
Experimental Model Synthesis for Timing Analysis of an Industrial Robot

Joel Huselius, Johan Andersson, Hans Hansson, and Sasikumar Punnekkat
Mälardalen Real-Time Research Centre, Mälardalen University, V̈aster̊as, Sweden
{joel.huselius,johan.x.andersson,hans.hansson,sasikumar.punnekkat}@mdh.se

Abstract

Manual modeling of real-time systems is time consum-
ing and require skilled labor. As an alternative, for legacy
systems without valid models, we advocate model synthesis
(i.e. automated construction of models). Our previous work
has presented a process for model synthesis that inputs logs
from the original real-time system, and outputs a behav-
ioral model. The current paper present an evaluation of this
process that we performed on a state of practice industrial
robot system. With this case study, we establish the feasibil-
ity of our model synthesis approach, and also show how to
obtain a validated probabilistic models. These model can
be used to analyze the temporal properties of real-time sys-
tems.

1. Introduction

System development is often not the structured process
that we would like to think, where developers start out from
models that are kept up-to-date as the system evolves. Many
industrial real-time systems have been developed and main-
tained for many years and today contain millions of lines of
code, with fragmentary and often out-dated documentation.
Development relies heavily on the experience of skilled en-
gineers and massive amounts of full-system testing.

Traditionally, when developing models of complex sys-
tems, in order to achieve the appropriate balance between
abstraction and usefulness of the model, modeling is an art
rather than an algorithmic process; the wit and cunningness
of the model designer is imperative to the accuracy, effi-
ciency, and usefulness of the model.

We can identify at least two problems with this kind of
modeling process:

• Due to high learning thresholds for modeling para-
digms, expensive time of skilled engineers is required
for modeling.

• The continuous evolution of the system and the slow
pace of human labor typically invalidates the model

before or shortly after it has been completed.

In place of manual modeling, we propose that an auto-
mated process should be used to construct valid models for
existing legacy systems. Our previous work [7, 8] has pre-
sented such a process ofmodel synthesisfor probabilistic
models of real-time systems. In this paper, we evaluate the
usefulness of that process by conducting an experiment on
an industrial setting.

Model synthesis allow us to obtain probabilistic mod-
els of legacy code quickly and efficiently – the models can
be used for analysis of the modeled system. The use of
probabilistic arguments in the models allows us to obtain
a more nuanced and abstract understanding of the system
compared to traditional modeling with WCET – for exam-
ple, execution times can be viewed as distributions instead
of intervals, and abstract away from some of the data-state
dependencies in the system [11].

1.1. Contribution

In this paper, we show that model synthesis based on logs
can deliver models of legacy systems.

Specifically, by performing an experiment on an indus-
trial robot case, we use our process of model synthesis de-
scribed in [8] to: define the required extent of the logs as in-
put, obtain the logs required, use one set of logs to produce
the model, and another set of logs to validate the model.

1.2. Organization

The remainder of the paper is organized as follows: Sec-
tion 2 describes our process of model synthesis and the tool
set that we use to perform the experiment. Section 3 de-
scribes the experiment that we have performed. Section 4
presents the results and an analysis of the experiment. Sec-
tion 5 concludes the paper.

2. Model synthesis

We argue that there is an algorithm that, based on al-
ready available information gathered from the implementa-

1



tion and its environment, is able to compile a valid model
of the system without requiring additional inputs from hu-
mans. In other words: there is an algorithm that can perform
model synthesis. We have produced an example of such an
algorithm, and this paper is a proof of concept of using the
process successfully in an industrial setting.

For input to the process of model synthesis, there are two
potential sources available to us: we can use the source code
of the implementation, or logs of the executing implemen-
tation.

We have chosen to use the later source of execution logs.
This gives us the ability to abstract away from the com-
plexity of the code, and provides us with real performance
data. On the other hand, provided that no dynamic construc-
tions such as dynamically linked libraries are used, using
the code as input can ensure completeness of the model – if
we choose to use only logs from recording as input, com-
pleteness of the model can only be guaranteed by perform-
ing exhaustive testing. We believe, however, that only using
logs has advantages in complexity of the solution, portabil-
ity, and also allows us to view the average timing behavior
as well as the probabilistic behavior of the system.

