

Cost Models with Explicit Uncertainties for
Electronic Architecture Trade-off and Risk Analysis

Jakob Axelsson1, 2
 1Volvo Car Corporation 2Mälardalen University
 Dept. 94100 PV32 Dept. Computer Science and Electronics
 SE-405 31 Göteborg, Sweden SE-721 23 Västerås, Sweden
 jaxelss5@volvocars.com jakob.axelsson@mdh.se

Copyright © 2006 by Jakob Axelsson. Published and used by INCOSE with permission.

Abstract. This paper discusses how the early phases of developing embedded electronic

systems can be improved by enhanced modelling of cost and performance that includes explicit
handling of uncertainties. The approach is to add cost information to existing UML models,
capture uncertainties using probability distributions, and use Monte Carlo simulation to analyze
the risk of not reaching the cost targets. It is demonstrated how the information obtained can be
used when evaluating different architecture alternatives, while including both development and
product cost as well as risk in the trade-off.

Introduction
When a new technical system is developed, the early design phases are always critical. In those
phases, the basic concepts are selected, and they effectively limit what can be achieved in the
subsequent stages in terms of, e.g., cost and performance. But the early phases are characterized
by a lack of information, and of ad hoc decisions based on the intuition and experience of the
engineers. It seems natural to try to improve the early phases by providing methods that give
better indications of the important attributes of the system, and that quantify the risks. Far-
reaching redesigns late in the project can then be avoided, thus reducing the cost, duration, and
risk of development. In this paper, we describe methods to tackle this issue for a particular kind
of product, namely embedded electronic systems and software and a certain attribute, namely
cost. However, the approach should be useful also for other kinds of systems and attributes.

Overview of the problem
The early design phases are characterized by important decisions being made by a small group of
engineers on the basis of uncertain information. The quality of those decisions could be
improved by reducing the uncertainty of the information. However, that would require more
people involved, which in many organizations is not possible. What can be done though is to
quantify the uncertainty and use that to estimate the risk of different decision alternatives.

Due to the limited resources available, it is important to make the process as efficient as
possible and make maximum use of the information available. In many cases, analysis models
are being built as support for the decision making. If model libraries are available, that process
can be made more efficient. Also, there is a subset of information that can be used for many
types of analysis. For instance, the structure of the system is a basis for many models. If the
common subset can be described once and for all, development of analysis models will become
more efficient, and the risk of inconsistencies between different analyses is reduced if they share
a common base.

Our solution
The approach of this work is to make use of a common model for many purposes. Object-
oriented techniques are useful for structuring complex information and showing different aspects
of the system of interest. We have therefore based the models on the Unified Modeling
Language, UML (Rumbaugh 1999). In many organizations, UML is already used for system
modeling, in particular for software, and with focus on functionality. Therefore, a formal
description of certain aspects of the system is already available in a database, and we add the
information needed for cost estimations in the early phases directly into that model, thus
minimizing the time spent on modeling. The cost models can also be structured into libraries,
allowing easy reuse and yet faster development. The same approach can be used to study other
quantitative attributes than cost.

With the information present in the UML model of the system, we can extract the
information necessary for cost estimations. This gives us a mathematical model with input and
output parameters, where input parameters are associated with attributes at lower level of design
(parts, components) and output parameters are key measures of performance at the system level.
By describing the input parameters as probability distributions rather than point values, the
uncertainty of parameter estimations can be captured. Using a Monte Carlo simulation, the
resulting uncertainties in the output parameters can be derived. By comparing those probability
distributions with the desired values (as described e.g. in the requirements specification) the risk
of not meeting the targets can be explicitly determined and considered in the decision making.

Overview of the paper
In this paper, we extend and integrate ideas from two previous publications. In (Axelsson 2000),
a UML based cost model for embedded electronic systems was presented. In (Axelsson 2005),
the idea of using explicit modeling of uncertainties was investigated for a different analysis,
namely that of performance of real-time systems, and Monte Carlo simulation was used for the
evaluation. It turns out that the evaluation sometimes yields counter-intuitive results, which
proves that it is valuable.

