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Abstract

This thesis contains previously published papers concerning different aspects
of symmetric cardinality constraints. A symmetric cardinality constraint gen-
eralizes cardinality constraints like constraint of difference and global cardinal-
ity constraint. The algorithms formulating the basis for consistency checking
and filtering of a symmetric cardinality constraint can be successfully used to
model and solve several other problems like cardinality matrix problems, Latin
square problems and rostering problems.

This thesis begins with an introduction to constraint satisfaction and de-
scribe several problems, mainly dynamic scheduling problems, which can be
modeled using this framework. The two following papers introduce symmet-
ric cardinality constraint and its weighted version. They also provide methods
for computing their consistency and algorithms for filtering their domains. Fi-
nally, the last paper describes methods for maintaining consistency of a sym-
metric cardinality constraint with costs, in the context of dynamic constraint
satisfaction.
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Preface

Constraint Programming is a programming paradigm which has been very suc-
cessful in modeling and solving many combinatorial and optimization prob-
lems. This success has gradually led to attention from industry and commerce
and growing popularity among different research communities.

One of the reasons for the success of Constraint Programming is its eclec-
ticism. Any method from any computational field can be incorporated into this
framework as long as it brings satisfying results in solving user defined prob-
lems. During the years Constraint Programming assimilated methods from
optimization, operation research, graph theory and many others. Many other
methods are on the way to be included among Constraint Programming tools.

This thesis deals with a special class of constraints called cardinality con-
straints. It has been shown that this class of constraints can be successfully used
to model and solve large industrial problems like personnel planning and ros-
tering problems as well as more theoretical problems like Latin square problem
or n-queens problem or simple recreational problems like the sudoku-puzzle.

The work on this thesis was partially supported by Mälardalen University,
Swedish Institute of Computer Science and IRECO.

I would like to thank my supervisors Björn Lisper of Mälardalen Univer-
sity and Per Kreuger of the Swedish Institute of Computer Science for their
engagement and support. I would also like to express my gratitude to people
who encouraged me to continue this work despite occurring difficulties.

Waldemar Kocjan
Västerås, August, 2005
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Chapter 1

Introduction

“Constraint Programming represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: the user states the
problem, the computer solve it.” [4]. However controversial this statement
might be it is also true that Constraint Programming provides a modeling tool,
which enable programmers to concentrate at the intrinsic nature of the problem
they are dealing with rather than drawing their attention to low level algorithms
and data structures.

Informally, Constraint Programming is defined as a programming paradigm
in which a set of constraints or criteria which a solution must meet is defined
rather than a set of steps to obtain such solution. Constraint Programming has
been thought of as a programming tool which is to help to solve constraint sat-
isfaction problems (CSP), defined precisely as a problem of finding out which
values can be assigned to problem variables to satisfy constraints imposed on
them.

The study of constraint satisfaction problems and methods for solving them
started during the 70’s with studies of scene labeling in vision research. Sub-
sequently, other problems, like the N-queens problem and the graph coloring
problem has been described as constraint satisfaction problems. During the
end of the 80’s and beginning of 90’s CSP found its application in the area of
temporal and spatial reasoning as well as in modeling scheduling problems.
Since then many researchers has recognized constraint satisfaction as a crucial
part of planning in Artificial Intelligence.

With the time it also became evident that many of the problems from Op-
eration Research (OR) and Optimization can be formulated as constraint sat-
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2 Chapter 1. Introduction

isfaction problems. The CSP framework was shown to be successful in as-
signing values to each problem variable occurring in any feasible solution to
a defined problem. Exchange between OR and CSP is mutual, many methods
known from OR has been successfully applied to numerous constraint satisfac-
tion problems.

The generality of CSP lead to the development of new computational meth-
ods and the formulation of a new programming paradigm known as Constraint
Programming (CP). Constraint Programming can not be described by referring
to any specific programming language. In fact, developers of CP tend to en-
capsulate solving methods in already existing languages rather than defining
new ones. Examples of such successful embeddings are numerous, it includes
Prolog (ECLiPSe [2], SICStus [10]), Oz (Mozart [6]), C++ (ILOG Solver [3])
and most recently Java (CHOCO [1], Koalog [5]).

1.1 Basics of Constraint Satisfaction

A constraint satisfaction problem is a problem of assigning certain values to
variables in a way, which satisfies conditions, or constraints, imposed on its
solution.

For example, a graph coloring problem, which is a problem of assigning
different colors to the nodes of a graph in a way that no two adjacent nodes
have the same color, can be modeled as a constraint satisfaction problem. In
such a case, each node of a graph is a variable of the CSP and each color is a
value, which can be taken by a variable. In 3-coloring problem, each node can
be colored by one of the tree colors, let say, red, green and blue, so in a CSP a
value assigned to a variable would be chosen from one of the colors: red, green
or blue. The set of values which can be assigned to a variable, in this case the
set containing all tree colors, is called the domain of the variable.

The conditions, which must be satisfied by the solution to the problem are
that no two adjacent nodes has the same color. So, if n1 and n2 are two adjacent
nodes in the graph and x1 and x2 are two variables of our CSP representing
respective nodes, then we can state that x1 6= x2, which is a constraint imposed
on a solution to our problem. A similar constraint is defined for each pair of
variables representing a pair of adjacent nodes.

A constraint satisfaction problem is solved by problem reduction and search.
Problem reduction is a way of transforming a problem to equivalent but an eas-
ier to solve problem by reducing domains of variables and constraint in the
problem. During the problem reduction values, which can not be assigned to
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a variable are removed from its domain and constraints imposed on a problem
are tightened. During the search to each subsequent variable is assigned a value
satisfying the defined constraints.

These two steps for searching for solution are often interleaved. For ex-
ample, the graph coloring problem can be solved by such a technique. At first
we assign a color value to a variable. Lets say we assign color red to variable
x1 representing node n1. Then, for each variable representing a node adjacent
to n1 we remove color red from the domain of such variable. At the next step
we assign a value to x2 and again reduce domains of the adjacent variables.
We repeat each step until we find a solution or until we have tried all possible
assignments and failed.

In the graph coloring problem we are interested in assigning only one value
to a variable, which corresponds to assigning a color to a node of a graph. How-
ever, in certain problems we would like to assign a set of values rather than an
individual value. For example, in a social golfer problem, we are interested in
assigning a set of four players to each group. This type of problems are called
set constraint satisfaction problems or set-CSP. The only difference between
CSP and set-CSP is that in set-CSP to a variable is assigned a subset of values
from its domain.

The problems described above are well defined and demand only one-time
solutions. The variables, their domains and the set of constraints are fixed and
known in advance. However, in many situations, not all parameters of a prob-
lem are known in advance or they can vary over the time. A typical example of
such problem is a scheduling problem, that is a problem consisting of assign-
ing start and duration times to a set of activities which must be performed on
a set of machines. This kind of problems may change their parameters due to
different, most often impossible to foresee events like delays, machine failures
etc. When any of such disruption occurs, the original solution to a problem is
most often no longer valid.

This kind of problems are modeled as dynamic constraint satisfaction prob-
lems (DCSP). A dynamic constraint satisfaction problem is a sequence of static
constraint satisfaction problems, where each CSP is a result of changes in the
preceding one. A difference between two CSPs is expressed as a set of added
and deleted constraints. For example, deleting an activity from a scheduling
problem is expressed by deleting all constraints containing this activity like
constraints defining its start times and duration or constraint stating precedence
relations with other activities, that is constraints stating that the activity must
be performed before or after some other activities. Adding an activity to a
scheduling problem results in turn in adding this type of constraints to the
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problem.
Similarly, if we would have defined described earlier graph coloring prob-

lem as a dynamic problem, we would model it as a DCSP. In such case adding
an edge between nodes ni and nj in the graph, which are represented by vari-
ables xi and xj in a CSP, would result in adding a new constraint stating that
xi 6= xj . Adding a new node with a set of edges results in adding a set of
constraints similar to the previous one stating that added node must not have
the same color like the nodes adjacent to it. Removing an edge or a node from
the graph results in removing corresponding constraints from the CSP.

There exists several other models in constraint satisfaction for handling
problem with varying or not complete parameters. Paper A of this thesis survey
most of the techniques and models for dynamic constraint solving.

Given this introduction into constraint satisfaction we can continue with
the description of cardinality constraints and later show how this type of con-
straints can be used in practice.

1.2 Cardinality Constraints

Cardinality constraints is a class of constraints which explicitly restricts the
number of values assigned to a variable or/and the number of occurrence of a
value in a solution. The most basic constraint of this class is the constraint of
difference [7], which assure that to each problem variable are assigned different
values, that is each value is assigned to at most one variable and that each
variable is assigned exactly to one value. The constraint of difference is one of
the most extensively used constraints and many of the constraint satisfaction
problems like the N-queens problem, the sudoku or Latin squares are modeled
using this constraint.

Later, this class of constraints was extended by the global cardinality con-
straint [8]. If the constraint of difference assures that each value is assigned
to at most one variable, the global cardinality constraint restrict the number of
occurrence of a value in a solution to be in interval [min occurrence..max

occurrence]. Another constraint in this class is the symmetric cardinality con-
straint, which is the subject of Paper B included in this thesis. In contrast to the
constraints mentioned earlier, the symmetric cardinality constraint is defined
in a framework of the set constraint satisfaction. In set constraint satisfaction
each problem variable is assigned not just a single value but a set of values.
The symmetric cardinality constraint assures that the cardinality of a set as-
signed to a problem variable is in an interval [min cardinality..max car-
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dinality] while simultaneously each value occurs in the union of sets in an
interval [min occurrence . . . max occurrence].

The symmetric cardinality constraint might be viewed as an extension of
the previously mentioned constraints. For example, a constraint of difference
can be modeled as a symmetric cardinality constraint where the cardinality of
sets assigned to variables is set to be exactly 1 and the occurrence of each value
is restricted to the interval [0, 1]. Similarly, a global cardinality constraint can
be modeled as a symmetric cardinality constraint by restricting the cardinality
of sets assigned to problem variables to 1.

The symmetric cardinality constraint may also be viewed as a (0,1)-Car-
dinalityMatrix constraint, that is a constraint which places zeros and ones in
a m × n matrix in such a way that the number of ones in each row and each
column is restricted to some interval. In this case each row of a matrix is a
variable of a symmetric cardinality constraint and each column is a value of
the constraint. Restriction on the number of ones in each row and column of
the matrix is then the restriction on the cardinality of a set assigned to each
variable and the number of occurrences of each value in such sets. Each value
occurring in a set assigned to a variable corresponds with a one in the respective
cell of a matrix. For example, if a value 6, corresponding with 6’th column of a
matrix occurs in a set assigned to variable x1, corresponding with the first row
of the matrix, then a one is placed in a cell in first row and sixth column.

The (0,1)-CardinalityMatrix constraint has been formalized by J.-Ch. Régin
and C. Gomes [9], who also pointed out its similarity to the symmetric cardinal-
ity constraint. The (0,1)-CardinalityMatrix constraint uses the same algorithm
for verifying consistency and filtering as the one introduced by us in Paper B.

The most general cardinality constraint is the cardinality matrix constraint
[9]. Here, the symbols placed in a matrix are not restricted to 0 and 1. In this
constraint the placement of each symbol is solved by solving (0,1)-Cardinali-
tyMatrix problem. This basically means that in order to solve one cardinality
matrix problem involving ten different symbols we have to solve ten (0,1)-Car-
dinalityMatrix problems, one for each symbol. As shown above, it corresponds
to solving the same number of symmetric cardinality constraints.

Some cardinality constraints, like the constraint of difference and the global
cardinality constraint, have been extended by attaching cost to every assign-
ment of a value to a variable. The extension of the symmetric cardinality con-
straint with a cost function is the subject of Paper C in this thesis.

All the cardinality constraints described above deal with so called static
problems, that is problems which have fixed, known in advance inputs and
which do not vary with the time. This is seldom a case for real life, indus-
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trial problems. Problems like scheduling jobs on machines, assigning workers
to shifts or tasks or building rostering schedules are often subjects of addi-
tional constraints emerging during the execution of a initial schedule. Machine
failure, absence of a worker or temporary work overload leads often to the ne-
cessity of modifying the original solution to cope with the new problem setup.

Basically, there exist two different approaches in dealing with dynamic
problems. One is proactive, which means that it tries to take into consider-
ation all possible disturbances which can emerge during execution of a plan or
a schedule and produces a solution to the problem that is as robust as possible.
The other, reactive approach, tries to deal with situations as they appear.

In constraint satisfaction, the dynamic problems are dealt with usually by
recomputing the solution from scratch every time the original problem is mod-
ified. This is however very often too expensive with regard to computational
time.

Its not surprising then, that computing methods for dynamic problems has
recently gained a lot of attention within Constraint Programming community.
The research in this area has recently made a substantial progress by the rapid
development of explanation based methods for dealing with dynamic prob-
lems. Many of the constraints has been extended to handle the dynamic aspect
using explanation. For example, the methods for maintaining consistency of
values with constraint for dynamic constraint of difference and global cardi-
nality constraint has been developed. No method however has been defined for
maintaining consistency of cardinality constraints with costs. The consistency
for dynamic cardinality constraints with costs is a subject of Paper D in this
thesis.

1.3 Cardinality Constraints in Action

In this section we show how cardinality constraints can be used in practice to
solve some problems. We start with an example of the sudoku puzzle.

The sudoku puzzle is popular placement puzzle. The aim of the puzzle is
to place numerals 1 to 9 in a 9×9 grid consisting of nine 3×3 subgrids, called
regions. Some of the cells in a grid already contains numbers. The remaining
cells must be filled in such a way that each numeral appear exactly one time in
each row, column and region. A sudoku has exactly one solution. An example
of the sudoku puzzle is given in Figure 1.1.

By the definition of the puzzle it is clear that it can be solved by imposing
one constraint of difference at each row, column and region of the grid. In such
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Figure 1.1: Example of sudoku puzzle

a formulation each cell of a grid is a variable which can take a value 1 to 9,
except cells which already has been filled. For example, at the beginning it is
known that the cell in row one and column four V1,4 can take one of the follow-
ing values D(V1,4) = {1, 2, 3, 4, 5, 6, 7, 8, 9}. We call D(V1,4) the domain of
V1,4. The constraint of difference will remove the numbers already placed in
row one from this domain, thus D(V1,4) will be reduced to the following num-
bers {1, 2, 5, 6, 8, 9}. The constraint of difference imposed on column four will
reduce D(V1,4) to {2, 5, 6, 9}. Subsequent constraints of difference will assure
that 2 can not be assigned to V1,4. Finally, the constraint of difference imposed
on the region including V1,4 will reduce D(V1,4) to 6.

The same result can be achieved with more general cardinality constraints
like a symmetric cardinality constraint. When using a symmetric cardinality
constraint we restrict the cardinality of the set assigned to each variable and
the number of occurrence of each value to be exactly one.

An more effective way to model sudoku is to create one cardinality con-
straint for each numeral 1 to 9 and one constraint for each region. In such
case the constraints imposed on numerals will remove the respective numerals
from the domains of variables, where such a numeral may not be placed. For
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example, the cardinality constraint imposed on the numeral 1 will remove this
symbol from the domains of the variable representing cells in rows 2, 3, 9 and
in columns 1, 4, 7. Then cardinality constraints imposed on each region will
assure proper placement of each numeral.

Now, assume that each column of the puzzle represents a time slot and
each row represent a member of a factory staff. Assume also that each of
numbers 1..9 corresponds to an activity which needs to be performed by the
staff. Moreover assume that each activity must be performed at each time slot
and that each worker must perform each defined activity. Let also some of
the activities be assigned to specific workers in advance. Solving this kind of
scheduling problem is equivalent with solving the sudoku puzzle.

Indeed, the structural similarity of sudoku with some scheduling and roster-
ing problems is striking and since cardinality constraints can be used to solve
sudoku they certainly might be helpful in solving similar, more or less complex
real life problems. Of course, such problems do not always have the structure
of sudoku. For example, often this kind of problems do not restrict one worker
to performing at most one activity of a kind. Even the number of workers
needed to perform an activity is seldom restricted to one. In such cases using
the constraint of difference to solve such problem will not work and a global
cardinality constraint must be applied to each row and column. However, one
symmetric cardinality constraint for each activity will easily tackle to problem.

More complex problems, where each person can be assigned to more than
one activity or a responsibility area during one time slot and where one activity
or role may require more than one person to be performed can be handled
neither by a constraint of difference nor by a global cardinality constraint. In
such cases it is necessary to model the problem with symmetric cardinality
constraints. This kind of problem often appears in creating multi-skilled teams
as well as in managing human resources in health care, shops and other similar
areas.

In many personnel scheduling problems, assigning a worker to a task is
attributed by a specific cost. Often, it is desirable to minimize the overall cost
of such assignment or ensure that such costs do not exceed a specific bound.
This kind of problem can be modeled with a symmetric cardinality constraints
extended with a cost feature, which is introduced in Paper C.

1.4 Thesis Outline and Contributions

This thesis contains revised versions of four, previously published articles.
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Paper A W. Kocjan, “Constraint Satisfaction and Dynamic Scheduling”. This
is the revised and extended version of the paper W. Kocjan, “Dynamic
Scheduling. State-of-the-art report” published as SICS Technical Report
T2002:28, 2002. First of all, the paper has been limited to constraint
satisfaction for dynamic problems. Moreover, it was extended with a
general description of global constraints and a description of methods
proposed for handling dynamic global constraints.

Paper B W. Kocjan, P. Kreuger, “Filtering Methods for Symmetric Cardinal-
ity Constraints”, published in “CPAIOR 2004. Conference Proceed-
ings”, Lecture Notes in Computer Science 3011, Springer 2004, pages
200-208.

Paper C W. Kocjan, P. Kreuger, B. Lisper, “Symmetric Cardinality Constraint
with Costs”, previously published as MRTC Report, Mälardalen Univer-
sity, 2004

Paper D W. Kocjan, P. Kreuger, B. Lisper, “Maintaining Consistency of Dy-
namic Cardinality Constraint with Costs”. This is extended and revised
version of the paper published as MRTC Report, Mälardalen University,
2005.

Paper A contains an introduction to constraint satisfaction and an intro-
duction to dynamic constraint satisfaction. It describes models and methods
for solving both static and dynamic constraint satisfaction problems. Dynamic
constraint solving has been applied mainly to scheduling problems thus the de-
scription of dynamic constraint satisfaction is exemplified mainly by schedul-
ing problems. A few attempts have been made to formulate individual global
constraints in the framework of dynamic constraint satisfaction. One of those,
using explanations to maintain consistency of the constraint of difference and
the flow constraint are of special importance and are discussed in the paper.

Paper B introduces the symmetric cardinality constraint and describes meth-
ods for checking consistency and filtering of the introduced constraint. As
other cardinality constraint the symmetric cardinality constraint explores un-
derlying flow network structure of the problem. However the introduced con-
straint generalizes previously known cardinality constraints and extends them
into set constraint satisfaction. In contrast to previously defined cardinality
constraints, the symmetric cardinality constraint relies on a feasible flow com-
putation instead of a maximum flow and includes the entire residual graph
obtained by computing a feasible flow in the filtering phase.
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Paper C extends the symmetric cardinality constraint with a cost function
by attaching a cost to an occurrence of each value in a set assigned to a problem
variable. The consistency of the constraint as well as the filtering method relies
on computing a minimum cost flow in the underlying flow graph. The paper
describes also the usage of a shortest path algorithm as a filtering method of
the constraint.

Finally, Paper D describes methods for maintaining consistency of cardi-
nality constraints with costs in the framework of dynamic constraint satisfac-
tion. To our knowledge it is the first attempt to use sensitivity analysis for a
standard minimum cost flow for maintaining consistency of a global constraint.
Moreover, the paper exploits a version of a dynamic shortest path algorithm as
a filtering method. The described methods are evaluated on randomly gener-
ated benchmarks.

Author Contributions

Paper A is entirely authored by W. Kocjan. Paper B. is written in cooperation
between W. Kocjan and P. Kreuger. The idea of the constraint, theorems and
proofs, methods etc. comes from W. Kocjan. P. Kreuger contributed with
supervision during writing the paper and feedback and discussions about the
methods and form of the paper. The contribution of P. Kreuger were especially
important while developing the filtering methods for the constraint.

W. Kocjan is the main author of Paper C. P. Kreuger and B. Lisper con-
tributed to the paper by their continuous supervision and feedback on the de-
scribed methods as well as the form of the paper.

W, Kocjan is the main author of Paper D. P. Kreuger and B. Lisper con-
tributed to the paper by supervision and feedback on the methods and the form
of the paper.
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Abstract

Most of the research literature in the field of constraint satisfaction on static
problems, i.e. problems where all input data is known and do not vary over
the time. However, many real life problems modeled with constraints, are very
seldom static. For example, a solution to a scheduling problem is valid only as
long as no outer disruption to an executed schedule occurs. The outer disrup-
tions are often unexpected and difficult to take into consideration while com-
puting solution to a problem.

In this paper we describe how constraint satisfaction is used to tackle prob-
lems whose input is uncertain or changes over the time.
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2.1 Introduction
During the last years constraint satisfaction has been very successful in solving
many complex industrial problems. Especially solving problems like planning
and scheduling using this framework has drawn a lot of attention from industry
and commerce.

The research literature problems modeled as constraint satisfaction prob-
lems are often seen as problems with a perfect, well defined data. For example,
in planning involving human resources it is assumed that every worker will be
accessible during well defined time periods and that no planned activity will be
delayed or canceled. However in the real life it is seldom the case. These kind
of plans often become disrupted by unexpected events like delays, absence of
a worker etc.

Constraint satisfaction like any other method need to deal with this kind of
disruptions. This report gives an overview of the state of the art in dynamic
constraint solving.

2.2 Motivation

2.2.1 A Toy Example
The essence of a dynamic problem can be illustrated by a scheduling problem,
i.e. problem of assigning start times to a set of activities. Figure 2.1 (after
[57]) gives a toy example of such problem. In the figure tree activities A,B and
C are scheduled. They utilize three identical resources. The activities in the
schedule are subject to temporal constraints relating their start and end times.
Those constraints are satisfied in the current schedule.

