
A Real-Time Kernel for Ravenscar

Gustaf Naeser
Department of Computer Science and Electronics

Mälardalen University
Sweden

Email: gustaf.naeser@mdh.se

Abstract—This report describes a Ravenscar com-
pliant real-time kernel developed for and with use of
formal modelling and methods. There kernel described
is divided into application components, hardware com-
ponents and kernel components. The components, their
interfaces and operation, are described in this report.

I. Introduction

The SafetyChip project defines a framework for de-
velopment, monitoring and policing of formally verified
hardware/software systems. The aim of the framework is
to create an environment where the cost and complexity
of using formal methods and formal verification can be
reduced.

The framework consists of three kinds of components,
the application components describing the software ap-
plication, the hardware components describing, e.g., the
processing resources available, and the kernel components
which facilitate the application components’ access to the
hardware components.

The systems studied in the project have been embedded
real-time systems written in Ada under the Ravenscar
tasking profile [1]. The Ravenscar profile removes most
run-time ambiguities of the Ada language by restricting its
tasking. The choice of the Ada language and the tasking
profile was encouraged by that setup being well suited for
development of systems of the size and complexity most
likely to be manageable by the SafetyChip framework.

The term system will be used to refer to a composition of
all three kinds of components, and the final product of the
development of an embedded system. Precise knowledge
about the run-time operation of the hardware is required
in order to accurately reason about and verify run-time
properties of a system. This implies that intimate knowl-
edge of the RTK and its operation is required. To reach
that level of knowledge a Ravenscar kernel was designed
and modelled.

The kernel described here is designed to support multi-
ple processors (processing units). This support does lead
to a more complex kernel but the additions are interest-
ing since they allow the performance of a system to be
improved without changes of the application.

The kernel can easily be extended and modified to
gain more information about the systems behaviour. An
example of this is given in the description of the Null Task,

though it should be remembered that all extensions in-
crease the resources needed during system verification. To
illustrate the kind of properties that can be investigated,
examples of general properties that can be interesting to
a larger number of applications are described for some of
the components.

To make it easier to compare to a predecessor kernel [4]
the kernel is modelled in Uppaal. Knowledge and un-
derstanding of Uppaal’s timed automata its notation is
assumed or can be found in [2], [3].

II. Kernel Components

This section details the kernel components. The compo-
nents are described with their interfaces and an Uppaal

model describing their behaviour is also given. Parts of the
kernel, the Ready Queue and the Delay Queue, are described
in [7] and [6] respectively.

Components communicate using interface functions.
Data is passed using arguments (here called registers) that
are identified in the models by their initial capital ’R’1

and through global variables. For example, the register
Rt is used to pass the identity of tasks, e.g., T1. The
registers used are Rt (task identities), Rp (task priorities),
Ru (unit identity), Rd (release time for delays), Rpo (pro-
tected object identity), Rpy (protected object subroutine
type) and Rpc (protected object subroutine identity). The
global variables that the components can use are shown
in Table I.

TABLE I

Global variables.

cnt u the number of processing units the kernel
should use.

cnt t the number of tasks (note that cnt i, below, is
included in this number).

cnt po the number of protected objects.
cnt i the number of interrupts (and hence interrupt

tasks).
time the current system time.
STOPTIME the system time at which the execution should

be stopped.
barrier an array which stores the values of the pro-

tected object entries’ values.

1Note that components can have local data variables starting with
a capital ’R’ as well, e.g., the Ready Queue’s local queue variables
in Fig. 1.



In order for a value to be read from a register on a
transition, that value must stored ahead of the read. There
are two ways to ensure that a value is available. Either the
register is written to on an earlier transition (and then
left in the register) or is synchronisation occurs, writes by
the sender are processed before reads of the receiver, and
hence occur prior. Synchronisation is made over matching
channels (channels with the same name) that are marked
with an exclamation mark (chan!) for the sender and a
question mark for the receiver (chan?). If a register is to
be used to decide if a transition should be taken or not the
value must be written by an earlier transition and can not
be written on the same. The register assignments in the
kernel are carefully designed so that the registers contain
the required values.

An important task of the kernel components is to always
make sure that the token for each application task’s execu-
tion is kept alive. The token is passed from, e.g., the Ready
Queue to the Delay Queue when a task is suspended after
having requested a delay. The Delay Queue is from that
point in time responsible for the task and must transfer
the responsibility back to the Ready Queue in order for the
task to execute.

A. The Ready Queue

The main task of the Ready Queue is to ensure that the
processing units are loaded (running) the set of ready tasks
of the highest priority. The queue should enforce a priority
based scheduling where a first in first out (FIFO) order is
maintained within each priority.

When a tasks becomes ready to run (runnable) and
the Ready Queue is informed of this and inserts the task
into the queue of runnable and running tasks. Tasks are
inserted last within their priority to avoid starving tasks
that have been runnable for a longer time. The Ready
Queue keeps the execution token for any tasks in the queue
of runnable tasks and it can actively change the running
status of a running task by loading another task on the
unit the task executes on, i.e., preempting it. A model
of the Ready Queue is shown in Fig. 1. and the Ready
Queue’s interface functions are described in Table II and
the variables and arrays it uses in Table III.

