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Abstract We focus on the problem of efficient resource usage with

preserved analysis accuracy of embedded Product Line Ar-
itectures (PLAS) [3], like, e.g., control software in i&as

and consumer electronics. In order to facilitate PLAs —soft

ware components must be used (and reused) across different

¥ardware platforms and products.

To maximise reuse in these systems, components need to
-~ . be flexible. Hence, reusable components often include behav
Isting tQOIS and methods do not guarantee efficient reSoUG8urs that are only used in a few configurations. These behav-
usage in these systems. . lours cannot easily be removed (e.g., by dead-code elimina-

We present a method that enables resource-efficieff) pecause they are offered by interfaces and cannetbe r
component-based control software by extending hybrid-propy, o ed by methods based on analysis of components in isola-
erty prediction methods (i.e. combining static and dynamig,, Hence, most existing property prediction approaines
techniques) to becontext-dependentenabling less pes- g ey pessimistic, and, thus, design-for-reuse tendsarkw
simistic extra-functional component property predic8@md,  o4ainst accurate WCET predictions (and, therefore efficien

Many embedded systems for vehicles and consum
electronics critically depend on efficient, reliable con-
trol software, and practical methods for their production.
Component-based software engineering for embedded s
tems is currently gaining ground since variability, reugip
and maintainability are efficiently supported. However, ex

hence, improved resource utilisation. resource utilisation) in existing models and approaches.
In previous work [4] we showed how a component model,
1 Introduction custom-made for embedded control-systems [5, 6], can be

combined with novel methods for architecture-based, com-

Increasing reliability and efficiency of software inten'positional reasoning, modelling, and prediction [7, 8, 9].
sive dependable embedded control systems is critical [1]. |n this paper, we propose the use afntext-dependent
Hence, industry demands practical and accurate engimeerifybrid property predictiormethods to make efficient use of
approaches to model, predict, and verify both core softwargstem resources. We extend the existing hybrid prediction
functiona”ty and extra'functional aspects Of the Sofma.r methods by Considering the Componﬂmge_context We

Component-Based Development (CBD) is successfullise Dependable Finite State Machines (DFSMs) to facili-
practised to achieve enhanced software reuse and maintagite compositional, architecture-based, reasoning abymit
ability in office/Internet applications. However, in order tem properties based on context-dependent component prop-
be equally successful in the area of embedded control erties and the structure of the component assembly [9].
component technologies have to be resource-constrairted an We illustrate our approach using the SaveComp Compo-
equipped with methods to model and predict extra-functionaent Model [5], and an adaptive cruise controller impleraent
aspects of the software (e.g. timing and memory consumfion [6]. In this paper, we limit our context-dependent peed
tion). tions to component WCET in order to reach efficient proces-

The key to achieve efficient resource utilisation, on a syssor utilisation. Nevertheless, our approach is generally a
tem level, is to have access to tight and accurate models plicable to other extra-functional properties, such as wrym
the resource needs of the components in the system. Ounsage, assuming that properties are compositional.
key resource is the CPU, where the resource requirement of
a component is Worst-Case Execution Time (WCET). Receré  Background
hybrid methods for WCET prediction [2] have been proposed The systems considered in this paper are categorised as de-
which promise a practical approach to gaining tight WCETpendable complex distributed computational-intense eimbe
estimates for traditional, monolithic, programs. Howeesr  ded real-time systems running in, e.g., vehicles or custome
isting methods for WCET estimation are overly pessimisti@lectronics. In these business segments methods to rdtise so
in a CBD setting since they apontext-obliviousi.e. not ex- ware cross different hardware platforms and product fami-
plicitly taking into account the current usage-contextafke lies/versions are inquired [1]. Hence, component-baséd so
component. ware engineering is gaining more and more interest.



