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Abstract

Many embedded systems for vehicles and consumer
electronics critically depend on efficient, reliable con-
trol software, and practical methods for their production.
Component-based software engineering for embedded sys-
tems is currently gaining ground since variability, reusability,
and maintainability are efficiently supported. However, ex-
isting tools and methods do not guarantee efficient resource
usage in these systems.

We present a method that enables resource-efficient
component-based control software by extending hybrid prop-
erty prediction methods (i.e. combining static and dynamic
techniques) to becontext-dependent, enabling less pes-
simistic extra-functional component property predictions and,
hence, improved resource utilisation.

1 Introduction

Increasing reliability and efficiency of software inten-
sive dependable embedded control systems is critical [1].
Hence, industry demands practical and accurate engineering
approaches to model, predict, and verify both core software
functionality and extra-functional aspects of the software.

Component-Based Development (CBD) is successfully
practised to achieve enhanced software reuse and maintain-
ability in office/Internet applications. However, in orderto
be equally successful in the area of embedded control –
component technologies have to be resource-constrained and
equipped with methods to model and predict extra-functional
aspects of the software (e.g. timing and memory consump-
tion).

The key to achieve efficient resource utilisation, on a sys-
tem level, is to have access to tight and accurate models of
the resource needs of the components in the system. One
key resource is the CPU, where the resource requirement of
a component is Worst-Case Execution Time (WCET). Recent
hybridmethods for WCET prediction [2] have been proposed
which promise a practical approach to gaining tight WCET
estimates for traditional, monolithic, programs. However, ex-
isting methods for WCET estimation are overly pessimistic
in a CBD setting since they arecontext-oblivious, i.e. not ex-
plicitly taking into account the current usage-context of each
component.

We focus on the problem of efficient resource usage with
preserved analysis accuracy of embedded Product Line Ar-
chitectures (PLAs) [3], like, e.g., control software in vehicles
and consumer electronics. In order to facilitate PLAs – soft-
ware components must be used (and reused) across different
hardware platforms and products.

To maximise reuse in these systems, components need to
be flexible. Hence, reusable components often include behav-
iours that are only used in a few configurations. These behav-
iours cannot easily be removed (e.g., by dead-code elimina-
tion), because they are offered by interfaces and cannot be re-
moved by methods based on analysis of components in isola-
tion. Hence, most existing property prediction approachesare
overly pessimistic, and, thus, design-for-reuse tends to work
against accurate WCET predictions (and, therefore efficient
resource utilisation) in existing models and approaches.

In previous work [4] we showed how a component model,
custom-made for embedded control-systems [5, 6], can be
combined with novel methods for architecture-based, com-
positional reasoning, modelling, and prediction [7, 8, 9].

In this paper, we propose the use ofcontext-dependent
hybrid property predictionmethods to make efficient use of
system resources. We extend the existing hybrid prediction
methods by considering the componentusage-context. We
use Dependable Finite State Machines (DFSMs) to facili-
tate compositional, architecture-based, reasoning aboutsys-
tem properties based on context-dependent component prop-
erties and the structure of the component assembly [9].

We illustrate our approach using the SaveComp Compo-
nent Model [5], and an adaptive cruise controller implementa-
tion [6]. In this paper, we limit our context-dependent predic-
tions to component WCET in order to reach efficient proces-
sor utilisation. Nevertheless, our approach is generally ap-
plicable to other extra-functional properties, such as memory
usage, assuming that properties are compositional.

2 Background
The systems considered in this paper are categorised as de-

pendable complex distributed computational-intense embed-
ded real-time systems running in, e.g., vehicles or customer
electronics. In these business segments methods to reuse soft-
ware cross different hardware platforms and product fami-
lies/versions are inquired [1]. Hence, component-based soft-
ware engineering is gaining more and more interest.
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2.1 The SaveComp Component Model
The SaveComp Component Model (SaveCCM) [5, 6]

is a component model for control software development.
SaveCCM provides three main architectural elements:com-
ponents, switches, andcomponent assemblies. A component
is not allowed to have any dependencies to other components,
or other external software (e.g. the operating system), ex-
cept the visible dependencies through its input- and output-
ports. A switch provides means for conditional transfer of
data and/or triggering between components. Component as-
semblies allow composite objects to be defined, and make it
possible to form aggregate components from groups of com-
ponents, switches, and assemblies enabling different levels of
abstraction.