The Ravenscar tasking profile restricts the usage of dy-
namic priorities but the capability to dynamically change
the priority of tasks is still required since the handling
of access to protected objects require it. Ravenscar also
restricts dynamic tasks by disallowing task termination
and dynamic creation of tasks. For modelling reasons there
is a create interface function which is called once by each
task during system initiation.

The behaviour model of the Ready Queue can be divided
into five components, each handling one of the input
interface functions of Fig. II(a).

The initial and idle location of the ready queue in
location n0. To reduce state space during verification the

TABLE II

Ready Queue interface description.

(a) The Ready Queues (input) interface, task control, which is
used to modify the Ready Queue.

create(Tid , T p) create Tid with priority T p

(this does not add the task to
the queue of runnable tasks).

runnable(Tid) add Tid to queue of runnable
tasks.

suspend(Tid) remove Tid from queue.
changep(Tid , T p) change the priority of Tid to

T p.
unblock(Tid) put Tid last within its priority.

(b) The Ready Queues (output) interface containing functions
used on other kernel components interfaces.

load(Uid , Tid) Unit control function to tell
Uid to load Tid.

nopreempt(Tid) Unit control function to indi-
cate that Tid continue to run.

TABLE III

Variables used by the Ready Queue.

RQt array holding an ordered queue of runnable
and running tasks (identified using the task
identities). The fist cnt u positions in the array
represent the right to a processing unit and
tasks with their identities in those positions are
executing.

RQp array holding the tasks’ priorities.
RQu array holding the, if any, unit that tasks are

running on.
RQuu array with a position for each processing unit

used to indicate units that are running.
used variable holding the number of used units.
ready variable holding the number of tasks running or

ready to run.
i temporary variable used while iterating.

temporary variable i should be zero when the Ready Queue
is in this location.

The create interface function’s behaviour is described
on the transition n0 −→ n0 which leads from location n0

and back in again. The action taken when the create
interface is called (by observation of create?) is to store
the priority sent using register Rp in the array used for
storing priorities, RQp. The created tasks priority, sent in
the Rt register, is used to index the position in which to
store the priority.

The runnable array is kept in ordered so that the task
with the highest priority is in the fist position of the
array, position indexed by 0, and so that tasks of higher
priority have lower position indexes than those with higher
priority. Tasks of the same priority are ordered so that
new tasks are inserted last within their priority, i.e., get
higher indexes. The ready variable points to the leftmost
unused position of the array, i.e., the position to the right
of the tasks of the lowest priority. Tasks in the leftmost
cnt u (the number of processing units) positions should be



n0

n1

n2

n3

n4n5

n6 n8n7

n10n9

n11

runnable?
RQt[ready]:=Rt,
i:=ready,
ready++

i == 0 or
RQp[Rt] <= RQp[RQt[i-1]],
i >= cnt_u
i:=0

i > 0,
RQp[Rt] > RQp[RQt[i-1]]
RQt[i]:=RQt[i-1],
RQt[i-1]:=Rt,
i--

i == 0 or
RQp[Rt] <= RQp[RQt[i-1]],
i < cnt_u,
ready <= cnt_u
Ru:=1

!RQuu[Ru]
load!
used++,
RQu[Rt]:=Ru, RQuu[Ru]:=true, i:=0

i == 0 or
RQp[Rt] <= RQp[RQt[i-1]],
i < cnt_u,
ready > cnt_u
Ru:=RQu[RQt[cnt_u]],
RQuu[Ru]:=false,
RQu[RQt[cnt_u]]:=0

load!
RQuu[Ru]:=true,
RQu[Rt]:=Ru,
i:=0

RQuu[Ru]
Ru++

suspend?
Ru:=RQu[Rt],
ready--

RQt[i] != Rt
i++

RQt[i] == Rt
RQuu[Ru]:=false,
RQu[Rt]:=0,
Rt:=0

i < ready
RQt[i]:=RQt[i+1],
i++

i == ready,
ready == used-1

RQt[i]:=0,
used--,
i:=0

load!

i == ready,
ready >= used
Rt:=RQt[cnt_u-1],
RQt[i]:=0

changep?

RQt[i] != Rt
i++

RQt[i]==Rt,
Rp < RQp[Rt]
RQp[Rt]:=Rp

Rp < RQp[RQt[i+1]]
RQt[i]:=RQt[i+1],
RQt[i+1]:=Rt,
i++

i == ready or
Rp >= RQp[RQt[i+1]],
i < cnt_u
nopreempt!
i:=0

RQt[i]==Rt,
Rp >= RQp[Rt]
RQp[Rt]:=Rp

i, Rp > RQp[RQt[i-1]]
RQt[i]:=RQt[i-1],
RQt[i-1]:=Rt,
i--

i == 0 or
Rp <= RQp[RQt[i-1]]
nopreempt!
i:=0

i == ready or
Rp >= RQp[RQt[i+1]],
i >= cnt_u
i := cnt_u-1,
Ru:=RQu[Rt],
RQuu[Ru]:=false,
RQu[cnt_u]:=0,
Rt:=RQt[i]

create?
RQp[Rt]:=Rp

unblock?