2.1 The SaveComp Component Model in turn implemented using two assemblies (Figure 2 (b))- Fur

The SaveComp Component Model (SaveCCM) [5, 6]thermore, the application has_two different trigger fre_fq_u_e
is a component model for control software developmenfi€S: 10 Hz and 50 Hz. Logging and HMI output activities
SaveCCM provides three main architectural elemeotsn- execute_ with the lower rate, and control related functiiyal
ponentsswitches andcomponent assemblieA component &t the higher rate. _ o
is not allowed to have any dependencies to other components,FOr @ detailed presentation of the ACC application func-
or other external software (e.g. the operating system), ekonality, we refer to [6].
cept the visible dependencies through its input- and output
ports. A switch provides means for conditional transfer of
data and/or triggering between components. Component as-
semblies allow composite objects to be defined, and make e
possible to form aggregate components from groups of com3™ ¢ [CHeN
ponents, switches, and assemblies enabling differenisleve :l: ;éé‘séiﬁf’if;?s
abstraction. Froeamy OB O

The interface of an architectural element is defined by a s 5 <|ﬁ
of ports, i.e. points of interaction between the elementitnd
environment. SaveCCM distinguish between input- and out- @
put ports, and there are two complementary aspects of ports:
the data that can be transferred via the port and the triggeri _
of component executions. The graphical syntax of SaveCCM Figure 2. The ACC control assembly (a), and
(see Figure 1), is similar to UML 2.0 component diagrams, the implementation of the feedback controller
but with additions to distinguish between the differentdgp
of ports. Principally, the SaveCCM syntax usego repre-
sent triggering ports (i.e. the control flow) ando represent

Current

data ports (see Figure 1). 2.2 WCET Prediction Methods
WCET bounds may be obtained \static (model-based),
Example: An Adaptive Cruise Controller dynamigmeasurement-based) or more recently propbged

In this section we present an Adaptive Cruise Controlleprid methods.

(ACC) prototype, implemented in SaveCCM [6] (see Fig-  Static methods promise safe WCET estimates but critically
ure 1). depend on time-intensive construction and evaluation a-mo
els of underlying platforms [10]. Moreover, as hardware be-
comes increasingly complex (processors with pipelines and
caches) the variance between typical and worst-case perfor
mance is growing significantly. As a result, static WCET
analysis tends to produce increasing pessimism in the calcu
lated WCET bound [11].

Dynamic methods are often cheaper to construct, but with

<< Assembly>>
ACC Application
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4010k little guarantee that acquired measurements can be used di-
’ v spe rectly to derive WCET upper bounds (see Figure 3). Realis-
ACCERabledO Brake Assist ing run-time measurements by trying all possible input data
FrakePedalisedO Ace combinations (i.e. the complete value space) is typicatly n
feasible.

Hybrid methods overcome some deficiencies by combin-
ing static and dynamic methods. Static analysis is used to
limit the input value-space, and run-time measurements are
used to calculate upper bound WCET predictions.

Brake Signal

Figure 1. An Adaptive Cruise Controller de- However, existing methods for WCET predictions are not
scribed in the SaveCCM graphical modelling suitable for component-based development. Existing meth-
language ods take a whole-of-system approach and thus produce overly

pessimistic predictions for components. Effectively thes
methods are only capable of producing a single portable
The ACC extends the regular cruise controller (used iIWCET estimate for a component, whereas, in fact, the true
most cars) in that it helps the driver keep a safe distance toCET of the component may be dependent on the contextin
preceding vehicle, autonomously changes the speed depemdhich it is later deployed.
ing on the speed limit regulations, and helps the driveramsl In, e.g., [2], static (model checking) approaches are used t
the brake in extreme situations. generate test-cases which are in turn used to generate WCET
The application is based on four components, one switclobservations for functions (strictly program segments), o
and one component assembly. The assembly (Figure 2 (a))dgen basic blocks within functions. These include the use of



heuristics and model checkers to generate the necessary tes <<Distance Controller>>
harnesses which exercise all possible paths leading tainst

mented points within the code around “primitive” elements, Distance “ﬂ
then incorporating the results into conventional preditdi
However, since such techniques do not make use of mecha-
nisms to qualify the usage context of a given functfqrit is

not possible to reuse a predicted WCET foin a different
context. Indeed it is not clear from the content of severalpu
lished papers whether it is possible to discriminate betwee
different implicit contexts forf within the original program,

or whether the same WCET fgftis used regardless of con-

Relative
Speed

Figure 4. Context-dependent control-flow for

text. the Distance Controller
tighter measurements measurements tighter
safe BCET estimates possible execution times safe WCET estimates CC-mOde, the eXeCUtion mlght never be more than Say 05mS
, — Ideally, then, the WCET of a given component should always
0 P e be qualified by stating the context in which it is valid (see
Figure 4).
and Worst-Case Execution Time (WCET) pre-
dictions To model context, we make use of the formal notion of
a protocol typefrom Dependent Finite State Machines (DF-
SMs).