The contribution of this paper is to extend the previous cost model with the possibility to use
uncertain parameters rather than point values, thereby making the framework for early
architecture trade studies more complete and allowing a detailed risk analysis to be performed.

The remainder of the paper is structured as follows. In the next section, issues relating to
estimations in early phases are discussed in more detail. Then, a product cost estimation model in
UML is presented followed by a model for estimating development cost. To make the approach
more concrete, an example is then discussed in some detail. Finally, the conclusions are
summarized and indications are given in what direction this research could continue.

Estimations in early phases
In this section, we discuss in more detail some of the characteristics of the early conceptual
phases of embedded electronic system design.

Early design decisions for embedded systems
An embedded system is by definition an integral part of a larger product, such as an automobile,
an aircraft, or an industrial robot. The development of the embedded system is therefore

intimately linked to that of the total product. In the early phases, it is usually necessary to make
overall decisions about the parts, such as what electronic control units (ECUs) should be present
in the network, what processors to use and what memory capacity is needed. These decisions can
in practice hardly be delayed, since they are important prerequisites for the subsequent design
steps, including software development. They also have important consequences on the overall
product. For instance, the number of ECUs and their physical sizes must be known to ensure that
they can be packaged properly in the product. The physical placement of the ECUs also provides
environmental constraints such as temperature, vibrations, and EMC, which is necessary input to
the detailed ECU design. Finally, the selection of hardware components is necessary to enable
investments in tooling for mass production, which has a long lead time in many projects.

Current practice
In the early phases, there is typically a rough description of the functionality of the embedded

system, but the details are not known. In some cases, it could be just a list of function names, and
in other cases a first simulation model could be present. Often, UML is used to capture the
models. It is common to work with rough sketches of the architecture, and based on that guess its
attributes. The estimations are typically point values, that do not provide any indication of the
uncertainty embedded in the estimation. This makes it difficult to reason about the risk
associated with a particular design alternative, and to systematically compare different
alternatives.

Often existing systems are being enhanced or a new product is developed based on some
components from an old one. This means that there are large variations in the knowledge about
different parts of the new system. For components that already exist, many attributes are well
known, and can be measured, and the software code could even exist. For other parts of the same
system, knowledge is as scarce as for a completely new design. This means that a realistic
estimation approach for early phases must be able to handle such discrepancies in the available
knowledge.

Estimations
The basic methodology followed when doing estimations of key attributes in the early phases is:

1. Identify the critical attributes needed for the design decisions.
2. Create a model that links those attributes to other attributes at a lower level of design, for

which values can be directly estimated more easily.
3. Estimate the values for the lower level attributes including uncertainty.

Once the lower level attributes have been identified, the designers can estimate them using all
their available knowledge and tools. By describing the attributes as probability distributions, they
can also capture how large the uncertainty is. In many cases, this is in practice most easily done
by letting the experts assess some key points, such as the 50th percentile (most likely value) and
the 90th percentile (a value that the person believes the attribute will by 90% certainty not
exceed). Then the actual probability distribution parameters can be determined by fitting the
curve to these values.

Estimating software characteristics
The purpose of the system is to perform the set of functions described in the specification, while
fulfilling the performance requirements and the constraints. During the design step, the functions

in the specification are refined into a set of software modules, where each function is performed
by a set of modules in collaboration. The software modules are small enough to execute on a
single ECU. The problem is thus to assess the characteristics of each of the software modules.

Based on the information available in the specification, there is no possibility to exactly
measure the characteristics of the software. The requirements only describe the behaviour, and
thus the most one can do is to quantify the complexity of that behaviour, and hope that there is a
relation between the complexity and the actual characteristics of the software.