The interface of an architectural element is defined by a set
of ports, i.e. points of interaction between the element andits
environment. SaveCCM distinguish between input- and out-
put ports, and there are two complementary aspects of ports:
the data that can be transferred via the port and the triggering
of component executions. The graphical syntax of SaveCCM
(see Figure 1), is similar to UML 2.0 component diagrams,
but with additions to distinguish between the different types
of ports. Principally, the SaveCCM syntax uses⊲ to repre-
sent triggering ports (i.e. the control flow) and� to represent
data ports (see Figure 1).

Example: An Adaptive Cruise Controller
In this section we present an Adaptive Cruise Controller
(ACC) prototype, implemented in SaveCCM [6] (see Fig-
ure 1).
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Figure 1. An Adaptive Cruise Controller de-
scribed in the SaveCCM graphical modelling
language

The ACC extends the regular cruise controller (used in
most cars) in that it helps the driver keep a safe distance to a
preceding vehicle, autonomously changes the speed depend-
ing on the speed limit regulations, and helps the driver to slam
the brake in extreme situations.

The application is based on four components, one switch,
and one component assembly. The assembly (Figure 2 (a)) is

in turn implemented using two assemblies (Figure 2 (b)). Fur-
thermore, the application has two different trigger frequen-
cies, 10 Hz and 50 Hz. Logging and HMI output activities
execute with the lower rate, and control related functionality
at the higher rate.

For a detailed presentation of the ACC application func-
tionality, we refer to [6].
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Figure 2. The ACC control assembly (a), and
the implementation of the feedback controller
(b)

2.2 WCET Prediction Methods
WCET bounds may be obtained viastatic (model-based),

dynamic(measurement-based) or more recently proposedhy-
brid methods.

Static methods promise safe WCET estimates but critically
depend on time-intensive construction and evaluation of mod-
els of underlying platforms [10]. Moreover, as hardware be-
comes increasingly complex (processors with pipelines and
caches) the variance between typical and worst-case perfor-
mance is growing significantly. As a result, static WCET
analysis tends to produce increasing pessimism in the calcu-
lated WCET bound [11].

Dynamic methods are often cheaper to construct, but with
little guarantee that acquired measurements can be used di-
rectly to derive WCET upper bounds (see Figure 3). Realis-
ing run-time measurements by trying all possible input data
combinations (i.e. the complete value space) is typically not
feasible.

Hybrid methods overcome some deficiencies by combin-
ing static and dynamic methods. Static analysis is used to
limit the input value-space, and run-time measurements are
used to calculate upper bound WCET predictions.

However, existing methods for WCET predictions are not
suitable for component-based development. Existing meth-
ods take a whole-of-system approach and thus produce overly
pessimistic predictions for components. Effectively these
methods are only capable of producing a single portable
WCET estimate for a component, whereas, in fact, the true
WCET of the component may be dependent on the context in
which it is later deployed.

In, e.g., [2], static (model checking) approaches are used to
generate test-cases which are in turn used to generate WCET
observations for functions (strictly program segments), or
even basic blocks within functions. These include the use of



heuristics and model checkers to generate the necessary test
harnesses which exercise all possible paths leading to instru-
mented points within the code around “primitive” elements,
then incorporating the results into conventional predictions.
However, since such techniques do not make use of mecha-
nisms to qualify the usage context of a given functionf , it is
not possible to reuse a predicted WCET forf in a different
context. Indeed it is not clear from the content of several pub-
lished papers whether it is possible to discriminate between
different implicit contexts forf within the original program,
or whether the same WCET forf is used regardless of con-
text.
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Figure 3. Best-Case Execution Time (BCET)
and Worst-Case Execution Time (WCET) pre-
dictions

2.3 Context-Independent Analysis
Consider the ACC controller assemblyDistance Con-

troller from Figure 2 (a), which for the purposes of this il-
lustration we treat as a component (see Figure 4). TheDis-
tance Controller asynchronously interoperates with its envi-
ronment via four ports: three input ports and one output port.

Two input ports are for Relative Speed and Distance to the
car in front, and a pair of input/output ports are for communi-
cating with theSpeed Controller. TheDistance input port
contains information about the distance to the vehicle in front
together with a enabled/disabled boolean value. TheRelative
Speed input port has in the same way an integer represent-
ing the relative speed compared to the vehicle in front and a
boolean enabled/disabled port. The ports related toSpeed
Controller communication are not considered in this exam-
ple. Hence, in Figure 4 only the Distance and Relative Speed
inputs are visualised.