The second part of the figure shows a schedule which is rearranged as a
response to a reduction of the number of available resources. The modified
schedule is also consistent with respect to all temporal constraints.

2.2.2 Commercial Applications
There is a strong commercial need for techniques which tackle problems with
uncertain or varying input. This is especially obvious in industrial problems
whose solution is dependent on different kind of resources like planning and
scheduling. For example, in manufacturing industry, transport and logistics
systems which can effectively deal with dynamic problems can not only in-
crease effectiveness but even save a lot of money. System which can effec-
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INITIAL SCHEDULE

[>1]

Resource Used = 3

MODIFIED SCHEDULE

Activity B

Activity A

Activity C

No. of
Resources
Used

[<10]
[>1]

[<10]

Activity C

Activity B

Activity A

No. of
Resources
Used

Time

Time

Resource Used = 2

indicates that the first time point must be less than 10 time units before the second

[>1]

[<10]
Temporal

Constraints:

indicates that the first time point must be more than 1 time unit before the second

Figure 2.1: Example of a schedule modified to reduce resources

tively manage human resource allocation in e.g. hospitals could dramatically
improve results of health care.

Algorithms for dynamic problems should be able to manage any disruption
caused by changes in environment. The types of disruption is dependent on the
specific application area. E.g., in scheduling for manufacturing industry and in
most problems which involves allocating resources to activities we can classify
dynamic changes into three major groups:

Activity Changes

Request for new or extended activities can result in resource contention and
inconsistency of a schedule. In the long term scheduling introducing new ac-
tivities can aim at improving the schedule efficiency and degree of resource
utilization (e.g. leasing out some resources leads). In the short term scheduling
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activities are introduced as they arise (e.g. emergency service). Changes in
activity duration and increased level of resource usage can occur.

Resource Changes

Primary reduction of resources (e.g. machine failure) can disrupt a schedule.
Resource changes may be also requested to reduce the cost of a schedule (e.g.
machine utilization problems). Shorter term resource changes are usually con-
nected with resource failure.

Temporal Changes

The most frequent form of temporal change is a contraction of schedule hori-
zon. Long term temporal changes (e.g. changing a timetable in public transport
for regularity) and short time changes (e.g downstream effect of delayed air-
craft or train) may also cause schedule inconsistency.

2.3 Related Work
Constraint satisfaction in uncertain and dynamic environments is subject of
recently published survey [63]. This paper presents a general description of
the problem and short overview of methods for solving such problem without
in–depth description of any technique.

Scheduling under uncertainty was also surveyed by Davenport and Beck in
[15]. Their paper gives a short classification and a brief description of different
off–line and on–line scheduling techniques. Many of the methods described
in the survey were used in scheduling real–life problems. This paper includes
also, but is not limited to dynamic constraint satisfaction methods.

An introductory survey of on-line scheduling was also given in [52]. This
survey concentrates on theoretical problems of on-line job–shop scheduling
and does not cover large scale, complex, optimization problems.

2.4 Structure of this paper
In Section 2.5 a short introduction to constraint satisfaction and dynamic mod-
els originating from it is given. The section briefly presents methods for solving
those models.
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Section 2.7 describes some dynamic problems, mainly from the area of
scheduling, which often arise in industry. The way of formalizing those prob-
lems, using models described in Section 2.5, is presented.

The idea of cooperative solvers is explained in Section 2.9. The chap-
ter exploits mainly so called probing methods originating in operative aircraft
planning.

Finally, Section 2.10 concludes this report and gives directions for future
work.

2.5 Constraint Satisfaction Models

This section presents the constraint satisfaction problem and dynamic con-
straint satisfaction models originating from it. The first section describes some
basic concepts of CSP and presents methods to solve it. The following sections
describe how the idea of CSP is extended to handle dynamic problems involv-
ing permanent (Dynamic CSP) and temporary changes (Recurrent Dynamic
CSP) in environment. In most of the examples we use scheduling problems to
illustrate described models.

2.5.1 Constraint Satisfaction Problem

Constraint satisfaction problems are problems of assigning values to the vari-
ables restricted by certain conditions. For example, a graph coloring problem
can be represented as a CSP. In that case the nodes of a graph are variables of
the CSP and the colors which can be assigned to a node represent values in the
domain of every variable. An arc between two nodes represents the constraint
that those two nodes may not take the same color value.

Basic definitions

Before we give a formal definition of CSP we need to introduce some basic
concepts. The definitions below follow those given in [59] if not stated other-
wise.

Definition 2.5.1. The domain of a variable is a set of all possible values that
can be assigned to the variable.

The domain of variable x is denoted Dx.
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Definition 2.5.2. A label is a variable–value pair that represents the assign-
ment of the value to the variable.

In this paper we use < x, v > to denote the label assigning value v to the
variable x, where v ∈ Dx.

Definition 2.5.3. A compound label is the simultaneous assignment of values
to the set of variables.

A compound label is denoted as (< x1, v1 >,< x2, v2 >, . . . , < xn, vn >

) and represents assigning v1, v2, . . . , vn to x1, x2, . . . , xn respectively.

Definition 2.5.4. A constraint on the set of variables is a set of compound
labels on the variables.

A constraint on the set of variables is generally a restriction on the values
which they can simultaneously take. Conceptually, a constraint can be seen as a
set that contains all the legal compound labels for the variables of a constraint.
A constraint on the set of variables S is denoted CS .

Definition 2.5.5. If the variables of the compound label X are the same as
those of the compound labels in a constraint C, then X satisfies C if and only
if X is an element of C.

Given these basic definitions we can give here formal definition of a Con-
straint Satisfaction Problem.

Definition 2.5.6. A Constraint Satisfaction Problem is a triple (Z,D,C)
where Z is a finite set of variables {x1, x2, . . . , xn}, D is a set of functions
which maps every variable in Z to a finite set of objects of arbitrary type and
C is a finite set of constraints on the variables in Z.

As mentioned above the task in CSP is to assign a value to each variable
such that all the constraints are simultaneously satisfied.

Definition 2.5.7. A solution tuple of a CSP(Z,D,C) is a compound label
{< x1, v1 >, . . . , < xn, vn >} for all variables {v1 ∈ D, . . . , vn ∈ Dxn

}
which satisfies all the constraints c ∈ C:

2.5.2 Representation
Any given CSP may be represented as a constraint hypergraph.
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x y{1,2} {1,2} {1,2} z x{1,2}

(<x,2>,<y,2>,<z,1>),(<x,2>,<y,1>,<z,1>)}
(<x,1>,<y,2>,<z,2>),(<x,2>,<y,1>,<z,2>),

{(<x,1>,<y,1>,<z,2>),(<x,1>,<y,2>,<z,1>),

w

z{1,2}y{1,2}

Figure 2.2: Transformation of 3-constraint problem into a binary problem by
introducing a new variable w with the specified domain. Labels of x, y and z

are projections of the value of w.

Definition 2.5.8. A hypergraph is a tuple (V, E),where V is a set of nodes and
E is a set of hyperedges, each of them connecting a subset of nodes.

Definition 2.5.9. The constraint hypergraph of a CSP P = (Z,D,C) is a
hypergraph in which each node represents a variable in Z and each hyperedge
represents a constraint in C.

The hypergraph of CSP P is denotedH(P ).
Since every CSP with k–ary constraint can be transformed into a binary

problem, i.e., a CSP with only unary and binary constraints [6, 8, 56], every
constraint hypergraph can be reduced to constraint graph. An example of such
transformations is given in Figure 2.2.

Definition 2.5.10. The constraint graph of a CSP(Z,D,C) is an undirected
graph in which each node represents a variable in Z, and for every pair of
distinct nodes whose corresponding variables are involved in any k–constraint
in C there is an edge between them. The constraint graph of a CSP P is also
called a primal graph of P .

In this paper G(P) will be used to denote the constraint graph of CSP(P).
In some literature originating in Truth Maintenance Systems, e.g. [17],

a Constraint Satisfaction Problem is referred to as a Constraint Network. It
is said that a binary Constraint Network may be associated with a constraint
graph.



2.5 Constraint Satisfaction Models 21

Solving methods

Solving constraint satisfaction problem is often carried out by a combination
of problem reduction and search. In the literature, problem reduction is often
referred to as achieving consistency.

Consistency

Consistency algorithms were first introduced for binary constraints problems.
Binary CSPs are associated with graphs, where the nodes represent variables
and arcs binary constraints. The concept of consistency is related to this repre-
sentation.

Definition 2.5.11. A CSP is node consistent if and only if for all variables, all
values in its domain satisfy the unary constraints on that variable.

Achieving node consistency is trivial. All that is needed is to determine if
each element in each domain satisfies a unary constraint [41, 42, 37].

Definition 2.5.12. An arc (x, y) in the constraint graph of a CSP(Z,D,C) is
arc–consistent (AC) if and only if for every value a in the domain of x which
satisfies the constraint on x, there exists a value in the domain of y which is
compatible with < x, a >.

There exists several methods for achieving arc–consistency. The most naive
approaches, AC–1 and AC–2, initiate a queue of all edges and checks for each
element in the queue if for each element in domain of variable x there exists a
value in domain of variable y, where x and y are subject to the binary constraint
Cxy , such that Cxy holds [37, 64].

More effective algorithms AC-3[37], AC-4 [39] and up to AC-7 [7] have
been developed. All of them check for consistency for all values of x, y ∈ Cx,y .
They differ on the level of specialization and implementation.

Since arc consistency algorithms referred above check for consistency for
every value in domain of one variable with the values of another variable in
the constraint, they are usually very costly with respect to run time. A more
effective method of propagation, so called arc B–consistency, was developed
for numerical CSP.

A numerical CSP is a subset of CSPs which has numerical variables con-
nected with domains, which are sets of numerical values and which are subject
to numerical constraints. In case of arc B–consistency the consistency check
is applied only on the bounds of variable domain. The formal definition of the
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arc B–consistency was first given in [34]. However, the method was used in
practise long before its formal definition was given.

Definition 2.5.13. Let P be a numerical CSP, X a variable of P , DX = [a, b].
DX is arc B–consistent if and only if for all constraints C(X1, . . . , Xk) over
X holds that:
1. ∃v1, . . . , vk ∈ D1 × . . . Dk : C(a, v1, . . . , vk) is satisfied
2. ∃v1, . . . , vk ∈ D1 × . . . Dk : C(b, v1, . . . , vk) is satisfied
An NCSP is arc B–consistent if all the domains are arc B–consistent.

More informally arc B–consistency is a form of arc consistency restricted
to the bounds of the domain.

Backtrack Search

Solving CSP propagation methods are usually combined with search. The basic
algorithm of searching for a solution tuple is simple backtracking, the method
widely used in problem solving. In CSP context, the basic operation is to pick
one variable at the time, and consider one value for it at the time, making
sure that the newly picked label is compatible with all the labels picked so
far. Assigning a value to a variable is called labeling. If the current variable
with the picked value violates some constraints (consistency check), then the
alternative value, if available, is chosen. If all the variables are labeled, then the
problem is solved. At any stage, if for some variable there is no value which
can be assigned to it without violating any constraints, the label which was last
picked is revised and an alternative value, if available, is picked. This search
is carried until a solution is found or all the combination of labels have been
tested and have failed, which indicates that the problem has no solution.

For more detailed description of backtrack search see e.g. [59].

Global constraints

One weakness of consistency based methods is that all the primitive constraints
are examined in isolation from each other. In many cases knowledge about
other constraints can dramatically improve domain pruning. Consider the all-
different({V1, . . . , Vn}) constraint [48], which holds whenever each of
the variables V1 to Vn in its argument takes a different value. Consider X,Y, Z

with domains DX = DY = DZ = {1, 2} to be arguments to alldifferent.
It is obvious, that there is no such assignment to X,Y and Z, which satisfies
such conditions, so the consistency check should return false.
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Nevertheless, if the constraint is propagated using arc–consistency tech-
niques, Figure 2.3, then, for every pair of variables (X,Y ), (X,Z), (Y,Z), for
every value in the domain of one variable there exists some value in domain of
the other such that inequality holds. To discover inconsistency for constraints
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Figure 2.3: The alldifferent constraint

of alldifferent type it is necessary to take into consideration information
about all variables which are subject to such a constraint and their domains.
For this purpose a maximal bipartite matching algorithm which matches vari-
ables against all values was developed [35, 48]. E.g. the maximal bipartite
matching algorithm for the alldifferent example will determine that the
most 2 variables can be assigned legal values, so the constraint is unsatisfiable,
Figure 2.4.
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Figure 2.4: Matching variables against values

A specialized group of constraints, so called global constraints, which uses
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various algorithms to achieve higher level of consistency, was developed. Many
of global constraints, e.g. serialize, cumulative, diffn [13, 14, 1,
3] etc., were developed to solve complex scheduling and geometrical problems
[4, 32].

2.5.3 Dynamic CSP
The Constraint Satisfaction model presented in the previous section applies to
the problems, i.e. problems which require a one time solution of a system
representing all the available information.

An extension of CSP which deals with uncertainty and dynamic changes to
a problem was presented as Dynamic Constraint Satisfaction Problem (DCSP)
by Dechter and Dechter in [17]. The concept of DCSP was introduced in con-
text of Truth Maintenance Systems [19], but can be easily adopted to Constraint
Satisfaction Problem. On the relation between Truth Maintenance System and
CSP see [38, 18].

Definition 2.5.14. A Dynamic Constraint Satisfaction Problem is a sequence
of CSPs, where every CSP is a result of changes in the preceding one. A dif-
ference between two consecutive CSPs is expressed by the set of constraints
added Cadd and constraints deleted from the problem. Cdel.

As mentioned above a constraint satisfaction problem is a static problem.
A dynamic constraint satisfaction problem is modelled as a sequence of static
problems, which suggest that the changes in the scheduling environment are
more or less permanent.

Most of the methods based on DCSP, solve each new problem separately
as an ordinary, static CSP, using the original problem to e.g. measure the dis-
crepancy between the new and the original solution (see [31]).

Nevertheless, solving every new CSP, created as a result of an alternation
to the original problem, from scratch has two important drawbacks: ineffi-
ciency, and possible instability of the new solution in face of new changes to
the problem. Several methods were proposed to remedy these drawbacks. The
following three groups of algorithms can be distinguished:

• incremental search methods, [29];

• local repair methods, e.g. [40, 62];

• constraint recording methods, which records any kind of constraint which
can be deduced in the framework of a CSP and reuse this information
when solving any new CSP. [29, 62, 61].
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This tree classes of algorithms for dynamic CSPs are described below.

2.5.4 Incremental search methods
The main idea of incremental search methods for a sequence of CSPs is to
preserve the execution context of a problem and use it while solving subsequent
CSPs.

The incremental search for dynamic CSPs was first presented in [60] and
developed later in [45, 11, 12, 43]. These approaches achieve incremental-
ity using backtracking search. The incremental search based on backtracking
works as follows. For any given DCSP P =< Θ0, . . . ,Θn >, first Θ0 is
solved as an ordinary, static CSP and the solution α0 is obtained. Then, for any
given Θi, if the solution αi−1 is violated by any added constraint, the program
backtracks to the latest decision point. Another solution is then generated and
tested until all of the constraints in Θi are satisfied or the search fails.

The method has some severe deficiencies pointed out in [29]. One is con-
nected with the fact that the backtracking point selected when the constraints
are not satisfied, has probably nothing to do with the cause of constraint vio-
lation. This results in a lot of redundant computation, which could be avoided
by choosing more accurate backtracking point.

To remedy this problem the authors of [29] propose a method based on re–
execution, where the search for a solution to a new problem is guided by infor-
mations gathered during solving previous problems. The gathered information
consists of the computation path leading to a solution. The specific computa-
tion path used to guide the search is called an oracle and is denoted O(Θi).
In the framework presented in [29] the oracle O(Θi) is associated with the set
of constraints of CSP Θi. These oracles will be used during re–execution to
achieve incrementality.

In a case of addition of constraints, the solution to the new CSP Θi ∈ P
can be found by following the oracle O(Θi−1) until a failure, due to the added
constraint, occurs or a solution is found. If a failure occurs, execution goes
back to the recent choice point and proceeds from there in the standard way,
i.e. without any oracle.

Since the node where backtracking occurs is associated with the first choice
point where the constraints are not satisfiable, this point will be a best possible
backtracking point (for a proof see [29]).

In the case of deleting some constraints an oracle which achieves most
pruning without losing any solution is chosen. The basic scheme for deletions
proceeds with oracle O in the same way like for additions. Note that the addi-
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tion of constraints must be now refined to pick up the best oracle. While the
last oracle was the best when only additions were concerned it is no longer true
when additions are allowed.

The re–execution approach presented in [29] outperforms incremental search
based on the backtrack search. However, it should be noted that the same
pruning can be achieved without using an oracle, simply by the replacing the
re–execution scheme by a backjumping mechanism (for more information on
backjumping see [59]).

Local repair methods

The second class of algorithms which deals with inconsistencies of a solution
caused by dynamic changes in a problem is based on the local repair methods.
The basic idea behind this approach can be described as follows. Any solution
which became infeasible because of addition of constraints, may be gradually
impoved until the new solution is acceptable. Deletion does not influence fea-
sibility of a solution, however it might influence its optimality.

An example of a method using local repair was presented by Verfaillie and
Schiex in [62] and was exemplified by a scheduling problem. The main idea
behind this algorithm can be intuitively described in following way. Variables
which violate some constraint may be removed from the current solution. All
removed variables can be then gradually re–entered into the solution. Re–
entering a variable t into a solution is performed even if t can be assigned a
value in such way that all the variables incompatible with such assignment can
be removed and gradually re–entered, without modifying the value of the t.

More formally, given a CSP, let A be a consistent assignment of a subset Z

of variables. Let v be a variable which does not belong to Z. The variable v can
be assigned, i.e. a consistent assignment Z ∪ {v} can be obtained, if and only
if there exists a value val such that val can be assigned to v, then all the assign-
ments
< v′, val′ > which are incompatible with assignment < v, val > can be unas-
signed and reassigned one after another without modifying the assignment of
v.

An evaluation of the algorithm was conducted on randomly generated CSPs
[62]. The local changes procedure was used together with the simple heuristics
for choosing variables and values for assignment. When choosing a variable
for assignment the variables with smallest domains are chosen first.

The evaluation shows that the algorithm performs best on the least and most
constrained problems. Nevertheless, the algorithm is inefficient on intermedi-
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ate strongly constrained problems.
Another heuristic repair method called min–conflicts was presented by

Minton et al. in [40]. Given a DCSP P =< Θ1, . . . ,Θn >, let αi be a solution
to the Θi and Θi+1 a CSP which differs by the set of constraints added or re-
moved from the problem. To find a solution to Θi+1 the method starts with the
initial, complete but inconsistent assignment, which is this case is a solution to
the proceding problem. It is said that two variables are in conflict if their val-
ues violate a constraint. At each choice point during the search, the heuristic
chooses an arbitrary variable which is currently in conflict and, if possible, re-
assigns its value, until a solution is found. The system thus searches the space
of possible assignments, favouring assignments with fewer total conflicts.

The described method is usally used with the hill climbing search, pre-
sented in Algorithm 1. The min–conflics heuristics is then applied at every
search step of the hill climbing algorithm. The variable conflicts is a measure
of a number of conflicts.

Algorithm 1 Hill climbing
Require: a problem

current← Initial state (problem)
loop

next← a highest value successor of current
if conflicts[next] > conflicts [current] then

return current
else

current←next
end if

end loop

Hill climbing procedure combined with the minimum conflicts heuristics
was successful in handling dynamical changes in scheduling observations of
the Hubble telescope and another problems [40]. Nevertheless, several fac-
tors limit the applicability of the method. The most important factor is that all
the conflicts are assumed to be independent. For highly structured problems
minimum conflicts heuristics performs poorly. Moreover, since this method
ignores all fine structure in the problem, there exists possibility of pathologi-
cal configurations occuring during the search procedure. This manifests itself
for example in “cycles” where the same variable is repaired again and again
without any progress towards finding a solution.
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Constraint recording methods

A third group of algorithms which deal with dynamic DCSPs includes the
methods which record earlier solutions (information) and reuse them to solve
subsequent problems. Some of the methods mentioned before, like incremental
search presented in [29], depends on recorded information.

An example of an algorithm which uses information recorded during the
search is Dynamic Backtracking(ddbt) for DCSPs. This method was intro-
duced by Verfaille and Schiex in [61]. The algorithm is extension of dynamic
backtracking(dbt) presented by Ginsberg in [26]. The dynamic backtracking
algorithm (dbt) is presented first.

The dynamic backtracking algorithm, Algorithm 2, is based on the idea of
recording information about earlier search phases. At each step of the search,
for every variable v and each value val, which has been eliminated from the
current domain of v, sets of previously assigned variables responsible for this
elimination are recorded. These sets are called eliminating explanations and
require O(n2d) space to be recorded, where n is a number of variables and d

is the maximum domain size. The conflict sets of a variable is the union of
eliminating explanations and all its eliminated values. If a domain of a variable
v is empty and v′ is a last variable recorded in the conflict set of variable v

then the algorithm backtracks to v′, unassigns it but does not assign any new
variable. Then, all the eliminating explanations which contain variable v′ must
be removed and their values need to be returned to their corresponding current
domains. Moreover, new eliminating explanations are created for the value
val′ previously assigned to v′.

The procedure backward-checking(Z, v) (Algorithm 3 checks the
current value of v against the current values of the variables of Z and returns
the first failing constraint, if any, or success, if none. Procedure create-
eliminating-explanations(v, val, Z) records the set Z of variables
as an explanation for the elimination of the value val from the current domain
of the variable v. For all the variables in Z, remove-eliminating-
explanations(v, Z) removes the eliminating explanations which contain
v and returns the corresponding values in their corresponding current domains.

The Dynamic Backtrack algorithm can be easily extended to take into
account constraints in eliminating explanations. This requires adjusting the
dbt-value and dbt-bt-values procedures. These procedures are mod-
ified as in Algorithm 4.