One approach is to simply let an expert make intelligent guesses about the software
characteristics directly. As an alternative, a more structured approach can be employed if the
functions have been described in some detail, e.g. as UML models. A common technique to
measure the complexity is through so-called function points (FP). The basic idea is to count the
number of interactions with the external environment of the ECU and with its data storage. These
operations work on the data attributes of the system, which should be inherent in the
specification. The operations are counted, and weighed with a factor depending on the kind of
operation, and the grand total gives the number of FP. The following characteristics of the
software modules can then be derived.

Program size. FPs is an abstract measure of complexity, and to make use of it to estimate e.g.
the memory size or development time, it is transformed into the number of lines of source code
in the language used and the size of the compiled code in the program memory.

Data size. The size of the data can to a large extent be gathered from the specification, since it is
mostly mentioned directly or indirectly in the functions.

Execution effort. The execution effort of a segment of software depends on the number of
instructions involved. This is proportional to the size of the software that make up that segment,
which is given by the FPs as described above. However, if there are loops the effort increases
since some parts of the code is executed several times, but the size remains the same. Also, if
there are conditionals, parts of the code may not be executed at all in certain invocations,
meaning that the size could be larger than the effort.

Processor load. Once the execution effort of the code segments has been established, this value
can be used to obtain the performance needed from the processor. It is then necessary to also
consider the invocation rate of the functions, and the processor load for a given processor is the
sum of the execution time of each function multiplied by its invocation rate.

Weibull distribution
In some cases it is reasonable to assume that estimations follow the normal distribution, where
the mean value has the highest probability and the probability of other values decrease the
further away they are from the mean. This works well if the range of the estimated parameter is
the whole range of real numbers, but for practical applications the range is often limited in one
end, as the parameter is always positive. Examples of this is time, cost, weight, temperature (in
Kelvin), and physical size. For such parameters, a normal distribution would always assign a
certain (albeit arbitrarily low) probability to impossible values.

An alternative is to use a distribution which gives zero probability to all negative values. In
(Kujawski 2004), a number of such distributions are discussed for the purpose of cost estimation,
and the authors conclude that the Weibull distribution is suitable for estimations. It has the
following cumulative distribution function:

αββα)/(1),;(xexF −−=

The parameter α controls the shape and β controls the spread. The distribution has desirable
properties such as a peak around the mean (if an appropriate α is used), no probability of values
below zero, and a tail towards positive infinity. In addition to the above, it is possible to add a
location parameter, so that the whole curve can be shifted along the x-axis.

Monte Carlo-based evaluation
In this section, a brief overview of Monte Carlo simulations is given. The methodology is
actually very simple, and is based on the steps described in the section on estimations above.
Based on the evaluation model, a number of iterations is run, each consisting of the following
steps:

1. Generate a random value for each of the low level attributes, according to the
probability distribution provided by the estimator.

2. Put those values into the model that links the low level attributes to the high level
ones.

3. Collect the outputs from the model in a histogram for each high level attribute.

The histograms will after the completed simulation show the probability distributions for the
high level attributes, and can be used to determine key information such as mean values and the
confidence that the critical parameters will have acceptable values.

The following important benefits should be noted:
• It is a very general methodology that does not assume anything about the model. For

embedded systems, any assumptions about hardware, software, etc. is feasible.
• An existing model for linking high level and low level attributes can be used as is.
• It does not require any analytical application of probability theory, which can be very

cumbersome or even impossible for complex systems.
• It can be used with varying levels of knowledge. Some parameters can have fixed

values and others can be probability distributions of any kind, which is important
when refining existing products, as described in the section on current practices
above.

The main possible drawback is that if there are many parameters, a large number of iterations
could be necessary. If the model is complicated, and requires a long computation time, this might
be a slow process. On the other hand, each iteration is totally independent, and thus could be run
in parallel. For cost models fairly little computation is required, so performance is not an issue.

Using UML to build a multi-purpose model
A benefit of our approach is that we use the UML standard modeling notation to capture the
information needed for cost estimations. In that way, an already existing system model can be
extended with small means. However, UML is mainly intended for describing (software)
functionality, so therefore a short description of how it can be used to capture mathematical
models of quantitative features is needed.