RQp[Rt] <= RQp[RQt[i+1]]
RQt[i]:=RQt[i+1],
RQt[i+1]:=Rt,
i++

RQt[i] != Rt
i++

RQt[i] == Rt

i == ready or
RQp[Rt] > RQp[RQt[i+1]],
i < cnt_u
nopreempt!
i:=0

i == ready or
RQp[Rt] > RQp[RQt[i+1]],
i >= cnt_u
i := cnt_u-1,
Ru:=RQu[Rt],
RQuu[Ru]:=false,
RQu[cnt_u]:=0,
Rt:=RQt[i]

load!
RQuu[Ru]:=true,
RQu[Rt]:=Ru,
i:=0

Fig. 1. The Ready Queue.

loaded into an unit and the positions will be referred to
as running positions.

The runnable interface is called, n0 −→ n1 the transition
stores the identity of the task made runnable, TRt, in
the first unused position of the ready queue, RQt. The
next action the Ready Queue takes is to sort the newly
inserted task to its proper position which is carried out
using the loop n1 −→ n1. The variable i is used to indicate
the current position of Ti. The n1 −→ n1 loop will move
the task ahead of tasks of lower priority (RQp[Rt] >

RQp[RQi[i − 1]]) but the task will not be moved further
than to the first position of the array (i > 0). When T1

has been moved to its correct position there are three
possibilities; either T1 did not reach a running position
(i >= cnt u) in which case nothing more needs to be
done and the transition n1 −→ n0 is taken or the task did
reach a running position (i < cnt u) in which case one of
three actions should be taken. If a runnable position was
reached and this moved a task out of a running position,
TRQt[cnt u], (which happens if ready > cnt u) the unit
that task is running on is identified (RQu[RQt[cnt u]])
and unit information associated with that unit and the
soon to be preempted task is updated to reflect that no

task is running on the unit. Then TRt is loaded, n3 −→ n0

and unit information is updated to reflect this. If TRt after
the n1 loop reached a runnable position but this did not
lead to that a task must be preempted (ready <= cnt u)
the transition n1 −→ n2 is taken to n2 where a loop is used
to locate the free unit with the lowest identity. The TRt

is loaded (n2 −→ n0) into that unit and information about
unit usage is updated to reflect this.

The suspend interface is used for removing a task TRt

from the ready queue. When suspending a task, n0 −→ n4,
the unit that the task is running at (RQu[Rt]) is remem-
bered in Ru. The loop n4 −→ n4 locates the array position
of TRt. Then the unit information associated with the task
is updated to reflect that it is not running and a Null Task is
inserted in place of the task, n4 −→ n5. The loop n5 −→ n5

is used to move the Null Task, which has the lowest possible
priority, to its proper place in the array. When the Null
Task is in the correct position, either a task was moved
into a running position (ready >= used) in which case
that task is loaded (n5 −→ n3 −→ n0) or no task was moved
into a running position, in which case transition n5 −→ n0

is used to load the Null Task into the unit.
Transition n0 −→ n6 is used to serve a request to change

the priority of a task TRt. The behaviour of this interface



function is made easier by knowing that the priority can
only be changed for running tasks. The loop n6 −→ n6 is
used to locate the array position of the task. If the priority
of TRt is raised, Rp > RQp[Rt], the way units are loaded
will not be affected and the transitions n6 −→ n7 −→ n0

will move the task to its new position in the array. The
task is informed that it was not preempted by the call of
the nopreempt interface function on n7 −→ n0. If, on the
other hand, the task’s priority is lowered, first n6 −→ n8

is taken and then the n8 −→ n8 loop moves the task to its
new position. If the new position moved the task out of the
running positions (i >= cnt u) the task that was moved
into the running positions (which must be in position
RQt[cnt u − 1] is loaded onto the unit from which TRt

should be preempted, n8 −→ n11 −→ n0. If the priority was
lowered but this did not move TRt out of the running
positions, transition n8 −→ n0 will be used to inform the
task that it was not preempted.

The unblock interface, which moves a task to the to the
end within its priority starts with the n0 −→ n10 and its
behaviour is similar to that expressed when a tasks priority
is lowered.

B. The Delay Queue

The Delay Queue allows tasks to delay until a given time.
If the release time is in the future the Delay Queue will
take over the responsibility of the tasks execution and
suspend it, but if the time is in the present or past the
queue will inform the Ready Queue that the tasks should
be scheduled last of tasks with the same priority.

The Delay Queue takes over the responsibility of the
tasks execution when the task delays and must make it
runnable at the release time to forward that responsibility
to the Ready Queue. The Delay Queue interface functions
are described in Table IV and the variables used are
described in Table V.

One model of the Delay Queue is shown in Fig. 2.
Different designs of the queue, exploring performance and
size properties, are described in [6]. The queue shown here
does, e.g., not maintain a FIFO release order of tasks with
the same release time but instead releases tasks with lower
identity prior to others with the same release time.

The queue in Fig. 2 uses the next variable to remember
the position in DQd with the closes release time (next),
if there are several with the same release time the one
with the lowest identity is remembered. The transition
n0 −→ n1 is used when the delay until interface is accessed
to delay a task TRt. There are three possible transitions
back to the idle location n0. The Ready Queue’s unblock
interface is accessed if the requested release time is in the
past or present (Rd <= time). If there are no delayed
tasks (!delayed) or the release time (Rd) of the of TRt is
nearer than the nearest release time (Rd < DQd[next])
or the release time is the same but TRt has lower identity
than the nearest task (Rd == DQd[next] and R1 < next),
then TRt will be indicated as the next task to be released.