It would of course be possible to combine the two inputs,
thereby harvesting the advantages of both approaches, but
that raises a new set of integration issues that we choose to
leave for future work.

2.1. Execution recording

Recordingis the act of saving information about the ex-
ecution of a system; it consists of the three sub activities
probing, monitoring, andlogging.

By insertingprobesinto the system (i.e.probing), we
canmonitortheeventsthat occur during execution. The out-
put of monitoring can beloggedto facilitate off-line analy-
sis of the execution. The product of recording is alog. Our
method for model synthesis is dependent on recording to
produce inputs to the modeling process.

Generally, probes can be implemented in hardware, soft-
ware or some hybrid – for portability and simplicity rea-
sons, we have used software probes in our implementation.
The probes are tailored to extract relevant information from
the system, this extraction comes at the price of perturbation
to the original system. Probes that are highly perturbing
(i.e. software implementations) should remain resident in
the system (see [6] for further elaboration on this and other
issues related to recording).

Our method requires generic probes to hook on tocon-
text switchesandsystem calls. There is also an option to
usedata state-probesthat record the values of selected vari-
ables to represent the state in the system. For each event, a
set of parameters are logged.

2.2. The ART-ML modeling language

We have chosen to realize models in the modeling lan-
guage ART-ML [11], which was defined as part of a previ-
ous research work in our center. The language allows prob-
abilistic modeling of the behavior and the architecture of
real-time systems. The probabilism is used as an alternative
way to express selections, execution times, and to fire jobs
of tasks in the system. Thus, when data state information
is scarce, a probabilistic expression can replace a normal if-
then-statement. Using the notion of probabilism, we can
also express execution time as probabilistic distributions,
which can be used to abstract the model from the variable
state of the implementation – if the state determines how
long a computation takes, we can optionally abstract away
the state, and use an execution time distribution instead of
modeling the exact behavior.

These means of abstraction are potentially valuable in
system maintenance [11] (e.g. for understanding the com-
plexity of the system and for understanding what effects fu-
ture changes will have to the system). They can also be
used to analyze real-time systems that are not constructed
according to real-time theory.

2.3. Our process for model synthesis

Based on the two vital partsmodel generation[7] and
automated model validation[8], we have constructed a
process for model synthesis [8] as described by Figure 1.

The basic operation of the model generation is to, based
on a givenlog from a recording, produce models from each
executing task. In short, atrace for each individual task is
filtered from the collected logs of the system, the trace is
then folded into jobs of the task. Then, the smallesttree is
constructed based on the trace, and that tree is then trans-
formed into a model of the task. To provide model gen-
eration, the system must allow probing of system and task
level events (e.g. context switches, ipc-operations, and se-
lected variable assignments). We refer to [7] for details on
the generation.

Automated model validation is performed on the above
mentioned tree, and a collection of the above mentioned
traces. These are transformed into communicating timed
automata [2], one for the tree (see Figure 2), and one for
each trace (see Figure 3). A third general auxiliary au-
tomata is used to pass parameters concerning variable iden-
tifiers, values etc. between the two automata (see Figure
4). Reachability analysis on the last label of each trace then
proves the inclusion of the trace in the tree – which is ev-
idence of a valid model. We refer to [8] for details of the
model validation.

As outlined in Figure 1, to support model generation and
model validation, we need to provide a number of function-

2



Implementation

?
i := 0

?

PPPPP
�����

�����
PPPPPProbing

analysis

?
j := 0

?
Implementation
probing

?
Implementation
execution

-recg
i Model

generation

?

?

Model

?

Synthesis
threshold

6
PPPPP

�����

�����
PPPPPResolution

analysis

6

�

PPPPP
�����

�����
PPPPPFeasibility

analysis

6

j := j + 1

-

6

?

FAIL!

Test case

� -
?

Implementation
execution

6

recv
i

Validity
properties

?

PPPPP
�����

�����
PPPPPModel

validation
�i := i + 1�

?

DONE!

Figure 1. The process of model synthesis.

Figure 2. A timed automaton of a model, here without data-state.

alities:

Probing analysis suggests what data sources should be

probed in the implementation.

Implementation probing implements the probes accord-

3



Figure 3. A timed automaton for a (short) trace that is accepted by the timed automaton of the model.