2.3 Context-Independent Analysis

Consider the ACC controller assemhbBjistance Con-
troller from Figure 2 (a), which for the purposes of this il-

DFSMs are parameterised dynamic formal models for
components. They extend communicating finite state ma-
: ) chines and model components’ abstract implementation (ab-
lustration we treat as a compongnt (see Figure 4)' _D‘llse _ straction) and deployment context as rigours parameteas of
tance Con_troller asynchronoqsly interoperates with its enV"components interface specification. The abstraction param
ronment via four ports: three input ports and one output porfe,s cater for dynamic specialisations and variations @dlpr

Two input ports are for Relative Speed and Distance t0 thg. jines, the requires parameters capture propertiesaid v

carin fro_nt, and a pair of inputioutput pqrts are for COMMUNI ation in different deployment contexts. Network of DFSMs
catlng W'Fh theSpged Controller.. TheDistance |np.ut pprt represent parameterised product line architectures. afietu
contains information about the distance to the vehicleantr (. of parameters are compositional as well as the incre-

together with a enabled/disabled boolean value. Rélative mented assembly of components into such networks. DF-

Speed input port has in the same way an integer represenkyq are particularly suitable for architecture-basedamsing
ing the relative speed compared to the vehicle in front and &t extra-functional properties

boolean enabled/d|.sablled port. The pc_)rts relgteﬁpeed An abstract example of what can be modelled with DF-
Controller communication are not considered in this exam-

ple. Hence, in Figure 4 only the Distance and Relative SpeeSaMS s the contgxt dependenlt bleh.awou amimpC in Fig-
inputs are visualised. ure 5. The behaviour @@ompC is limited to the requsted ser-

When used in a product line of vehicles, some vehicle¥'°¢3 fromCompA andCompB, i.e. the values oLompC

will be sold with the full functionality of the ACC, whereas nput ports are limited to th_e valid out_put fro@ompA and
X . . - : CompB. Hence, the execution behaviour@dmpC can be
others will be sold with a simpler, traditional cruise camtr

function. However, this component is able to provide bottiisrﬁgie;ngé:r:;;m'on of the critical services required by

functions, and will hence be deployed in both vehicle types
(i.e.in two different contexts). Bglisablingboth theRelative
Speed andDistance ports, the Adaptive Cruise Controller ~ DFSMs have their basis in trace languages, which can be
(ACC) becomes a more traditional Cruise Controller (CC)regarded as an extension of regular languages.
by not taking into account the distance to the vehicle infron  Regular languages promises a useful trade-off between
Figure 4 visualises these two component modes by separatipgecision and computational feasibility suitable for $ady
the internal control flow of the component. the problem identified above. DFSMs describe the allowed
interactions between a given component and its environment
For many components, a WCET bound, even if tight, ocfi.e. protocol types) as well as how the component itself is
curs rarely, and only in certain situations. In many corgextimplemented. DFSMs also provide ways of talking about
the execution time may be much less. For example, assurttee structure of, and relationships between, those présoco
that the WCET for theDistance Controller is 4ms. This by modelling a network of interface-protocol dependencies
might only occur rarely, in ACC mode. In the less demandingsee Figure 5).



protocol L’ must conform taL, that is, L’ must be asublan-
guageof L (contain only strings of.).

For example, iDistance were deployed into an environ-
ment whereDistance andRelative Speed inputs were per-
manently disabled (i.e. CC-mode), the context could be de-
scribed by the language-c (a sublanguage af):

Lcc := invocdistance integer O integer O

For the remainder of this paper, when we use the “context”,
it should be understood to include the notion of protocolsub
type.