The eliminating explanations in Algorithm 4 are composed of two parts:
the set of previously assigned variables (the variable eliminating explanation)
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Algorithm 2 Dynamic Bactracking

Procedure: dbt(P)
Require: CSP P = (Z,D,C)
return dbt-variables(∅, Z)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Procedure: dbt-variables(Z1, Z2)

Require: Z1 is a set of assigned variables
Require: Z1 is a set of unassigned variables
if(Z2 = ∅)then

return success
else

choose v ∈ Z2

d = D(v)
if dbt-variable(Z1, v, d)= failure then

return dbt-bt-variable(Z1, Z2, v)
else

return dbt-variables(Z1 ∪ {v}, Z2 − {v})
endif

endif
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Algorithm 3 Variable and value choosing procedures
Procedure: dbt-variable(Z1, v, d)

if d = ∅ then
return failure

else
val = dx ∈ d

if dbt-value(Z1, v, val)= success then
return success

else
return dbt-variable(Z1, v, d− {val})

endif
endif

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Procedure: dbt-value(Z1, v, val)
assign-variable(v, val)
c =backward-checking(Z1, v)
if c = success then

return success
else

Z3 = set of variables of c

unassign-variable(v)
create-eliminating-explanation(v, val, Z3 − {v})
return failure

endif
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Procedure: dbt-bt-variable(Z1, Z2, v)
Z3 = conflict set of v

if Z3 = ∅ then
return failure

else
v′ = last variable of Z3 in Z1

val′ = current value of v

Z4 = set of variables following v′ in Z1

unsign-variable(v′)
create-eliminating-explanations(v′, val′, Z3 − {v

′})
remove-eliminating-explanations(v′, Z4 ∪ Z2)
dbt-variables(Z1 − {v

′}, V2 ∪ {v
′})

endif
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and the set of constraints (the constraint eliminating explanation). The proce-
dure create-eliminating-explanation(v, val, Z, C) records the set
Z of variables and the set C of constraints as an explanation for the elimination
of the value val from the current domain of variable v.

Algorithm 4 Modified Dynamic Backtracking

Procedure: dbt-value(Z1, v, val)
assign-variable(v, val)
c =backward-checking(Z1, v)
if c = success then

return success

else
Z3 = set of variables of c

unassign-variable(v)
create-eliminating-explanation(v, val, V3 − {v}, {c})
return failure

endif
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Procedure: dbt-bt-variable(Z1, Z2v)
Z3 is a union of all the variable eliminating explanations of v

C is a union of all the constraint eliminating explanations of v

if Z3 = ∅ then
return C

else
v′ is last variable of Z3 in Z1

val′ is its current value
Z4 is the set of variables following v′ in Z1

unassign-variable(v′)
create-eliminating-explanation(v′, val′, Z3 − {v

′}, C)
remove-eliminating-explanations(v′, Z4 ∪ Z2)
dbt-variables(Z1 − {v

′}, Z2 ∪ {v
′})

endif

Solving CSPs using the Dynamic Backtracking algorithm produces the fol-
lowing:

• when the CSP is consistent:

– a solution, i.e. a complete and consist assignment;
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– a set of eliminating explanations related to possible variable as-
signments.

• when the CSP is inconsistent:

– a partial consistent assignment, which can be empty;

– an inconsistency explanation

– a set of eliminating explanations related to some of the possible
variable assignments.

These results can be recorded and reused when solving a new CSP which
differs from the previous one by the sets of added and deleted constraints (see
[61]). It can often be expected that most of the recorded explanation remain
valid for the new CSP. This explanation recording imported from a previous
CSP should allow significant pruning of the search space of the new CSP. The
new algorithm with necessary adjustments for Dynamic CSPs is presented as
Algorithm 5.

Algorithm 5 Dynamic Backtracking for DCSPs
Require: Z1 is a set of assigned variables, result of the previous search
Require: Z2 is a set of assigned variables, result of the same search
Require: Cadd is a set of added constraints
Require: Cdel is a set of deleted constraints

Z = Z1 ∪ Z2

Z3 = remove-assignments(Z1, Cadd)
remove-variable-eliminating-explanations(Z3, Z)
remove-constraint-eliminating-explanations(Cdel, Z)
return dbt-variables(Z1 − Z3, Z2 ∪ Z3)

The three procedures remove-assignments,remove-variable-
eliminating-explanations and remove-constraint-elimi-
-nating-explanations aim at deriving a consistent point for the new
search, the procedure dbt-variables.

For each constraint c ∈ Cadd, let Z(c) be a set of its variables. If the as-
signment of the variables of Z1 violates c, the procedure remove-assign-
-ments(Z1, Cadd) unassigns the last variable of Z(c) ∈ Z1 and creates the
corresponding eliminating explanation. The procedure returns the set Z3 of the
variables which have been unassigned.
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Experimental evaluations of the algorithm show that Dynamic Backtrack-
ing for DCSPs run on the randomly generated benchmarks for dynamic prob-
lems with small and intermediate changes clearly outperforms other algorithms
based on recording previous assignments. However, this method does not per-
form well on problems which include major configuration changes. In such
situation explanations based on previous CSP become completely incompati-
ble with the new problem.

2.5.5 Explanations for Global Constraints

As mentioned in the previous section, an explanation is a constraint justifying
propagation events generated by a solver, such as value removal, bound update
and contradiction. More formally [23]

Definition 2.5.15. An explanation of an inference X consist of a subset of
original constraints (C′ ⊂ C) and a set of instantiation constraints, i.e. choices
made during the search d1, . . . , dk such that: C′ ∧ d1 ∧ . . . ∧ dn ⇒ X .

Generating explanation for binary constraints is fairly simple. Given a pair
of variables x and y, a value a ∈ Dx is removed from domain of x if and only if
all supporting values for a in domain of y regarding a constraint Cxy has been
removed. Existence of such support is computed by any of the arc consistency
algorithm.

Dealing with global constraint is somewhat more complicated. Generally,
global constraints use special purpose algorithms to establish consistency and
to filter domains of the constrained variables. Thus generating precise expla-
nations is dependent on the used algorithms.

To illustrate difficulties of generating precise explanations for global con-
straints consider constraint of difference [48]. This constraint ensure that to
each constraint variable is assigned a different value. The consistency of the
constraint is computed by computing maximum cardinality bipartite matching
in a bipartite graph G(V1 ∪ V2, E), where V1 is a set of nodes representing the
constraint variables and V2 is a set of nodes representing union of values in
domains of all variables. Moreover, E is a set of arcs between nodes in V1 and
V2. There exists an arc between xi ∈ V1 and vj ∈ V2 if value represented by
node vj appears in domain of a variable represented by node xi.

Computing maximum cardinality matching in G is equivalent in comput-
ing a maximum flow in a flow network constructed from G, where the flow
between any node is restricted to an integer in the interval [0, 1]. If obtained
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flow is equal to the number of constraint variables then such constraint is con-
sistent.

By the definition of the constraint a value in domain of a constraint variable
is consistent if there is a maximum flow in the flow network obtained from
G which contains arc (xi, vj). Given a maximum flow f we can compute
the consistency of any value vj of a variable xi by resolving if there exists a
strongly component in the residual graph of f which involves at least three
nodes, which contains nodes representing both vj and xi.

It is clear that the classical constraint of difference only needs information
about different strongly connected components in an adequate graph. However,
to justify removal of a value from a domain of a variable we not only need to
know that two nodes are in different components but also we need to explain
why. In order to do this we need to keep track on the links between different
components. Figure 2.5 illustrates such case. To avoid removal of the link
between component i + 1 and i, at least one of the links marked with dashed
lines must be present.

1 i i+1 n

Figure 2.5: Explanation for removing the edge between components i + 1 and
i: to avoid the removal at least one of dashed lines must be present

Similar explanations are also used to maintain consistency of constraints,
which use more general flow formulation, namely flow constraint [9]. This
constraint is meant to maintain a feasible flow through the defined network.
The explanations generated here are based on the properties of flows. The first
property, so called flow conservation property, states that for any node in the
flow graph except the source and the sink, the amount of incoming flow must be
equal to the amount of flow leaving such node. This generates a straightforward
explanation for establishing lower and upper bounds for the flow through each
individual arc in the graph.

The second property which is used for computing explanation is maximum
flow/minimum cut property. The s–t cut is a partition of a flow graph into two
subset of nodes S and S such that the source node s ∈ S and the sink node
t ∈ S. The maximum flow/minimum cut property states that maximum flow
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from s to t equals the minimum capacity among all s–t cuts. Given a maximum
flow in a flow graph and using this property explanations of a maximum flow
can be generated in terms of capacity and lower bounds of arcs in the cut. The
same principle can be used for computing minimum flow in a graph.

The experimental evaluation performed on instances of rostering problems
shows that the explained version of flow constraint is slower than the classi-
cal one. However in a more general aspect, explanations provide the tool for
ex. interaction with a user, which can be very valuable in finding solution to
dynamic problems.

It is also evident that it is very hard to define some general method for
dynamic global constraints, without taking into consideration specific features
of the special purpose algorithms used for computing consistency and filtering
of specific global constraints.

2.6 Recurrent Dynamic Constraint Satisfaction Prob-
lem and Stable Solutions

As mentioned in Section 2.5.3 a dynamic CSP model can be used to capture
changes to a problem but it assumes that those changes are permanent. How-
ever, there are situations where changes in the current problem are only tem-
porary. Machine breakdown and employee absence are examples of such tem-
porary changes.

The sequential nature of DCSP is a major drawback when using DCSP to
model problems where temporary changes occur. Because DCSP is a sequence
of CSPs then any change which causes infeasibility of a solution demands solv-
ing a new CSP. Such a situation is highly undesirable. Ideally, one wouldn’t
like to lose the original solution in the first place, which would forestall all
extra search and other undesirable aspects of solution failure.

To remedy this Freuder and Wallace introduce the notion of Recurrent Dy-
namic CSP (RDCSP). This model takes into consideration temporary, recur-
rent changes to the problem [66, 67]. The aim of the model is to find solutions
which are stable, i.e. which remain valid after the problem was altered.

The following criteria were used for evaluating the performance of the
model:

1. efficency in finding a new solution,

2. solution similarity or consistency, i.e. a new solution should share as
many values as possible with the old one, and
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3. solution stability in face of problem alternation.

Since changes to the problem are unpredictable and can occur during a
search, i.e. before a new solution, which replaces the lost one, is found,
a heuristic repair method was chosen. This method is combined with min–
conflicts heuristics extended by a random walk strategy. Min–Conflicts heuris-
tic is defined as follows [40]:

Definition 2.6.1.
Given: A set of variables, a set of binary constraints, and an assignment spec-
ifying a value for each variable. Two variables conflict if their values violate a
constraint.
Procedure: Select a variable that is in conflict, and assign it a value that min-
imizes number of conflicts. Break ties randomly.

A random walk strategy makes an assignment to the variable in conflict
regardless of whether the new assignment is better or worse than the previous
one. The assignment is made according to the fixed probability. Randomization
of assignment aims at getting min–conflicts out of local minima. This method
is reported to be effective in finding global minima for random CSP [65].

Using hill climbing, which is a general iterative repairment technique, also
makes it possible to incorporate the changes in the scheduling problem which
appear during search for new solution.

The general hill climbing algorithm was presented in the Algorithm 1 in
Section 2.5.4. The Algorithm 6 presents hill climbing technique for stable
solutions.

The basic procedure of search must be extended by collecting information
about changes in environment and incorporating those changes into the search
procedure. Before we describe how it is done we need to present the basic
properties of RDCSP. They are as follows:

• Values and/or variables may become insignificant or inconsistent and
constraints may be added temporarily.

• There are differences in likelihood of changes which can occure,

• Those differences are assumed to be known a priori.

Collecting information about the changes will help to avoid choosing val-
ues for assignment that are likely to make the current solution invalid in the
future. Information about changes is collected as they occur and is used to de-
cide which value to assign to a given variable during subsequent search. The
procedure of gathering information can be carried out in following ways:
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Algorithm 6 Basic hill climbing for stable solutions

{PREPROCESSING}
For each successive variable

choose a value that minimizes conflicts with variables already assigned

{HILL CLIMBING }
repeat

1. randomly select variable x with ≥ 1 conflicts
2. with probability p

choose value v at random from the domain of x

2’. with probability 1− p

find all min–conflicts values in domain of x

choose value v at random from min–conflicts set
3. assign v to x

until cutoff time reached or complete solution found

1. changes may be traced directly by e.g. recording inconsistent values, or

2. solution loss resulting from the problem change may be traced and re-
lated to the values participating in solutions of varying stability.

The method described in [66] tracks changes by counting the number of
times that an element changes. Those counts can be related to relative fre-
quencies of changes, which in turn gives information about the probability that
given change will occur in the future. Another essential feature of counting
changes is that it provides a total ordering among the variables, whose assign-
ments have become inconsistent.

Methods for incorporating the gathered information into the search con-
sider two cases.

The first one is that of value loss since the count of value loss, or “penalties”
relate directly to min–conflict procedure. The method adds the penalty for each
value to its current conflict at the point where conflicts of the values in domain
are compared. This is called penalty-adding, Algorithm 7a.

Since using penalties in their original form can bias the hill climbing pro-
cedure heavily, they are rescaled relatively to the penalty of the variable being
repaired.

The second method, penalty selection in Algorithm 7b, works as
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follows. After the set of min–conflicts is chosen in standard way, the value from
this set is chosen at random, but the assignment is delayed unless its penalty
is less than some criterion or cutoff value. This process is repeated until an
acceptable value is found or all values have been tested.

In both cases, a selection or cutoff method is used with the random walk,
i.e. if a value was chosen at random, then values are chosen successively and at
random from the remaining, untested subdomain until one that matches the se-
lection criterion is found. If no such value is found the random walk procedure
is terminated.

Algorithm 7 Penalty ajustment for min–conflicts heuristics

a.PENALTY–ADDING
2’. with probability 1− p

find all values in domain of x with minimum (conflicts + scaled penalty)
choose value v at random from this biased min–conflicts set

b. PENALTY SELECTION
2’. with probability 1− p

find all min conflicts values in domain of x

repeat
select and remove value v at random from min–conflicts set

until for v < cutoff or no more values
if penalty for v < cutoff then

choose v for assignment
else

assign a value chosen at random from original min–conflicts set
endif

To avoid values that violate potential constraints with high penalties the
constraint penalties can be incorporated into hill climbing by checking them
during value selection, Algorithm 8. In this case, a value chosen from the
min–conflict set is tested against potential constraints which are not part of
the current problem. If none of the potential constraints are violated or if the
penalties of violated constraints do not reach the cutoff value, then the tested
value is accepted. Otherwise, another value is chosen. If no acceptable value
was found, a value from min–conflicts set is chosen at random.

Such a penalty–based selection may in certain situation lead to overcon-
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straining the hill–climbing procedure. In the experimental work presented in
[66], the selection criterion was relaxed each time the hill–climbing procedure
failed to find a solution after k seconds.

Algorithm 8 Adjustment to min–conflicts caused by constraint addition

SELECTION BASED ON CONSTRAINT PENALTIES
2’. with probability 1− p

find all min conflicts values in domain of x

repeat
select and remove value v at random from min–conflicts set
for each constraint not currently present

if value is not compatible with other value(s) in constraint
and constraint penalty > cutoff then

reject value and exit for loop
endif

until v not rejected or no more values
if v not rejected then

choose v for assignment
else

assign a value chosen at random from original min–conflicts set
endif

Wallace and Freuder present the experimental evaluation of stable solution
strategies in [66]. They were tested with simulated Recurrent DCSP on ran-
dom 3–color problems with 100 variables. The probability of value loss was
set to high 0.3 and low 0.003. The probability that a domain value was asso-
ciated with the higher probability of loss, pp was set to 0.025. In the runtime
phase there was 250 occasions of change in which the entire set of relevant
elements was scanned deciding for each element if any change should be made
to original problem. Both changes to the problem when hill climbing finds a
new solution as well as periodical changes at fixed intervals regardless search
state was investigated.

In the case of value loss with the values penalized after each deletion both
penalty startegies guided the hill climbing to a solution with appreciably fewer
“bad” solutions. In addition, adding a penalty to the number of conflicts re-
sulted in solutions of one magnitude better than without penalty. Nevertheless,
adding penalties was showed to be more costly in terms of run time. In contrast,
for the penalty selection strategy there were no consistent differences between
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penalty and non penalty conditions across problems. However, the large dif-
ference in run time favours the penalty condition as often as the control.

Compared to ”restarting” the solver after assignment loss, solution reuse
was very successful in avoiding bad values in solutions.

Experiments on using constraint addition procedure were carried out using
the same problem setup. The average degree of improvement in this case was
somewhat better than with value deletion, but the mean run time was 2–3 times
greater under penalty conditions. Solution similarity was high in both penalty
and non–penalty conditions, with the avarage difference by 0.01 in each tested
case.

Experimental evaluation shows that the penalty function improves the gen-
eral measure of solution quality. Nevertheless, there exists a tradeoff between
solution quality and a run time. Reported experiments show, that the same
problem configurations run under penalty condition has the mean run time 2–3
times greater. Solution similarity was high in both penalty and non–penalty
conditions, differing at average by 0.01 in each case.

It was also concluded that tracking the value loss is an efficient way to
gather information for finding stable solutions. Even in the situations where
assumption about convergence of underlying probabilities are clearly violated
penalties served as a bias for hill climbing procedure led in the direction of
more stable solutions.

Finally, it can be concluded, that the stable solution framework is the only
attempt within CSP framework to gather information about the frequence and
the nature of the changes in the problem and use it later to solve it. The idea
of guiding a search for solution to an altered problem by using the information
about probability of the changes may be used to effectively prune the search
tree of the problem.

2.7 Dynamic scheduling problems

In this section we introduce some general scheduling problems as examples of
constraint satisfaction problems. First, a general model for static scheduling
problem, Kernel Resource Feasibility Problem, is introduced. Then, Minimal
Perturbation Problem as an example of dynamic constraint satisfaction prob-
lem is described. Both examples are used in Section 2.9 to illustrate dynamic
constraint solving by so called probing methods.



2.7 Dynamic scheduling problems 41

2.7.1 Kernel Resource Feasibility Problem
Different classes of scheduling problems can be generalized as a kernel re-
source feasibility problem (KRFP)[20]. In the KRFP the goal is to fix start and
end times of activities such that the quantities of available resources are not
over–allocated.

Basic definitions

Definition 2.7.1. A Kernel Resource Feasibility Problem is a 5-tuple
(A,R, quantity, T C, Tmax), where A is a set of n activities, R is a set of m

resource types r1, . . . , rm , quantity is a resource function quantity : R →
N, T C is a set of temporal constraints and Tmax ∈ N is a latest point of
scheduling horizon.

The KRFP contains three major components: activities, resources and time
constraints.

The activities of the KRFP are represented as a set of atomic activitiesA =
{A1, . . . , An}. The following assumptions characterize activities of KRFP:

1. they require exactly one resource;

2. they are non–interruptible but the duration may vary;

3. they consume a quantity of resource which does not change through the
duration.

Each activity Ai ∈ A consists of five elements: ri which is the name of
the required resource, the resource area variable areai, the variable quantityi

representing the quantity of resource ri, the discrete start point variable si and
the discrete end point variable ei.

Temporal constraints (T C) are of one of the following forms:

1. u R c (bounding constraints)

2. u R v ± c (distance constraints)
where: R ∈ {=, <,>,≤,≥}, u, v ∈

⋃

ai∈A

{si, ei}

A solution to KRFP is an assignment of values to the variables in A where
the following constraints are satisfied:

• The activity constraints:

∀Ai ∈ A : areai = quantityi × (ei − si) (2.1)
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• The temporal constraint in T C, including the constraints relating the start
and end time of each activity, as well as constraints enforcing schedule
horizon: {0 ≤ si ≤ Tmax, 0 ≤ ei ≤ Tmax : Ai ∈ A}.

• Let ∀r ∈ R : Ar = {Ai : Ai ∈ A ∧ ri = r}. The resource constraints:

∀r ∈ R,∀t ∈ {0, . . . , Tmax} : quantity(r) ≥
∑

Ai∈Ar∧si≤t<ei

quantityi

(2.2)

Representing KRFP as a Constraint Satisfaction Problem

The activity constraints of (2.1) and the temporal constraints T C can be directly
represented as a CSP constraints according to the model presented by El–Kholy
and Richards in [20].

In this model, a new resource quantity variable Qr is introduced for every
r ∈ R. This variable corresponds to the maximum quantity of this resource
used over the schedule horizon. For each activity Ai ∈ Ar, a variable Qrsi

counts the quantity of resource r used at start time si. Variable Qr denotes the
maximum of these quantities Qr = MAX{Qrsi

: Ai ∈ Ar}. The variables of
the Qrsi

are defined in terms of Booleans. A Boolean BsiAj
is introduced for

each pair of activities Ai, Aj ∈ Ar and denotes a situation when activity Aj

overlaps with si.

∀r ∈ R,∀Ai, Aj ∈ Ar : BsiAj
=

{

1 iff sj < si ∧ si < ej

0 otherwise

}

(2.3)

Linked with the corresponding Qrsi
, these Boolean variables link temporal

and resource reasoning and the following constraint can be applied:

∀r ∈ R,∀AiinA∇ : Qrsi
=

∑

Aj∈Ar

BsiAj
· quantityj (2.4)

Even if each Qrsi
is bounded directly by the maximum resource quantity

quantity(r) via the constraints Qrsi
≤ Qr and Qr ≤ quantity(r), intro-

ducing variables Qr will allow us to modify the KRPF by adding constraints.

2.8 Minimal Perturbation Problem
A problem which often arises in a dynamic scheduling environment is creat-
ing a minimally disruptive schedule, where disruptiveness is measured as the
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distance between two solutions. In the case of scheduling under resource con-
straints this problem can be transformed into a Resource Utilization Problem
(RUP). A hybrid method for solving this problem was presented by El Sakkout
et al. in [54, 57, 55].

Definition 2.8.1. A minimal perturbation problem Π is a 5-tuple ( Θ, αΘ,
Cdel, Cadd,δ) where Θ is a CSP, αΘ is a solution to Θ, Cdel and Cadd are con-
straint removal and addition sets and δ is a distance function, which evaluates
the distance between two solutions. This function is used to measure the degree
of perturbation.

