
Software Systems In-House Integration Strategies: Merge or Retire

– Experiences from Industry

Rikard Land
*
, Laurens Blankers

#
, Stig Larsson

*
, Ivica Crnkovic

*

*Mälardalen University, Department of Computer Science and Electronics

PO Box 883, SE-721 23 Västerås, Sweden

{rikard.land, stig.larsson, ivica.crnkovic}@mdh.se
#Eindhoven University of Technology, Department of Mathematics and Computing Science

PO Box 513, 5600 MB Eindhoven, Netherlands

l.blankers@student.tue.nl

ABSTRACT
When an organization faces different types of collaboration, for

example after a company merger, there is a need to consolidate

the existing in-house developed software. A main challenge is to

select a suitable strategy, such as merging the systems, evolve one

of the existing systems to be able to retire others, or start a new

development effort in order to retire the existing systems. This

should arguably be done at a high abstraction level, i.e.

architectural level. In order to investigate how a strategy should

be chosen, we have performed a multiple case study, consisting of

nine integration projects. Two major concerns have been found

that can be used to exclude some strategies: 1) architectural

compatibility, and 2) what we have labeled ‘retireability’, i.e. all

considerations influencing whether or not the existing systems can

be allowed to be retired.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – Restructuring, reverse engineering, and

reengineering.

K.6.3 [Management of Computer and Information Systems]:

Software Management – Software maintenance.

General Terms
Design, Economics, Human Factors, Management.

Keywords
Architectural Compatibility, Architectural Concern, Case Study,

Integration Strategy, Software Integration, Software Merge,

Retireability.

1. INTRODUCTION
Organizations have spent large sums of money on development of

software systems as part of their core business and want to

capitalize on their investment. At the same time reorganizations

and mergers force the organizations to integrate their software

systems. This leads to a variety of problems such as functional

overlap and architectural and platform incompatibility.

The software may be the core products of the companies, or a

support systems for the core business. If the software systems are

mainly used in-house, performing further evolution and

maintenance of two systems in parallel seems wasteful. If the

software systems are products of the company, it makes little

sense to offer customers two similar products. In either case, the

organization would ideally want to take the best out of the

existing systems and integrate or merge them with as little effort

as possible.

The available published experience on integration does not

directly address this context, where the existing systems are

developed separately but now completely controlled within a

single organization. We have chosen to label integration in this

context in-house integration in contrast to other types of

integration found in literature: integrating third-party components

or systems, and interoperability based on standards in open

systems. These approaches might be applicable also in the

situation when an organization has full control over the

development and evolution of the systems to integrate, but there

are other options as well, such as modifying arbitrary parts of the

existing systems in order to be able to merge them, starting a new

development effort based on the previous experience, or selecting

one of the existing systems and evolve it in order to replace all

existing systems. To collect all the existing experience from

organizations that have faced this challenge we have performed a

multiple case study, consisting of nine integration projects in six

organizations.

Based on the case study we present four integration strategies and

two concerns that are crucial to address when selecting a strategy,

which we have labeled compatibility and (lacking a better term)

retireability. The audience this paper aims for consists of both

researchers and industrial architects.

The paper is organized as follows: section 2 describes the

methodology. Section 3 presents a model of four integration

21

strategies which is used to classify the cases, which are described

in section 4. The cases are further analyzed in section 5 in terms

of strategies and concerns. Section 6 presents related work, and

section 7 concludes the paper.

2. RESEARCH METHODOLOGY
The multiple case study [37] consists of nine cases from six

organizations that have gone through an integration process. Our

main data source has been interviews. To collect the data, people

willing to participate in the interviews were found through

personal contacts. The interviews were to be held with persons in

the organization who:

1. Had been in the organization and participated in the

integration project long enough to know the history first-hand.

2. Had some sort of leading position, with first-hand insight into

on what grounds decisions were made.

3. Is a technician, and had knowledge about the technical

solutions considered and chosen.

All interviewees fulfilled either criteria 1 and 2 (project leaders

with less insight into technology), or 1 and 3 (technical experts

with less insight into the decisions made). In all cases, people and

documentation complemented each other so that all three criteria

are satisfactory fulfilled. There are guidelines on how to carry out

interviews in order to e.g. not asking leading questions [25],

which we have strived to follow. The questions were open-ended,

focused around architecture and processes, and the copied out

interview notes were sent back to the interviewees for feedback

and approval. The interviewees were asked to describe their

experiences in their own words, as opposed to answering

questions, however we used a set of open-ended questions, to

ensure we got information about the history of the systems,

problems, solutions, and more. The questions are reprinted in the

Appendix. Due to space limitations the answers are not reprinted.

They can be found however in a technical report [17], together

with further details regarding the research design. In some cases,

the interviewees offered documents of different kinds (system

documentation as well as project documentation), which in our

opinion was mostly useful only to confirm the interviewees’

narratives. In one case (F1) one of the authors (R.L.) participated

as an active member during two periods (fall 2002 and winter

2004-2005).

The research can be considered to be grounded theory [29] in the

sense that we collected data to build models for previously un-

researched questions, as contrasted to validating a pre-defined

hypothesis. Strictly, there is no external validity in the traditional

sense (of course the data fits the model, because the model is built

from the data); validation would mean repeating the case study

and comparing the current model with the new data. On the other

hand, the new data would probably be used to modify or refine

the model, leading to the same validity problem. It has been

argued that for grounded theory research, the validation that can

be achieved is a proper understanding, which can only be judged

by other researchers [19,29].

We have deliberately avoided commenting the outcome of the

cases as being good or bad, as the criteria as to how to do this are

not at all obvious and are practically difficult to determine.

Problems in answering this question include: how many years

need to pass before all effects of the integration are known? How

can the quality of the resulting systems be evaluated, if at all? Or

is the competitiveness and financial situation of the company a

certain number of years a more interesting measure? And by

making case studies, it is impossible to know what the result of

some other choice would have been. All value statements

therefore come from the interviewees themselves, based on their

opinions based on their perception of e.g. whether time and

money was gained or spoiled.