TABLE IV

Delay Queue interface description.

(a) The Delay Queues (input) interface.

delay until(Tid , T p, D) delay take Tid until the release
time, D, is reached. The task’s
priority, T p, can be used by De-
lay Queues implementing priori-
tised release of tasks released
at the same time.

tick a time interval has passed and
the Delay Queue should release
tasks if their release times have
been reached.

(b) The Delay Queues (output) interface containing functions
used to guide the Ready Queue.

runnable(Tid) add Tid to queue of runnable
tasks.

suspend(Tid) remove Tid from the Ready
Queue.

unblock(Tid) put Tid last within its priority
of tasks in the Ready Queue.

TABLE V

Variables used by the Delay Queue.

DQd array holding the release times for tasks.
delayed the number of delayed tasks.
next the next task to be released, i.e., the task with

the closest release time.
i temporary variable used while iterating.

Otherwise, the release information for TRt will only be
recorded.

No action is taken when a tick is observed and there are
either no delayed tasks or the global time has not reached
the closest release time, transition00. If on the other hand
the next release time is reached the transition n0 −→ n2

is taken. The transition sets the registers for making the
released task (Tnext) runnable, which is done on n2 −→ n3,
and removes delay information for it. Transition n3 −→ n0

is taken if there are no more delayed tasks. Otherwise, the
loop n3 −→ n3 is used to locate the delayed task with the
lowest index (identity) and then the n3 −→ n4 transition
is taken. In location n4 the closest release time is located.
Should the release time of a task be equal to the global
time, i.e., it should be released immediately, the transitions
n4 −→ n23 is used to release it. Otherwise the task with
the closest release time is located and its position stored
in next before going back to the idle location.

C. The Protected Object Queue

Protected objects are used to enforce mutual exclusion
of code and/or data. The protected objects described by
Ada can have protected data and routines for access-
ing that data. The routines can be procedures, entries
and functions. A protected procedure can both read and
change data inside the object and must guarantee that



n0

n3n4

n2

n1!delayed or Rd < DQd[next] or
(Rd == DQd[next] and Rt < next),
Rd > time

next:=Rt,
DQd[Rt]:=Rd,
delayed++

suspend!

delayed, Rd >= DQd[next], Rd > time

DQd[Rt]:=Rd,
delayed++

suspend!

delayed,
time >= DQd[next]-1

Rt:=next, DQd[next]:=0,
next:=0,
delayed--

tick?

!delayed
next:=0

delayed, !DQd[i]
i++

delayed, DQd[i]
next:=i, i++

time < DQd[next], i <= cnt_t,
!DQd[i] or DQd[i] >= DQd[next]
i++

time < DQd[next], i <= cnt_t,
DQd[i], DQd[i] < DQd[next]
next:=i, i++

i > cnt_t,
DQd[next] != time
i:=1

runnable!

!delayed or
time < DQd[next]-1
tick?

time >= DQd[next]
Rt:=next, DQd[next]:=0,
next:=0,
delayed--, i:=1

Rd <= time
unblock!

delay_until?

Fig. 2. The Delay Queue.

the task accessing the protected procedure has exclusive
access to the object. When a task is executing a procedure
the object is locked to other access enforcing the exclusive
access. Protected entries work like procedures but have a
guard which must be satisfied for the object to be entered.
Protected functions can only be used to read data, not
change. Since there is no need to lock other functions out
of the object, several functions can be allowed to access the
same object at a given time. When functions are accessing
an object the object is locked to procedures since they
might change the data.

The Ada standard requires that protected objects are
accessed in a first in first out (FIFO) order, meaning
that tasks should be arranged in a queue while waiting
for access. The standard also gives precedence to entries
and procedures over functions. The protected objects are
accessed using a priority (ceiling) mechanism which raises
the priority of the caller while it is accessing the protected
object. To avoid deadlocks the priority used when exe-
cuting inside an object must be higher than the highest
priority of any task accessing the object. The raising of the
priority is done in the task calling the protected object.

The Ravenscar profile restricts the behaviour of the
objects by limiting the number of entries to one and the
number of tasks waiting to access the entry to one. This
effectively removes non-deterministic behaviour that can

rise from the use of protected objects2.
The queue uses several arrays to manage the applica-

tions protected objects. Each array contains information
about all protected objects but for easy of description they
will be described as if the queue managed access to one
object only. The Protected Object Queue has two interface
functions that tasks should use to access a protected
object. The interface is described in Table VI and variables
used by the queue are described in Table VII.

The SafetyChip’s model of the Protected Object Queue is
shown in Fig. 3.

Tasks call protected object routines using the call in-
terface function. The Protected Objects Queue will then
take control over the task’s execution and suspend the
task until access to the object can be granted. When a
task is granted access to a subprogram the queue invokes
the subprogram and hands over the task’s execution to it
using the aquire interface function. When the subprogram
is finished it surrenders control back to the task using the
endcall interface function and also informs the queue that
the object is free again using the release interface function.