The basic idea is that the model is captured in a number of UML classes. The mathematical
variables are attributes of those classes, and the mathematical equations of the model are
invariants of the UML classes, that describe how the attributes of the class and attributes of

related classes are connected to each other.
To use the model, the classes are instantiated for a particular system. Then, the output

parameters of the model are identified, and all attributes on which they depend are extracted,
together will all invariants that related them. In this way a number of mathematical input and
output variables are obtained. The input variables are given values as part of the model
instantiation, and the equation system is solved to obtain the output parameters.

The approach might seem unnecessarily elaborate, since the same mathematical model could
be built from scratch without involving UML at all. However, much of the information needed,
such as the structural relations between classes, would be present anyway, thus the modeling
effort is reduced. Also, the system models are refined iteratively in most projects, and the cost
models then also need to be updated. Those repetitive updates become much easier to handle,
and inconsistencies are avoided, if the same modeling base is used for all purposes.

A product cost estimation model
In this section, we present a cost estimation model in UML for electronic architectures. It is
based on (Axelsson 2000), but somewhat simplified, since the main topic of this paper is to show
how the cost analysis can be enhanced by including uncertainties.

The model is structured as a set of classes, which is shown in Figure 1, using UML notation.
The basic structure is a normal system breakdown structure, with the product consisting of a
number of parts, which in turn contain a number of components. Part and component are abstract
classes that are specialized in this model with a number of other classes that are specific to the
application domain of embedded electronic systems.

The attributes of the classes are summarized in Table 1. For completeness, all attributes of
each class are explicitly indicated, even if they are inherited (in which case their name is in
italics). It is also shown how the attributes are used in the cost model, where "in" means that they
should be given a value by the engineer, "out" means that the value is derived by the model, and
"const" that it is a scale factor that is the same for all instances of the class. It should be noted
that although the term constant is used for the scale factors, this does not necessarily mean that
the values are known exactly in the early phases, but an estimation with uncertainty applies also
to these attributes.

Figure 1. Class diagram for cost model

Product

Part

Component

Electronic
Component

Interface
Unit

Software
Module

Attribute Operation

ECU Wiring
Harness

Processor Memory

Program
Memory

Data
Memory

Peripheral
Circuit

Attributes
Class Use Name Unit Description

in numberOfUnits - Expected number of units to be manufactured
out totalCost $ Total cost of each copy of the system up to delivery
out productCost $ Cost of producing one more copy of the system
out developmentCost $ Cost of developing the system
out swDevEffort MM Effort in man months to develop the software
out hwDevEffort MM Effort in man months to develop the hardware

Product

const manCost $/MM Cost of one man month
Part in/out productCost $ Cost of producing one more copy of the part
Interface unit in productCost $ Inherited from Part
Software
module

out productCost $ Inherited from Part

Attribute in size bytes Size of the data held in the attribute
in size FP Size of the software implementing the operation
in effort FP Maximum number of FPs performed when this

operation is invoked, i.e. length of the longest path
through the code of the operation

Operation

in invocationRate -/s How often the operation is invoked, as a maximum
in numberOf

Conductors
- Number of conductors in the wiring harness

out productCost $ Inherited from Part

Wiring harness

const conductorCost $ Cost of adding one more conductor to the harness
out productCost $ Inherited from Part ECU
const sizeCost $/m2 Factor indicating how the total cost of the ECU

increases with its content, measured as size of the
circuits (captures cost of housing, PCB, etc.)

