value

of 0.9815.

4.2 Program Energy Estimation
To show the usefulness of our energy consumption model in
estimating the energy consumed by an instruction sequence,
we implemented an energy consumption analyzer. The an-
alyzer takes an assembly source program (or a binary pro-
gram) as its input, and estimates the energy consumption
of the given instruction sequence in each clock cycle. The
analyzer �rst extracts the values of the predictor variables
by examining the instruction sequence. 3 Then it calculates
the energy consumption at each clock cycle using the model

3In deriving the values of the predictor variables de�ned in
terms of data values, we assumed that the initial values in
the registers are known a priori.
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Figure 4: Comparison between estimated and mea-

sured energy.

equation and the values of the characterizing parameters
previously determined by the regression analysis.

For the experiments, a sample program was generated that
contains a random mixture of ARM data-processing instruc-
tions, with the operand speci�ers, i.e., the register numbers
and the immediates, are chosen at random. Also, the data
values are randomly generated and prepared by the sample
program prior to the execution of the instruction sequence
under investigation. Figure 4 compares the estimated en-
ergy with the actual energy consumption measured on the
hardware, for the same sample instruction sequence that is
executed for 40 clock cycles.

The results show that the proposed approach provides an
accurate energy estimation, which is veri�ed by the fact that
the graph for the estimated energy closely resembles that of
the measured energy. The coeÆcient of determination (R2)
value in this case is 0.9893, which means that more than
98 % of the variation in the measured energy is captured by
our estimation equation. The total of the measured energy
consumption for the 40 clock cycles is 5.2352 nJ, while that
of the estimated energy is 5.2993 nJ. The error of this total
energy is less than 1 %. We also calculated the error ratio
in each cycle given by

re =
jestimation�measurementj

measurement
; (7)

whose average value is 0.0251, which means that the error of
the energy estimation by our model equation was on average
2.5 % of the total energy. Besides, the maximum of the error
ratio is 0.0633, which means the error was at most 6.33 %.
The error comes from a number of sources, including the
following.

3
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Figure 5: Example of pipeline stalls.

� The energy consumption may not be perfectly linear to
the Hamming distances and the weights of the model
variables.

� The model might have missed one or more of variables
that have signi�cant impacts on energy consumption.

� The quantization error inherent in the measurement hard-
ware used in the model construction may cause inaccu-
racies in deriving the characterizing parameters.

5. CONCLUSIONS AND FUTURE WORK
We have proposed a technique for deriving an accurate en-
ergy consumption model at the instruction level. The pro-
posed approach combines an empirical method and a statis-
tical analysis technique called regression analysis. The result
of the proposed approach for deriving the energy model is
given in the form of a model equation, which can be used
to estimate the energy consumption of a given instruction
sequence using the properties of the instructions. The en-
ergy consumption model described in this paper enables a
simple but yet accurate method for estimating the energy
consumption at the instruction level. The availability of this
instruction-level energy model will provide a basis for vari-
ous energy reduction techniques for embedded software, by
identifying the factors that contribute to energy consump-
tion, and further indicating the signi�cance of each factor.
Another advantage of the proposed approach is that the
model derivation can be retargeted to a wide variety of pro-
cessors, since it does not require information about the pro-
cessor implementation. In other words, the proposed tech-
nique can be used to derive energy model equation for an
arbitrary processor, provided that a mechanism is available
for obtaining cycle-level energy consumption data. For this
purpose, an energy simulator can be used as well as a mea-
surement hardware similar to the one used in this paper.

We applied our proposed method to derive an energy con-
sumption model for the ARM7TDMI processor core, to ver-
ify the validity of the approach. The case study shows that
an accurate energy model can be derived from instruction-
level characterization of software, using the technique pro-
posed in this paper. The results from our experiments in-
dicate that our energy model can accurately estimate the
energy consumption of a given instruction sequence. The
statistical results show that more than 98 % of the energy
variation can be explained by the derived model equation.
The maximum error ratio of the prediction was 6.3 %, while
the average was approximately 2.5 %.

We are currently investigating a technique for analyzing the
e�ect of pipeline stalls, as shown in Figure 5. In the �g-
ure, instructions B and C are stalled in the pipeline stages



ID and IF, respectively, because instruction A executes for
more than one clock cycle in the EX stage. To analyze
the energy consumption in the case where one or more in-
structions are stalled in the pipeline, we augment the model
by de�ning the stall state of each pipeline stage as a spe-
cial case where no instruction is occupying the stage. With
this extension, we expect to be able to model the energy
consumption of multi-cycle instructions such as a multiply
instruction, whose execution cycle in the EX stage is depen-
dent on the data values that it operates on. In addition, it
will allow us to model the stalls due to the pipeline ushes
by branch instructions and pipeline hazards due to various
reasons such as data dependency and resource conicts.

We are also investigating a technique for modeling load/store
instructions. Since the energy consumed by the execution of
these memory reference instructions is dependent on whether
the access hits or misses in the cache, we need to integrate a
technique for analyzing the cache behavior. Moreover, since
the energy consumption is also dependent on the character-
istics of memory devices, we are checking the feasibility of
incorporating an empirical or analytical energy consumption
model for memory devices.
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