Figure 4. An auxiliary automaton for parameter passing between the two automata.

ing to the probing analysis.

Implementation execution produces logs by recording
the executing system.

Resolution analysisanalyses the coverage of the log to en-
sure that different behaviors observed are statistically
sound – this is used to evaluate the length of the logs
given the complexity of the implementation.

Feasibility analysis can abort the model synthesis if it
seems unlikely to succeed (i.e. resolution analysis has
failed too many times with the same probe setup).

In this context, it is the role of the probing analysis to
suggest what variable assignments that need to be probed.
The more accurate the analysis, the faster the model synthe-
sis can terminate – if the analysis is poor, several iterations
must be made before a passable suggestion is reached.

The process takes a set of tree inputs as follows:

Implementation is the subject of the model synthesis.

Test caseis the context of the model synthesis – it is with
respect to the test case used that the model must be
viewed.

Validity properties is used to specify the leeway for auto-
mated model validity – the validity properties dictate
how far from the reality the model is allowed to be. In
fact, this is a measure of the allowed abstraction in the
model.

As all the inputs are supplied, the first step of model syn-
thesis, the probing analysis, can be initiated (see Figure 1).
The first setup is to use only the required system level
probes that cover system calls and context switches. This
set up is then implemented in the following step (implemen-
tation probing), after which the first logs can be retrieved
in implementation execution. Thereafter, Model generation
will produce the first version of the model – this is then an-
alyzed by the resolution analysis to ensure that the length
of the executions are sufficient. In the Model validation,
the relation between the model and the system is consid-
ered with respect to the validity properties that where sup-
plied as input. If the quality of the model is inadequate, the
probing analysis will find a suggestion on what data state to
complement the probing with. There after the process will
continue.

2.4. Tools used in the experiment

The tool for model generation has previously been de-
scribed in [7]. Generally, it takes no more than seconds to
consume a log that represent a minute of testing on the sys-
tem.

The model validation use a set of recursive functions for
automata production [8]. As the trace grows long, these
will consume large quantities of memory – this experiment
allowed up to10 Mb of working space for the functions. In
figures 2, 3, and 4, we show examples of these automatically
constructed automata.

Our automated model validation require a timed au-
tomata model checker [8]. Unfortunately, the automata for

4



the set of traces generally have too many physical labels
(> 5000) to allow the use of a standard general purpose
model checker such as UPPAAL [4]. However, because the
trace automaton will always be serial (there is a maximum
of one transition to any label), the specific model checking
problem is quite simple. Thus, we have been able to device
a simple custom model checker to solve our specific prob-
lem. The execution time of our model checker is relative to
the number of transitions in the tree automata multiplied by
the number of transitions in the trace automata (for40∗5000
transitions, the execution is less than ten seconds).

To analyze the properties of logs during the experiment,
we made use of a set of tools previously described in [3]:
The Tracealyzer provides a graphical view of the log with
task interleavings and probed data state. The Property Eval-
uation Tool (PET) evaluates Probabilistic Property Lan-
guage (PPL) queries on the logs. Queries can for example
have the form “How large is the maximum response time of
taski”, or “How large percentage of the jobs of taski have
an execution time lower thank?”. These tools allow us to
verify and debug our methods.

2.5. Implementation discrepancies

Our implementation of the process for model synthesis
includes most of the functionality required. Probing analy-
sis and implementation probing are, however, currently not
implemented. This will not effect the final model produced,
it may however be that manual implementation probing has
another error frequency, and that manual probing analysis
use a different pattern when configuring probing configu-
rations. Though it will not affect the produced model, any
of these issues may lead to that the experiment takes longer
time to perform than necessary.

2.6. Related work

Previous work has presented a variety of methods for
model generation from both code [5, 9] and recording [10,
12]. To our knowledge, ours is the only one that also pro-
vides an automated validation of the generated model –
which is essential for successful model synthesis.

Moe and Carr [10] present an industrially sound method
for model generation. However, the model produced in their
method is not operational, but rather a visualization of oc-
curred events. The method is reported to have helped dis-
cover and identify a number of bugs in an operation and
maintenance system for cellular networks by Ericsson.