3. STRATEGIES
In order to classify the decisions made in the cases we present a

model dividing the numerous possibilities for integration into four

strategies that are easily understood analytically: No Integration,

Start from Scratch, Choose One, and Merge. In reality, we can

expect that these strategies are not strictly independent; some real

cases can be seen as a combination of two, or as something in

between. However we find it useful to use this model as a

framework for discussion. The strategies, especially the Merge

strategy, are discussed in more detail in section 5.1.

No Integration (NI) Develop existing software systems in

parallel, which clearly will not result in an integrated or common

system. However it is mentioned for the sake of completeness.

Start from Scratch (SFS) Start the development of a new

system, aimed to replace the existing systems, and plan for

discontinuing the existing systems. In most cases (parts of)

requirements and architecture of the existing systems will be

carried over to the new system. This strategy can be implemented

by buying a commercial solution or building the new system.

Choose One (CO) Evaluate the existing systems and choose the

one that is most satisfactory, officially discontinue development

of all others and continue development of the selected system. It

may be necessary to evolve the chosen system before it can fully

replace the other systems.

Merge (M) Take parts from the existing systems and integrate

them to form a new system that has the strengths of both and the

weaknesses of none. This is, of course, a very idealized strategy

and as it will turn out the most complicated and broad strategy of

the model.

4. THE CASES
The cases come from different types and sizes of organizations

operating in different domains, the size of the systems range from

a maintenance and development staff of a few people to several

hundred people, and the demands on extra-functional

requirements are very different depending on the system domain.

What the cases have in common though is that the systems have a

significant history of development and maintenance.

The cases are summarized in Table 1. They are labeled A, B, etc.

Cases E1, E2, F1, F2, and F3 occurred within the same

organizations (E and F). For the data sources, the acronyms used

are IX for interviews, DX for documents, and PX for participation,

where X is the case name (as e.g. in IA, the interview of case A),

plus an optional lower case letter when several sources exist for a

case (as e.g. for interview IDa, one of the interviews for case D).

IX:n refers to the answer to question n in interview IX. In this

paper, we have provided explicit pointers into this source of data.

This paper focuses on architectural issues; for processes the

reader is referred to [18].

22

Table 1: Summary of the cases.

Organization System Domain Goal Information Resources

A Newly merged inter-

national company

Safety-critical systems

with embedded

software

New HMI* platform to

be used for many

products

Interview: project leader for “next generation”

development project (IA)

B Organization within

large international

enterprise

Administration of

stock keeping

Rationalizing two

systems within

corporation with similar

purpose

Interview: experienced manager and developer (IB)

C Newly merged inter-

national company

Safety-critical systems

with embedded

software

Rationalizing two core

products into one

Interviews: leader for a small group evaluating

integration alternatives (ICa); main architect of one of the

systems (ICb)

D Newly merged inter-

national company

Off-line management

of power distribution

systems

Reusing HMI* for Data-

Intensive Server

Interviews: architects/developers (IDa, IDb).

E1 Cooperation defense

research institute and

industry

Off-line physics

simulation

Creating next generation

simulation models from

today’s

Interview: project leader and main interface developer

(IE1)

Document: protocol from startup meeting (DE1)

E2 Different parts of

Swedish defense

Off-line physics

simulation

Possible rationalization

of three simulation

systems with similar

purpose

Interview: project leader and developer (IE2)

Documents: evaluation of existing simulation systems

(DE2a); other documentation (DE2b, DE2c, DE2d, DE2e,

DE2f)

F1 Newly merged inter-

national company

Managing off-line

physics simulations

Possible rationalization

by using one single

system

Participation: 2002 (R.L.) (PF1a); currently (R.L.) (PF1b).

Interviews: architects/developers (IF1a, IF1b); QA

responsible (IF1c)

Documentation: research papers (DF1a); project

documentation (DF1b)

F2 Newly merged inter-

national company

Off-line physics

simulation

Improving the current

state at two sites

Interviews: software engineers (IF2a, IF2b, IF2f); project

manager (IF2c); physics experts (IF2d, IF2e)

F3 Newly merged inter-

national company

Software issue

reporting

Possible rationalization

by using one single

system

Interview: project leader and main implementer (IF3)

Documentation: miscellaneous related (DF3a, DF3b)

* HMI=Human-Machine Interface

The remainder of this section describes the cases in some more

detail illustrating how strategies were considered and how one

was chosen. Due to space limitations this is done in a very brief

manner.

Case A Each of the previous separate companies had developed

software human-machine interfaces (HMIs) for their large

hardware products (IA:1,2). To rationalize, it was decided that a

single HMI should be used throughout the company (IA:2,3), that

is, there was a wish to discontinue at least all but one of the

existing HMIs. The two existing systems with the highest

influence had a very different underlying platform: one was based

on open source platforms and the other on commercial solutions

(IA:1,2,8). The differences were maybe largest when it came to

the cultural clash associated with the platforms excluding the

possibility of a Merge. As resource constraints were not a major

influence, the decisive factor when choosing between the

remaining strategies was the new consolidated set of

requirements, especially larger configurability of the system, and

the availability of new technology (IA:3,5). Therefore, Start from

Scratch was desired by the architects over Choose One and thus

selected (IA:7,8).

Case B Two existing systems with similar functionality had to be

merged in order to reduce cost (IB:3). One system was used

throughout the company the other only in one daughter-company

(IB:1). Discontinuing of the large system was not considered

thereby excluding Start from Scratch. The smaller system was

built on the tight integration paradigm, while the large system was

build as a loose integration of many subsystems (IB:1,6,7,13). The

difference in approach made Merging the systems infeasible,

therefore the Choose One strategy was chosen (IB:7).

Case C The systems and the development staff of the

organization is the largest among the cases: several MLOC and

hundreds of developers (ICb:1,9). Two such systems with very

similar functionality were being developed within the now

merged company and both were nearing release (ICa:1, ICb:1).