When used in a product line of vehicles, some vehicles
will be sold with the full functionality of the ACC, whereas
others will be sold with a simpler, traditional cruise control
function. However, this component is able to provide both
functions, and will hence be deployed in both vehicle types
(i.e. in two different contexts). Bydisablingboth theRelative
Speed andDistance ports, the Adaptive Cruise Controller
(ACC) becomes a more traditional Cruise Controller (CC),
by not taking into account the distance to the vehicle in front.
Figure 4 visualises these two component modes by separating
the internal control flow of the component.

For many components, a WCET bound, even if tight, oc-
curs rarely, and only in certain situations. In many contexts
the execution time may be much less. For example, assume
that the WCET for theDistance Controller is 4ms. This
might only occur rarely, in ACC mode. In the less demanding
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Figure 4. Context-dependent control-flow for
the Distance Controller

CC-mode, the execution might never be more than say 0.5ms.
Ideally, then, the WCET of a given component should always
be qualified by stating the context in which it is valid (see
Figure 4).

3 Dependent Finite State Machines

To model context, we make use of the formal notion of
a protocol typefrom Dependent Finite State Machines (DF-
SMs).

DFSMs are parameterised dynamic formal models for
components. They extend communicating finite state ma-
chines and model components’ abstract implementation (ab-
straction) and deployment context as rigours parameters ofa
components interface specification. The abstraction parame-
ters cater for dynamic specialisations and variations in prod-
uct lines, the requires parameters capture properties and vari-
ation in different deployment contexts. Network of DFSMs
represent parameterised product line architectures. Actuali-
sation of parameters are compositional as well as the incre-
mented assembly of components into such networks. DF-
SMs are particularly suitable for architecture-based reasoning
about extra-functional properties.

An abstract example of what can be modelled with DF-
SMs is the context dependent behaviour ofCompC in Fig-
ure 5. The behaviour ofCompC is limited to the requsted ser-
vices fromCompA andCompB, i.e. the values onCompC
input ports are limited to the valid output fromCompA and
CompB. Hence, the execution behaviour ofCompC can be
described as a function of the critical services required by
CompA andCompB.

DFSMs have their basis in trace languages, which can be
regarded as an extension of regular languages.

Regular languages promises a useful trade-off between
precision and computational feasibility suitable for solving
the problem identified above. DFSMs describe the allowed
interactions between a given component and its environment
(i.e. protocol types) as well as how the component itself is
implemented. DFSMs also provide ways of talking about
the structure of, and relationships between, those protocols
by modelling a network of interface-protocol dependencies
(see Figure 5).
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Figure 5. An abstract example of a context-
dependent control-flow

3.1 Protocol Types

A protocol typeis a formalisation of the protocol accept-
able to a component, defined as a regular language.

For a concrete example of DFSMs, consider the proto-
col type of Distance Controller (see Section 2.3), taking
into account parameters (and their respective abbreviations)
Distance.Value (Dist), Distance.Enabled (DistE), Rela-
tiveSpeed.Value (Speed), andSpeed.Enabled (SpeedE).

When Distance Controller is triggered, it reads values
from single element buffers corresponding to its input ports.
The allowed values of the relevant ports are determined by
their types.

As is standard in behavioural contract specifications, valid
calls toDistance Controller can be represented by a regular
language. Consider representing a call to a component by
a string of symbols consisting of the component’s name and
its actual parameters – simple binary encodings of the values
present in port buffers as actual parameters.

For example, triggering theDistance with port assign-
ments (Dist=01100100, DistE=1, Speed=00001010,
SpeedE=1), would be represented by the string
invocdistance 01100100 1 00001010 1.

A regular languageL giving the set of all valid calls based
on the above scheme can be defined using regular expressions
as follows:

L ::= invocdistanceDist DistE Speed SpeedE

where (assuming a simple unsigned 8-bit representation
for integer values):

Dist = integer (8-bit)
DistE = bit

Speed = integer (8-bit)
SpeedE = bit

integer = bitstring

bitstring = bit8

bit = 0|1

Most importantly for our purposes, a protocol type can be
used not only to describe the protocol acceptable to a compo-
nent, but also the way a component is used in a given context.