DiscoTect of Yan et al. [12] can construct architectural
models from object oriented Java implementations. These
models can show the possible interactions between tasks
and resources such as files, semaphores, and abstract data
objects. The approach is inherently non-real-time – moni-

toring of the real implementation is performed by using a
debugger to query the implementation during run-time to
extract information about occurred events.

3. The experiment

The work presented in this paper serves to show two
things:

Firstly, that model synthesis is a feasible approach to ob-
tain a functional model of a system. This is shown by con-
struction – we execute the system with different probe set-
tings, generate models from the obtained logs, and evaluate
the models through automated model validation.

Secondly, validating the model with our automated
method puts the focus on the validity parameter used in the
study – a non-fitting validity parameter can potentially ac-
cept a model that has a dissimilar temporal behavior from
that of the system. To examine the effect of the validity
property, we performed the same validations with a set of
different validity properties – the intention was to estimate
the robustness of the validity process.

The goal of the experiment was to produce a validated
model of one of the most complex tasks in the system. The
absence of automated probing analysis and automated im-
plementation probing made it infeasible for us to perform a
larger study.

3.1. The industrial robot system

In our work, we study the ABB Robotics state of prac-
tice industrial robot IRC5. The object-oriented code base of
the robot consists of> 2500 KLOC of C-code divided into
400 − 500 classes and runs on the VxWorks 5.5 operating
system on an industrial PC hardware with Intel Pentium3
processors. We study the main computer (MC), which runs
more than60 tasks with preemptive fixed priority schedul-
ing. Many of the tasks are event triggered, in which case
they typically execute one of several services requested by
the triggering task.

The system critical motion control subsystem, consisting
of tasksA, B, andC, of the MC is responsible for generating
motor references and brake signals to a DSP that in turn
controls the physical robot. The DSP issues requests to the
MC with a fixed rate> 200 Hz, it is critical that the MC can
reply to each request within a given time.

TaskA, with the lowest priority of the three, calculates
the motion control commands on a high level of abstraction
and submit results to taskB. TaskB communicates withC
andA, to reduce the abstraction of the motion control com-
mands fromA. TaskC, with the highest priority of the three,
is responsible for maintaining the communication with the
DSP.

5



In the experiment, we have focused on tasksA and B,
whose implementation consists of> 250 KLOC C-code.

3.2. Experiment setup

We have used an experimental setup for the IRC5 where
the physical moving parts of the robot are replaced with an
emulator that communicates in real-time with the robot con-
trol system. This allows for a safe and realistic setup that
closely resembles execution on the real platform. Using the
experimental setup allows us to lower the safety and space
requirements compared to a fully operational robot.

Due to the time factor of manually probing the system,
as noted above, we decided only to perform model synthesis
for a single task. For this task, we tried a series of validity
parameters so that we could analyze the effect of the para-
meter.

The test cases evaluated where:

1. A simple, slow, moving pattern, where the robot is al-
lowed to move in the simplest way. This pattern will
result in low calculation intensity for the recorded task.

2. A complex, fast, moving pattern, where the robot
moves short distances and halts its movement on des-
ignated coordinates. This pattern will result in high
calculation intensity for the recorded task.

These will be referred to astest case 1andtest case 2.

3.3. Making recordings for generation and
validation

Probing the system manually proved to be an exhaust-
ing and error prone task – the model generation has specific
rules concerning the probing it requires [7]. For example,
each ipc-receive operation should log the time of making
the call, the time of finishing the call, the queue number,
and the timeout parameter of the call. Also, each variable
assignment of each variable logged should be probed. We
made good use of the Tracealyzer and PET tools to search
the logs for errors.

After that a probing setup had been correctly imple-
mented, we programmed the robot to make a series of ma-
neuvers according to the test cases and started recording ex-
ecutions for generation and validation.

3.4. Using the recordings to generate and
validate models

The model synthesis tool has a simple command-line in-
terface which expects two files and the validity property as
inputs. One file contains the subset of log to use for generat-
ing the model, and the other file with a (implicitly disjunct)
subset of logs to use for the model validation.

We started model synthesis for each test case with a va-
lidity property of0, and increased the property until all of
the validation logs where accepted.

4. Experiment analysis

This section is dedicated to presenting and analyzing the
data from the performed experiment presented above.