Management did not want to retire either of them, but wanted the

best parts of both systems to form the new system within six

months, i.e. Merge (ICa:6, ICb:6). The systems were similar in

23

many ways (ICa:7, ICb:1), but there were differences as well: some

technology choices, framework mechanisms such as failover,

supporting different (natural) languages, and error handling, as

well as a fundamental difference between providing an object

model or being functionally oriented (ICb:1,6,7). The differences

prevented Merging the systems in a short period of time, but

allowed for Merging over a longer period. The architects reported

to management that the Merge would take 2 years, much longer

than desired, and that a better option was to Choose One (ICa:6,

ICb:6). Eventually management changed its position so that either

(but not both) could be discontinued, allowing for the Choose One

strategy which was implemented (ICa:6). However the decision

was not made until both systems were independently released and

deployed at customers. This caused an estimated loss of one year

of development effort of a team of several hundred developers

(ICb:6), confusion to the customers who did not know which of the

two products to choose, and required addition effort in migrating

the customers of the retired system to the chosen one (ICa:6). One

of the interviewees points out that although the process seems

suboptimal it is difficult to say whether other approaches would

have been more successful (ICa:12).

Case D The two systems, both consisting of an HMI and a server,

have a common ancestry, but have evolved independently for 20

years (IDa:1). Five years before the merger the HMI of one of the

systems was decomposed into components and significantly

modernized (IDb:7). The other system built on more aged

technologies, and around the time of the merger the customers of

this system considered that HMI to be outdated; it was therefore

decided that the dated HMI should be replaced by the modern

one, thus Choose One (IDa:1, IDb:3). In order to do this the server

that used to be controlled by the dated HMI had to be changed,

but thanks to the common ancestry it was relatively easy to make

the same modifications to the server that had been made five

years ago when the modern HMI was developed (IDb:8). The

servers themselves have not been integrated yet; they both

implement the same industry standards and the plans are to

perform a gradual Merge but there are no concrete plans (IDa:1,

IDb:6). In the summary and analysis of the cases we will therefore

discuss the integration of HMIs and servers separately.

Case E1 The goal in this cooperation project was not only to

integrate several existing systems, but also to add another, higher

level of functionality (IE1:1,3). Retiring the existing systems was

possible since all parties would benefit from the new system

(IE1:1). Many of the existing systems (but not all) were written in

the same language (IE1:6). However, a new language was

considered better suited for a higher level of system complexity

and would also bring a number of additional benefits such as

reusable code, robustness, commonality within the organization

(IE1:6,7). Thus Start from Scratch strategy was chosen (IE1:6).

Case E2 A certain functional overlap among three simulation

systems was identified (IE2:1, DE2a). The possibility of retiring

any, but not all, of these systems was explicitly left open, partly

because of limited resources and partly because (some of) the

functionality was available in the others (DE2a, IE2:13). Two

systems were somewhat compatible, but due to limited resources

the only integration has been reuse of the graphical user interface

of one into the other, although this was more complicated than

anticipated (IE2:6). We thus have some reuse but no Merge, as

there are no resources and no concrete plans for integrating these

two systems into one. Although not directly replaced by the

others, the third system has in practice been retired (IE2:6,13) and

we consider this case to be a Choose One strategy (actually

Choose Two out of three).

Case F1 After the company merger, there has been a need to

improve and consolidate management and support for certain

physics simulations with data management mechanisms and user

interfaces (IF1a:1, IF1b:1, IF1c:1,2, DF1a, PF1a, PF1b). Initially, three

systems were considered for integration or replacement; the two

possibilities outlined were a tight merge with a result somewhere

between Merge and Choose One and a loose integration in an

Merge manner, which became the decision (IF1a:3, IF1c:3, PF1a,

DF1a). However, the many incompatibilities indicated a very long

development time. It was not considered possible to discontinue

development on the existing systems before a full replacement

was available and the limited resources and other local priorities

in practice resulted in no progress towards a common system

(IF1c:6, DF1a, PF1a, PF1b). Currently, stakeholders are favoring

Choose One, but the scope is unclear and integration activities

still have a low priority (IF1a:1,6, IF1b:6,9, IF1c:1, PF1b); some

participants have seriously begun to question the value of

integration altogether (IF1b:3,9, IF1c:6,9) and the result so far, after

four years, has been No Integration. This apparent lack of results

is not due to lack of will or effort, because throughout these years

there have been numerous attempts to identify a proper

integration strategy (IF1a:3,6, IF1b:9,11, IF1c:6, PF1b).

Case F2 The two systems both consist of four programs run in

sequence, with very similar roles, communicating via input and

output files: pre-processor, 2D simulator, post-processor, and 3D

simulator (IF2a:1,9, IF2b:7, IF2c:10,11, IF2d:8, IF2e:5, IF2f:8). To create

a common system, it was considered possible to discontinue the

first three parts, as long as there is a satisfactory replacement,

although the simulators need to be validated which makes time to

release longer (IF1c:6, IF1f:6). The 3D simulator is considered very

large and complex to replace, so this is not realistic within the

next few years (IF1f:6). So far there are common pre- and post-

processors; they have been rewritten, i.e. Start from Scratch,

although the post-processor started as an attempt to Choose One

of the post-processors and evolve it, but due to insufficient

analysis of requirements it had to be almost completely rewritten

(IF2a:9, IF2b:1,7, IF2c:7,9, IF2d:6,7, IF2e:7). Although the 2D

simulators are branched from a common ancestor, they are no

longer very similar, and one of the 2D simulators is currently

being evolved to replace the other, i.e. Choose One (IF2a:1,9,

IF2b:7, IF2d:7,8). Parts of the 3D simulators have been re-developed

commonly, i.e. Merge (IF2a:3, IF2c:3, IF2d:7, IF2e:7,8, IF2f:3,6,7).

Due to the different states and choices of integration of the four

parts we will treat them separately.

Case F3 Three different software systems for tracking software

issues (errors, requests for new functionality etc.) were used at

three different sites within the company, two developed in-house

and one being a ten-year old version of a commercial system

(IF3:1). The two systems developed in-house where somewhat

compatible (IF3:1). All involved saw a value in a common system

supporting the best processes within the company, and apart from

the fact that a transition to such a common system would mean

some disruption at each site, independently of whether the

common system would be completely new or a major evolution of

the current system used there was no reluctance to the change

(IF3:3,10,11). Being a mature domain, outside of the company’s

core business, and realizing the effort required to creating a new

issue tracking system from scratch themselves, the decision was

to Start from Scratch by acquiring a commercial system (IF3:6).