Finally, the notion of subprotocols leads to the following
Figure 5. An abstract example of a context- critical observation. For an upper-bound property such as
dependent control-flow WCET, the WCET cannot go up when context is restricted.
Formally, consider a compone@twhose protocol type i€
and two usages af’ where one is strictly narrower than the
other: formallyL and L’ whereL’ C L, with corresponding

2ol

£48

3.1 Protocol Types WCETsW}, andW; . Then the inequality¥’; < W mustbe
A protocol typeis a formalisation of the protocol accept- satisfied. This property forms the basis of context-depende
able to a component, defined as a regular language. property predictions.

For a concrete example of DFSMs, consider the proto- o
col type of Distance Controller (see Section 2.3), taking 4 Context-Dependent Property Prediction
into account parameters (and their respective abbremtio  Accurate architectural-based reasoning about system per-
Distance.Value (Dist), Distance.Enabled (DistE), Rela-  formance is enabled by exploitimpntext-dependent compo-
tiveSpeed.Value (Speed), andSpeed.Enabled (SpeedE).  nent property modelsSuch models make it possible to for-
When Distance Controller is triggered, it reads values mally and accurately capture the variation in propertied th
from single element buffers corresponding to its input port may occur depending on the way the components are used.
The allowed values of the relevant ports are determined by The above properties of protocol types can be exploited
their types. to derive context-dependent property predictions. Our ap-
As is standard in behavioural contract specificationsgvaliproach conceptually separates engineer-defined statgrdes
calls toDistance Controller can be represented by a regulartime configurations of the components (e.g. components dif-
language. Consider representing a call to a component igrently configured to suit different product lines) frometh
a string of symbols consisting of the component’s name andeployment-context (i.e. component relations in the aurre
its actual parameters — simple binary encodings of the galu@assembly).
present in port buffers as actual parameters. The usage condition, or context, of a specific component
For example, triggering th®istance with port assign- usage, instantiation or deployment, is formalised in teofns
ments (ist=01100100, DistE=1, Speed=00001010, a protocol type.
SpeedE=1), would be represented by the string Context-dependent property models are collections of
invocdistance 01100100 1 00001010 1. guardedcomponent properties: a value representing a prop-
A regular languagel giving the set of all valid calls based erty of some component is always qualified by pairing it with
on the above scheme can be defined using regular expressidiig context (i.e. a protocol type) in which it is valid.

as follows: 4.1 Static Design-Time Contexts

L= invocdistance _DiSt DiStE_ Speed Sp_eedE ~ So, for example, the fact that the WCET fBistance
where (assuming a simple unsigned 8-bit representatiqiontroller is 4ms is expressed by the paitms, L), where

for integer values): L is as given above.
Dist = integer (8-bit) For accuracy, additional pairs may be added, refining the
DistE = bit property model in other useful contexts. For maximum accu-
Speed = integer (8-bit) racy, search the pairs for the narrowest matching contetkt wi
SpeedE = bit the lowest WCET. For maximum efficiency, it is possible to
integer = bitstring impose a lattice ordering over pairs based on the subprbtoco
Eitstrig'?l; = bit" relationship between guards so that not all pairs need to be
it =

considered for a given context.
Most importantly for our purposes, a protocol type can be For example, to express that, when neither the distance nor
used not only to describe the protocol acceptable to a comprelative speed inputs are enabled, the WCET fotstance
nent, but also the way a component is used in a given contextontroller is much lower, e.g., 0.5ms, we simply add the pair
Consider a componeidt whose protocol type is defined (0.5ms,L¢c), whereLcc is as given above.
as the languagg. Then itis possible to consider, for a given  Practically speaking, implementing a subprotocol test
deployment context of the component, another protdcol amounts to a test for regular language inclusion, which can
which describes the wa§/ is used in that context. The sub- be implemented relatively cheaply using finite automata.