A complete assignment is a solution to Π if and only if it is a solution to
Θ′ = (Z,D,CΘ′), where CΘ′ = (CΘ \ Cdel) ∪ Cadd. A solution is optimal if
and only if δ(αΠ, αΘ) is minimal.

In the context of Definition 2.8.1 a Resource Utilization Problem may be
defined as follows:

Definition 2.8.2. A Resource Utilization Problem is a minimal perturbation
problem (Θi, αi, Cdel, Cadd, δ)where:

• Θ is any KRFP (A,R, T C, Tmax) modeled as a CSP, such that

– there is only one resource type r(R = {r}) and Qr is the resource
quantity variable for that resource type

– ∀Ai ∈ A : quantityi = 1

• αΘ is a solution to Θ;

• Cdel = ∅, Cadd = {Qr ≤ c}, such that c < quantity(r);

• δ(αΘ′ , αΘ) =
∑

u∈
⋃

ak∈A

{sk,ek}

|αΘ′(u)− αΘ(u)|

The definitions above model the problems in terms of Dynamic Constraint
Satisfaction Problems described in Section 2.5.3 and create the base of an array
of methods described in Chapter 2.9. However, as mentioned in Section 2.6,
the Dynamic CSP model is based on the assumption of permanent changes in
the scheduling environment. Some of the instances of MPP, like a rescheduling
caused by machine failure or by delays in a public transportation system, can
contain only temporary changes. It seems more natural to model those cases
using the Recurrent Dynamic CSP paradigm. However, as far as we know,
there is no investigation on modeling MPP in the context of recurrent dynamic
CSPs.



44 Paper A

2.9 Probing methods
Most real world scheduling problems which has been addressed in recent years,
including those coping with dynamic changes, have characteristics of large
scale, complex, optimization problems. An attempt has been made to address
those problems by decomposing them into multiple subproblems. The optimal
solutions to the subproblems are rarely compatible. Since the optimal solutions
of different subproblems are invariably incompatible, other ways of solving
subproblems, which make such sub–solutions globally consistent, are being
explored. This research topic belongs to an area known as “hybrid algorithms”.

This chapter presents most of the work done on hybrid algorithms in the
context of dynamic scheduling. The algorithms are complete tree search al-
gorithms which, at every search node, implement a repair step. The repair is
performed on super–optimal assignments, i.e. assignments which are optimal
with respect to the objective function, but which are only partially consistent.

The probing methods presented in this chapter are not intrinsically dy-
namic. The computation of each consecutive problem is performed from scratch.
However, the probing methods can be easily extended with functions which
e.g. measure the distance between solutions to consecutive problems of DCSP
and can be easily used to handle generic dynamic problems like e.g. minimum
perturbation problem etc.

Since the probing method evolved from constraint backtrack we start with
a presentation of this method.

2.9.1 Constraint Backtrack
The constraint backtrack algorithm presented in [57] is an extended version of
the resource feasibility algorithm from [46]. The algorithm contain an aspect
of temporal optimization not present in [46]. The outline of the Constraint
Backtrack algorithm is presented here as Algorithm 9.

The backtracking procedure is initiated by parameter MonitoredConstrs,
which is a set of violated constraints. The algorithm is based on simple depth–
first search which calls PushConstrStore and Pop
ConstrStore. The PushConstrStore pushes a decision represented by
a constraint onto a constraint store stack and triggers the local consistency
propagation. The PopConstrStore undoes the decision and the propaga-
tion based on it.

Constraints which are subject to contention are filtered by the constraint-
filter procedure. Filtered out constraints have no impact on resource fea-
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Algorithm 9 Constraint Backtrack
Require: Set of monitored constraints MonitoredConstrs

ContentionConstrs = constraint filter(MonitoredConstrs)
if ContentionConstrs = ∅ then

return TRUE
else

Constr = select constraint(ContentionConstrs)
Decision = select decision(Constr)
if PushConstrStore(Decision) then

if constraint backtrack(MonitoredConstrs) then
return TRUE

end if
end if
PopConstrStore
if PushConstrStore not(Decision) then

if constraint backtrack(MonitoredConstrs) then
return TRUE

end if
end if
PopConstrStore
return FALSE

end if

sibility in this search branch and are omitted. If all the conflicts are removed
the resource feasibility phase passes control over to the temporal optimization
phase.

The procedure select constraint selects from the filtered constraint
set ContentionConstraints the constraint Constr with the greatest potential for
conflicts. At this point the objective is to reduce conflicts in Constr. On back-
tracking the ordering constraint of Decision is revoked and replaced by its
negation. If the negation also fails then it is revoked and the algorithm back-
tracks to an earlier decision.

The algorithm applies arc–B consistency propagation on arithmetic con-
straints, see Section 2.5.1. The decision is propagated by an interplay between
resource and temporal constraints. The algorithm applies an additional look–
ahead check: after some resource was not found to be a subject of contention at
the latest search decision, a resource usage profile is built for the time horizon
interval which a given activity must span over. Other activities are assumed to
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take minimal span over the same interval. If the resource usage exceeds the
capacity at any time point in this interval, a failure is signaled and the algo-
rithm backtracks to the previous decision point. This procedure was found to
be important for solving KRFP problems, which relies on computing resource
overlap at activity start times.

The empirical experiments and comparisons with other techniques (see
[57]) show that Constraint Backtracking algorithm is quite ineffective at ob-
taining the minimum and proof of optimality. The propagation methods de-
scribed above fail to prune efficiently and the objective function does not re-
duce the search space in a satisfying manner.

The experiments find Constraint Backtracking relatively ineffective in find-
ing the optimum and prove of optimality. The propagation methods are shown
to fail in performing efficient pruning in the search tree. In particular, since
implications of individual search decisions with respect to the cost are not dis-
covered until most of the variables are fixed, the optimization function fails to
efficiently reduce the search space.

2.9.2 Probe Backtrack Algorithms
Probe backtracking is an extended version of constraint backtracking, where
the backtrack search procedure is supported by look–ahead procedures, so
called probe generators, generating potentially good assignments, probes.

The purpose of creating a probe is to direct backtrack search and limit the
size of the search space. After the probe is created the search concentrates on
regions where the probe violates constraints. The main difference between the
constraint backtrack search and the probe backtrack search is that the probe
backtrack search calls the procedure obtain probe assignment. It rep-
resents a call to the probe generator used to focus search decision at this search
node. The only conditions which must be guaranteed by the prober is satisfying
the variables’ domain constraints. It is preferable that assignments generated
by the prober are of good quality, usually super–optimal with respect to the
objective function if such a function exists.

The result returned from the probe makes it possible to filter and select
monitored constraints. Similarly to the filtering process in constraint back-
tracking, constraints which are not subject to a conflict are filtered out. More-
over, any constraint which is satisfied by a tentative assignment returned by the
prober is removed from the set of violated constraints.

To exemplify the filter mechanism consider the Resource Utilization Prob-
lem from Section 2.8. Let X[Dv] to represent the variable X with domain D
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Algorithm 10 Probe Backtrack Search
Require: Set of monitored Constraints Monitored Constrs

Assignment = obtain probe assignment
ViolatedContentionConstrs = constraint filter(MonitoredConstrs,Assignment)
if ViolatedContentionConstrs == ∅ then

return TRUE
else

Constrs = select constraint(ViolatedContentionConstrs,Assignment)
Decision = select decision(Constr,Assignment)
if PushConstrStore(Decision) then

if probe backtrack(MonitoredConstrs) then
return TRUE

end if
PopConstrStore
if PushConstrStore not(Decision) then

if probe backtrack(MonitoredConstrs) then
return TRUE

end if
PopConstrStore
return FALSE

end if
end if

end if

and a probe value v. A constraint

Qrsi
[{0..1}1] = BsiAj

[{0, 1}0] + BsiAk
: [{0, 1}0] + BsiAl

[{0, 1}1]

is removed even if in contention, because its satisfied by the probe assignment.
Even if constraints satisfied by current probe may be later invalid, it is

assumed that the current probe will lead to a solution. If all constraints are
satisfied after the probe a solution is found and probe backtrack terminates.

Otherwise a decision is made about the constraint Constr which has been
violated by the probe assignment to force new probes and obtain assignments
that are closer to satisfying Constr. Selecting decisions that allow the prober
generator to return the same probe would not progress the search.

Some necessary heuristics are used to select a decision about choosing an
appropriate constraint Constr. In the RUP studied in [57] contention reduc-
tion is achieved by forcing apart two temporal variables in the fashion similar
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to CB. The secondary heuristics is to order decision constraints using least–
commitment or estimating the impact of a new ordering constraint on the as-
signment returned by the probe.

The probe backtracking algorithm generates a probe closely based on the
old solution, which is only partially consistent with the new problem con-
straints. With every call to obtain probe assignment the local consis-
tency propagation prunes the domain of the temporal variables. Since Moni-
toredConstrs’ parameter includes only resource constraints the temporal con-
straints are not monitored for violation, which makes pure probe backtracking
algorithm incomplete.

Completeness of the algorithm is restored by introducing an intermediate
phase between the probe backtracking and temporal optimization phases to
relieve any remaining contention from resources that were filtered out.

Nevertheless, since the number of temporal constraints increases at every
decision step the probes generated in the probe backtracking phase may be of
little of none relevance because the tentative values for remaining variables,
even if still super–optimal, may violate so many temporal constraints that they
no longer provide accurate information about feasible solution.

2.9.3 Unimodular probing
The unimodular probing algorithm [54] combines constraint programming
techniques such as constraint propagation with linear programming optimiza-
tion. It relies on a constraint programming platform which can invoke an LP
solver and extract the information about the optimal solution computed by the
LP solver.

The Linear Programming solver can handle only a set of linear constraints
and treats all its variables as continuous, relaxing any discrete constraints. It
computes an optimum value of a given objective function and records the val-
ues of the variables in this optimum.

The earlier integrations of constraint programming and linear program-
ming, like those described in [2] and [50], pass the whole set of constraints
into the LP solver. The unimodular probing algorithm, in contrast, passes to
the LP solver only a restricted class of constraints which has a special prop-
erty called total unimodularity. The consequence of this property is that the
optimum solution is guaranteed to be integer–valued. A set of constraints with
total unimodularity property is referred to as an “easy set”.

Below we define total unimodularity and describe its characteristics. It
follows definitions given in [44], but it can be found in any book on operations
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research.

Definition 2.9.1. An m× n matrix A is totally unimodular (TU) if the deter-
minant of each square submatrix of A is equal to 0,1 or −1.

Let P (b) represent the polyhedron of solutions to the set of linear inequal-
ities Ax ≤ b.

Theorem 2.9.1. If A is totally unimodular, then P (b) = {x ∈ R
n
+ : Ax ≤ b}

is integral for all b ∈ Z
n.

The proof of the Theorem 2.9.1 may be found in e.g. [44].
This property is applied by unimodular probing algorithm on an easy set of

constraints to assure that the solution returned by the probe is an optimal in-
teger solution. The probing procedure proceeds by applying local consistency
techniques to the constraints of the problem. After a solution was found by the
prober, the search procedure generates the constraints in the full set violated by
the unimodular probe. If there are no violated constraints then the search found
a solution. Otherwise, the algorithm selects a violated constraint, and rules out
the present unimodular probe by imposing an additional easy constraint. If a
choice of possible repairs exists then the algorithm backtracks through these
choices in its search for optimality. When a repair has been selected, local con-
sistency methods derive further easy constraints which follow from the choice.
We will explain the propagation mechanism on KRFP example later on.

The Algorithm 11 on page 57 gives an outline of the unimodular probe
algorithm.

Below we give an example how the unimodular probing algorithm can be
applied on the Resource Feasibility Problem defined in Section 2.8.

The first task of constructing a unimodular probing algorithm is the identi-
fication of a suitable easy set with the total unimodularity property. In a Linear
Programming problem, the set of constraints and variables is represented by a
constraint matrix, where the rows represent constraints, and columns represent
variables, with the element eij of the matrix denoting the coefficient of variable
j in a particular constraint i.

Sufficient conditions for unimodularity of constraint matrix are as follows:

1. All the variable coefficients are 0,1,-1,

2. No more than two nonzero coefficients appear in each row (column).

3. The columns (rows) of the matrix can be partitioned into two subsets Q1

and Q2 such that:
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(a) If a row (column) contains two nonzero coefficients with the same
sign, one element is in each of the subsets.

(b) If a row (column) contains two nonzero elements of opposite sign,
both elements are in the same subset.

For a proof see [44].
The temporal constraints of KRFP satisfy the sufficient conditions for the

TU property if the set of variables (columns) is partitioned into a subset S1 con-
taining all temporal variables and an empty subset S2. Since the characteristics
and representation of T C is identical for KRFP and RUP, then the temporal
constraints of the RUP constitute a totally unimodular set. For a proof see [54].

The Resource Utilization Problem perturbation function δ is defined to be
an absolute change over the temporal variables. If x is a temporal variable then
the absolute change in x is dx = |x − c|, where c represents the value of x in
previous solution. Since dx, which is a non–linear function, is introduced in
the objective function the following constraints are added:

dx ≥ x− c (2.5)
dx ≥ c− x (2.6)

Even if (2.6) violates the sufficient conditions for total unimodularity this
characteristics is preserved on the incremental addition of new variable dx and
the constraints (2.5) and (2.6), which is proved in [57].

The experimental evaluation of the unimodular probing algorithm was done
on a set of commercial aircraft utilization problems. The performance of the
algorithm was compared with specialized constraint programming algorithm
(a detailed description of the algorithm may be found in [46]. A modified
version of the algorithm is given in Section 2.9.1) and a mixed integer pro-
gramming (MIP) search. In comparison with pure constraint programming
algorithm unimodular probing is capable to find an optimal solution for many
problems where the pure constraint algorithm fails.

In comparison with MIP search unimodular probing achieves the substan-
tial reductions in the number of search nodes. Another advantage of the uni-
modular probing algorithm over MIP techniques lies in the search ordering
heuristics. MIP sees all violations in terms of integrity of problem variables
that results in facing large amount of violations which are vary similar in their
nature. Unimodular probing faces instead much fewer number of violations,
but they seem much more heterogenous in their character. Moreover, the non–
discrete values returned by the LP–solver for the relaxed MIP problem have
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limited importance in a discrete context, which results in quite poor informa-
tion about search choices.

In contrast, unimodular probing gives a relatively high level view of the
sources of violation, which enables the use of meaningful heuristics for repair
selection and bottleneck prioritization.

2.9.4 Local probing

Local search is a search method based on the idea that an exhaustive explo-
ration of the search space of a problem is in most cases not necessary in order
to find a feasible or optimal solution. A solution can be found by exploring
assignments which lie in the neighborhood of current assignments.

Definition 2.9.2. A neighborhood N(x, σ) of a solution x is a set of solutions
that can be reached from x by some simple operation σ.

Examples of such operations are adding or removing an object from the
solution.

If a solution y is better than any other solution in its neighborhood N(y, σ)
then y is a local optimum with respect to this neighborhood [47].

Preliminary research on local search as a probing method was presented
in [33]. The authors evaluate hill–climbing search combined with several
heuristics: limited variable search and limited shift search, both based on min-
imal discrepancy search [28], and minimal perturbation search [57], where the
neighborhood operator correspond to the perturbation function δ in MPP, see
Definition 2.8.1 in Section 2.8.

In the limited variable search the search decisions are variable assignments.
The neighborhood solution is searched by letting one variable change. If a
feasible solution is not found after exploring all possibilities the discrepancy
limit is increased by one. This is continued until a feasible solution is found or
the whole search is explored.

Limited shift search changes the number of variable re–assignments. The
measure of discrepancy is the absolute distance of the new assignment from the
basic solution. The variables for re–assignment are chosen in random order.
The new value which a chosen variable takes is the one which gives a biggest
improvement.

The minimum perturbation search heuristic assigns a value to one variable
and uses linear programming to assign the remaining variables in a way which
minimizes changes to previous assignment. The objective function and the



52 Paper A

minimal perturbation constraints are modeled as follows:

min

N
∑

i=1

dxi
(2.7)

s.t.

dxi
≥ xi − ci i = 1, 2, . . . , N (2.8)

dxi
≥ ci − xi i = 1, 2, . . . , N (2.9)

where dx = |x− c| represents the absolute change between variable x and
its initial value c and N is the total number of noninstantiated variables. The
objective function in (2.7). is linear and can be solved vary quickly.

A performance evaluation for a local prober was conducted on the set of
benchmarks for resource feasibility problems [30](see Section 2.8). Since the
heuristic value selection in the Minimal Perturbation Search tends to lead hill–
climbing to local minima, a semi–random value selection was added to the
neighborhood operator. This heuristics divides the variable domain into the
set of values which potentially can improve and those which can deteriorate a
solution. Values which improve the solution are explored first.

In addition tests with neighborhood operators using depth–first search were
conducted for comparison. These tests show that minimum perturbation search
is the best choice for quickly finding a feasible solution to the problem and
outperforms both minimum discrepancy heuristics. Depth first search performs
almost as well as minimum perturbation search.

As mentioned before the investigations presented in the paper are prelim-
inary, there is for example no comparison between using a local prober and
those presented in [57] or [54].

2.9.5 Hybridization based on Benders decomposition
The idea of decomposing an optimization problem into two subproblems which
can be solved by cooperating solvers, presented in Section 2.9.3, is based on
the fact that the cost function involved in the optimization process is linear or
can be approximated by a linear or piecewise linear functions. Since linear
programming offers efficient constraint solvers, which can quickly return op-
timal solutions to the problems, it seems advantageous to combine constraint
and linear programming to solve complex optimization problems.

The form of hybridization referred in this section is based on the concept
of a “master” problem, for which the optimal solution is found, and another
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subproblems which interact with the master problem. In the simplest case the
subproblem examines the latest optimal solution of the master problem and de-
termines whether this optimal solution violates any constraint of the subprob-
lem. In case of such a violation the subproblem returns one or more alternative
linear constraints to the master problem, to reduce the probability that such a
violation occurs again. One of these constraints is added to the master problem
and a new optimal solution is found. To prove global optimality each of the
returned alternatives is added to the master problem on different branches of
the search tree.

Using operation research language this would correspond to ”row genera-
tion” in contrast to column generation. The unimodular probing method de-
scribed in Section 2.9.3 is such a “row generation” method.

Another form of hybridization based master/slave problem concept is Ben-
ders decomposition. The idea of Benders decomposition was first presented
in [5] and generalized in [24]. Integration of Benders decomposition and con-
straint programming was described in [21] and [58].

Benders decomposition is presented below. The hybrid algorithm is listed
as Algorithm 12 on page 44.

Consider the linear program P given by;

P : min fTx +

I
∑

i=1

cT

i yi

subject to Gix + Aiyi ≥ bi ∀i

(2.10)

x ∈ DX

yi ≥ 0 ∀i

Fixing x to some value xk results in a linear program in yi which can have
a special structure or can be easy to solve. This program may be partitioned as
follows:

P : min
x∈DX

{

fTx +

I
∑

i=1

(min {cT

i
yi : Aiyi ≥ bi −Gix,yi ≥ 0})

}

= min
x∈DX

{

fTx +

I
∑

i=1

(max{ui(bi −Gix) : uiAi ≤ ci,ui ≥ 0}))

}

(2.11)

where the inner optimization has been dualized. If the Ui =
{ui : uiAi ≤ ci,ui ≥ 0} is non–empty for each i there exists an optimal so-
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lution to each inner optimization or it is unbounded along extreme rays. By
letting u1

i , . . . , u
ti

i and d1
i , . . . , d

si

i be the extreme points and directions of Ui

equation (2.11) can be rewritten as a mixed integer Master Problem MP:

MP : min z = fTx +

I
∑

i=1

βi

s.t. βi ≥ uk

i (bi −Gix) ∀i ∀k

0 ≥ dl

i
(bi −Gix) ∀i ∀l

x ∈ DX

(2.12)

where βi is a bound on the optimal value that depends on x called Benders cut.
Since there may exist many extreme points in the direction of each Ui

which has its impact on number of constraints in 2.12 the master problem must
be relaxed. If for some relaxed problem RMPk the optimal relaxed solution
(zk,xk) satisfies all the constraints of (2.12) then (zk,xk,yk

1
, . . . ,yk

I
) is an

optimal solution of (2.10). Otherwise there exists some constraint or Benders
cut in (2.12) which is violated for x = xk. The violated element is then added
to RMPk creating RMPk+1, the ground for the next iteration.

The Benders cut is determined by fixing x = xk in (2.11):

SPk

i
: max βk

i = ui(bi −Gix
k)

subject to uiAi ≤ ci

ui ≥ 0

(2.13)

If any subproblem SPk

i
has an unbounded optimal solution for xk then the

primal of subproblem is infeasible for xk. If any subproblem SPk

i
is infeasible

for xk then its infeasible for any x. In these cases the Homogenous Dual to the
primal of the subproblem is considered:

max ui(bi −Gix
k)

subject to uiAi ≥ 0

ui ≥ 0

(2.14)

This problem is always feasible since ui = 0 is a solution and can have
an unbounded optimum when the primal is infeasible and finite optimal so-
lution when the primal is feasible. In case of an unbounded solution a cut
uk

i
(bi −Gix) ≤ 0 which corresponds to an extreme direction of U ′

i =
{ui : uiAi ≤ 0,ui ≥ 0} is obtained.
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The complete Benders decomposition is presented as Algorithm 12 on page
58.

The classical Benders decomposition can be generalized for the problems
with nonlinear constraints and nonlinear objective function. In most general
form the original problem:

P : minf(f1(x,y1), . . . , fI(x,yI))

subject to gi(x,yi) ≥ bi ∀ i

x ∈ DX

yi ∈ DY ∀ i

(2.15)

is decomposed into a master problem:

MP : min z = f(x, β1, . . . , βI)

subject to βi ≥ βk
i (x) ∀i ∀k

0 ≥ βl
i(x) ∀i ∀l

x ∈ DX

(2.16)

and subproblems:

SPk

i
: min fi(x

k,yi)

subject to gi(x
k,yi) ≥ bi

yi ∈ DY

(2.17)

An evaluation of the algorithm (see [21]) was performed on instances of
the minimal perturbation problem from [30]. Correct and optimal solutions
were returned but the performance was of one magnitude slower than for the
unimodular probing described in [54]. The reason for such a behavior may
be the composition of benchmarks. Benders Decomposition proves to be very
efficient in case the problem breaks down into a master problem and multiple
subproblems. Since the benchmarks investigated in the paper involve a single
kind of resource they do not have an apparent decomposition into multiple
subproblems, which may be one of the reasons why this algorithm performs
slower then unimodular probing.