24

5. ANALYSIS
Many aspects affect the choice of strategy, which will be

discussed in this section.

5.1 Refining the Model
In section 3 we presented a model to assist us in the discussion of

the cases. Based on the cases we extend the Merge strategy,

introduce two concerns that aid exclusion of strategies, and

discuss influences on the selection of a final strategy.

5.1.1 Subdividing the Merge Strategy

To aid the discussion, we first present two types of Merge, labeled

Instant and Evolutionary, only distinguished by their associated

time scale. By introducing them, some events in the cases and

some conclusions are more easily explained, although there is no

strict borderline between them. These two types of Merge should

not be understood as two strategies with distinct identities in the

same sense as the four originally presented.

Instant Merge (IM) With “instant” we mean that the existing

components can be rearranged with little effort, i.e. basically

without modification or development of adapters. How to

evaluate and select components is the responsibility of the

architect. This strategy was desired in case C, but could not be

implemented.

Evolutionary Merge (EM) Continue development of all existing

systems towards a state in which architecture and most

components are identical or compatible, in order to allow for

Instant Merge sometime in the future. The architects in case C

asserted that if a Merge was desired an Evolutionary Merge was

the only possibility. Case F2 clearly demonstrates this strategy.

Indications are that case DServer will also follow this path in the

future.

5.1.2 Concerns

Strategy selection in the cases was influenced by many factors of

many different kinds, including the current state of the existing

systems, both technically and from a management perspective,

both in themselves and in relation to each other; the level of

satisfaction with existing systems, among users, customers, and

the development organization; the completeness or scope of the

existing systems with respect to some desirable set of features;

development resources; desired time to market; the impact of

retiring any or all of the systems. To suggest a systematic

procedure for selecting a strategy, one starting point would be to

identify issues that would not only suggest one or more strategies

as appropriate, but also exclude some strategies as inappropriate.

Of the concerns listed, we identified only two of these as being

able to, when properly addressed, exclude strategies: the

architectural compatibility of the systems and the retireability of

the systems.

Compatibility Architectural mismatch can make integration hard

if not impossible [9]. In order for (parts of) systems to be

integrated they therefore need to be compatible to some extent.

Also when systems are not based on components or clearly

defined interfaces, differences in the framework used can also

have a negative impact on compatibility. Ideally systems are

compatible to such an extent that it is possible to pick the best

components from both resulting in an Instant Merge. However

this situation has not been observed among the cases even though

some systems share a common ancestry (IDb:1, IF2a:1) or are based

on common standards (ICb:1). In reality systems may be somewhat

compatible possibly allowing for an Evolutionary Merge, but

there are also the options to also Choose One or Start from

Scratch. If systems are totally incompatible neither Evolutionary

Merge nor Instant Merge is possible. We want to emphasize that

compatibility is a greyscale and there is no universal

compatibility measure. Similar structures seem to be a necessary

condition as well as similar in the sense of environment that

defines components [16]. What compatibility may mean in every

new situation must be evaluated by the architect.

Retireability Stakeholders may consider retiring a system

unfeasible for various reasons, such as market considerations, user

satisfaction, or potentially the loss of essential functionality. If all

systems can be retired, all integration strategies are possible. If

not all systems can be retired, it is not possible to Start from

Scratch because this would require discontinuing all systems. If

none of the existing systems can be discontinued, both of the

integration strategies Choose One and Start from Scratch are

excluded.

Table 2 summarizes the exclusion of strategies based on these

concerns, where black denotes exclusion of a strategy. Although

compatibility is a continuous scale, for the sake of discussion it is

divided into three classes: High, Modest, and None. “High”

means that the systems are compatible to such an extend that

components can be picked from either one and combined into a

new system with very little modification, “None” means that the

systems are fundamentally different, and “Modest” is somewhere

in between. Retireability is divided into All, Not all, and None.

“All” means that it is possible to retire all systems, “Not all”

means that out of the two or more systems one or more systems

can be retired, but at least one can not, and “None” means that

none of the systems can be retired.

We note that evaluating compatibility mainly involves finding

information and facts about the current state of the systems, which

is not the case for statements about retireability. To what extent a

system is retireable is not solely determined by the architect, but

involves the opinions of other stakeholders such as management,

users, and marketing. This also means that retireability is not a

static property, but that it can be renegotiated with involved

stakeholders. This is especially true when this concern excludes a

strategy that is for other reasons considered desirable.

Although many influences on the decisions made were found in

the cases, these two are the only ones that result in the exclusion

of strategies. It appears as other influences, such as satisfaction

with the existing systems, scope, available development

resources, and availability of commercial products, can not be

considered in isolation to exclude some strategies, but taken

together they can motivate the choice of one strategy over

another, and also influence retireability considerations. General

influences found are discussed in section 5.3.3.

Table 2: The exclusion of possible strategies based on

concerns (black indicates exclusion)

SFS CO EM IM

High

Modest Compatibility

None

All

Not all Retireability

None

25

Table 3: Concerns per case
(question mark indicates that the information was not available)

Retireability Compatibility

A All None

B Not all None

C (initial) None

C (final) Not all
Modest

DHMI Not all None

*DServer (?) Modest (?)

E1 All Modest

E2 Not all Modest

F1 (initial)

F1 (final)
No None

F2Pre All None/Modest (?)

*F22D All Modest

F2Post All None

*F23D None Modest

F3 All None/Modest (?)

Table 4: Possible and desired strategies, per case
(black indicates exclusion, circle indicates selected strategy)

SFS CO EM IM

A O

B O

C (initial) O

C (final) O

DHMI O

*DServer (?) (?) O (?)

E1 O

E2 O

F1 (initial) O

F1 (final) O

F2Pre O (?)

*F22D O

F2Post O

*F23D O

F3 O (?)

5.2 Revisiting the Cases
Table 3 summarizes the concerns for all cases. Table 4 combines

tables 2 and 3 by showing which strategies are excluded, marked

with black, based on the concerns, which was desired and (where

applicable) eventually chosen, which is indicated with a circle.