The functionality of the Protected Objects Queue has
three main part, one for handling calls to protected pro-
cedures, n4, one for calls to protected entries, n3, and one

2It should be noted that the protected objects in a system with
multiple processors (processing units) can have several tasks waiting
to access protected procedures. This is however not possible in a sin-
gle processor system (due to how protected objects are supposed to be
managed by Ada). The Ravenscar profiles restriction of the number
of tasks waiting for an entry might also have been intended for the
protected procedures since they still in multi processor systems create
situations similar to those the restriction removes.



n0 n3n4

n8

n6

n5

n7

n1

n2

!Entry[Rpo], barrier[Rpo], !PE[Rpo], Rpy == ENT
Entry[Rpo]:=Rt,
Ru:=1

(PE[Rpo] or !barrier[Rpo]), !Entry[Rpo],
Rpy == ENT
Entry[Rpo]:=Rt,
tt:=Rt

aquire!
Entry[Rpo]:=0,
PE[Rpo]:=ENT

(!Entry[Rpo] or !barrier[Rpo]),
!ProcW[Rpo], FuncW[Rpo]
Rt:=FuncQ[Rpo][0],
Rpc:=FuncQ[Rpo][0],
Rpy:=FUN

aquire!
FuncR[Rpo]++,
Rt:=FuncQ[Rpo][i],
Rpc:=FuncQ[Rpo][i],
i++

i < FuncW[Rpo]

(!Entry[Rpo] or !barrier[Rpo]), ProcW[Rpo],
PE[Rpo] == FUN, FuncR[Rpo] == 1
FuncR[Rpo]:=0,
Rt:=ProcQ[Rpo][ProcN[Rpo]],
Rpy:=PRC,
Rpc:=ProcC[Rpo][ProcN[Rpo]],
Ru:=0

!PE[Rpo], Rpy == PRC
ProcQ[Rpo][(ProcN[Rpo]+ProcW[Rpo])%cnt_t]:=Rt,
ProcC[Rpo][(ProcN[Rpo]+ProcW[Rpo])%cnt_t]:=Rpc,
ProcW[Rpo]++,
Ru:=1

aquire!
ProcQ[Rpo][ProcN[Rpo]]:=0,
ProcC[Rpo][ProcN[Rpo]]:=0,
ProcN[Rpo]:=((ProcN[Rpo]+1)%cnt_t),
ProcW[Rpo]--,
PE[Rpo]:=PRC

Entry[Rpo], barrier[Rpo],
PE[Rpo] == FUN, FuncR[Rpo] == 1
FuncR[Rpo]:=0,
Rt:=Entry[Rpo],
Rpy:=ENT,
Rpc:=ENT,
Ru:=0

PE[Rpo] == FUN,
FuncR[Rpo] > 1
FuncR[Rpo]--

PE[Rpo], Rpy == PRC
ProcQ[Rpo][(ProcN[Rpo]+ProcW[Rpo])%cnt_t]:=Rt,
ProcC[Rpo][(ProcN[Rpo]+ProcW[Rpo])%cnt_t]:=Rpc,
ProcW[Rpo]++,
tt:=Rt

Entry[Rpo],
Rpc == ENT

(!Entry[Rpo] or !barrier[Rpo]),
ProcW[Rpo],
PE[Rpo] != FUN
Rt:=ProcQ[Rpo][ProcN[Rpo]],
Rpy:=PRC,
Rpc:=ProcC[Rpo][ProcN[Rpo]],
Ru:=0

Entry[Rpo], barrier[Rpo],
PE[Rpo] != FUN
Rt:=Entry[Rpo],
Rpy:=ENT,
Rpc:=ENT,
Ru:=0

(!Entry[Rpo] or !barrier[Rpo]),
!FuncW[Rpo], !ProcW[Rpo],
PE[Rpo] != FUN
PE[Rpo]:=0

PE[Rpo],
((Entry[Rpo] and barrier[Rpo]) or ProcW[Rpo]),
Rpy == FUN
FuncQ[Rpo][FuncW[Rpo]]:=Rt,
FuncC[Rpo][Rt]:=Rpc,
FuncW[Rpo]++,
tt:=Rt

suspend!

(!Entry[Rpo] or !barrier[Rpo]), !ProcW[Rpo],
PE[Rpo] == FUN, FuncR[Rpo] == 1
FuncR[Rpo]:=0,
PE[Rpo]:=0

(!Entry[Rpo] or !barrier[Rpo]), !ProcW[Rpo],
(PE[Rpo] == FUN or !PE[Rpo]), Rpy == FUN
FuncQ[Rpo][FuncW[Rpo]]:=Rt,
FuncW[Rpo]++,
Rt:=FuncQ[Rpo][0],
Rpc:=FuncC[Rpo][0]

aquire!
FuncW[Rpo]:=0,
PE[Rpo]:=FUN,
i:=1

i == FuncW[Rpo]

Rt == tt
preempt?
tt:=0

call?

release?

Fig. 3. The Protected Object Queue.

for protected functions, n5.
In the idle location, n0, the Protected Objects Queue

waits for calls to the call, n0 −→ n1, or release interfaces,
n0 −→ n2.