2.10 Conclusions
This section describes the state-of-the-art in the field of dynamic constraint
solving. The Constraint Satisfaction framework for dynamic problems was
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presented and techniques which can be used to solve those problems were de-
scribed. Also an overview of cooperating solvers and so called hybrid methods
for complex dynamic problems was given.

Several future research directions in the area have been discussed. Of these,
the idea of cooperative solvers which combines methods known from Opera-
tion Research and Constraint Programming seems most promising. We believe
that cooperating solvers can be used to solve constraint optimization problems
in general. The current investigation of hybridization methods does not fully
take advantages of the dynamic nature of the problem. Any changes in the en-
vironment creates a new Constraint Satisfaction Problem which is solved from
scratch. Propagating changes in configuration of the problem in context of
cooperative solvers should be investigated further.

As it has been shown, many of the problems which include temporary
changes, e.g., Minimal Perturbation Problem, are usually modelled as Dy-
namic CSPs. The possibility to model those problems using the Recurrent
DCSP framework should be investigated.

Moreover, further research on the methods for propagating changes for Dy-
namic Constraint Satisfaction Problems should be conducted.

On the other hand there is no much work, that we are aware of, on mod-
eling dynamic problems using the framework of the global constraints. This
approach will be investigated for a class of global constraints in Paper D of this
thesis.

Finally, methods which gather the information about the nature of the
changes to a dynamic problem and use the gathered information to guide the
search for solution to the new problem should be further investigated.
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Algorithm 11 Unimodular probing search
Require: Set of new constraints to be added Cnew

Ccpnew = push cp(Cnew)
if (Ccpnew 6= FALSE) then

Clpnew = obtain easy constraints(Cnew ∪ Ccpnew)
Slp = push lp(Clpnew)
if (Slp 6= FALSE) then

Cconf = violated constraints(Slp)
if (Cconf = ∅) then

Slp

else
Crepair = select repair choice(Cconf , Slp)
Slp = unimodular probing search(Crepair)
if (Slp 6= FALSE) then

return Slp

else
Slp = unimodular probing search(NOT (Crepair))

end if
if (Slp 6= FALSE) then

return Slp

end if
end if

end if
pop lp

end if
pop cp
return Slp
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Algorithm 12 Benders Decomposition Algorithm
1: Initialization: From the original linear program P (2.10) construct the re-

laxed master problem RMP0 (2.12) with the initial constraint set x ∈ DX

and set k = 0.
2: Iterative step: From the current relaxed problem RMPk with the

optimal solution (zk,xk) construct RMPk+1 with optimal solution
(zk+1,xk+1): fix x = xk in P and solve the resulting subproblems SPk

i

(2.13) according to following cases:

• SPk

i
is primal unbounded for some i – stop with the original prob-

lem having unbounded solution.

• yk

i
,uk

i
are, respectively, primal and dual solutions of subproblem

SPk

i
with objective values βk

i for each i.

– if
∑I

i=1 βk
i = zk then stop with (zk,xk,yk

1
, . . . ,yk

I
) as the

original solution to the original problem.

– if
∑I

i=1 βk
i > zk then add the Benders cuts βi ≥

uk

i
(bi −Gix) to RMPk to form the new relaxed master

problem RMPk+1 set k = k + 1 and return to step 2.

• SPk

i
is dual unbounded or both primal and dual unfeasible for some

i – find an extreme direction dk

i
of the homogeneous dual leading to

unboundness; add the cut dk

i
(bi −Gix) < 0 to RPMk to form a

new relaxed master problem RMPk+1, set k = k + 1 and return to
step 2.
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pages 592–598, 1995.

[8] F. Bacchus and P. van Beek. On the conversion between non-binary and
binary constraint satisfaction problems. In AAAI/IAAI, pages 310–318,
1998.

59



60 Bibliography

[9] A. Bockmayr, N. Pisaruk and A. Aggoun Network flow problems in con-
straint programming. In Principles and Practice of Constraint Program-
ming 2001, pages 196–210, 2001

[10] W. Y. Chiang and M. S. Fox. Protection against uncertainty in a deter-
ministic schedule. In Proceedings 4th International Conference on Expert
Systems and the Leading Edge in Production and Operations Management,
pages 184–197, Hilton Head Island, 1990.

[11] P. Chatalic. Incremental techniques and prolog. Technical Report TR-
LP-23, European Computer-Industry Research Centre, June 1987.

[12] P. Chatalic. IMPRO: an environment for incremental execution in pro-
log. Technical Report TR-LP-42, European Computer-Industry Research
Centre, May 1989.

[13] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem.
Management Science, 35(2):164–176, 1989.

[14] J. Carlier and E. Pinson. Adjustments of heads and tails for the job-shop
scheduling problem. European Journal of Operational Research, 78:146–
161, 1994.

[15] A.J. Davenport and J.Ch. Beck. Managing uncertainty in scheduling: a
survey. Preprint, 2000.

[16] M. Drummond, J. Bresina, and K. Swanson. Just-in-case scheduling. In
Proc. of the Twelth National Conference on Artificial Intelligence (AAAI-
94), pages 1098–1104, Seattle, WA, 1994. AAAI Press.

[17] R. Dechter and A. Dechter. Belief maintenance in dynamic constraint
networks. In Proceedings of AAAI-88, pages 37–42, 1988.

[18] J. de Kleer. A comparison of ATMS and CSP techniques. In N. S. Srid-
haran, editor, Proceedings of the 11th International Joint Conference on
Artificial Intelligence, pages 290–296, Detroit, MI, USA, August 1989.
Morgan Kaufmann.

[19] J. Doyle. A truth maintenance system. In Bonnie Webber and Nils J.
Nilsson, editors, Readings in Artificial Intelligence, pages 496–516. Mor-
gan Kaufmann, Los Altos, California, 1981.



Bibliography 61

[20] A. El-Kholy and B. Richards. Temporal and resource reasoning in plan-
ning: the parcplan approach. In Proc. ECAI-96, 1996.

[21] A. Eremin and M. Wallace. Hybrid benders decomposition algorithms in
constraint logic programming. In T. Walsh, editor, Principles and Prac-
tice of Constraint Programming - CP 2001, Lecture Notes in Computer
Science, pages 1–15. Springer, 2001.

[22] H. Gao. Building robust schedules using temporal protection(an em-
pirical study of constraint based scheduling under machine failure uncer-
tainty). Master’s thesis, Department of Industrial Engineering, University
of Toronto, 1995.

[23] E. Gaudin, N. Jussien and G. Rochart. Implementing explained global
constraints CP04 Workshop on Constraint Propagation and Implementa-
tion (CPAI’04), pp. 61–76, 2004

[24] A.M. Geoffrion. Generalized benders decomposition. Journal of Opti-
mization theory and Applications, 4(10):237–260, 1972.

[25] S. Ghosh. Guaranteeing Fault-Tolerance through Scheduling in Real-
Time Systems. PhD thesis, University of Pittsburgh, 1996.

[26] M.L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence
Research, 1:25–46, August 1993. (electronic journal).

[27] S. Ghosh, R. Melhem, and D. Mosse. Enhancing real-time schedules to
tolerate transient faults. In IEEE Real-Time Systems Symposium, pages
120–129, 1995.

[28] W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In Proc.
of the Fourteen International Joint Conference on Artificial Intelligence
(IJCAI-95), pages 607–615. Morgan Kaufman, 1995.

[29] P. Van Hentenryck and T. Le Provost. Incremental search in constraint
logic programming. New Generation Computing, 9:257–275, 1991.

[30] Introduction to resource utilization benchmarks. Available at
www.icparc.ic.ac.uk/˜hhe/RFPBenchmarks/new benchmark intro.html,
2000.

[31] W. Kocjan Dynamic scheduling. State of the art report. Technical Report,
Swedish Institute of Computer Science, 2000.



62 Bibliography
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Abstract

The symmetric cardinality constraint is described in terms of a set of vari-
ables X = {x1, . . . , xk}, which take their values as subsets of values V =
{v1, . . . , vn}. It constraints the cardinality of the set assigned to each variable
to be in an interval [lxi

, cxi
] and at the same time it restricts the number of oc-

currences of each value vj ∈ V in the sets assigned to variables in X to be in
an other interval [lvj

, cvj
]. In this paper we introduce the symmetric cardinal-

ity constraint and define set constraint satisfaction problem as a framework for
dealing with this type of constraints. Moreover, we present effective filtering
methods for the symmetric cardinality constraint.
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3.1 Introduction
The symmetric cardinality constraint is specified in terms of a set of variables
X = {x1, . . . , xk}, which take their values as subsets of V = {v1, . . . , vn}.
The cardinality of the set assigned to each variable is constrained by the inter-
val [lxi

, cxi
], where lxi

and cxi
are non–negative integers. In addition, it con-

straints the number of occurrences of each value vj ∈ V in the sets assigned
to variables in X to be an interval [lvj

, cvj
]. Both lvj

and cvj
are non–negative

integers.
The symmetric cardinality constraint problems arise in many real–life prob-

lems. For example, consider an instance of a project management problem.
The main task of the problem is to assign personnel with possibly multiple
specialized competences to a set of tasks, each requiring a certain number
of people (possibly none) of each competence. In this instance we consider
a project consisting of 7 activities numbered from 1 to 7, each demanding a
number of persons to be accomplished. An activity which demands minimum
0 persons is optional.

There are 6 members of personnel which can be assigned to this project.
Each of those persons, here referred to as x with a respective index, is qualified
to perform respective activities as shown in Fig.3.1. A non-zero value of a
lower bound indicates that members of the staff represented by the variable
must be assigned to some activities in the project.

The goal is to produce an assignment which satisfy the following con-
straints:

• every member of staff must be assigned to a minimum and maximum
number of activities in the project,

• every activity must be performed by a minimum and maximum number
of persons,

• each person can be assign only to an activity he/she is qualified to per-
form and, by symmetry, each activity must be performed by qualified
personnel.

In this paper we show how such problem can be modeled as a constraint sat-
isfaction problem. First, in Section 3.2 we give some preliminaries on graphs
and flows. Then, in Section 3.3 we define set constraint satisfaction problem
and give a formal definition of the symmetric cardinality constraint. The fol-
lowing section, 3.4, gives a method for checking consistency of symmetric
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1 2 3 4 5 6 7
x1 1 1 0 0 0 0 0
x2 0 1 1 0 0 0 0
x3 1 0 1 0 0 0 0
x4 0 1 0 1 0 0 0
x5 0 0 1 1 1 1 0
x6 0 0 0 0 0 1 1

person activities
x1 2..3
x2 0..2
x3 0..1
x4 1..1
x5 0..3
x6 0..2

task persons
1 1..3
2 1..2
3 0..1
4 1..2
5 1..3
6 0..2
7 1..1

Figure 3.1: Project assignment specification. In the left table, a 1 indicates
that a person represented by xi is qualified to perform corresponding activity
in the project. The table in the center and to the right specifies the number of
activities each person can perform and the number of persons required by each
activity.

cardinality constraint. Finally, we describe a filtering method for symmetric
cardinality constraint.

3.2 Preliminaries

3.2.1 Graph

The following definitions are mainly due to [1].
A directed graph G = (X,U) consists of a set of nodes (vertices) X and

arcs (edges) U , where every pair (u, v) is an ordered pair of distinct nodes. An
oriented graph is a directed graph having no symmetric pair of arcs.

A directed network is a directed graph whose nodes and/or arcs have as-
sociated numerical values. In this paper we do not make distinction between
terms “network” and “directed network”.

An arc (u, v) connects node u with node v, i.e. in directed graph it is an arc
oriented from node u to node v. A path in a graph G from v1 to vk is a sequence
of nodes [v1, . . . , vk] such that each (vi, vi+1) is an arc for i ∈ [1, . . . , k − 1].
The path is simple if all its nodes are distinct. A path is a cycle if k > 1 and
v1 = vk.

A subgraph of a directed graph G, which contains at least one directed path
from every node to every other node is called a strongly connected component
of G.
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3.2.2 Flows
Let N be a directed network in which each arc e is associated with two non–
negative integers l(e) and c(e) representing lower bound and a capacity of flow
on e. A flow f(e) on arc e represents the amount of commodity that the arc
accommodates. More formally:

Definition 3.2.1. A flow in a network N is a function that assigns to each arc
e of the network a value f(e) in such way that

1. l(e) ≤ f(e) ≤ c(e), where l(e) is a lower bound of the flow in the arc
and c(e) is a capacity of e

2. for each node p in the network N it is true that
∑

n f(e(n, p)) =
∑

r f(e(p, r))
where e(x, y) is an arc from node x to y

The second property is known as a conservation law and states that the
amount of flow of some commodity incoming to each node in N is equal the
amount of that commodity leaving each node.

Three problems from the flow theory are referred to in this paper:

• the feasible flow problem which resolves if there exists a flow in N which
satisfies lower bound and capacity constraints for all arcs in N .

• the problem of maximum flow from m to n which consists of finding a
feasible flow in N such that the value f(m,n) is maximum

• the problem of minimum flow from m to n which consists of finding a
feasible flow in N such that the value f(m,n) is minimum.

It is a well known fact that if the lower bounds and capacities of a flow
problem are integral and there exists a feasible flow for the network, then the
maximum and minimum flows between any two nodes flows are also integral
on all arcs in the network. Hence, if there exists a feasible flow in a network
there also exists an integral feasible flow. In this paper when we refer to a
feasible flow we always mean an integral feasible flow.

We refer in this paper also to the residual network, which is a network
representing the utilization and remaining capacity in the network with respect
to a flow f .

Definition 3.2.2. Given a flow f from s to t in the network N , the residual
network for f , denoted by R(f), consists of the same set of nodes as N . The
arc set of R(f) is defined as follows. For all arcs (m,n) in N
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• if f(m,n) < c(m,n) then (m,n) is an arc of R(f) with residual capac-
ity res(m,n) = c(m,n)− f(m,n),

• if f(m,n) > l(m,n) then (n,m) is an arc of R(f) with residual capac-
ity res(n,m) = f(m,n)− l(m,n),

3.3 Set Constraint Satisfaction Problem
We define a set constraint satisfaction problem as follows.

Definition 3.3.1. A set constraint satisfaction problem (sCSP) is a triple (X,D,Cs)
where

1. X = {x1, . . . , xn} is a finite set of variables.

2. D = {D1, . . . , Dn} is a set of finite sets of elements such that for each
i, xi takes as value a subset of Di.

3. Cs is a set of constraints on the values particular subsets of the variables
in X can simultaneously take. Each constraint C ∈ Cs constrains the
values of a subset X(C) = {xC1

, . . . , xCk
} of the variables in X and

may be thought of as a subset T (C) of the Cartesian product = CC1
×

. . . ,×CCk
where each CCi

= {C | C ⊆ DCi
}.

Let
D(C) =

⋃

i∈{i|xi∈X(C)}

Di

be the set of values that can be taken by any variable in X(C). Furthermore, for
a given assignment P , let P (xi) denote the value assigned to the variable xi by
P and #(xi, P ), the cardinality |P (xi)| of the set P (xi) and for any constraint
C and element vj ∈ D(C), #(vj , C, P ) denote the number of occurrences of
vj in the values assigned by P to the variables in X(C), i.e:

∑

xi∈X(C)

{

1 if vi ∈ P (xi)
0 otherwise

Definition 3.3.2. A sCSP 〈X,D,Cs〉 is consistent if and only if there exists an
assignment P with the following properties:

1. For each variable xi ∈ X with domain Di, the value P (xi) assigned to
xi by P must be a subset of Di.
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2. For each constraint C ∈ Cs and each variable in X(C) = {xC1
, . . . , xCk

}
the tuple 〈P (xC1

), . . . , P (xCk
)〉 ∈ T (C).

Moreover, a value v ∈ D(xCi
) for xCi

is consistent with C iff ∃P (P (X(C)) ∈
T (C)) such that v is an element in the value P (xi).

An n–ary constraint can be seen in terms of its value graph ([2]), i.e the
bipartite graph G(C) = (X(C), D(C), E), where for all x ∈ X(C), v ∈
D(C), (xi, v) ∈ E iff v ∈ Di. This graph establishes an immediate corre-
spondence between any assignment P and a special set of edges in a value
graph.

We formulate this notion in the following proposition.

Proposition 3.3.1. For any C ∈ Cs every P (X(C)) corresponds to a subset
of edges in G(C) and the number of edges connecting xi ∈ X(C) with any
vj ∈ D(C) is equal to the cardinality of the subset P (xi).

3.4 Consistency of the Symmetric Cardinality Con-
straint

We define the symmetric cardinality constraint as follows.

Definition 3.4.1. A symmetric cardinality constraint is a constraint C over a
set of variables X(C) which associates with each variable xi ∈ X(C) two
non-negative integers lxi

and cxi
, and with each value vj ∈ D(C) two other

non-negative integers lvj
and cvj

such that a restriction of an assignment P to
the variables in X(C) is an element in T (C) iff
∀i (lxi

≤ #(xi, P ) ≤ cxi
) and ∀j

(

lvj
≤ #(vj , C, P ) ≤ cvj

)

.

From the symmetric cardinality constraint we propose to build a particular
oriented graph, which we denote N(C). This extends the value network of the
global cardinality constraint as described in [3] to handle sets of nonnegative
cardinality assigned to the variables. Then, we will show an equivalence be-
tween the existence of a feasible flow in such graph and the consistency of the
symmetric cardinality constraint.

Let C be a symmetric cardinality constraint, the value network N(C) of C

is an oriented graph with a capacity and a lower bound on each arc. The value
network N(C) is obtained from the value graph G(C) by

• orienting each edge of G(C) from values to variables. Since each value
can occur in a subset assigned to a variable at least 0 and at most 1 time
for each arc (v, x) : l(v, x) = 0, c(v, x) = 1
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Figure 3.2: Value graph for assignment problem from Figure 3.1 and its value
network

• adding a source node s and connecting it which each value. For every
arc (s, vi) : l(s, vi) = lvi

, c(s, vi) = cvi

• adding a sink node t and an arc from each variable to t. For each such
arc (xi, t) : l(xi, t) = lxi

, c(xi, t) = cxi

1

• adding an arc (t, s) with l(t, s) = 0 and c(t, s) =∞

Proposition 3.4.1. Let C be a symmetric cardinality constraint and N(C) be
the value network of C. The following properties are equivalent:

• C is consistent;

• there exists a flow from s to t which satisfies lower bounds and capacities
of the arcs in N(C).

Proof. Suppose that C is consistent then T (C) 6= ∅. Consider P ∈ T (C). We
can build a function f in N(C) as follows:

1. ∀xi ∈ X(C), f(xci
, t) = #(xci

, P )

2. ∀xi ∈ X(C), f(v, xi) = 1 if v appears in the subset P (xi) , otherwise
f(v, xi) = 0

1Actually, the orientation of the graph has no importance. Here, we have chosen the same
orientation as in [3]
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3. ∀vj ∈ D(C), f(s, vj) = #(vj , C, P )

Since C is consistent then ∀xi ∈ X(C), 0 ≤ lxi
≤ #(xi, P ) ≤ cxi

and ∀vj ∈ D(C), 0 ≤ lvj
≤ #(vj , C, P ) ≤ cvj

, which satisfies the lower
bound and capacity constraint for the flow f(vi, xi). Furthermore from (1)-
(3) follows that vj must appear #(vj , C, P ) times in P (X(C)), which means
that

∑k
i=1 f(vj , xi) = f(s, vj) which satisfies the conservation law for all

vj ∈ D(C). From this and (2) follows that for each xi ∈ X(C) the number
of arcs with flow value 1 entering xi is equal to #(xi, P ). According to (1):
∀xi ∈ X(CS), f(xi, t) = #(xi, P ) which satisfies the conservation law for
all xi ∈ X .

On the other hand, suppose there exists a feasible flow f from s to t. Since
f(vj , xi) = 1 or f(vj , xi) = 0 and by the conservation law f(s, vj) =
∑k

i=1 f(vj , xi) then for each vj the number of edges with the flow of value
1 leaving vj is equal f(s, vj). Consequently, the number of xi ∈ X(C) con-
nected with each vj by an arc with a flow equal to 1 is equal to f(s, vj). Fur-
thermore, due to the conservation law, the number of arcs for which f(vj , xi) =
1 entering each xi is equal the value of f(xi, t). Thus the set of arcs such that
f(vj , xi) = 1 corresponds to a set of edges in the value graph. By the capac-
ity constraint ∀vi ∈ D(C) : lvi

≤ f(s, vi) ≤ cvi
and by the conservation

law f(s, vi) =
∑

x f(vi, x) ≤ ci therefore li ≤ #(vi, C, P ) ≤ ci. Simi-
larly, ∀xi ∈ X : lcxi

≤
∑k

i=1 f(vj , xi) ≤ cxi
and by the conservation law

f(xi, t) =
∑

f(vj , xi) ≤ cxi
, therefore lxi

≤ #(xi, P ) ≤ cxi
, thus C is

consistent.

This proposition gives a way of checking the consistency of a symmetric
cardinality constraint by computing a feasible flow in N(C). Different algo-
rithms for computing feasible flows are given in the literature on flow theory,
e.g. in [1].

In the next section we will show how to implement filtering of symmetric
cardinality constraint by considering certain properties common to all feasible
flows in the value graph.

3.5 Filtering Algorithm for Symmetric Cardinal-
ity Constraint

Let f be a feasible flow in a network N , R(f) be a residual graph for f . If
there is a simple path p from n to m in R(f) − {(n,m)}, then we can obtain
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a new feasible flow f ′ in N such that f ′(m,n) > f(m,n) (see [4]). We call
such a path p an augmenting path. Similarly, if there exists a simple path p

from m to n in R(f) − {(m,n)}, then we can obtain a new feasible flow f ′

such that f ′(m,n) < f(m,n)). We refer to such simple path p as a reducing
path.

Moreover, the maximum and minimum flow are defined as follows ([3]).