Three rows in the tables (DServer, F22D, and F23D) are marked with

an asterisk (“*”), indicating that the systems are not yet integrated

and the information summarized is preliminary. A question mark

indicates that the classification is unsure, but we have chosen to

show the interpretation that could falsify our proposed scheme,

i.e. excluding the most strategies. In case C retireability was

clearly renegotiated, and in case C and F1 the decision changed,

illustrated in Table 4 with multiple entries for these cases showing

these iterations.

5.3 Strategy Exclusion and Selection
In section 5.1.2 we presented two important concerns for selecting

a strategy and proposed that these concerns can exclude the

selection of certain strategies (e.g. if systems are not compatible

they can not be instantly merged). Table 4 shows that most cases

have selected a strategy that, according to this model, is not

excluded. In these cases integration was successful or is making

progress. There are three rows (C’, F1’, and F1’’) where a

strategy was desired that was excluded, and there have in fact

been significant problems due to that: in case C the decision had

to be changed, and in case F1 all alternatives are still excluded,

and no significant progress has been made. Thus, two cases

directly support our premise that the concerns compatibility and

retireability exclude certain strategies, and the other cases do not

contradict it.

The rest of this section describes observations concerning

architectural compatibility, followed by a number of influences to

retireability and the final choice of strategy.

5.3.1 Compatibility

Compatibility, unlike retireability, is not a concern that can be

negotiated or modified because it is a static property of a

collection of systems. Given an assessment of architectural

compatibility, it cannot be changed only because it gives a

dissatisfactory answer. There are two things however that can be

done to improve the compatibility in order to make a merge

possible. First, if a subset of the candidate systems (or some

subsystems) is considered compatible it may be possible to

change the scope of the integration project to include only these

subsystems, thus enabling the possibility of a Merge. Case F1

exemplifies a change in scope, but unfortunately no suitable set of

systems to merge have been found (IF1a:1, IF1b:1,6, IF1c:1, PF1a,

PF1b). Second, it is possible to evolve one or all systems towards a

state in which they are compatible, i.e. performing an

Evolutionary Merge. However, given the time required, some

other strategy may be considered preferable, as shown by case C

(ICa:6, ICb:6).

A definition of architectural (in-)compatibility would be subject

to the same semi-philosophical arguments as definitions of

architecture, and we will not attempt to provide one. Exactly what

aspects of compatibility are the most important to evaluate will

arguably differ for each new case. Some observations from the

cases are provided in the following, which can be a complement

to other reports of architectural incompatibility [9].

Similar high-level structures seem to be a pre-requisite for a

Merge, i.e. if there are components with similar roles in the

existing systems. In case D, both systems consisted of an HMI

and server, which made it possible to reuse the HMI from one

system into the other. In case E2 two of the existing systems

consisted of a graphical user interface (GUI) and a simulation

engine, loosely coupled, which made reuse of the GUI possible.

In case F2, the two existing pipe-and-filter structures were

strikingly similar. Reuse of components and architectural

solutions into a common system in the cases is analyzed in depth

elsewhere [16].

Similarity of frameworks could also be one measure of

compatibility. In case F2, the framework can be said to describe

separate programs communicating via input and output files. Two

of the existing systems in case F3 were developed in Lotus Notes,

and they were, with the words of the interviewee, “surprisingly

26

similar” (IF3:1). In case C, the hardware topology and

communication standards define one kind of framework.

One common source of incompatibility in systems is differences

in the data model. Both syntactical and semantically differences

can require vast changes in order to make system compatible.

This has been a recurring problem in case F1 (IF1a:6; DF1a, PF1a,

PF1b). In case F2, a new data model was defined and the existing

systems adapted (IF2e:7, IF2f:6). In case F3, the three existing

systems all implemented similar workflows, however the phases

were different (IF3:3).

Some systems in the cases shared a common ancestry (cases D

and F2) or were based on common standards (C and D), but in no

case were the systems compatible enough to allow for an Instant

Merge. This indicates that these factors in themselves do not

guarantee total compatibility.

As compatibility is not re-negotiable, and has such profound

impact on the possible integration strategies, it must be carefully

evaluated and communicated prior to a decision. Obvious as this

may sound, the cases illustrate that this is not always the case. In

case C, management insisted on an Instant Merge, although

considered impossible by the architects (ICa:6, ICb:6) resulting in

several hundred person-years being lost. In case F1 an

Evolutionary Merge was decided upon because the systems could

not be retired, even though the systems were incompatible (IF1c:6,

DF1a, PF1a), resulting in no progress after 4 years of work. The

decisions were, when considered in isolation, perfectly

understandable: it is easier to not bother about the complexities

associated with retiring systems, and it is easier to assume that

technicians can merge the systems. This is a typical trade-off

situation with no simple solution.

5.3.2 Retireability

Retireability, unlike compatibility, can be reevaluated or

renegotiated. While all cases considered the retireability of their

existing systems this is an integral interwoven part of the decision

process and is often not done explicitly. However it appears that

cost plays an important role in the decision on retireability. Cost

has many aspects; we will discuss several of them.

Existing systems represent a value to the company. Throwing

away something that is known to work is often not an appealing

option because it would mean discarding part of the investment.

Some of the systems discussed represent hundreds of person-years

of development. Also discarded parts would have to be replaced,

requiring another investment. The organization, at present, may

not have the necessary resources to do this. In case F2

implementation and validation of a 3D simulator (Start from

Scratch) would take the better part of 10 years (IF2f:6), while an

Evolutionary Merge, even though the systems were not totally

compatible, was estimated to take less time and therefore

preferred.

Another aspect that affects retireability is satisfaction. Satisfaction

is very broad and can involve many stakeholders (architects,

users, management, etc.) and many aspects (functionality,

architecture, performance, modifiability, etc.). When one or more

of the existing systems are considered dissatisfactory there is a

tendency to favor replacing the dissatisfactory system(s). If some

of the existing systems are considered aged, they are candidates

for retirement, i.e. Choose One or Start from Scratch, as was the

case for the HMIs in case D (IDb:3).

5.3.3 Selection of a Strategy

Start from Scratch can be implemented as either build in-house or

acquire an external system. If the domain is mature and the

software systems are not core products but supporting the

organization, it may be well worth to transition to a commercial

or open source solution. This was the case in case F3, where a

commercial software issue tracking system was acquired.