Consider a componentC whose protocol type is defined
as the languageL. Then it is possible to consider, for a given
deployment context of the component, another protocolL′

which describes the wayC is used in that context. The sub-

protocolL′ must conform toL, that is,L′ must be asublan-
guageof L (contain only strings ofL).

For example, ifDistance were deployed into an environ-
ment whereDistance andRelative Speed inputs were per-
manently disabled (i.e. CC-mode), the context could be de-
scribed by the languageLCC (a sublanguage ofL):

LCC ::= invocdistance integer 0 integer 0
For the remainder of this paper, when we use the “context”,

it should be understood to include the notion of protocol sub-
type.

Finally, the notion of subprotocols leads to the following
critical observation. For an upper-bound property such as
WCET, the WCET cannot go up when context is restricted.
Formally, consider a componentC whose protocol type isL
and two usages ofC where one is strictly narrower than the
other: formallyL andL′ whereL′ ⊆ L, with corresponding
WCETsWL andW ′

L
. Then the inequalityW ′

L
≤ WL must be

satisfied. This property forms the basis of context-dependent
property predictions.

4 Context-Dependent Property Prediction
Accurate architectural-based reasoning about system per-

formance is enabled by exploitingcontext-dependent compo-
nent property models. Such models make it possible to for-
mally and accurately capture the variation in properties that
may occur depending on the way the components are used.

The above properties of protocol types can be exploited
to derive context-dependent property predictions. Our ap-
proach conceptually separates engineer-defined static design-
time configurations of the components (e.g. components dif-
ferently configured to suit different product lines) from the
deployment-context (i.e. component relations in the current
assembly).

The usage condition, or context, of a specific component
usage, instantiation or deployment, is formalised in termsof
a protocol type.

Context-dependent property models are collections of
guardedcomponent properties: a value representing a prop-
erty of some component is always qualified by pairing it with
the context (i.e. a protocol type) in which it is valid.

4.1 Static Design-Time Contexts
So, for example, the fact that the WCET forDistance

Controller is 4ms is expressed by the pair(4ms, L), where
L is as given above.

For accuracy, additional pairs may be added, refining the
property model in other useful contexts. For maximum accu-
racy, search the pairs for the narrowest matching context with
the lowest WCET. For maximum efficiency, it is possible to
impose a lattice ordering over pairs based on the subprotocol
relationship between guards so that not all pairs need to be
considered for a given context.

For example, to express that, when neither the distance nor
relative speed inputs are enabled, the WCET for theDistance
Controller is much lower, e.g., 0.5ms, we simply add the pair
(0.5ms,LCC), whereLCC is as given above.

Practically speaking, implementing a subprotocol test
amounts to a test for regular language inclusion, which can
be implemented relatively cheaply using finite automata.



Each component in an assembly can in the same way be
equipped with context-dependent information about WCET
(see Figure 5) that can be reused for accurate design-time
property predictions. For any component with a suitable set
of guarded property pairs, in a given deployment context, a
property value can be predicted at design time. A deployment
context includes information about how a given component
is used, particularly the deployment environment model (i.e.
static design-time configurations of the components).

In this way system-level properties of the application can
be derived from the context-dependent component proper-
ties. In the same way, component assemblies (i.e. hierarchi-
cal groupings of components) can be accurately predicted by
propagating the usage conditions down through the assem-
blies.

Analyses are performed component-wise, deriving for
each component a set of guarded WCETs, as needed to pro-
vide the desired level of accuracy. Where components contain
no branches, a single, general, usage context may suffice. In
other cases, more detailed characterisations of usage context
may be required, but only up to the required level of accuracy.

4.2 Deployment Contexts
To further tighten the property predictions, one is not lim-

ited to engineer-defined static design-time configurationsof
the components. Additionally, to facilitate more fine-grained
architectural-based reasoning, properties may be furthercon-
strained by considering the effect of connected components
on the deployment context (see Figure 5).

Usage conditions can be fed into the network as constraints
that propagate through the network and eliminate execution
alternatives. The process can be likened to dead-code elimi-
nation, except that it is performed at the level of the property
model – component code itself is not affected (see Figure 4).