4.1. Experiment data

The results of the experiment are accounted in tables 1
and 2, where:tc is the test case,log timeis the average time
span of the logs,log sizeis the average size of the logs,#
variablesis the number of variables probed,# g-logsis the
number of logs used in model generation,g-timeis the time
required for model generation,# v-logs is the number of
logs used in model validation,v-timeis the time required for
model validation,Vp-factoris the validity property divided
by the measured WCET for the task,edgesis the number
of edges in the validation automaton,res., used in the res-
olution analysis, is the average of observations for unique
events, andResultis the outcome of the synthesis. The re-
sult is given as a fraction of successes in model validation
– if g-logs is5, and model validation succeeded with3 of
these, the result is3/5.

Please note that, the function of the validity property (see
Section 2.3) is such that increasing its value will always lead
to a better or equal result. Thus, as the validity property
is increased, the fraction of successful validations will in-
crease or remain the same - but never decrease. If we have
achieved full model validation (5/5 in the example above),
we know the validity property required for the set of valida-
tion logs.

4.2. Data analysis

We can see from analyzing the complete models that the
model in test case 1 was simpler than that of test case 2.
This is reflected in Table 1, where we read that the number
of edges used in the validation automaton for test case 2
of task B is twice of that needed for test case 1. Also, as
follows from Table 2, the measured WCET of both tasks is
higher in test case 2.

For both tasks, the ease with which the generated models
passed through model validation differed with the test case
that we examined. As test case 2 is more complex than test
case 1, it seems likely to assume that the complexity of the
test case has impact on the validity property required to pass
the model. This fits with our understanding of the validity
property as a filter to ease the stringency of the validation.
Compared to the total measured WCET of the task however,

6



tc log time [s] log size [kB] # variables [B] # g-logs g-time [s] # v-logs v-time [s] edges res.

1, task B 22 600 2 5 18 5 2 22 2537

2, task B 22 600 2 5 20 5 1 41 1317

1, task A 22 600 2 5 2 5 1 17 941

2, task A 22 600 2 5 2 5 1 17 758

Table 1. Test Case Descriptions

for task B, neither of the test cases required very high va-
lidity properties (see Table 2). For task A, the ratio is much
higher, suggesting that more probing is needed for this task.

To perform the complete model synthesis, including
probing, programming the test cases, and executing the sys-
tem to produce the logs used, took no more than 1 day. To
perform the same task again would most likely take consid-
erably less time as the probes are already in place. With
the actual model synthesis taking less than half a minute
(see 1), it seems that model synthesis is considerably faster
option than constructing the model manually – a task that
would take considerably more than a week to perform. It
seems that the time required for model synthesis is a sus-
tainable delay in a development project – especially since
the process can be fully automated and then possible to
schedule to the night shift.

We measured the average resolution for the models that
were synthesized – the resolution is the number of obser-
vations for a given event in the model, the measure aims
to evaluate whether the length of the log is sufficient, given
the complexity of the implementation. This is the resolution
analysis of the model synthesis. In the case of task B, the
average resolution of both test cases exceeded 1000. This
translates to that if a previously unseen behavior would be
discovered in subsequent traces, that behavior would have
a less than0.1% chance per observation to make an impact
to the model. Our estimate is that this is sufficient guaran-
tee for that the logs used are long enough. Task A had a
slightly lower resolution, which suggests that longer traces
should be used if possible.

However, we would like to mention that with this kind of
model synthesis, the correlation between code and model is
essentially lost – even though they could be reinstated, vari-
able names etc. are lost in the process, and also, the struc-
ture of the model has no correlation to the implementation.
These problems point to that, in order to meet the require-
ments of the industry, model synthesis should not be based
on recording alone – some code or high-level description is
needed to maintain the correlation with the software. Even

so, the models that we produce here are well suited for sim-
ulation and the analysis possible there.

5. Conclusions

We have performed an experiment on an industrial sys-
tem to test the capacity of our proposed method for model
synthesis. A set of logs extracted from recording of two test
cases were used as inputs to model synthesis, and a disjunct
set of logs from the same test cases validated the result.

The performed experiment supports our hypothesis that
the method is functional. More testing is required to estab-
lish the capacity of the method, but this initial study proved
positive. Our approach can be used as a complementary
technique to traditional timing and analysis, and also pro-
vide a viable mechanism to capture timing behaviours of
interacting leagcy subsystems or bought-out components.