Component in/out productCost $ Cost of producing one more copy of the component
in/out productCost $ Inherited from Component Electronic

component in size m2 Size (footprint) of the electronic circuit
in size m2 Inherited from Electronic Component
in capacity bytes Number of bytes of information the memory can hold
out productCost $ Inherited from Electronic Component
out spareCapacity % Percentage of capacity unused

Memory

const byteCost $/byte Cost of one byte of memory
in size m2 Inherited from Electronic Component
in capacity bytes Inherited from Memory
out productCost $ Inherited from Electronic Component
out spareCapacity % Inherited from Memory

Program
memory

const byteCost $/byte Inherited from Memory
in size m2 Inherited from Electronic Component
in capacity bytes Inherited from Memory
out productCost $ Inherited from Electronic Component
out spareCapacity % Inherited from Memory

Data memory

const byteCost $/byte Inherited from Memory
in size m2 Inherited from Electronic Component Peripheral

circuit out productCost $ Inherited from Electronic Component
in size m2 Inherited from Electronic Component
in capacity FP/s Number of FPs the processor can execute per second
out productCost $ Inherited from Electronic Component
out spareCapacity % Percentage of time the processor is idle

Processor

const speedCost $/(FP/s) Cost of a processor that can execute one FP per second

Table 1. Attributes of classes in the cost model

Equations
The equations used to derive the cost estimations (the "out" attributes) are expressed as
invariants for the classes, and these equations relate the attributes of different elements. In the
remainder of this section, the invariants are listed for each class.

Product. The total cost of one unit is the product cost, plus the development cost divided by the
number of units:

itsnumberOfUn
devCosttproductCostotalCost +=

The product cost is the sum of the product cost of all its parts:

∑
∈

=
partp

tproductCosptproductCos .

The development cost is calculated as follows:

manCostthwDevEffortswDevEffordevCost ⋅+=)(

The derivation of development effort for hardware and software is discussed further in the next
section.

Part. The product cost of a part is the sum of the product cost of all its components:

∑
∈

=
componentc

tproductCosctproductCos .

Software module. There is no product cost associated with software modules, 0=tproductCos .

Wiring harness. The product cost of the wiring harness equals the number of wires times the
cost of one wire (including connectors).

ostconductorCnductorsnumberOfCotproductCos ⋅=

It is assumed that the wires are reasonably short, i.e. in the order of a few meters. For larger
distances, the length should be included as well.

ECU. The ECU product cost is the sum of the cost of the components, plus a factor covering
housing, PCB, etc, whose cost increases with the size of the package, which in turn depends on
the sizes of the content, i.e., of the electronic components inside:

∑∑
∈∈

+=
componentccomponentc

sizecsizeCosttproductCosctproductCos ..

Memory. The cost and size are functions of the capacity of the memory:

byteCostcapacitytproductCos ⋅=

Program memory. The spare capacity of the program memory is calculated from the sum of the
program size of all software components' operations (ops) that are part of the ECU:

100
.

1 ⋅

 ⋅
−=

∑
∈

capacity

sizeofpSize
ityspareCapac opso

Data memory. The spare capacity of the data memory is calculated from the sum of the data size
of all software components' attributes (atts) that are part of the ECU:

100
.

1 ⋅

−=
∑
∈

capacity

sizea
ityspareCapac attsa

Processor. The spare capacity of the processor is calculated from the operations performed by it
and their invocation rates:

100
..

1 ⋅

 ⋅
−=
∑
∈

capacity

Rateinvocationoefforto
ityspareCapac opso

The cost is modeled as a linear function of the capacity, speedCostcapacitytproductCos ⋅= .

Models for development cost
In this section, we discuss how to estimate the development cost. We treat the cost for software
and hardware separately, since they largely depend on different factors.

Software development
A widely accepted model for software development cost estimation is Barry Boehm’s
Constructive Cost Model (COCOMO), which is described in (Boehm 1995). It is beyond the
scope of this paper to describe the details of COCOMO, but we recapitulate the main points, and
show how it is connected to other parts of our model.

The basic formula for COCOMO gives the number of man months (MM) needed to conclude
a project:

BswSizeAtswDevEffor ⋅=

The software size (in thousands of lines of source code) is derived from the function points:

∑
∈

⋅=
opso

sizeodefpSourceCoswSize .
1000

where fpSourceCode is the number of lines of source code of the selected programming language
that result from one FP, and ops are the total set of operations of all software modules. The
exponent B captures the overhead for communication etc. in large projects. Normally, B > 1, i.e.
the effort grows faster than linear with the size of the project, and the exact value is determined
based on the maturity of the development practices in the organization.