For adequate accuracy and performance, this approach re-
lies on two assumptions: (i), that correct (but not perfectly
tight) upper bounds are acceptable; and, (ii), that component
types with widely varying WCETs (see Figure 6) can be con-
sidered to be the union of a small set of sub-behaviours in-
duced by non-overlappingcontexts (see Figure 4), where each
sub-behaviour can be accurately characterised by a single cor-
rect (and accurate) property bound.
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Figure 6. A conceptual context-dependent
WCET graph for the Distance Controller

4.3 Context-Dependency in SaveCCM
To fully achieve the above in SaveCCM, the component

protocol semantics, presented in [4] must to be extended in

order to sufficiently detailed characterise the conditionslead-
ing to the WCET variation. While in general such problems
are equivalent to the halting problem, existing WCET tech-
niques already take into account context by identifying e.g.,
simplified domain models for variables including sub-ranges.

Modelling SaveCCM sufficiently to propagate interesting
contexts from higher architectural levels is additionallycom-
plex because it includes component scheduling and asynchro-
nous [12], buffered data flow between tasks of different fre-
quency. Nevertheless, it should be feasible to derive such a
semantics, since there are well understood extensions to au-
tomata to model relevant primitives, such as concurrency and
variables.

5 Context-Dependent Hybrid Prediction

As stated in section 2, existing hybrid analysis techniques
are based on a whole-of-system approach which is unsuitable
for component-based analysis, making it difficult to reuse
parts of an WCET analysis for individual components with
sufficient accuracy.

In this section we present a hybrid property prediction
method that uses DFSMs to generate context-dependent in-
strumentation data. We then employ the framework-based
software component monitoring apporach described in [13]
to measure the execution behaviour using the obtained instru-
mentation data.

This approach is especially beneficial in embedded prod-
uct line architectures, since it facilitates early predictions of
system-level properties (that can be used to guide the devel-
oper choosing inexpensive hardware) and, also, a pragmatic
way to obtain extra-functional performance properties.

The resulting monitoring information, as well as the in-
strumentation data, is stored together with the component in
the repository. Since, in a product line architecture the same
application might execute on different target hardware. Inthis
case, the engineers will simply reuse the instrumentation data
and just measure the component performance on the new tar-
get hardware.

5.1 Development Process

Using the context-dependent hybrid property prediction
approach together with hybrid schedulability analysis [14,
15], an attractive development process can be obtained (see
Figure 7). The architectural model of the component assem-
bly is used for architectural-based analysis, but also for test
and instrumentation:

Test and Instrumentation: Design-time context-
dependent analysis (as described in Section 4) is used in
order to achieve early assessments about extra-functional
component properties [9]. This approach yields formal
context models which may be used to derive run-time mea-
surements of the component properties as for existing hybrid
approaches. Critically, however, both observed and predicted
properties are reusable with confidence since they are
combined with context models which state in which contexts
the properties are valid. Hence, we can obtain sufficiently
accurate estimations of the components extra-functional
properties.



System Deployment: These properties are then used to
perform tight schedulability analysis using hybrid techniques
[4, 15]. Also, the system generator can be augmented to au-
tomatically insert instrumentation code to perform run-time
monitoring [13] of the deployed system. And, during run-
time, the unused processing time can be reclaimed using vari-
able component performance modes as described in [14].

Component AssemblyComponent Assembly

Component
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Component
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Architectural ModelArchitectural Model

Instrumentation CodeInstrumentation Code

System GenerationSystem Generation

Static WCET AnalysisStatic WCET Analysis

Instrumentation CodeInstrumentation Code

Schedulability AnalysisSchedulability Analysis

System GenerationSystem Generation

Test and Instrumentation System Deployment

MeasurementsMeasurements System ExecutionSystem Execution

Figure 7. Component-based development us-
ing context-dependent predictions

6 Conclusions and Future Work
We present a compositional method to increase resource-

efficiency in component-based control systems for product
line architectures by extending hybrid property prediction
methods to be context-dependent.

We introduce component usage-profiles, where extra-
functional properties depend on the current usage-context, in
order to obtain tighter property predictions and, hence, more
efficient resource-utilisation.

As for future work, we plan to extend our theories to work
with other performance properties, such as, e.g., memory or
reliability [7]. We also plan to extend hybrid resource recla-
mation methods (such as [14, 15]) using probability distrib-
utions of the components execution time in order to predict
the quality-of-service level that can be performed in the back-
ground alongside the hard real-time schedule.
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