5.1. Future work

In our future work, we will work to complete the tool-
set with automated methods for probing analysis and imple-
mentation probing. This will allow us to synthesize models
for all the tasks in the system – the models can then be co-
simulated which will test the method even further.

In a later stage, we would like to device integrated meth-
ods for model synthesis based on both code and on logs.
This dual input, it seems, is more suited for the complex-
ity of industrial applications. While recording provide the
real observed data needed for a realistic behavior model, as
the code provides naming and other structural information,
models based on dual input will be easier for humans to un-
derstand than models based solely on recording.

References

[1] Rapita systems ltd. www.rapitasystems.com.
[2] R. Alur and D. L. Dill. A theory of timed automata.Theo-

retical Computer Science, 126(2):183–235, April 1994.

7



tc Vp-factor Result

1, task B 0/ 978 4/5
1, task B 16/ 978 4/5
1, task B 17/ 978 5/5

2, task B 0/ 1048 0/5
2, task B 1/ 1048 2/5
2, task B 2/ 1048 3/5
2, task B 32/ 1048 3/5
2, task B 33/ 1048 4/5
2, task B 34/ 1048 4/5
2, task B 35/ 1048 5/5

1, task A 0/ 5996 0/5
1, task A 544/ 5996 0/5
1, task A 545/ 5996 1/5
1, task A 1082/ 5996 1/5
1, task A 1083/ 5996 2/5
1, task A 1170/ 5996 2/5
1, task A 1171/ 5996 3/5
1, task A 1294/ 5996 3/5
1, task A 1295/ 5996 4/5
1, task A 2441/ 5996 4/5
1, task A 2442/ 5996 5/5

2, task B 0/19871 0/5
2, task B 381/19871 0/5
2, task B 382/19871 1/5
2, task B 405/19871 1/5
2, task B 406/19871 2/5
2, task B 503/19871 2/5
2, task B 504/19871 3/5
2, task B 516/19871 3/5
2, task B 517/19871 4/5
2, task B 904/19871 4/5
2, task B 905/19871 5/5

Table 2. Synthesis Convergence based on Va-
lidity Property

[3] J. Andersson. Modelling the temporal behavior of complex
embedded systems: A reverse engineering approach. Li-
centiate Thesis, M̈alardalen University, Sweden, June 2005.
ISSN 1651-9256, ISBN 91-88834-71-9.

[4] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL – a tool suite for automatic verification
of real-time systems. InProceedings of the4th DIMACS
Workshop on Verification and Control of Hybrid Systems III,
number 1066 in Lecture Notes in Computer Science, pages
232–243. Springer–Verlag, October 1995.

[5] G. J. Holzmann and M. H. Smith. An automated verification

method for distributed systems software based on model ex-
traction. Transactions on Software Engineering, 28(4):364–
377, April 2002.

[6] J. Huselius. Preparing for replay. Licentiate Thesis,
Mälardalen University, Sweden, November 2003. ISSN
1651-9256, ISBN 91-88834-15-8.

[7] J. Huselius and J. Andersson. Model synthesis for real-time
systems. InProceedings of the9th European Conference
on Software Maintenance and Reengineering, pages 52–60,
March 2005.

[8] J. Huselius, S. Punnekkat, and H. Hansson. Presenting:
An automated process for model synthesis. MRTC Report
191, Mälardalen University, October 2005. Available at:
www.idt.mdh.se/˜jhi/.

[9] G. Logothetis, K. Schneider, and C. Metzler. Generat-
ing formal models for real-time verification by exact low-
level analysis of synchronous programs. InProceedings of
the24th IEEE International Real-Time Systems Symposium,
pages 256–265. IEEE, December 2003.

[10] J. Moe and D. Carr. Using execution trace data to improve
distributed systems.Software - Practice and Experience,
32(9), July 2002.

[11] A. Wall. Architectural Modeling and Analysis of Complex
Real-Time Systems. PhD thesis, M̈alardalen University, Sep-
tember 2003.

[12] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman.
Discotect: A system for discovering architectures from run-
ning systems. InProceedings of the 2004 International Con-
ference on Software Engineering, May 2004.

8