Most organizations have formalized processes for development,

evolution, and retirement of software systems, and these strategies

can be cast in these terms. No Integration means the existing

systems are evolved independently. If Choose One is possible to

implement, it appears to be the simplest strategy as it only

involves retiring some systems. Start from Scratch means

planning the retirement of the existing systems while starting a

new development project. Evolutionary Merge cannot readily be

expressed in terms of existing processes, which might indicate

that it is more difficult to implement, especially since it often

involves a long time scale. Once again though, the costs must be

weighed against other influences.

Availability of resources, such as time, money, people, and skills,

has a big influence on the choice of strategy. Fundamentally, the

architect and the organization must ask whether a certain strategy

can be afforded. Even if the expected outcome would be a

common, high-quality system, the costs could simply be

prohibitive. In case E2, resource constraints resulted in some

integration of two existing systems, and the retirement of the third

system without replacement.

The question ‘Do we want one common system?’ is a very

fundamental question and a positive answer to this is usually the

starting point of the integration project. One fundamental reason

we do not have an example where No Integration was selected

explicitly is that the selection of cases was based on their actually

trying some sort of integration. However, case F1 illustrates the

situation when the existing systems are incompatible and cannot

be discontinued, which leaves only strategy No Integration. In

this situation, either retireability has to be reconsidered (together

with the associated costs, assignment of resources, etc.) or the

fundamental question about the value of integrating at all has to

be revisited (IF1b:3, IF1c:9).

5.4 Feedback
There are numerous sources of influences both on whether any of

the existing systems can be retired and on the selection of a

strategy. It is almost impossible to distinguish between how the

factors mentioned influences the retireability decision, which is

often not made explicitly at all, and how these factors were re-

evaluated given the resulting set of possible strategies. In case C,

this feedback was fairly explicit: faced with the time needed for

an Evolutionary Merge (the only available possibility), it was

decided that retiring one system would cause less harm, and the

decision could be changed to Choose One. However this decision

took quite some time to reach resulting in a cost of at least several

hundred person-years. Although is it impossible to predict what

the outcome would have been if the decision to retire was taken

earlier it is likely that it would have saved a lot of time and thus

money. In many other cases analyses, decisions, and

reconsiderations were more interleaved. We believe that all

influencing factors involved in this feedback should be based on a

proper analysis, documented explicitly, and made in a timely

manner.

27

6. RELATED WORK
Existing research in related areas is presented below, starting with

software integration, continuing with software architecture and

architectural evaluation methods, and strategic planning.

6.1 Software Integration
In our previous literature survey [15], we found that there are two

classes of research on the topic of software integration:

Basic research describing integration rather fundamentally in

terms of a) interfaces [13,34,35], b) architecture [1,10,12],

architectural mismatch [9], and architectural patterns [2,8,27],

and c) information/taxonomies/data models [11]. These

foundations are directly useful in this context.

There are three major fields of application: a) Component-

Based Software Engineering [6,20,30,33], including component

technologies, b) standard interfaces and open systems [20,21],

and c) Enterprise Application Integration (EAI) [7,26]. These

existing fields address somewhat different problems than ours:

Integration in these fields means that components or systems

complement each other and are assembled into a larger

system, while we consider systems that overlap functionally.

The problem for us is therefore not to assemble components

into one whole, but to take two (or more) whole systems and

reduce the overlap to create one single whole, containing the

best of the previous systems.

These fields typically assume that components (or systems)

are acquired from third parties controlling their development,

meaning that modifying them is not an option. We also

consider systems completely controlled in-house, and this

constraint consequently does not apply.

The goals of integration in these fields are to reduce

development costs and time, while not sacrificing quality. In

our context the goals are to reduce maintenance costs (while

not sacrificing quality).

There is no existing literature that directly addresses the context

of the present research: integration or merge of software

completely controlled and owned within an organization. While

we certainly can and should utilize the knowledge and approaches

of these fairly mature fields, our research fills an apparent gap.

The architect is considered being the person who understands the

language and concerns of other stakeholders [28,36], and/or the

person who monitors and decides about all changes being made to

the system to ensure conceptual integrity and avoid deterioration

[22,32]. The academic focus of software architecture has been the

(static) structure of the system, in terms of “components” (or

“entities”) and “connectors” [1,10,23]. The present paper

describes many important issues an architect needs to consider

during in-house integration, which only partly involves the

structure of the existing systems.

There are several proposed methods for architectural analysis,

mainly designed to be used during new development, such as the

Architecture Trade-Off Analysis Method (ATAM) and Cost-

Benefit Analysis Method (CBAM) [3]. Closely related to our

description of compatibility is the seminal “architectural

mismatch” paper, which points out many issues to be assessed as

part of the architectural compatibility [9]. Also related to

assessing architectural compatibility are architectural

documentation good practices [4,12,14]. It has been observed that

a similar structure of the existing systems is a necessary but not

sufficient condition for compatibility [16]. There exist catalogues

of generally useful structural patterns, however these are

specifically intended for use during new development [2,8,27].

Many issues are not purely technical but require insight into

business, and many decisions require awareness of he

organization’s overall strategies. Strategic planning (and strategic

management) is known from business management as a tool for

this kind of reasoning, that is to systematically formulate the goals

of the organization and compare with the current and forecasted

environment, and take appropriate measures to be able to adapt

(and possibly control) the environmental changes [5,31]. In our

case, investigating retireability clearly fits within the framework

of strategic planning, by explicitly considering the money already

invested, existing (dis)satisfaction, risk of future dissatisfaction,

estimated available resources, and weigh this based on the

perceived possible futures. In fact, the whole process we have

described, and perhaps much of an architect’s activities should be

cast in terms of strategic planning such as the PESTEL framework

or the Porter Five Forces framework [24]. (It should perhaps be

noted that our term “integration strategy” is a plan, which is not

synonymous to a company strategy in the sense of strategic

planning.)

7. SUMMARY AND CONCLUSIONS
In this paper we present strategies an organization may select

when faced with two or more systems with similar functionality,

of which the source code is available and changes can be made.

The strategies are based on actual integration projects and are: No

Integration, Start from Scratch, Choose One, and two types of

Merge: Evolutionary Merge and Instant Merge.