The multiplicative factor A is a product of about 20 factors describing characteristics of the
project and organization. In summary, they can be divided into the following categories:

• Product factors are things like the complexity and required reliability of the product.
• Platform factors include, e.g., available hardware resources such as memory and

processor capacity.
• Personnel factors capture the capability and experience of the staff.
• Project factors are decided by e.g. the use of tools and the tightness of the schedule.

For a particular project, the exponent B as well as the product and personnel factors are usually
difficult to influence. The project factors are typically the same for different implementation
alternatives, which means that only the platform factors need to be considered during trade
studies. The COCOMO model can thus, for trade studies, be summarized as:

BswSizetimestorageAtswDevEffor ⋅⋅⋅′=

where:
• storage is a factor depending on the amount of available storage (i.e. the values of the

attribute spareCapacity of the memory components; see Section 4.3.7) that is actually
used. Its value is 1 above 50% spare capacity, and increases to reach 1.46 as the free
space drops to 5%.

• time is the corresponding factor for processor execution time (i.e. the values of the
attribute spareCapacity of the processor components; see Section 4.3.10). Its value is
1 above 50% spare capacity, and increases to reach 1.63 as the overhead drops to 5%.

A' captures the remaining factors in A. The numerical values for storage and time are based on
those given by (Chulani 1999).

Hardware development
For the development of hardware, there does not appear to be any established effort estimation
model. On the other hand, the variations in time is usually smaller than for software, and does for
instance not depend very much on the choice of processor or memory. Just as for the COCOMO
model, one would need to include factors capturing the experience of the designers, use of tools,
etc., but no such model seems to exist, and it is thus up to each organization to create their own
models based on previous projects.

In (Aas 1995), some factors are discussed that contribute to the quality of the hardware
design, but the paper is mainly relevant for the design of custom integrated circuits. A more
holistic approach is taken in (Debardelaben 1997), where the relation between hardware and
software and its implication on cost is studied. However, the paper assumes both a limited
application area and serious limitations on the design of the hardware (using only standard
boards), and does also not cover the hardware development cost.

Example
In this section, we present a small example to illustrate how the analysis can be used, and what
conclusions can be drawn. In the first subsection, the example is introduced by means of a
functional view. Then, different alternative solutions regarding hardware and the allocation of
software to ECUs are presented. Finally, an evaluation using the Monte Carlo simulation is
performed, and the results are discussed.

The product and its functionality
The system in the example is a simple embedded control system whose functional structure is
illustrated in Figure 2. There are three sensors and two actuators that constitute interfaces to the
rest of the product. Sensor 1 is monitored by a separate software module, and another software
module monitors sensor 2 and 3 together. The system performs two main functions each of
which is implemented in a separate software module. Finally, there is one module for each of the
two actuators. It is assumed that the sensors and actuators are distributed in the physical product,
but with Sensor 2 and 3 located close to each other.

The marketing department estimates the total production volume of the system to 100,000,
and the budget for the project is $6 million, with a cost for one man month of $16,000. For the
COCOMO model, the factor A' is known to be 2, and the exponent B is estimated using a
Weibull distribution, with the 50th percentile at 1.3 and the 90th at 1.5.

The company has previously developed a similar product, and the staff is fairly familiar with
the algorithms etc. through the flow from sensor 1 through the software for function 1 to actuator
1. These modules can therefore be estimated with higher accuracy than the other modules.

Figure 2. Functional view of the system

Alternative architectures
We will now exploit three alternative system architectures, illustrated in Figure 3. The first
architecture is centralized, with only one ECU handling all the software tasks and all sensors and
actuators. Since the input and output units are spread out physically, there will be relatively long
wires between the ECU and those units.

Architecture 2 is a distributed solution with two ECUs. Each ECU handles one function, and
also the sensors and actuators connected to it. Since the functions are interrelated, some
additional wiring is necessary for communication between the ECUs.