Definition 3.5.1. A flow f from m to n is maximum if and only if there is no
augmenting path from m to n for f .

A flow f from m to n is minimum if and only if there is no reducing path
from m to n for f .

The following Theorem 3.5.1 gives a way of determining if an arbitrary arc
in N is contained in any feasible flow in the network. The theorem is similar
to Theorem 4 from [3], but here the computation is performed on the residual
graph of f which includes both (t, s) and, in the case when f(t, s) > 0, also
(s, t).

Theorem 3.5.1. Let N be a network for which each arc is associated with
two non-negative integers, f be an arbitrary feasible flow in N , R(f) be the
residual graph for f and (m,n) be an arbitrary arc in N . For all feasible
flows f ′ in N , f ′(m,n) = f(m,n) if and only if neither (m,n) nor (n,m) are
contained in any simple cycle in R(f) involving at least three nodes.

Proof. If (m,n) is not contained in a simple cycle in R(f) involving at least
three vertices it means that there is no augmenting path from n to m for f . By
the definition 3.5.1, the flow f is the maximum flow from m to n.

If (n,m) is not contained in a simple cycle in R(f) which involves at least
three nodes then there is no reducing path from n to m in N , so by the definition
3.5.1 f is the minimum flow from m to n.

Similarly, if (t, s) is not contained in a simple cycle in R(f) with at least 3
nodes, then there is no augmenting path from s to t and by Definition 3.5.1 f

is a maximum flow in N . Moreover, if (s, t) is not contained in a simple cycle
in R(f) involving at least three nodes then there is no reducing path for f in
R(f) and by Definition 3.5.1 f is a minimum flow in N .

Let C ∈ Cs be a symmetric cardinality constraint and f be an arbitrary
feasible flow in N(C). By Proposition 3.4.1 a value v of a variable x is not
consistent with C if and only if there exists no feasible flow in N(C) which
contains (v, x). So, by the Theorem 3.5.1 if f(v, x) = 0 and (v, x) is not con-
tained in a simple cycle in R(f) involving at least three nodes then the value
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v of a variable x is not consistent with C. Furthermore since two nodes m

and n can be contained in the such a cycle only if they belong to the same
strongly connected component in R(f), we can determine if a value for a vari-
able is consistent with a symmetric cardinality constraint using an algorithm
that search for strongly connected components in a graph, e.g. the algorithm
described in [6].

This leads to the following corollary:

Corollary 3.5.1. The consistency of any value v of variable x with symmetric
cardinality constraint C can be computed by finding an arbitrary feasible flow
f from s to t in N(C) and by computing strongly connected components in
R(f).

3.6 Notes on Complexity

The complexity of the proposed filtering algorithm is dominated by the com-
putation of a feasible flow in the value network of the symmetric cardinality
constraint. Methods for finding feasible flows have in the worst case the same
complexity as that of finding a maximum flow, which is O(n2m) (see e.g.
[1, 5]), where n is the number of nodes (i.e. number of variables, |X|, plus
the number values, |D(C)|) and m is the number of arcs which, for a bipartite
graph of the type used in the value graph, is bounded by ( n

2 )2 + n.
The complexity of finding strongly connected components in the residual

graph using the method proposed in [6] is O(m + n). This gives worst case
complexity for filtering of the symmetric cardinality constraint of O((|X| +
|D(C)|)4), which is the same as for the global cardinality constraint introduced
in [3].

3.7 Conclusion

In this paper we have introduced the symmetric cardinality constraint derived
from the global cardinality constraint. Moreover, we have formalized set con-
straint satisfaction problem and defined symmetric cardinality constraint in the
context of this problem. We have also presented efficient methods for filtering
domains of symmetric cardinality constraint.
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Abstract

The symmetric cardinality constraint is described in terms of a set of variables
X = {x1, . . . , xk}, which take their values as subsets of V = {v1, . . . , vn}. It
constrains the cardinality of the set assigned to each variable to be in an interval
[lxi

, uxi
] and at the same time restricts the number of occurrences of each value

vj ∈ V in the union of the sets assigned to variables in X to be in an other
interval [lvj

, uvj
]. In this paper we extend the symmetric cardinality constraint

with a function which associate with each value of each variable a cost and
constrains the sum of all costs associated with assigned values. We also give an
algorithm for computing the consistency of a symmetric cardinality constraint
with costs and describe filtering methods for this constraint.
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4.1 Introduction
The symmetric cardinality constraint, introduced in [1], is specified in terms
of a set of variables X = {x1, . . . , xk}, which take their values as subsets
of V = {v1, . . . , vn}. The cardinality of the set assigned to each variable
is constrained by an interval [lxi

, uxi
], where lxi

and uxi
are non–negative

integers. In addition, it constraints the number of occurrences of each value
vj ∈ V in the union of the sets assigned to variables in X to be an interval
[lvj

, uvj
]. Both lvj

and uvj
are non–negative integers.

The symmetric cardinality constraint is an extension of the global cardi-
nality constraint [2] on sets. While global cardinality constraint allows us to
model instances of matching problems where one variable can be matched with
only one value, but the number of the occurrences of a value must be in a given
interval, the symmetric cardinality constraint enables to assign to a variable a
set of values with a cardinality described by an interval. The global cardinality
constraint can be modeled using symmetric cardinality constraint by restrain-
ing the cardinality of a set assigned to any variable to exactly 1.

Later the global cardinality constraint was extended with a cost function
([3, 4]), which makes possible to model some assignments problems. Never-
theless, assignment problems, where a (possibly empty) set of values needs to
be assigned to a variable in the problem, can not be handled easily.

Consider the following instance of a project management problem, which
consists of the task of assigning a number of workers, with possibly multiple
skills, to a set of activities, each requiring a number of workers (possibly none)
with specified skills. Due to former experience of the members of the project
we can approximate an amount of time necessary for respective worker to ac-
complish given activity. Moreover, a total amount of time which can be spent
on the project is given.

The goal is to produce an assignment, which satisfies the following con-
straints:

• every member of a project must be assigned to a minimum and a maxi-
mum number of activities in the project

• every activity must be performed by a minimum and a maximum number
of persons

• each person can be assigned to an activity he/she is qualified to perform
and, by symmetry, each activity must be performed by a qualified per-
sonnel.
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• the total time spend on accomplishing the project must not be exceeded.

Clearly, due to the fact that global cardinality constraint require exactly one
value to be assigned to a variable, it can not be used to solve such a problem
without introducing auxiliary constraints. On the other hand, we can easily
model this problem by extending the symmetric cardinality constraint with a
cost function.

In this paper we show how the symmetric cardinality constraint can be
extended with a cost function and investigate if the filtering algorithms for
the global cardinality constraint with costs can be applied to the symmetric
cardinality constraint with cost.

The rest of the paper is organized as follow. The next section, 4.2, gives
some preliminaries on graphs, flows and set constraint satisfaction problems.
Section 4.3 briefly describes the symmetric cardinality constraint. Then, in
Section 4.4 we give a formal definition of the symmetric cardinality constraint
with costs and describe a method for computing its consistency. In the follow-
ing section, 4.5, we describe an algorithm for computing a minimum cost flow
in a network representing the constraint. The following Section 4.6 describes
the filtering method for this constraint. Finally, Section 4.7 conclude this work.

4.2 Preliminaries

4.2.1 Graph
Definitions in this section follows the presentation in [5].

A directed graph G = (N,E) consists of a set of nodes (vertices) N and
arcs (edges) E, where every arc (i, j) ∈ E is an ordered pair of distinct nodes.
An oriented graph is a directed graph having no symmetric pair of arcs.

A graph G = (N,E) is a bipartite graph if we can partition its node set
into two subsets N1 and N2 so that for each arc (i, j) ∈ E either i ∈ N1 and
j ∈ N2 or i ∈ N2 and j ∈ N1.

A directed network is a directed graph whose nodes and/or arcs have asso-
ciated numerical values. In this paper we do not make any distinction between
terms “network” and “directed network”.

An arc (i, j) connects node i with node j, i.e. in directed graph it is an arc
oriented from node i to node j. A path in a graph G from v1 to vk is a sequence
of nodes [v1, . . . , vk] such that each (vi, vi+1) is an arc for i ∈ [1, . . . , k − 1].
The path is simple if all its nodes are distinct. A path is a cycle if k > 1 and
v1 = vk.
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4.2.2 Flows
Let G = {N,E} be a directed network in which each arc (i, j) ∈ E is associ-
ated with two non–negative integers lij and uij representing lower and upper
bound on a capacity of a flow through (i, j). A flow f(i, j) on arc (i, j) repre-
sents the amount of commodity that the arc accommodates. More formally:

Definition 4.2.1. A flow in a network G is a function that assigns to each arc
(i, j) of the network a value f(i, j) in such way that

1. lij ≤ f(i, j) ≤ uij , where lij and uij are lower and upper bounds on a
capacity of (i, j)

2. for each node i in the network G it is true that
∑

k f(k, i) =
∑

j f(i, j)

The second property is known as a conservation law and states that the
amount of flow of some commodity incoming to each node in G is equal the
amount of that commodity leaving each node.

In this paper we refer to the feasible flow problem which decides if there
exists a flow in G which satisfies the capacity constraint for all arcs in G.

Moreover, we refer here to the minimum cost flow problem in which each
arc (i, j) ∈ E has an associated cost denoted as cij . For any flow f in G

cost(f) =
∑

(i,j)∈E

cij × f(i, j) (4.1)

It is a well known fact that if the capacity bounds of a flow problem are
integral and there exists a feasible flow for the network, then the maximum and
minimum flows between any two nodes flows are also integral on all arcs in the
network. Hence, if there exists a feasible flow in a network there also exists an
integral feasible flow. Moreover, if there exists an integral feasible flow in G

and all costs are integral then by Equation (4.1) the cost of f is also integral. In
this paper when we refer to a feasible flow or a minimum cost flow we always
mean an integral feasible flow and an integral minimum cost flow.

4.2.3 Set Constraint Satisfaction Problem
A set constraint satisfaction problem [1] is defined as a triple (X,D,Cs) where

• X = {x1, . . . , xn} is a finite set of variables.

• D = {D1, . . . , Dn} is a set of finite sets of elements such that for each
i, xi takes as value a subset of Di.
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• Cs is a set of constraints on the values particular subsets of the variables
in X can simultaneously take. Each constraint C ∈ Cs constrains the
values of a subset X(C) = {xC1

, . . . , xCk
} of the variables in X and

may be thought of as a subset T (C) of the Cartesian product = CC1
×

. . . ,×CCk
where each CCi

= {C | C ⊆ DCi
}.

The set constraint satisfaction problem differs from the constraint satisfac-
tion problem as described in e.g. [6] by the fact that in general the value, which
can be assigned to any xi ∈ X , is in the powerset of Di.

Definition 4.2.2. A set constraint satisfaction problem is consistent if and only
if there exists an assignment P with the following properties:

1. For each variable xi ∈ X with domain Di, the value P (xi) assigned to
xi by P must be a subset of Di.

2. For each constraint C ∈ Cs and each variable in X(C) = {xC1
, . . . , xCk

}
the tuple 〈P (xC1

), . . . , P (xCk
)〉 ∈ T (C).

Let X(C) be the set of constraint variables and D(X(C)) their domains.
A value v ∈ D(xi) for xi is consistent with C iff ∃P (P (X(C)) ∈ T (C)) such
that v is an element in the value P (xi).

A value graph [7] of a constraint C is a bipartite graph GV (C) = (X(C)∪
D(X(C)), E), where (x, v) ∈ E if and only if v ∈ Dx.

4.3 Symmetric Cardinality Constraint
The symmetric cardinality constraint is specified in terms of a set of variables
X = {x1, . . . , xk}, which take their values as subsets of V = {v1, . . . , vn}.
The cardinality of the set assigned to each variable is constrained by the interval
[lxi

, uxi
], where lxi

and uxi
are non–negative integers. In addition, it constrains

the number of occurrences of each value vj ∈ V in union of the sets assigned to
variables in X to be in an interval [lvj

, uvj
]. Both lvj

and uvj
are non–negative

integers.
More formally, the symmetric cardinality constraint is defined as follows.

Definition 4.3.1. A symmetric cardinality constraint is a constraint C over a
set of variables X(C) which associates with each variable xi ∈ X(C) two
non-negative integers lxi

and uxi
, and with each value vj ∈ D(X(C)) two

other non-negative integers lvj
and uvj

such that a restriction of an assign-
ment P to the variables in X(C) is an element in T (C) iff
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∀i (lxi
≤ #(xi, P ) ≤ uxi

) and ∀j
(

lvj
≤ #(vj , C, P ) ≤ uvj

)

,
where #(xi, P ) is the cardinality of the set assigned to xi by P and #(vj , C, P )
is the number of variables to which vj is assigned by P .

Consistency of a symmetric cardinality constraint C is achieved by com-
puting a feasible flow in a particular value network N(C) obtained from a
value graph of C by

• orienting each edge of N(C) from values to variables. Since each value
can occur in a subset assigned to a variable at least 0 and at most 1 time
for each arc (v, x) : l(v, x) = 0, u(v, x) = 1

• adding a source node s and connecting it which each value. For every
arc (s, vi) : l(s, vi) = lvi

, u(s, vi) = uvi

• adding a sink node t and an arc from each variable to t. For each such
arc (xi, t) : l(xi, t) = lxi

, u(xi, t) = uxi

• adding an arc (t, s) with l(t, s) = 0 and u(t, s) =∞

The complexity of computing the consistency of a symmetric cardinality
constraint is the same as the complexity of computing a feasible flow in N(C),
which in worst case is the same as for computing a maximum flow in N(C).
Computing a maximum flow in a network depends on the used algorithm (see
[9] for comparison of different maximum flow algorithms), but it can be ap-
proximated to O(n3), where n is a number of nodes in a network. This gives a
complexity relative to the number of constraint variables, |X|, and the size of
the union of all their domains |D(X(C))|, of O((|X|+ |D(X(C))|)3) time.

Given a flow f in N(C) we can obtain the residual graph for f , i.e. the
network representing utilization and remaining capacity in the network with
respect to f , as follows.

Let N(C) be a value network of C, the residual graph of N(C) with respect
to a flow f , denoted by R(f), is a graph with the same set of nodes as N(C).
The arc set of R(f) is defined as follows.

• if f(i, j) < uij then (i, j) ∈ R(f), rij = uij − f(i, j)

• if f(i, j) > lij then (j, i) ∈ R(f), rji = f(i, j)− li,j

rij denotes the residual capacity of (i, j) The residual capacity of a path p,
denoted by r(p), is a minimum value rij for all (i, j) ∈ p.

A value vj of a variable xi is inconsistent with C if and only if there is no
feasible flow in N(C) which contains a flow on arc (vj , xi). Given a feasible
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flow f , a flow on (vj , xi) is the same in any feasible flow f ′ if and only if
neither (vj , xi) nor (xi, vj) is contained in a strongly connected component in
R(f) involving at least three nodes (see Theorem 1 in [1]). Thus, if a flow
on (vj , xi) is equal to 0, and (vj , xi) is not contained in a strongly connected
component in R(f) involving at least three nodes, then, the value vj of xi is
inconsistent with C.

There exist a number of algorithms for computing strongly connected com-
ponents in a graph (see [10] p. 560 for references). The algorithm given
in [11] computes strongly connected components in O(n + m) time, where
n is a number of nodes and m is a number of edges in a graph. In terms
of symmetric cardinality constraint n = |X(C)| + |X(D(C))| and m =
|X(C)| + 2 ∗ |X(D(C))| + 2, thus, the complexity of filtering the domains
of the variables in C is O(|X|+ |X(D(C))|) time.

4.4 Consistency of Symmetric Cardinality Constraint
with Costs

The symmetric cardinality constraint with costs extends the symmetric cardi-
nality constraint with a cost function.

Definition 4.4.1. A cost function on a variable set X is a function which
associates with each element vj ∈ D(x) a non–negative integer denoted by
cost(xi, vj).

The following gives a definition of symmetric cardinality constraint with
cost as a conjunction of a symmetric cardinality constraint and a sum con-
straint.

Definition 4.4.2. A symmetric cardinality constraint with cost is a constraint C
over a set of variables X(C) which associates with each variable xi ∈ X(C)
two non-negative integers lxi

and uxi
, with each value vj ∈ D(X(C)) two

other non-negative integers lvj
and uvj

a cost function on each xi ∈ X(C)
and an integer H such that a restriction of an assignment P to the variables in
X(C) is an element in T (C) iff

• ∀i (lxi
≤ #(xi, P ) ≤ uxi

)

• ∀j
(

lvj
≤ #(vj , C, P ) ≤ uvj

)

.

•
∑|X(C)|

i=1 cost(xi, P ) ≤ H
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where #(xi, P ) is the cardinality of the set assigned to xi by P , #(vj , C, P )
is the number of variables to which vj is assigned by P and cost(xi, P ) =
∑

vj∈D(xi)
cost(xi, vj) for each vj assigned to xi by P .

To achieve consistency of a symmetric cardinality constraint with costs we
extend the value network of symmetric cardinality constraint, N(C), with the
cost function by

• associating with each arc (vj , xi) ∈ N(C) a cost cvj ,xi
= cost(xi, vj)

• associating with every arc (s, vj) csvj
= 0

• associating with every arc (xi, t) cxit = 0

• associating with (t, s) cts = 0

Note that the value network of a symmetric cardinality constraint with costs
is independent of H .

The following proposition defines consistency of a symmetric cardinality
constraint with costs.

Proposition 4.4.1. Let C be a symmetric cardinality constraint with cost and
N(C) be a value network of C. The following properties are equivalent.

• C is consistent

• there exists a flow from s to t in N(C) which satisfies lower and upper
bounds of capacities on the arcs in N(C) and with cost less than or
equal to H .

Proof. Assume that C is consistent, thus T (C) 6= ∅. Consider P ∈ T (C). We
can build a function f in N(C) with the following properties:

1. ∀xi ∈ X(C), f(xi, t) = #(xi, P )

2. ∀xi ∈ X(C), f(vj , xi) = 1 if vj appears in the subset P (xi), otherwise
f(vj , xi) = 0

3. ∀vj ∈ D(X(C)), f(s, vj) = #(vj , C, P )

4. cost(f) =
∑|X(C)|

i=1 cost(xi, P ) ≤ H
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Properties (1) – (3) are the feasibility properties of a symmetric cardinality
constraint and are proved in [1]. By these properties, if C is consistent then
there exists a feasible flow f in N(C). Recall from Equation (4.1) that the cost
of a flow is a sum of products of costs associated with an arc and an amount
of flow on respective arc. Since the cost associated with arcs other then arcs
between xi ∈ X and vj ∈ D(X(C)) is equal to 0 and, by Property 2, flow f

from any vj to any xi is equal to 1 if vj is in a subset P (xi) then the cost of
such flow f is equal to the sum of cost of all xi ∈ X in P . Consequently, if C

is consistent then
∑|X(C)|

i=1 cost(xi, P ) ≤ H and cost(f) ≤ H , which proves
Property 4.

On the other hand, assume that there exists a feasible flow f from s to t

in N(C) with cost lower than or equal to H . Since f is feasible, then ∀x ∈
X(C)lxi

≤ #(xCi
, P ) ≤ uxi

, f(xi, t) = #(xi, P ) and ∀v ∈ D(X(C))lvj
≤

#(vj , C, P ) ≤ uvj
∧ f(s, vj) = #(vj , C, P ), and the set of arcs such that

f(i, j) = 1 corresponds to the set of edges of value graph of a symmetric
cardinality constraint with costs, which is proved in [1]. Since the arc cost for
any arc (s, i) and (i, t), which includes direct arcs between s and t, is equal
to 0 and the flow between any i and j can be at most 1, then cost(f) is equal
to the sum of the costs of the arcs between i and j where f(i, j) = 1. Since
the set of such arcs corresponds to the set of arcs in the value graph of C

thus cost(f) =
∑|X(C)|

i=1 cost(xi, P ). Consequently, if cost(f) ≤ H so is
∑|X(C)|

i=1 cost(xi, P ), which proves Proposition 4.4.1.

This proposition gives a way of computing the consistency of a symmetric
cardinality constraint with costs by computing a feasible flow f in N(C) and
checking if cost(f) ≤ H . Since H is independent of N(C) every time this
equality does not hold we would need to verify if there exists an other feasible
flow f ′ in N(C) such that cost(f ′) < cost(f) and cost(f ′) ≤ H .

On the other hand, if a feasible flow f in N(C) is a minimum cost flow we
can verify that C is consistent if cost(f) ≤ H , otherwise C is inconsistent.

4.5 Minimum Cost Flow
There exists several methods of obtaining minimum cost flow in a network. A
survey of such methods is given in [5]. Here we describe a simple variant of
successive shortest path algorithm from [5].

Given a value network for a symmetric cardinality constraint with costs
and a flow f , we can build the residual graph R(f) in the same way as for the
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symmetric cardinality constraint and extend it with arc costs by

• associating with each arc (i, j) with free capacity its residual cost rc(i, j) =
cost(i, j)

• associating with each arc (j, i) representing a flow which exceeds the
lower bound of (i, j) a residual cost rc(j, i) = −cost(i, j).

For any path p the residual cost of p, denoted rc(p) is a sum of residual
costs of all arcs (i, j) ∈ p.

Algorithm 13 Minimum Cost Flow
1: Start with the zero flow f .
2: Pick an arc (i, j) such that f(i, j) violates the lower bound for the flow

from i to j.
3: Find p a shortest path from j to i in R(f)− {(i, j)}.
4: Obtain a new flow f ′ from f by sending a flow along p and set f = f ′

5: Goto 2

The algorithm, listed here as Algorithm 13, computes a minimum cost flow
in N by repeatedly choosing an arc (i, j) with a flow, which violates the lower
bound constraint, and computes a shortest path p from j to i with respect the
costs of an arc. After a path p is found a new flow f ′ is obtained by sending a
flow along p. If, at some point, there is no path for the current flow then there is
no feasible flow in N . Otherwise, obtained flow is feasible and is a minimum
cost flow.

The complexity of the algorithm is dependent on the complexity of the
implemented shortest path algorithm. However, the most powerful shortest
path algorithms require that the costs on all arcs in a graph are non-negative.