In the location n1 the three transitions n1 −→ n6 are
used if the called protected object for some reason is not
accessible by the caller. The three possible reasons are,
for procedures (Rpy == PRC) that the requested object
is already accessed (PE[Rpo]), for protected functions
(Rpy == PRC) that there is a task waiting to access
the objects entry which has a barrier that allows access
((Entry[Rpo] and barrier[Rpo])) or has tasks waiting for
access to a protected procedure (ProcW [Rpo]), and for
protected entries (Rpy == ENT ) that the objects is
already accessed or that the protected objects barrier
does not allow access (!Entry[Rpo]). The entry case also
checks that there is no task already queueing for the
entry (!Entry[Rpo]). On the respective n1 −→ n6 transition
the state of the called protected object Rpo is updated
with information about the calling task. When location
n6 is reached, transitions n6 −→ n7 −→ n0 will be used to
suspend the task and preempt it (taking its execution

token).
The location n8 is used to indicate that, and can only

be reached when, a task queues up for access to an entry
for which a task is already queueing since this would
violate the Ravenscar restriction. A property that can
be investigated for a system is therefore that n8 is never
reached.

If a procedure was called and object can be accessed,
transition n1 −→ n4 is used. In order to make it possible to
reuse the acquiring of the object, n4 −→ n0, the transition
n1 −→ n4 adds the procedure call to the queue of waiting
calls. Transition n4 −→ n0 is used to aquire the object for
the first task waiting in queue calling a procedure of the
object.

The n1 −→ n4 −→ n0 behaviour for procedures us
replicated in n1 −→ n3 −→ n0 for entry calls and in
n1 −→ n5 −→ n0 for function calls.

The release interface, from n2, goes directly back to
location n0 if there is no queued call that can aquire the
object. If a protected

If a protected entry should aquire the object (there
is a task waiting, Entry[Rpo], and the barrier allows



TABLE VI

Protected Object Queue interface description.

(a) The Protected Object Queue (task) interface which is used to
by tasks to call protected objects.

call(Tid , POid, C, K) Task Tid calls protected object
POid.C which is of kind K.
K indicates if C is an entry, a
procedure or a function.

endcall(Tid) Task Tid has finished accessing
the protected object.

(b) The Protected Object Queue (internal) interface containing
functions used internally to manage protected subprograms.

aquire(Tid , POid, C, U) Function used when a call
aquire the object POid’s sub-
programs (call) C. U indicated
whether or not task Tid is run-
ning. The protected subpro-
grams wait for this function to
start accessing.

release(Tid , POid) Protected object POid is re-
leased.

access, barrier[Rpo] and either the object was released
by something else than a function, PE[Rpo]! = FUN or
it was released by the last function accessing the object
(PE[Rpo] == FUN, FuncR[Rpo] == 1), the transition
n2 −→ n3 will be used. The same behaviour is described for
calls to protected procedures in n2 −→ n4 and for functions
in n2 −→ n5.

The loop n5 −→ n5 is used to release all functions waiting
for an object and the loop will be used after n2 −→ n5.

D. The Interrupt Queue

The Interrupt Queue is a component which contains
a table of interrupt managers handling the interrupts.
The interrupt mechanism uses suspended tasks that call
protected objects when they are started. There is one
suspended task for each interrupt that can be invoked
which allows parallel interrupt processed.

The interface to the interrupts is described in Table VIII
and variables used by the queue are described in Table IX.

When an interrupt, irq, is observed by the Interrupt
Queue, n0 −→ n1, it makes the Interrupt Task of that inter-
rupt runnable and disables (masks) the interrupt (so that
at most one manager will be invoked for each interrupt,
interrupt[Rt] := true), n1 −→ n0. When the task has
finished its work it will inform of this by invoking the iack
interface function, n0 −→ n0. Interrupts that are observed
while their task is running (interrupt[Rt]) are ignored,
n1 −→ n0.

The SafetyChip’s model of the Protected Object Queue is
shown in Fig. 4.

An example property that can be checked for the Inter-
rupt Queue is that if interrupts are ignored, i.e., if the
irq interface function ever called for an interrupt while
the interrupt’s manager is running. Ignored interrupts can
indicate that the Interrupt Task is to slow in its processing.

TABLE VII

Variables used by the Protected Object Queue.

PE the state the protected object. The values
stored in the array indicate that the object is
currently 0 not locked, ENT locked through
an entry, FUN locked through function(s), and
PRC locked through a procedure.

Entry the identity of the task (Ravenscar restricts this
to one task) waiting to access the entry of the
protected object.

ProcW the number of tasks waiting to access a pro-
tected procedure.

ProcQ an array containing a list of the identities of
the tasks waiting for access to protected proce-
dures. The list is circular with ProcN pointing
to the oldest call (first to be served).

Proc an array holding the procedure to the corre-
sponding task in ProcQ.

ProcN a pointer to the next task to be released from
ProcQ.

FuncW the number of waiting function calls.
FuncQ queue of tasks waiting for access to protected

functions.
FuncC an array holding the protected functions the

tasks in FuncQ are calling.
FuncR the number of functions currently inside a func-

tion call, i.e., accessing the protected object.
i temporary variable used while iterating.
tt temporary variable for holding a suspending

task’s identity.

TABLE VIII

Interrupt Queue interface description.

(a) The Interrupt Queue interface which is used to by the envi-
ronment and the Interrupt Tasks.

irq(Iid) Called by the environment
when interrupt with identity
Iid occurs.

iack(Iid) Used by the Interrupt Task to
reset the status of interrupt Iid

so that the queue will observe
the interrupt once again.