In the last architecture alternative, a separate ECU is provided to handle one of the actuators.
The point-to-point communication between the ECUs in the previous architecture is replaced by
a data bus to reduce wiring.

In all cases, each ECU consists of a processor, a program memory (FLASH), a data memory
(RAM), and one peripheral circuit for each connection. There is a fixed set of processors and
memories to choose from, with different capacity and prices.

In the programming language used, it is estimated that the number of lines of code per FP is a
Weibull distribution with median 50 and 90th percentile 90. The estimated distributions for
software programming productivity (lines of code per hour) is 10 (median) and 30 (90th
percentile). The size of the compiled code is 20 bytes per line of source (median) and 30 (90th).

SensorSW1

SensorSW23 FuncSW2 ActuatorSW2

ActuatorSW1FuncSW1 Sensor1

Sensor2

Sensor3

Actuator1

Actuator2

System

Similar estimations are given for all other necessary input parameters, although space does
not permit us to give the exact numbers. In general, it is assumed in this example that Weibull
distributions are used, and that the 90th percentile is 1.5 times the median. However, for
SensorSW1, FuncSW1, and ActuatorSW1, the previous knowledge about the algoritms reduces
the uncertainty, so that the 90th percentile is 1.2 times the median. For all Weibull estimates, β =
2 is used.

Figure 3. Three alternative architectures

Evaluation
Based on the data described above, a Monte Carlo simulation was run and output parameter
estimates obtained. Some of the key attributes are listed in Table 2, with their mean values.
Figure 4 shows the probability distributions of the total cost for the three architectures. An
analysis of the data shows that the 90th percentile of the total cost of the architecture alternatives
is $350, $285, and $265, respectively. As can be seen from the table, Architecture 3 is the
cheapest alternative in terms of product cost. However, it exceeds the project budget slightly, so
if that is a critical factor, the alternative to choose would be Architecture 2.

Sensor1

Sensor2

Sensor3

Actuator1

Actuator2

ECU1.1

SensorSW1
SensorSW23

FuncSW1
FuncSW2

ActuatorSW1
ActuatorSW2

Sensor1

Sensor2

Sensor3

Actuator1

Actuator2

ECU2.1

SensorSW1
FuncSW1

ActuatorSW1

ECU2.2

SensorSW23
FuncSW2

ActuatorSW2

Sensor1

Sensor2

Sensor3

Actuator1

Actuator2

ECU3.1

SensorSW1
FuncSW1

ActuatorSW1

ECU3.2

SensorSW23
FuncSW2

ECU3.3

ActuatorSW2

Databus

Architecture 1

Architecture 2

Architecture 3

Attributes Unit Architecture 1 Architecture2 Architecture3
Total cost $ 258 199 186
Product cost $ 169 135 118
Development cost M$ 8.1 5.9 6.3
- SW MM 485 330 330
- HW MM 20 41 61
ECU 1 spare capacity
- Processing % 90% 97% 97%
- Program memory % 69% 92% 92%
- Data memory % 26% 48% 48%
ECU 2 spare capacity
- Processing % 72% 73%
- Program memory % 77% 79%
- Data memory % 55% 57%
ECU 3 spare capacity
- Processing % 100%
- Program memory % 98%
- Data memory % 98%

Table 2. Mean values of parameters obtained from Monte Carlo simulation.

0

5

10

15

20

25

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

Architecture1
Architecture2
Architecture3

Figure 4. Probability distributions of the total cost for each architecture.

Discussion
Although the example presented is very simple, it illustrates some of the steps that need to be
taken to use the analysis model, and what information can be drawn from it. One point to notice
is that the model links product development cost and product cost in a rather subtle way. As can
be seen in Table 2, the first architecture has substantially higher software development cost than
the other two, although the functionality is the same. The reason for this is that COCOMO
penalizes architectures with little spare capacity heavily (due to the added cost for optimizing the
software). Indeed, it can be seen that ECU 1 has much less spare capacity in the first architecture
than in the others. This gives the engineers a clue that by adding more memory to that ECU in
the next design iteration could be worth investigating to improve that alternative.