Each component in an assembly can in the same way loeder to sufficiently detailed characterise the conditieasl-
equipped with context-dependent information about WCEThg to the WCET variation. While in general such problems
(see Figure 5) that can be reused for accurate design-timee equivalent to the halting problem, existing WCET tech-
property predictions. For any component with a suitable setiques already take into account context by identifying,e.g
of guarded property pairs, in a given deployment context, simplified domain models for variables including sub-resige
property value can be predicted at design time. A deployment Modelling SaveCCM sufficiently to propagate interesting
context includes information about how a given componerdontexts from higher architectural levels is additionaliyn-
is used, particularly the deployment environment model (i. plex because it includes component scheduling and asynchro
static design-time configurations of the components). nous [12], buffered data flow between tasks of different fre-

In this way system-level properties of the application camuency. Nevertheless, it should be feasible to derive such a
be derived from the context-dependent component propesemantics, since there are well understood extensions-to au
ties. In the same way, component assemblies (i.e. hierarchbmata to model relevant primitives, such as concurrendy an
cal groupings of components) can be accurately predicted lwariables.
propagating the usage conditions down through the assem-
blies. 5 Context-Dependent Hybrid Prediction
ea?hnigri%Znaerr?t giﬁ??:ﬂ;ﬁ?ﬁﬁé@%ﬁ? niig\gggtofS;O-As stated in section 2, existing hybrid analysis techniques

. . are based on a whole-of-system approach which is unsuitable
vide the desired level of accuracy. Where components cm)ntag r component-based analysis, making it difficult to reuse

no branches, a single, general, usage context may suffice. M . . .
other cases, more detailed characterisations of usagextontIoarts of an WCET analysis for individual components with

. : sufficient accuracy.
may be required, but only up to the required level of accuracy In this section we present a hybrid property prediction

4.2 Deployment Contexts method that uses DFSMs to generate context-dependent in-

To further tighten the property predictions, one is not lim-Strumentation data. We then employ the framework-based
ited to engineer-defined static design-time configuratimins Software component monitoring apporach described in [13]
the components. Additionally, to facilitate more fine-geed 0 measure the execution behaviour using the obtainedinstr
architectural-based reasoning, properties may be fucther ~Mentation data.
strained by considering the effect of connected components This approach is especially beneficial in embedded prod-
on the deployment context (see Figure 5). uct line architectures, since it facilitates early preidics of

Usage conditions can be fed into the network as constraingystem-level properties (that can be used to guide the devel
that propagate through the network and eliminate executidgiP€er choosing inexpensive hardware) and, also, a pragmatic
alternatives. The process can be likened to dead-code-elintiay to obtain extra-functional performance properties.
nation, except that it is performed at the level of the proper ~ The resulting monitoring information, as well as the in-
model — component code itself is not affected (see Figure 4ptrumentation data, is stored together with the compoment i

For adequate accuracy and performance, this approach tbe repository. Since, in a product line architecture thraesa
lies on two assumptions: (i), that correct (but not perfectl application might execute on different target hardwarehis
tight) upper bounds are acceptable; and, (i), that compibnecase, the engineers will simply reuse the instrumentatia d
types with widely varying WCETS (see Figure 6) can be conand just measure the component performance on the new tar-
sidered to be the union of a small set of sub-behaviours irget hardware.
duced by non-overlapping contexts (see Figure 4), whete eac
sub-behaviour can be accurately characterised by a siagle c>-1  D€velopment Process

rect (and accurate) property bound. Using the context-dependent hybrid property prediction
approach together with hybrid schedulability analysis, [14
15], an attractive development process can be obtained (see

WCET WCET Figure 7). The architectural model of the component assem-

CC Mode ACC Mode
' '

bly is used for architectural-based analysis, but alsodst t
and instrumentation:

Test and Instrumentation:  Design-time context-
dependent analysis (as described in Section 4) is used in

e e e order to achieve early assessments about extra-functional
component properties [9]. This approach yields formal

Figure 6. A conceptual context-dependent context models which may be used to derive run-time mea-
WCET graph for the Distance Controller surements of the component properties as for existing tybri

approaches. Critically, however, both observed and predlic
properties are reusable with confidence since they are
) combined with context models which state in which contexts
4.3 Context-Dependency in SaveCCM the properties are valid. Hence, we can obtain sufficiently
To fully achieve the above in SaveCCM, the componenaccurate estimations of the components extra-functional
protocol semantics, presented in [4] must to be extended properties.
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