An Interrupt Task is described in Fig. 5. The task has
the same priority as that of the protected object it calls,
which ensures that the interrupt will be promptly handled.
It can be noted that the task calls the Ready Queue’s
suspend interface function to suspend itself (and consumes
the preempt. Normal tasks should not do this as it leaves
themselves responsible for their execution which while
preempted is not advisable since they do not have access
to the processing resources required to change their state
again. The manager can do this since it surrenders its
execution control to the Interrupt Queue when calling its
iack interface function.

III. Application Components

The application components are automatically trans-
formed from the source code via temporal skeletons [5], [8].
There are two kinds of components, tasks and protected
subprograms. The tasks are autonomous executives while



TABLE IX

Variables used by the INTERRUPT QUEUE.

interrupt array containing the interrupts. The position
corresponding to an interrupt is set to true
when the interrupt has been observed and set
to false when the interrupt has never been
observed or when the Interrupt Task has finished
its processing.

n0 n1

runnable!
!interrupt[Rt]

interrupt[Rt]:=true

irq?

iack?
interrupt[Rt]:=false interrupt[Rt]

Fig. 4. The Interrupt Queue.

the protected subprograms wait dormant until accessed.
The SafetyChip framework could do without the protected
subprograms by inserting models for them into the tasks.
However, inserting them would lead to larger task models
which might reduce their readability.

The description here does not present any models for the
application components as these are extremely application
dependent.

A. Tasks

A description of the application tasks can be found in [5]
which describes how temporal skeletons are transformed
into backend Uppaal models.

All application tasks should start with creating them-
selves and then making themselves runnable. From this on
they are free to call the interfaces of the kernel components
to access their functionality. The interfaces available to
tasks are described in Table X.

B. Protected Subprograms

The operation of protected subprograms is nearly that
of application tasks but since they have no runnable
identity of their own they need to be given one by a task.

Initially protected subprograms are waiting to be acti-
vated and they are activated by a call to the aquire inter-
face function. The aquire instruction contains the identity
of the task calling the subprogram, i.e., the identity which
the subprogram should use while executing. The calling
task can be running or preempted and the subprogram is
supplied with this information when it is initiated. When
the subprogram concludes its execution it should hand the
tasks execution responsibility back to the task and then
release the lock on the protected object. Then subprogram
should then go back to waiting for another activation.

The special interface functions of the protected subpro-
grams is described in Table XI. In addition to these the
subprograms can use the interface available to the tasks.

n1 n2 n4n0 n3

n5 n6n8 n7

run?
Rt == t

call!

create!
Rt:=t,
Rp:=pop

Rt:=t,
Rpo:=po,
Rpy:=py,
Rpc:=poc

Rt == t
preempt?

Rt == t
endcall?
laps++

iack!
Rt:=t

Rt == t
preempt?

Rt == t
run?

suspend!
Rt := t

Rt == t
preempt?

Fig. 5. The Interrupt Task.

TABLE X

Task interface description.

(a) The task (output) interface for making kernel calls.

create(Tid , T p) create Tid with priority T p

(this does not add the task to
the queue of runnable tasks).

runnable(Tid) add Tid to queue of runnable
tasks.

changep(Tid , T p) change the priority of Tid to
T p.

delay until(Tid, D) delay Tid until the release time,
D, is reached.

call(Tid , POid, C, K) Task Tid calls protected object
POid.C which is of kind K.
K indicates if C is an entry, a
procedure or a function.

(b) The task (input) interface containing functions used to
indicate tasks’ execution status.

run(Tid) used to indicate that Tid is run-
ning and is responsible for its
own execution.

preempt(Tid) used to indicate that Tid

has been preempted and the
execution responsibility has
been taken over by the Ready
Queue.

nopreempt(Tid) used to indicate that Tid was
not preempted, as expected,
and the execution responsibil-
ity still lies with the task.

endcall(Tid) used to indicate that the task
Tid has finished accessing a
protected object and is again
responsible for its own execu-
tion.

IV. Hardware Components

The hardware components describe the hardware en-
vironment the system uses. The environment consists of
required and optional components. This section describes
the required ones, the Clock and the Unit, and an optional
one, an interrupt generator.

The main task of the hardware component models is to
interact with the kernels external interface functions. This
makes the model of the hardware only required during
verification, and while the kernel components are present
in the implementation, the hardware components are not
implemented in the same way since the real components



TABLE XI

Protected subprograms interface description.

(a) The protected subprogram (input) interface.

aquire(Tid , POid, C, U) Function used to activate the
subprogram (call) C of pro-
tected object POid. U indi-
cates whether or not task Tid

is running.

(b) The protected subprograms (output) interface functions
used to indicate completion of execution.

release(Tid , POid) Protected object POid is re-
leased.

endcall(Tid) Task Tid has finished accessing
the protected object.

are present in the final system.
1) The Clock: The Clock describes a real-time clock

generating tick events at a predetermined interval. Each
tick represents that the interval has passed. For Ravenscar
this is likely to be 1 ms which is the frequency the profile
requires.

The interface functions of the Clock are described in Ta-
ble XII and the variables that the Clock uses are described
in Table XIII.

TABLE XII

Clock interface description.

(a) The Clock interface used to generate ticks to listening
components.

tick Used to inform other ker-
nel components that time has
passed.

TABLE XIII

Variables used by the CLOCK.

timer Uppaal specific clock variable used to imple-
ment timed transitions. The variable is used to
trigger the generation of a tick.

time a counter of counting the number of ticks that
has been generated, i.e., the time holds the
current time.