Conclusions
In this paper, we have presented a model for making early estimations of cost of embedded
electronic systems with explicit capturing of risks and uncertainties. The model is suitable for
trade studies in the early development phases. The approach is to extend UML models of the
system to include cost information in order to minimize the modeling effort and risk of
inconsistencies. The cost model can then be extracted from the UML database. To capture
uncertainties, input parameters are given as probability distribution, where in many cases the
Weibull distribution is suitable. The output parameters are obtained as probability distributions
through a Monte Carlo simulation, and the resulting distributions can be compared to
requirements to see how large the risk of not fulfilling the demands is.

In our experience, efficiency of modeling is paramount in practice, since the models will
otherwise not be used. Instead, engineers fall back on intuition in their decision making. We
believe that our approach provide the needed efficiency. Combined with our previous model for
performance analysis (Axelsson 2005), a cost-performance trade-off capturing risk becomes
possible based to a large extent on UML models already present in the organisation.

Although the paper focuses on a particular system domain, we believe that the main
contribution is the approach, which can be used for many types of systems. Also, other
quantitative properties than cost can be studied in the same way, by adding attributes and
equations to existing UML models and extracting a model to perform analysis. The cost model
we presented is fairly simple, and in most cases a more advanced model would be needed, and
domain specific considerations must be added. Using the modeling framework described in the
paper, such modifications should be easy to accomplish in most cases.

So far, the modeling has been implemented in a minimum effort approach, requiring some
manual work to extract the information. In the future, we plan to integrate it into commercial
UML tools, thereby making it possible to conduct larger scale trials. Also, we plan to develop
model libraries to make the approach even more useful in practice.

References
Aas, E. J. and Sundsbø, I. Harnessing the Human Factor for Quality Designs. Circuits &

Devices, Vol. 11, No. 3, pp. 24-28, May 1995.
Axelsson, J. Cost Models for Electronic Architecture Trade Studies. In Proc. 6th IEEE

International Conference on Engineering of Complex Computer Systems, pp. 229-239,
Tokyo, September 2000.

Axelsson, J. A Method for Evaluating Uncertainties in the Early Development Phases of

Embedded Real-Time Systems. In 11th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, Hong Kong, August 2005.

Boehm, B et al. Cost Models for Future Software Life Cycle Processes: COCOMO 2.0. In
Annals of Software Engineering Special Volume on Software Process and Product
Measurement. J. C. Baltzer AG, Science Publishers, 1995.

Chulani, S. et al. Bayesian Analysis of Empirical Software Engineering Cost Models. IEEE
Transactions on Software Engineering, vol. 25, no. 4, July 1999.

Debardelaben, J. A. et al. Incorporating Cost Modeling in Embedded-System Design. IEEE
Design & Test of Computers, Vol. 14, No. 3, pp. 24-35, July 1997.

Kujawski, E. et al. Incorporating Psychological Influences in Probabilistic Cost Analysis.
Systems Engineering, Vol. 7, No. 3, pp. 195-216, 2004.

Rumbaugh, J. et al. The Unified Modeling Language Reference Manual. Addison Wesley, 1999.

Biography
Jakob Axelsson received an M.Sc. from Linköping University in 1993, and a Ph.D. in 1997 for a
thesis on hardware/software codesign of real-time systems. He has been working at ABB
Corporate Research and ABB Power Generation (now Alstom) in Baden, Switzerland, Volvo
Technological Development (now Volvo Technology) and Carlstedt Research & Technology in
Göteborg, Sweden. He is currently with the Volvo Car Corporation in Göteborg, where he is
program manager for research and advanced engineering for electrical and electronic systems.
He is also an adjunct professor in software and systems engineering at Mälardalen University in
Västerås, Sweden. Dr. Axelsson was a member of the board of the Swedish INCOSE Chapter
2002-05, serving as chapter president in 2003.