The standard method for transforming all arcs costs to non-negative values
is to use costs relative to costs associated with incident nodes of an arc. These
costs are usually referred to as reduced costs and the costs associated with
incident nodes are referred to as node potentials. More formally,

Definition 4.5.1.

• a potential function is a function π which associates with each node
i ∈ N a number π(i), which is referred to as a node potential

• with respect to the node potentials, the reduced cost cπ
ij of an arc (i, j)

in R(f) is defined by cπ
ij = rc(ij)− π(i) + π(j)
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Given a minimum cost flow f the potential function πf (i) = d
f
j (i), where

d
f
j (i) represents the shortest path distance in R(f) from node j to every node

i ∈ N . Starting with the zero flow,f 0, all πf0

(i) = 0 and consequently all
cπ
ij = rc(i, j). After each iteration of the algorithm, which computes shortest

paths from given node j to every other node in the graph, the potential of each
node i is updated with π′(i) = π(i) − d(i). Then, the cost of each arc in the
residual graph can be converted to non-negative reduce cost as in Definition
4.5.1. For justification of this method see [5].

The fastest algorithm for computing shortest path in a graph with non-
negative arc lengths is Dijkstra algorithm implemented with Fibonacci heaps
(see [12, 5] for comparison). The algorithm requires O(m + n log n) time,
where m is the number of arcs and n is the number of nodes in a graph. The
number of iterations is bounded by the number of lower bounds on the flow
on each arc, which is

∑

l(i, j). Thus, the complexity of the shortest paths
algorithm can be bounded by O(

∑

l(i, j)× (m + n log n)) time.
In terms of the symmetric cardinality constraint n = |X(C)|+|D(X(C))|+

2 and m =
∑|X(C)|

i=1 D(xi) + |X(C)|+ |D(X(C))|+ 2. The number of itera-
tions is bounded by

∑|X(C)|
i=1 lxi

+
∑|D(X(C))|

j=1 lvj
, that is by the sum of lower

bounds imposed on the cardinality of all variables and lower bounds imposed
on the number of occurrences of all values in the union of the sets assigned to
the variables of the constraint.

4.6 Filtering of Symmetric Cardinality Constraint
with Costs

By Proposition 4.4.1, a symmetric cardinality constraint with costs C is con-
sistent if and only if there is a feasible flow in the value network of C, N(C),
which cost is less than or equal to H . Thus, if there is a feasible flow in N(C)
with an overall cost less than or equal to H which contains a flow along (vi, xi)
then the value vi of xi is consistent with C. Assuming that C is a consistent
symmetric cardinality constraint with costs and f is a minimum cost flow in
N(C) we can formulate the following proposition.

Proposition 4.6.1. A value vj of a variable xi is inconsistent with C if and
only if for all feasible flows f in N(C)

1. f(vj , xi) = 0 or
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2. dR(f)−{(xi,vj)}(xi, vj) > H − cost(f)− rc(vj , xi)

Proof. Property 1 states that the value vj of the variable xi is inconsistent with
C if there is no feasible flow in N(C) containing (vj , xi) which is proved in
Proposition 4.4.1

Furthermore, it is proved (see [8], p. 130) that if there exists a path p

from node j to node i in R(f) − {(j, i)} then the flow f ′ obtained from f by
sending k units of flow along p has a cost cost(f ′) = cost(f) + k(rc(i, j) +
dR(f)−{(j,i)}(j, i)). Since the maximum amount of flow which can be pushed
through any (i, j) is equal to 1 we obtain cost(f ′) = cost(f) + rc(i, j) +
dR(f)−{(j,i)}(j, i). By Proposition 4.4.1 C is consistent if cost of a feasible
flow is lower than or equal to H , thus if cost(f ′) > H than C is inconsistent.
By substituting cost(f ′) we obtain cost(f)+rc(i, j)+dR(f)−{(j,i)}(j, i) > H ,
which gives dR(f)−{(xi,vi)}(xi, vj) > H − cost(f) − rc(vj , xi). This proves
the second property.

By Proposition 4.6.1, given an arc (vj , xi) such that fvjxi
= 0, if there

exists a path from xi to vj in R(f) − {(xi, vj)} then there exists a feasible
flow in N(C) containing (vj , xi). Moreover, if dR(f)−{(xi,vi)}(xi, vi) ≤ H −
cost(f)− rc(vi, xi) then such a flow has a cost less than or equal to H . Thus,
a value vj of a variable xi is consistent with C.

Note that due to a special structure of the residual graph obtained from a
flow in N(C), if f(vjxi) = 0 then R(f) does not contain (xi, vj). Thus, no
modification of R(f) is required in order to perform this computation. The
special structure of the residual graph will also insure that a simple path from
xi to vj will contain at least tree nodes.

Given a minimum cost flow f in a value network of a symmetric cardinal-
ity constraint N(C), the consistency of each value vj ∈ D(xi) is verified in
O(|X(C)| × (m + n log n)) time, which is the same as for filtering the global
cardinality constraint with costs ([2, 4]).

4.7 Conclusion
In this paper we have introduced the symmetric cardinality constraint with cost.
Moreover, we have presented methods for computing its consistency and meth-
ods for filtering the domains of its variables. We show that the time complexity
for verifying the consistency of a symmetric cardinality constraint with costs
and for filtering domains of constraint variables is the same as for the global
cardinality constraint with costs.
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Other variants of the symmetric cardinality constraint with cost, like those
constraining the cost associated with the values assigned to individual variables
etc., can be easily derived from the constraint described here.
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Abstract

This paper introduce a novel method for maintaining consistency of cardinality
constraints in context of dynamic constraint satisfaction. The presented method
adopt sensitivity analysis for feasible and minimum cost flows underlying all
cardinality constraints. Moreover, we discuss the problem of maintaining con-
sistency of a value with a cardinality constraint by maintaining multiple short-
est paths in the residual graph of a constraint.
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5.1 Introduction

Within constraint programming we have seen the development a number of
methods that adopt and extend assignment models known from optimization
and operation research for constraint consistency and filtering. Global con-
straints which deal with the cardinality of the variables and values in a problem
are typical examples of such methods.

To this class of constraints belongs, e.g., the constraints of difference [20]
and the global cardinality constraint [21], as well as their weighted versions
[4, 11] resp. [22, 23]. These models have been extended to set constraint sat-
isfaction problems by the introduction of the symmetric cardinality constraint
[15] and its weighted version [16]. The newest constraint in this class is car-
dinality matrix constraint introduced in [24]. This constraint is more general
than those mentioned above, however, it does not attribute costs to the values
associated with domains of constraint variables.

Cardinality constraints can be used to model and effectively solve a vari-
ety of problems such as sports scheduling [10], rostering [18], Latin square
problems (ex. [24]) and Sudoku puzzle [25], to name a few.

Like most of the methods used in constraint programming, those mentioned
above deal mainly with problems which demand only a single solution, and
they assume completely known and persistent problem parameters. Unfortu-
nately, this is seldom the case in real life problems. Many assignments prob-
lems need to be re-computed due to changes to, e.g., the costs of assignments
or in the bounds of individual variables, and even after adding and removing
variables.

Constraint Programming problems in which parameters change over time
are usually solved by recomputation from scratch [6, 14]. Some other methods
focus on modifying the current solution [3, 28]. Dynamic global constraints
are subject of [2] and [13]. Paper [2] deals with constraint of difference which
is a subject of monotonic changes and relies on backtracking in context of
Constraint Logic Programming. Paper [13] deals with flow constraint and con-
straint of difference excluding the cost function.

Here we introduce a method for maintaining consistency of cardinality
constraints with costs in the context of dynamic constraint satisfaction. The
methods presented here are based on sensitivity analysis of the feasible and
minimum cost flows underlying every cardinality constraint.

This paper is organized as follows. In Section 5.2 we describe some basic
concepts in flow theory and constraint satisfaction. Section 5.3 gives a brief
description the symmetric cardinality constraint with costs, and presents meth-
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ods for checking the consistency of the constraint and for filtering the domains
of the constrained variables. Section 5.4 introduces basic notions of sensitivity
analysis, and the following sections, 5.5 – 5.7 describe how sensitivity anal-
ysis can be used to maintain consistency of a cardinality constraint as well
as for maintaining the optimality of an underlying minimum cost flow in the
value network of a cardinality constraint. Following Section 5.9 discusses the
issue of maintaining consistency of each value with the modified constraint.
The performance of the methods presented is then evaluated on a set of bench-
marks. Results of evaluation are presented in Section 5.10. Finally, Section
5.11, concludes the paper and discusses future work.

5.2 Preliminaries

5.2.1 Graphs
Definitions in this section follows the presentation in[1].

A directed graph G = (X,E) consists of a set of nodes (vertices) X and
arcs (edges) E, where every arc (u, v) ∈ E is an ordered pair of distinct nodes.

An arc (u, v) connects node u with node v, i.e. in directed graph it is an arc
oriented from node u to node v. A path in a graph G from v1 to vk is a sequence
of nodes [v1, . . . , vk] such that each (vi, vi+1) is an arc for i ∈ [1, . . . , k − 1].
The path is simple if all its nodes are distinct.

5.2.2 Network Flows
Definition 5.2.1. A network G = (X,E) is a directed graph, in which each
arc e ∈ E is associated with two non-negative integers le and ue representing
the lower and upper bounds, respectively, on the flow on e.

The upper bound on the flow on an arc is also referred to as the capacity
of the arc.

A flow fe on an arc e represents the amount of commodity that the arc
accommodates. More formally:

Definition 5.2.2. A flow f in a network (X,E) is a function that assigns to
each arc (i, j) ∈ E a value fij in such way that for each node p ∈ X ,

∑

(i,p)∈E

fip =
∑

(p,j)∈E

fpj
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This property is known as a conservation law and states that for each node
in G, the incoming amount of flow of some commodity equals the amount of
that commodity leaving that node.

Definition 5.2.3. A flow f in a network (X,E) is feasible if, for each e ∈ E,
it holds that le ≤ fe ≤ ue.

Associate furthermore with each arc (i, j) ∈ E a cost cij that denotes the
cost per unit of flow on the arc. For any flow f in G, we define

cost(f) =
∑

(i,j)∈E

cij ∗ fij (5.1)

A minimum cost flow problem is the problem of finding a feasible flow in
G with minimal cost.

In this paper we assume that all the parameters (cij , le and ue) of a flow
problem are integral, which guarantees the existence of an integral minimal
solution to the problem. (For the integrality property of minimum cost flow
problems see, e.g., [1, p. 318]).

The residual graph R(f) is a graph representing the utilization and remain-
ing capacity in the flow graph with respect to a flow f .

Definition 5.2.4. Given a flow f from s to t in the network G, the residual
graph for f , denoted R(f), has the same set of nodes as G. The arc set of
R(f) is defined as follows. For all arcs (i, j) in G,

• if fij < uij then (i, j) is an arc of R(f) with residual capacity rij =
uij − fij , and cost cij

• if fij > lij then (j, i) is an arc of R(f) with residual capacity rji =
fij − lij and cost −cij

Moreover, the potential function and the reduced costs are defined as fol-
lows.

Definition 5.2.5. A potential function is a function π which associates with
each node i ∈ G a number π(i), which is referred to as a node potential. With
respect to the node potentials, the reduced cost cπ

ij of an arc (i, j) in R(f) is
defined by cπ

ij = cij − π(i) + π(j).

For minimum cost flows node potentials are typically defined by π(i) =
−d, where d is a shortest path distance from a given source to i.
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5.2.3 Constraint Satisfaction
A constraint satisfaction problem (CSP) is a triple (X,D,C) where X is a
finite set of variables {x1, . . . , xn}, D = {D1, . . . , Dn} is a set of finite
domains, where Di is a set of values for the variable xi ∈ X , and C =
{C1, . . . , Cn} is a set of constraints between variables [27].

The symmetric cardinality constraint used in this paper is defined in context
of the set constraint satisfaction problem (sCSP), which differs from CSP by
the fact that each xi ∈ X is assigned a subset of elements in Di [15].

Let P be a (set) constraint satisfaction problem. A dynamic constraint
satisfaction problem DCSP = {P1, . . . ,Pn} [7] is a sequence of (s)CSPs
such that any Pi differs from the consecutive Pi+1 by a set of added and a set
of deleted constraints.

Note, that a dynamic constraint satisfaction problem is a sequence of static
problems. Any constraint can be added to or deleted from the problem after
the solution to the previous problem was found.

5.3 The Symmetric Cardinality Constraint with
Costs and Other Cardinality Constraints.

In this section we will briefly describe the symmetric cardinality constraint
with costs, which we will use later to illustrate the sensitivity analysis. A de-
tailed description of this constraint can be found in [16].

Definition 5.3.1. A symmetric cardinality constraint with cost is a constraint
C over a set of variables X(C) and a set of values obtained from the domains
of these variables:

D(X(C)) =
⋃

x∈X(C)

Dx

The constraint associates with each value vj ∈ D(X(C)) two non-negative
integers lvj

and uvj
, with each variable xi ∈ X(C) two other non-negative

integers lxi
and uxi

and with the occurrence of a value vj ∈ Dxi
in a set

assigned to a variable xi a cost cost(xi, vj). Furthermore it associates a fixed
integer limit H on the total cost of the constraint as defined below.

1. ∀i (lxi
≤ #(xi, P ) ≤ uxi

)

2. ∀j
(

lvj
≤ #(vj , C, P ) ≤ uvj

)

.
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3.
∑|X(C)|

i=1

∑

vj∈Dxi
cost(xi, vj) ≤ H

where #(xi, P ) is the cardinality of the set assigned to xi by P and #(vj , C, P )
the number of variables to which vj is assigned by P .

The symmetric cardinality constraint with costs extends the symmetric car-
dinality constraint of [15] with a cost associated with each individual assign-
ment. The constraint can also be seen as an extension of the global cardinality
constraint with costs [23] into the set constraint satisfaction setting.

For each global cardinality constraint with costs, there is an equivalent sym-
metric cardinality constraint with costs where the cardinality of each constraint
variable is restricted to be in the interval [1, 1]. Similarly, for a constraint of dif-
ference with costs there is a symmetric cardinality constraint with costs where
the bounds of each variable are restricted to [1, 1], the bounds of each value is
restricted to [0, 1], and H =∞.

The cardinality matrix constraint [24] implements multiple symmetric car-
dinality constraint. This constraint can easily be extended with a cost function
by using multiple symmetric cardinality constraint with costs.

The first step of verifying the consistency of a symmetric cardinality con-
straint with costs C is to build its value network N(C).

Definition 5.3.2. A value network of a symmetric cardinality constraint is a
network obtained by

1. Adding a node for each variable xi ∈ X(C), a node for each value in
vj ∈ D(X(C)), a source node s and a sink node t.

2. Adding an arc (s, vj) from s to each node vj and bounding the flow on
it to be between lvi

and uvi
at zero cost csvi

= 0.

3. Adding an arc from each node vi ∈ Dxi
to xi, and bounding the flow

on each such arc to be between 0 and 1 at a cost equal to that of the
occurrence of vi in xi.

4. Adding an arc (xi, t) from each node xi to t and bounding the flow on it
to be between lxi

and uxi
at zero cost cxit = 0.

5. Adding an arc from t to s and bounding the flow on this arc to be between
0 and∞ at a zero cost ct,s = 0.

The following theorem relates consistency of a symmetric cardinality con-
straint to a flow in its value network.
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Theorem 5.3.1. A symmetric cardinality constraint with costs C is consistent
if and only if there exists a feasible flow fC in the value network N(C) such
that cost(fC) ≤ H .

Proof. See [16] for proof.

In practice, computing consistency of a symmetric cardinality constraint
with costs C is done by computing a minimum cost flow in N(C). Several
algorithms can be used. For the state of the art in computing minimum cost
flow see [1].

In this paper we assume that minimum cost flows are computed using the
successive shortest path algorithm. Briefly, the successive shortest path algo-
rithm searches for the shortest path from node j in an arc (i, j), whose lower
bound on the flow is not satisfied, iteratively to every other node in the graph.
After each iteration, the algorithm augments the flow on (i, j) along the short-
est path from j to i and updates the residual graph relative to the newly com-
puted flow. Moreover, the potential of each node k, initially set to 0, is updated
by subtracting its distance from j. For a detailed description see [1], pp. 320-
324.

The best known algorithm for computing shortest path is Dijkstra’s algo-
rithm with Fibonacci heaps implementation. Using this algorithm, the worst
time complexity for verifying the consistency of C becomes

O((

|X|
∑

i=1

lxi
+

|D|
∑

j=1

lvj
)× (m + n log n))

where m is the number of edges and n the number of nodes in the value net-
work. Dijkstra’s algorithm requires that the arcs in the network have non-
negative costs, which can be ensured by transforming original costs into re-
duced costs (see [16] for details).

A minimum cost flow implies that the reduced cost of any arc in the graph
is non-negative ([1], p. 308-309, see also Theorem 5.4.2 in Section 5.4). Given
a minimum cost flow fC in the value network of N(C), we can compute the
consistency of each value vj in xi by computing the shortest path from xi to
vj in the residual graph of fC , and checking if there exists a feasible flow
containing (vj , xi) with cost lower than or equal to H .
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5.4 Sensitivity Analysis
The purpose of sensitivity analysis is to determine changes in the solution re-
sulting from the changes in the problem parameters. Here, we are interested in
a sensitivity analysis of the consistency of a symmetric cardinality constraint
with costs, as well as a sensitivity analysis of a minimum cost flow in the value
network of the constraint. The results apply also to global cardinality con-
straints with costs and constraints of difference with costs, since these are in-
stances of the symmetric cardinality constraint with costs.

Let C = {C1, . . . , Cz} be a dynamic constraint satisfaction problem con-
sisting of a sequence of symmetric cardinality constraint with costs. For each
Cq ∈ C we will denote its value network by N(Cq), the flow in its network by
fCq , and the residual graph of its flow by R(fCq ).

Recall from Section 5.3 that a symmetric cardinality constraint with costs
Cq is consistent iff there exists a feasible flow fCq in N(Cq) such that cost(fCq )
≤ H , where H is a non-negative integer. Moreover, a flow is feasible if it sat-
isfies the lower and upper bound constraints of each arc in the graph. Conse-
quently, a sensitivity analysis for consistency of a symmetric cardinality con-
straint with costs is an analysis of how changes to the parameters of a problem
influence the feasibility of the flow in the value network of the constraint.

Computing a feasible flow is performed by augmenting and reducing a flow
on arcs in a graph. Given a feasible flow we can compute a new one using the
following theorem [17].

Theorem 5.4.1. Let f be a feasible flow in a network N and R(f) be a residual
graph for f . If there is a simple path p from n to m in R(f) − {(n,m)} then
we can obtain a new feasible flow f ′ in N such that f

′

mn > fmn. Such a path
is referred to as an augmenting path.

Moreover, if there is a simple path p from m to n in R(f)− {(m,n)} then
we can obtain a new feasible flow f ′ in N such that f

′

mn < fmn. Such a path
is referred to as a reducing path.

If no augmenting path for fmn exists then fmn is a maximum flow through
(m,n). Similarly, if there is no reducing path for fmn then fmn is a minimum
flow through (m,n).

Performing sensitivity analysis of consistency of a cardinality constraint
requires information about the value network of the constraint and the feasible
flow found during the computation. To make this information accessible we
can store the residual graph resulting from computing a feasible flow in the
value network of the constraint. Let n denote a number of nodes in the graph
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and m number of edges. Storing information about the residual graph requires
at most O(n + m) space, where n = |X|+ |D|+ 2 and m in the worst case is
equal to

∑|X|
i=1 |Dxi

|+ 2|D|+ 2|X|+ 2.
In many situations it is interesting to maintain the minimum cost flow in

the value network of a cardinality constraint. This is the case when a cardi-
nality constraint is a subject to an objective function which minimizes the cost
of the occurrence of all values, or when we are interested in maintaining the
consistency of each value with the constraint. In the second case, maintaining
a minimum cost flow makes it possible to use more powerful algorithms for
computing shortest paths in the graph.

There are several methods for verifying the optimality of a flow in a graph
(see [1], p. 306–315). Here we will use the reduced cost optimality condition.

Theorem 5.4.2. (Reduced Cost Optimality Condition). A feasible flow f is
a minimum cost flow if and only if some set of node potentials π satisfy the
following reduced cost optimality conditions:

cπ
ij ≥ 0 for every arc (i, j) in R(f) (5.2)

The reduced cost cπ
ij of an arc (i, j) indicates that augmenting or reducing

a flow through (i, j) with 1 unit of commodity will change the total cost of
the flow in a graph with cπ

ij (see [1], p. 43–44).Consequently, if cπ
ij < 0 then

augmenting a flow through (i, j) might reduce the total cost of the flow in the
graph with cπ

ij . Thus, if there exists a path p from j to i in R(f)−{(j, i)} then,
by Theorem 5.4.1, we can obtain a new feasible flow f ′ by augmenting a flow
along p. Moreover, if dji < −cπ

ij then cost(f ′) < cost(f). If p is a shortest
path from j to i then dji + cπ

ij is a greatest possible reduction of cost(f).
If no reducing path p for (i, j) exists then, by Theorem 5.4.1, there is no

feasible flow in the graph containing (i, j) thus (i, j) is not contained in a
minimum cost flow. Similarly, if dji ≥ −cπ

ij then augmenting a flow through
(i, j) does not reduce the total cost of f . In these cases the reduced costs
optimality conditions are maintained by adjusting potential of nodes with cπ

ij .
See [1] p. 339 for justification and pp. 320-324 on relation between node
potentials and minimum cost flow.

To perform a sensitivity analysis based on Theorem 5.4.2 we need addi-
tional information about the previously computed node potentials for each node
of the graph. Storing this information requires an additional |X|+|D|+2 space.

In the following Sections 5.5 – 5.8 we show how the sensitivity analysis
can be used to maintain the consistency of a cardinality constraint with costs
and a minimum cost flow in the value network of the constraint.
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5.5 Changes to the Cost
By Definition 5.3.2 a change to the cost of an appearance of a value vi in xi

corresponds to a change of the cost associated with arc (vi, xi) in the value
network of a constraint.