STOPTIME the time after which no more ticks will be gener-
ated. The Clock deadlocks when the STOPTIME
is reached.

A model of the Clock is shown in Fig. 6.

n0

timer <= 1

n1
timer == 1,
time < STOPTIME

time++,
timer:=0

tick!

time == STOPTIME

Fig. 6. The Clock.

The transition loop n0 −→ n0 uses Uppaal’s timed tran-

sitions and can be taken as long as the STOPTIME has
not been reached and there are no other transitions in the
system that must be taken.

When the STOPTIME is reached the n0 −→ n1 will be
taken which should ultimately deadlock the system.

A. The Unit (Processor)

The processing units are used to execute tasks. Units
consist of two parts, the model of the actual processor and
a model representing the Null Task, the idle task running
on the processor when no application task is running on
it, i.e., when the Unit is idle. There is one Null Task for
each processor and the models of the tasks have been
extended to provide utilisation data for the processor they
are associated with.

The Units’ interface of the is described in Table XIV
and the variables they use in Table XV. The interface of
the Null Tasks is the same as that of a normal task and
the variables used are described in table Table XVI.

TABLE XIV

Unit interface description.

(a) The Unit (control) interface which is used to by the Ready
Queue.

load(Uid , Tid) Unit Uid is instructed to load
and execute task Tid.

(b) The Unit (tasking) interface containing functions used to
inform tasks of their current status.

run(Tid) Used to inform a task that it is
running.

preempt(Tid) Function used to inform a task
that it has been preempted and
is no longer running.

TABLE XV

Variables used by Units.

t the identity of the task running on the unit.
tn temporary variable for holding a task identity

(used when preempting a task).

TABLE XVI

Variables used by NULL TASK.

id the identity of the unit the task belongs to.
exectime the accumulated time for which the Null Task

has been loaded / running.
starttime temporary variable to keep track of at which

time the Null Task was started.

A model for the units is shown in Fig. 7, and for the
Null Tasks in Fig. 8.

The unit waits in its initial location for a call to the load
interface function. When the interface function is called to



load task Rt, n0 −→ n1, the unit will preempt the currently
running task, n1 −→ n2, and start Rt, n2 −→ n0.

Note that a unit’s loading of a task, transition T1, can be
interrupted by order from the Ready Queue to load another
task, T2. As long as the kernel has not started T1, i.e.,
represented by the unit using the run interface function,
the new task T2 can be loaded without needing to preempt
task T1.

n0 n2

n1

run!

Ru == id
load?
tn:=Rt, Rt:=t

preempt!
t:=tn, tn:=0,
Rt:=t

Ru == id
load?
t:=Rt

Fig. 7. The Unit (processor).

n0 n1

Rt == 0, Ru == id
preempt?
exectime+=(time-starttime),
starttime:=0

Rt == 0, Ru == id
run?
starttime:=time

Fig. 8. The Null Task.

The need to keep track of execution time is not required
in the Null Task and can, for verification or other reasons,
be removed from the model. The tracking is an example
of how the model can be extended to gain additional
knowledge about the system’s operation. The tracking is
designed to record the time when the Null Task is loaded
and to calculate for how long it was loaded and add this
to an accumulative variable when unloaded.

V. Conclusion

This report describes a Ravenscar compliant real-time
kernel. The kernel consists of a collection of interacting
components. The components’ interfaces are described and
the behaviour of the individual components is presented
using Uppaal’s timed automata.

The kernel supports multiple processing units and dy-
namic priorities. The kernel is designed to be tailored for a
specific system which makes it well suited for embedding.
As an example of this, the number of tasks the application
the kernel is to be used with can be set so that the kernel’s
size is minimised.

References

[1] A. Burns, B. Dobbing and G. Romanski, ”The Ravenscar
Tasking Profile for High Integrity Real-Time Programs”, Reli-
able Software Technologies — Ada-Europe 1998, LNCS 1411,
Springer–Verlag, 1998.

[2] G. Behrmann, A. David and K. G. Larsen, ”A Tutorial on Up-
paal”, Formal Methods for the Design of Real-Time Systems:
4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, 2004.

[3] K. Larsen, P. Pettersson and W. Yi, ”Uppaal in a Nut-
shell”, Int. Journal on Software Tools for Technology Transfer,
Springer–Verlag, 1997.

[4] K. Lundqvist and L. Asplund, ”A Ravenscar-Compliant run-
time kernel for safety critical systems”, Real-Time Systems,
24(1), 2003.

[5] G. Naeser, ”Transforming Timing Skeletons to Timed Au-
tomata”, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
187/2005-1-SE, Mälardalen Real-Time Research Centre, 2005.

[6] G. Naeser and J. Furunäs, ”Evaluation of delay queues for
a Ravenscar Hardware Kernel”, MRTC report ISSN 1404-
3041 ISRN MDH-MRTC-176/2005-1-SE, Mälardalen Real-
Time Research Centre, 2005.

[7] G. Naeser and K. Lundqvist, ”Component-Based Approach to
Run-Time Kernel Specification and Verification”, ECRTS 05,
2005.

[8] Gustaf Naeser, Kristina Lundqvist and Lars Asplund, ”Tem-
poral Skeletons for Verifying Time”, In Proceedings of SIGAda
2005, ACM, 2005.