No Integration describes the situation in which no process

towards a common system is made. Start from Scratch involves

either a new development process or the acquisition of a

commercial product while retiring the old systems, Choose One

means selecting one system to replace the others, and Merge will

see components from both existing systems combined into the

new system that replaces them. Evolutionary Merge seems to be

the most complex strategy to implement, and Instant Merge seems

to be theoretical, possible only in the rare situation of systems

with very similar structures, built using the same or very similar

technologies, standards and other conventions. Instant Merge

strategy was the only strategy not observed in the cases, although

it appears this sometimes is what management has in mind when

demanding a merge of the existing systems into one.

There are two concerns to consider which will limit the set of

strategies that can possibly by selected, namely architectural

compatibility and retireability.

There is no exhaustive definition of architectural compatibility,

but some observations in the cases are that the structures, data

models, and environment that defines the components must be

similar. Standards and a common ancestry can make systems

somewhat compatible, although it is not a guarantee for total

compatibility. Besides that compatibility is very system specific

and should be thoroughly analyzed by the architects before

choosing a strategy to avoid problems during integration. With

somewhat compatible systems, Evolutionary Merge is possible

but Instant Merge is not. If the systems are not compatible at all

neither of the Merge strategies are possible.

Determining the retireability of the existing systems depends on

numerous factors. Major influences found in the cases were

investments made, cost, satisfaction, time to market, and available

resources. Typically there is a tight feedback loop between

28

evaluating these influences and the resulting possible strategies.

Hurdles in this feedback loop, either because architects are unable

to communicate their findings to management or because

management delays taking decisions, cause the integration cost to

increase. If it is not possible to retire all existing systems this

excludes Start from Scratch as a possible strategy. If some of the

existing systems can be retired, it is possible to Choose One. If

none can be retired this leaves Merge as the only possibility.

The worst case scenario is that the existing systems are considered

impossible to retire and are also incompatible. This leaves no

strategy left but No Integration, which of course brings none of

the potential benefits from integration. This was observed in one

of the cases.

 Drawing on the experiences from the cases, we suggest that

future architects together with other stakeholders make these

influences explicit thus making strategy selection faster, better

founded, and decrease the cost associated with uninformed

decisions. The message to management is that delaying a decision

comes with a cost.

7.1 Future work
We have also analyzed the reuse of components and architectural

solutions into a common system elsewhere [16], as well as good

practices for the strategy selection process [18]. We would like to

compile a more complete catalogue of different aspects of

architectural compatibility, for example by investigating structural

patterns and styles [2,8,27] suitable for Merge, the environment

defining the components, and the impact of cross-cutting concerns

whose implementation is scattered throughout the system. This

would also provide insight in how to make Evolutionary Merge

closer to the desired Instant Merge.

7.2 Acknowledgements
We would like to thank all interviewees and their organizations

for sharing their experiences and allowing us to publish them. We

would also like to express our gratitude for the helpful

suggestions from the anonymous reviewers.

8. REFERENCES
 [1] Bass L., Clements P., and Kazman R., Software

Architecture in Practice (2nd edition), ISBN 0-321-15495-

9, Addison-Wesley, 2003.

 [2] Bushmann F., Meunier R., Rohnert H., Sommerlad P., and

Stal M., Pattern-Oriented Software Architecture - A

System of Patterns, ISBN 0-471-95869-7, John Wiley &

Sons, 1996.

 [3] Clements P., Bachmann F., Bass L., Garlan D., Ivers J.,

Little R., Nord R., and Stafford J., Evaluating Software

Architectures, ISBN 0-201-70482-X, Addison-Wesley,

2001.

 [4] Clements P., Bachmann F., Bass L., Garlan D., Ivers J.,

Little R., Nord R., and Stafford J., Documenting Software

Architectures: Views and Beyond, ISBN 0-201-70372-6,

Addison-Wesley, 2002.

 [5] Courtney H., 20|20 Foresight : Crafting Strategy in an

Uncertain World, ISBN 1-57851-266-2, Harvard Business

School Press, 2001.

 [6] Crnkovic I. and Larsson M., Building Reliable

Component-Based Software Systems, ISBN 1-58053-327-

2, Artech House, 2002.

 [7] Cummins F. A., Enterprise Integration: An Architecture

for Enterprise Application and Systems Integration, ISBN

0471400106, John Wiley & Sons, 2002.

 [8] Gamma E., Helm R., Johnson R., and Vlissidies J., Design

Patterns - Elements of Reusable Object-Oriented

Software, ISBN 0-201-63361-2, Addison-Wesley, 1995.

 [9] Garlan D., Allen R., and Ockerbloom J., “Architectural

Mismatch: Why Reuse is so Hard”, In IEEE Software,

volume 12, issue 6, pp. 17-26, 1995.

 [10] Garlan D. and Shaw M., “An Introduction to Software

Architecture”, In Advances in Software Engineering and

Knowledge Engineering, volume I, 1993.

 [11] Guarino N., Formal Ontology in Information Systems,

ISBN 9051993994, IOS Press, 1998.

 [12] Hofmeister C., Nord R., and Soni D., Applied Software

Architecture, ISBN 0-201-32571-3, Addison-Wesley,

2000.

 [13] IEEE, IEEE Standard Glossary of Software Engineering

Terminology, IEEE Std 610.12-1990, IEEE, 1990.

 [14] IEEE Architecture Working Group, IEEE Recommended

Practice for Architectural Description of Software-

Intensive Systems, IEEE Std 1471-2000, IEEE, 2000.

 [15] Land R. and Crnkovic I., “Existing Approaches to

Software Integration – and a Challenge for the Future”, In

Proceedings of Software Engineering Research and

Practice in Sweden (SERPS), Linköping University, 2004.

 [16] Land R., Crnkovic I., Larsson S., and Blankers L.,

“Architectural Reuse in Software Systems In-house

Integration and Merge - Experiences from Industry”, In

Proceedings of First International Conference on the

Quality of Software Architectures (QoSA), Springer, 2005.

 [17] Land R., Larsson S., and Crnkovic I., Interviews on

Software Integration, MRTC report ISSN 1404-3041

ISRN MDH-MRTC-177/2005-1-SE, Mälardalen Real-

Time Research Centre, Mälardalen University, 2005.

 [18] Land R., Larsson S., and Crnkovic I., “Processes Patterns

for Software Systems In-house Integration and Merge -

Experiences from Industry”, In Proceedings of 31st

Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), Software Process and

Product Improvement track (SPPI), 2005.

 [19] Maxwell Joseph A., “Understanding and validity in

qualitative research”, In Harvard Educational Review,

volume 62, issue 3, pp. 279-300, 1992.

 [20] Meyers C. and Oberndorf P., Managing Software

Acquisition: Open Systems and COTS Products, ISBN

0201704544, Addison-Wesley, 2001.

 [21] Meyers C. and Oberndorf T., Open Systems: The Promises

and the Pitfalls, ISBN 0-201-70454-4, Addison-Wesley,

1997.

 [22] Parnas D. L., “Software Aging”, In Proceedings of The

16th International Conference on Software Engineering,

pp. 279-287, IEEE Press, 1994.

 [23] Perry D. E. and Wolf A. L., “Foundations for the study of

software architecture”, In ACM SIGSOFT Software

Engineering Notes, volume 17, issue 4, pp. 40-52, 1992.

 [24] Porter M. E., Competitive Strategy: Techniques for

Analyzing Industries and Competitors, ISBN 0684841487,

Free Press, 1998.

 [25] Robson C., Real World Research (2nd edition), ISBN 0-

631-21305-8, Blackwell Publishers, 2002.

29

 [26] Ruh W. A., Maginnis F. X., and Brown W. J., Enterprise

Application Integration, A Wiley Tech Brief, ISBN

0471376418, John Wiley & Sons, 2000.

 [27] Schmidt D., Stal M., Rohnert H., and Buschmann F.,

Pattern-Oriented Software Architecture - Patterns for

Concurrent and Networked Objects, Wiley Series in

Software Design Patterns, ISBN 0-471-60695-2, John

Wiley & Sons Ltd., 2000.

 [28] Sewell M. T. and Sewell L. M., The Software Architect's

Profession - An Introduction, Software Architecture

Series, ISBN 0-13-060796-7, Prentice Hall PTR, 2002.

 [29] Strauss A. and Corbin J. M., Basics of Qualitative

Research: Techniques and Procedures for Developing

Grounded Theory (2nd edition), ISBN 0803959400, Sage

Publications, 1998.

 [30] Szyperski C., Component Software - Beyond Object-

Oriented Programming, ISBN 0-201-17888-5, Addison-

Wesley, 1998.

 [31] Thompson Jr. A. A. and Strickland III A. J., Strategic

Management : Concepts and Cases (11th edition), ISBN

0-07-303714-1, Irwin/McGraw-Hill, 1999.

 [32] van Gurp J. and Bosch J., “Design Erosion: Problems &

Causes”, In Journal of Systems & Software, volume 61,

issue 2, pp. 105-119, 2002.

 [33] Wallnau K. C., Hissam S. A., and Seacord R. C., Building

Systems from Commercial Components, ISBN 0-201-

70064-6, Addison-Wesley, 2001.

 [34] Wegner P., “Interoperability”, In ACM Computing

Surveys, volume 28, issue 1, 1996.

 [35] Wileden J. C. and Kaplan A., “Software Interoperability:

Principles and Practice”, In Proceedings of 21st

International Conference on Software Engineering, pp.

675-676, ACM, 1999.

 [36] WWISA, Worldwide Institute of Software Architects,

URL: http://www.wwisa.org, 2002.

 [37] Yin R. K., Case Study Research : Design and Methods

(3rd edition), ISBN 0-7619-2553-8, Sage Publications,

2003.

APPENDIX: INTERVIEW QUESTIONS
1. Describe the technical history of the systems that were

integrated: e.g. age, number of versions, size (lines of code

or other measure), how was functionality extended, what

technology changes were made? What problems were

experienced as the system grew?

2. Describe the organizational history of the systems. E.g.

were they developed by the same organization, by different

departments within the same organization, by different

companies? Did ownership change?

3. What were the main reasons to integrate? E.g. to increase

functionality, to gain business advantages, to decrease

maintenance costs? What made you realize that integration

was desirable/ needed?

4. At the time of integration, to what extent was source code

the systems available, for use, for modifications, etc.? Who

owned the source code? What parts were e.g. developed in-

house, developed by contractor, open source, commercial

software (complete systems or smaller components)?

5. Which were the stakeholders of the previous systems and of

the new system? What were their main interests of the

systems? Please describe any conflicts.

6. Describe the decision process leading to the choice of how

integration? Was it done systematically? Were alternatives

evaluated or was there an obvious way of doing it? Who

made the decision? Which underlying information for

making the decision was made (for example, were some

analysis of several possible alternatives made)? Which

factors were the most important for the decision

(organizational, market, expected time of integration,

expected cost of integration, development process, systems

structures (architectures), development tools, etc.)?

7. Describe the technical solutions of the integration. For

example, were binaries or source code wrapped? How much

source code was modified? Were interfaces (internal and/or

external) modified? Were any patterns or infrastructures

(proprietary, new or inherited, or commercial) used? What

was the size of the resulting system?

8. Why were these technical solutions (previous question)

chosen? Examples could be to decrease complexity,

decrease source code size, to enable certain new

functionality.

9. Did the integration proceed as expected? If it was it more

complicated than expected, how did it affect the

project/product? For example, was the project late or cost

more than anticipated, or was the product of less quality

than expected? What were the reasons? Were there

difficulties in understanding the existing or the resulting

system, problems with techniques, problems in

communication with people, organizational issues, different

interests, etc.?

10. Did the resulting integrated system fulfill the expectations?

Or was it better than expected, or did not meet the

expectations? Describe the extent to which the technical

solutions contributed to this. Also describe how the process

and people involved contributed – were the right people

involved at the right time, etc.?

11. What is the most important factor for a successful

integration according your experiences? What is the most

common pitfall?

12. Have you changed the way you work as a result of the

integration efforts? For example, by consciously defining a

product family (product line), or some components that are

reused in many products?

30