Let Cq , Cq+1 be two consecutive cardinality constraints with costs and
let cost(Cq, P ) denote

∑|X(C)|
i=1

∑

vj∈Dxi
cost(xi, vj) assigned by P in Cq .

Assume that Cq is consistent and that Cq+1 differs from Cq only by a change
in the cost of the occurrence of value vi in xi. By Definition 5.3.1 if Cq is
consistent then there exists an assignment P which satisfies the cardinality and
occurrence restrictions, and such that cost(Cq, P ) ≤ H .

Proposition 5.5.1. The modified constraint Cq+1 is inconsistent if and only if
the cost of an occurrence of any value vj in xi such that f

Cq
vjxi = 1 increases

with k > H − cost(Cq, P ) and there is no path from vj to xi in R(fCq ) −
{(vj , xi)} of length dvjxi

≤ H − cost(Cq, P )− cost(xi, vj).

Proof. By Theorem 5.3.1 vj appears in a set assigned to xi by P if there exists,
corresponding to P , a feasible flow in the value network of Cq in which f

Cq
vjxi =

1. Thus, by Definition 5.3.1, if f
Cq
vjxi = 0 then cost(Cq+1, P ) = cost(Cq, P )

and the modified constraint is consistent.
Moreover, if f

Cq
vjxi = 1, and the cost of an appearance of vj in xi decreases

with any k ≤ cost(xi, vj), then cost(Cq+1, P ) ≤ (Cq, P ) ≤ H . Thus, the
modified constraint is consistent. Since, by Definition 5.3.1, cost(xi, vj) is
non-negative it can be decreased at most with k = cost(xi, vj).

Trivially, If f
Cq
vjxi = 1 and cost(xi, vj) increases with k ≤ H−cost(Cq, P )

then cost(Cq+1, P )is lower than or equal to H , thus the modified constraint is
consistent.

If cost(xi, vj) increases with k > H − cost(Cq, P ), then the sum of the
costs assigned by P is greater than H . However if there exists a simple path
from vi to xi of length dvjxi

in R(fCq ) − {(vj , xi)} then, by Theorem 5.4.1,
a new feasible flow in the value network of the constraint can be obtained by
reducing the flow through (vj , xi). Moreover if dvjxi

≤ H − cost(Cq, P ) −
cost(xi, vj) then the cost of the obtained flow is lower than H . Thus, by The-
orem 5.3.1, the modified constraint is consistent.

On the other hand, if no such path exists then the flow through (vj , xi) can
not be reduced, which implies that there is no assignment P , which satisfies
Property 3 of Definition 5.3.1. Similarly, if the length of the path dvjxi

>

H − cost(Cq, P ) − cost(xi, vj), then there is no flow in the value network
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of the modified constraint whose cost is lower than or equal to H . Thus by
Theorem 5.3.1, there exists no assignment which satisfies Property 3 of the
Definition 5.3.1, which indicates inconsistency of the modified constraint.

This theorem gives us a method for verifying the consistency of a cardi-
nality constraint with dynamically changed costs. However, in some situations
it is interesting to maintain the minimum cost flow in the value network of a
constraint. To maintain such a flow we use the sensitivity analysis as described
in Section 5.4.

First, note that changing the cost of the occurrence of a value with k units
changes the cost of the corresponding arc with the same number of units (Def-
inition 5.3.1). By Theorem 5.4.2, when decreasing the cost of the occurrence
of a value vj in xi we are concerned with recomputing the minimum cost flow
in the value network of a cardinality constraint only if the reduced cost of the
corresponding arc becomes lower than 0.

Proposition 5.5.2. Let fCq be a minimum cost flow in the value network of
N(Cq).

1. If f
Cq
vjxi = 1 then fCq is a minimum cost flow in the value network of the

modified constraint.

2. If f
Cq
vjxi = 0 then a minimum cost flow in the value network of the mod-

ified constraint is obtained by augmenting a flow through (vj , xi) along
the shortest path from xi to vj in R(fCq )−{(xi, vj)} if the length dxivj

of this path is less than k − dvjxi
.

Proof. If f
Cq
vjxi = 0 and there is no path from xi to vj in R(fCq )− {(xi, vj)}

then, by Theorem 5.4.1 there exists no feasible flow in the value network of
the constraint which contains (vj , xi). If such a path exists, then redirecting
the flow along this path will reduce the total cost of the flow if and only if
dxivj

+ dvjxi
− k < 0, that is: dxivj

< k − dvjxi
.

If f
Cq
vjxi = 1 then, by Definition 5.2.4 and 5.3.2, there exists an arc (xi, vj)

in R(fCq ) such that cxivj
= −cvjxi

. If cost(xi, vj) decreases then the cost
cxivj

increases and by Definition 5.2.5 also cπ
xivj

increases. Since cπ
xivj

is non-
negative for the original problem it is positive for the modified problem. Thus,
by Theorem 5.4.2, fCq is the minimum cost flow in the value network of the
modified constraint.

If no path from vj to xi exists optimality conditions are maintained by
increasing potential of vj with k. In a case when the cost the found path does
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not reduce the total cost of the flow the potential of nodes are updated with
computed distances.

Decreasing the cost of an arc (vj , xi) where f
Cq
vjxi = 0, in a way that forces

rerouting of the flow through (vj , xi), changes the total cost of the flow with
dxivj

+ cπ
vjxi
− k where cπ

vjxi
− k < 0. If decreasing the cost of (vj , xi) with

k units, when f
Cq
vjxi = 1, then the total cost of the flow will also decrease with

k.
The following proposition forms the basis for a method for recomputing a

minimum cost flow, in the value network of a constraint where the cost of the
occurrence of a value in a subset increases.

Proposition 5.5.3. Let fCq be a minimum cost flow in the value network of
N(Cq) and let the cost of the occurrence of a value vj in a subset xi increase
with k units.

1. If f
Cq
vjxi = 0 then fCq is the minimum cost flow for also the modified

constraint.

2. If f
Cq
vjxi = 1, and the shortest path from vj to xi in R(fCq )− {(vj , xi)}

has length dvjxi
< cvjxi

+ k, then a new minimum cost flow is obtained
by reducing the flow through (vj , xi) along this path. If no such path
exists, or if the length of the shortest path dvjxi

> cvjxi
+ k, then fCq is

a minimum cost flow for the modified problem.

Proof. If f
Cq
vjxi = 0 and fCq is a minimum cost flow then cπ

vjxi
≥ 0 and cπ

vjxi
+

k > 0 which satisfies the reduced costs optimality conditions of Theorem 5.4.2.
If f

Cq
vjxi = 1 and there is no path from vj to xi in R(fCq ) − {(vj , xi)}

then, by Theorem 5.4.1, the flow through (vj , xi) can not be reduced without
violating its feasibility. If such a path exists, but its length is greater then or
equal to cvjxi

+ k, then the cost of the flow obtained by redirecting the flow
along this path is greater than or equal to cost(fCq ) + k; thus, the obtained
flow is not a minimum cost flow. On the other hand, if a path which satisfies
this properties exists, then a new flow can be obtained by redirecting the flow
from (vj , xi) along this path. Moreover, if this path is a shortest path from vj

to xi, then the obtained flow is a minimum cost flow in the value network of
the modified constraint.

In the case when f
Cq
vjxi = 1 and fCq+1 = fCq , the cost of fCq+1 is equal

to cost(fCq ) + k. Such case requires decreasing the potential of nodes in the
graph. When the flow through (vj , xi) is reduced, cost(fCq+1) = cost(fCi)+
dvjxi

− cxivj
.
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Theorem 5.5.1. If the cost of an occurrence of value vj in xi is changed, then
the consistency of the cardinality constraint can be checked, and the minimum
cost flow in its value network maintained in O(m + log n) time, where m =
∑|X|

i=1 |Dxi
|+ |X|+ |D|+ 2 and n = |X|+ |D|+ 2.

Proof. By Proposition 5.5.1, verifying the consistency of a cardinality con-
straint modified by changing the cost of the occurrence of a value in a subset
assigned to a variable yields in the worst case one iteration of the shortest path
algorithm. Similarly, by Proposition 5.5.2 and 5.5.3, restoring the minimum
cost flow in the value network of the modified constraint is achieved by one
iteration of the same algorithm.

Dijkstra’s algorithm, implemented with Fibonacci heaps, has time com-
plexity O(m+n log n). In the residual graph of a flow in the value network of
a cardinality constraint m =

∑|X|
i=1 |Dxi

|+|X|+|D|+2 and n = |X|+|D|+2
which proves the theorem.

Note that recomputing the consistency of a cardinality constraint from scratch
using the successive shortest path algorithm, which is one of the best algo-
rithms for computing a minimum cost flow (see [1] for comparison) requires
time O((

∑|X|
i=1 lxi

+
∑|D|

j=1 lvj
)× (m + n log n)).

5.6 Changes to Cardinality Bounds
By Definition 5.3.2 a change to a lower or upper bound of the cardinality of a
variable xi corresponds to a change of the lower and upper bounds imposed on
the flow from xi to t. Similarly, a change of the cardinality bound for a value
vj corresponds to a change of the bounds imposed on the flow through (s, vj)
in the value network of a cardinality constraint.

First assume that the lower bound of the cardinality of xi decreases with
k units. Trivially, since Cq is consistent then the flow fCq is feasible. More-
over fCq also satisfies the lower bound on the flow through (xi, t) in the value
network of the modified constraint. Thus, by Theorem 5.3.1, the modified con-
straint is consistent.

Furthermore, if fCq is a minimum cost flow in N(Cq) and the residual
capacity rtxi

> 0, then fCq satisfies the reduced costs optimality conditions
for (xi, t) in R(fCq ). By Theorem 5.4.2 fCq is the minimum cost flow in the
value network of the modified constraint.

However, if rtxi
in R(fCq ) is equal to 0, decreasing the lower bound of xi

will introduce a new arc (t, xi) in the residual graph of fCq with capacity k and
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with the reduced cost cπ
txi

(Definition 5.2.4). Such a situation corresponds to
changing a “virtual” reduced cost of the introduced arc with ±cπ

txi
, and a new

minimum cost flow can be computed using the methods described in Section
5.5.

Similarly, if Cq is consistent and the upper bound of the cardinality of xi

increases, then the modified constraint is consistent. As in the case above, a
new minimum cost flow in the value graph of the modified constraint is com-
puted only if increasing this bound introduces a new arc (xi, t) into the residual
graph of fCq . Again, recomputing the minimum cost flow is done by methods
described in Section 5.5.

Consider now the case where the lower bound of xi increases with k units:

Proposition 5.6.1. The modified constraint is inconsistent if and only if there
is no sequence of k− rt,xi

successive paths from t to xi in R(fCq )−{(t, xi)}

such that
∑k−rt,xi

i=1 di
txi
≤ H − cost(fCq ).

Proof. If k ≤ rtxi
then the flow through (xi, t) is feasible also for the modified

problem.
If there exist k − rt,xi

such paths then, by Theorem 5.4.1 there exists a
feasible flow in the value network of the modified constraint. Moreover, if
∑k−rtxi

iter=1 diter
txi
≤ H−cost(fCq ) then the cost of obtained flow is lower than or

equal to H . Thus, by Theorem 5.3.1 the modified constraint is consistent.

Furthermore, modifying the lower bound of the cardinality of xi with k ≤
rtxi

does not influence the reduced cost of (t, xi). Thus, if fCq is a minimum
cost flow in N(Cq), then it is also the minimum cost flow in the value network
of the modified constraint. If k > rtxi

, then, if each one of the k − rtxi

successive paths is a shortest path, then at each iteration fCq will be augmented
with a cheapest flow. Consequently the obtained flow will be the minimum cost
flow in the value network of the modified constraint.

When a constraint is modified by decreasing the upper bound of the cardi-
nality of a variable, then the consistency of the new constraint can be checked
in the same way as when the lower bound is increased. The proof is similar to
the proof of Proposition 5.6.1. Even the minimum cost flow in the value net-
work of the modified constraint is maintained by computing k − rxit shortest
paths from xi to t in R(fCq )− {(xi, t)}.

The rules described above apply by symmetry to the changes in bounds
restraining the number of occurrence of each value. For each variable vj a
change to the bounds of its occurrence corresponds to the bounds imposed on
the flow through respective (s, vj) (see Definition 5.3.2).
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Theorem 5.6.1. The consistency of a cardinality constraint Cq , modified by
changing the bounds of the cardinality of a variable or the bounds of an occur-
rence of a value with ±k units, can be done in O(|k| × (m + n log n) time.
The same goes for maintaining the minimum cost flow in the value network of
the modified constraint.

Proof. As shown above, verifying and recomputing the consistency of a car-
dinality constraint, modified by changing the bounds of the cardinality of a
variable by ±k, requires at most k iterations of the shortest path algorithm.
The same number of iterations of the algorithm is required when modifying
the number of occurrences of a value.

Moreover, it is shown that if fCq is a minimum cost flow in N(Cq), then
by augmenting and reducing flows along each shortest path a new minimum
cost flow is obtained.

5.7 Adding and Removing Variables and Values
Removing a variable xi can be seen as reducing the bounds of its cardinality
to the interval [0, 0]. This corresponds to modifying the bounds imposed on
the flow through (xi, t) to be in the interval [0, 0], as well as modifying the
bounds of each (vj , xi) such that vj ∈ Dxi

is in the same interval. In this case,
verifying consistency of the modified constraint as well as computing a new
minimum cost flow is done in the same way as for decreasing the upper bound
of the cardinality of a variable (see Section 5.6).

Moreover, it can be proved that due to properties of the value network of
a cardinality constraint, reducing the flow through (xi, t) to 0 will reduce the
flow through each arc (vj , xi) to 0.

Adding a variable xi with the cardinality [lxi
, uxi

] and domain Dxi
can

be seen as modifying the cardinality bounds from [0, 0] to [lxi
, uxi

], which in
turns modifies the bounds imposed on the flow through (xi, t) and bounds of
the flow on each (vj , xi) such that vj ∈ Dxi

to [0, 1] and its cost to cost(xi, vj).
In this case verifying consistency of the modified constraint, as well as recom-
puting the minimum cost flow in the value network of the modified constraint,
is done in the same way as for increasing the lower bound of the cardinality of
a variable from 0 to lxi

units.
Note however, that if lxi

= 0 we need to verify that each of the arcs added
to the value graph satisfies the reduced costs optimality conditions. If the re-
duced cost of any arc violates those conditions then the new minimum cost
flow is computed by the methods described in Theorem 5.5.2.
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Removing and adding a value from/to a constraint corresponds to decreas-
ing and increasing, respectively, the bounds imposed on the occurrence of such
a value. Consequently, checking consistency of the modified constraint, as well
as maintaining a minimum cost flow in its value network, is done by methods
corresponding to the ones described in Section 5.6.

Theorem 5.7.1. If a cardinality constraint with costs Cq is modified by remov-
ing a variable or value, then recomputing consistency of Cq and maintaining
a minimum cost flow in N(Cq) requires O(#(z, P ) × (m + n log n)) time,
where #(z, P ) is a cardinality of the set to a removed variable assigned by P

in Cq or number of occurrence of a removed value in sets assigned by P in Cq .
Recomputing consistency of a cardinality constraint with costs Cq and a

minimum cost flow in N(Cq) modified by adding a variable or a value requires
O(uz × (m+n log n)) time, where uz is the upper bound of the cardinality of
the introduced variable or the upper bound of the number of occurrence of the
introduced value.

Proof. By the correspondence between the removal of a variable and restrain-
ing the upper bound on the flow through (xi, t), since the new upper bound
of the flow through (xi, t) equals 0, all the flow through (xi, t) has to be re-
duced. By Theorem 5.3.1 the amount of flow through (xi, t) corresponds to
the cardinality of the set assigned to xi by P in Cq .

By the same correspondences we can prove that removing a value vj re-
quires a number of iterations of the shortest path algorithm equal to the number
of occurrences of vj in the sets assigned to the variables of Cq by P .

Consider now the case of adding a variable. In the worst case augmenting
the flow on each (vj , xi) reduces the total cost of the flow in the value network
of the modified constraints. However, by Definition 5.3.2 the amount of flow
through (xi, t) is limited by the upper bound of the cardinality of xi.

Similarly, the amount of flow which can be augmented to (s, vj), where vj

is an added value, is limited by the upper bound of the number of occurrences
of vj .

As mentioned in Section 5.3 recomputing a symmetric cardinality con-
straint from scratch requires O((

∑|X|
i=1 lxi

+
∑|D|

j=1 lvj
)× (m+n log n)) time.

It is clear that as long as
∑|X|

i=1 lxi
+

∑|D|
j=1 lvj

) −#(x,P ) > 0, where x is a
variable removed from the problem, we will have better time complexity than
for computing the consistency of the constraint from scratch. The same applies
to the case of removing a value from a constraint.
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Moreover, if the amount of flow, required in the value network of a sym-
metric cardinality constraint with costs, is greater than the upper bound of the
introduced variable or value, the time required to recompute the consistency of
such a constraint, by the means presented in this section, will be shorter than the
time for recomputing the modified constraint from scratch. The same applies
to recomputing the minimum cost flow in the value network of the modified
constraint.

For global cardinality constraints with costs and constraints of difference
with costs, the methods presented here will always have better time complexity.

5.8 Changes to the Global Cost Limit
Changing the global cost limit H does not have an influence neither on the
minimum cost flow in the value network of the constraint nor on the shortest
path distances between any pair of nodes in the network.

The value of H can decrease with at most H − cost(fCq ) units without
violating consistency of Cq . If Cq is consistent and H increases with any
number of units then Cq+1 is consistent even for the modified problem.

5.9 Filtering
Given a consistent symmetric cardinality constraint Cq , the consistency of each
value vj of a variable xi with Cq is verified by establishing if there exists a
feasible flow in the value network of Cq with cost lower than or equal to H

such that the flow on (vj , xi) is equal to 1 (see Section 5.3). Typically, it
is done by computing a minimum cost flow in the value network of Cq and
shortest path distances from every xi every vj .

One possible way of dealing with consistency of values with constraint is
to maintain all–pairs shortest paths in the residual graph. The main advantage
of this approach would be that it diminishes the space requirements in compar-
ison with the former approach. However, maintaining all–pairs shortest paths
has several drawbacks. One is that current algorithms for dynamic all–pairs
shortest path problems are quite ineffective for general graphs.

The best dynamic all–pairs shortest path algorithm so far is one presented
in [9]. The algorithm is based on the property that given a shortest path from
i1 to in every subpath of this path is also the shortest path from i1 to a given
ii. While generating shortest path distances, the algorithm stores each subpath
of currently shortest path between two nodes. It is said, that such a subpath
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is potentially uniform, i.e. can be a subpath in the shortest path between two
nodes.

In a case, when any change to the graph occurs, all the paths, which con-
tains some modified edge, are removed from the solution to the problem and
the algorithm recomputes the shortest path by merging existing subpaths into a
potential shortest path.

Another drawback of this algorithm is the necessity of maintaining a huge
number of potential shortest paths and their subpaths, which slows down the
performance of the algorithm. To limit the number of scanned subpaths a time
stamp, indicating a time point in which given path was potentially uniform,
is attached to each subpath. While recomputing shortest paths, only potential
shortest paths up to a given time point are considered. However, it was exper-
imentally proved [8] that time stamping paths has no bigger influence on the
performance of this algorithm.

Another, more straightforward method, would be to maintain |X| graphs,
where each such graph would maintain single source shortest path from each
xi ∈ X to every other node in the graph. In the naive implementation this
would increase the space complexity of the problem with O(|X| ∗ (m + n)),
where m and n are the number of arcs, resp. the number of nodes in the residual
graph of a consistent constraint. The space complexity of this approach can
be significantly reduced by maintaining a distance matrix between every pair
of nodes, which gives a space complexity O(n2) or in terms of cardinality
constraint ((|X|+ |V |+ 2)2).

Recall from Section 5.3, that vj of xi is consistent with Cq if f
Cq
vjxi = 1 or

otherwise if cost(fCq )+dxivj
≤ H . The distance dxivj

is measured relatively
to the reduced costs of arcs [16]. Thus, let cρ

xivj
= cπ

xivj
denote the cost of

(xi, vj) in terms of the shortest path problem and let cσ,xi
xivj

be the reduced cost
of (xi, vj) with respect to the shortest path from xi to vj . For any (i, j) in the
graph, we define

c
σ,l
ij = c

ρ
ij + dli − dlj (5.3)

which can be derived from the optimality conditions for shortest path problems
[1]. This basically formulates the all–pairs shortest path problem as a problem
of pushing n commodities from each node to every other node in a graph and
should be studied more thoroughly in context of multicommodity flows.

By optimality conditions for the shortest path problem and Equation (5.3)
an arc (i, j) is contained in a shortest path from l to j if c

σ,l
ij = 0.

Now, we will consider, how changes to the c
ρ
ij , in our case induced by

changes to cij in the value network of a cardinality constraint, affect all–pairs
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shortest path distances. The method presented here is similar to the method
for maintaining single source shortest paths in undirected graphs described in
[12].

Assume, that the shortest paths from l are represented by a minimum span-
ning tree rooted at l. For each (i, j) ∈ T (l) holds that c

σ,l
ij = 0. Assume

that cij decreases with k units, thus for each l, c
σ,l
ij decreases with k units. If

(i, j) is contained in T (l) then (i, j) is already contained in some shortest paths
from l, and the distances to all nodes in the subtree of T (l) rooted at j should
be adjusted with −k. However, if (i, j) is not contained in T (l), we need to
check if the new reduced cost for any (i, j) becomes lower than 0 then (i, j) is
contained in T (l). This implies that subtrees roted at j for any T (l) which will
contain (i, j) must be updated with a distance c

σ,l
ij − k.

Similarly, when the cost of an arc increases with k and (i, j) 6∈ T (l) then
T (l) is a shortest path tree rooted at l for the modified problem. Otherwise, if
there exists an edge (p, j) such that c

σ,l
ij + k > c

σ,l
pj then (p, j) is contained in

T (l). Consequently, the change to the shortest path distances are propagated
along the subtree of T (l) rooted at j.

In case when an arc is inserted to a graph, if the reduced cost of the inserted
arc is lower than 0 then this arc is contained in T (l) and the changes to the
distances are propagated in the appropriate subtree of T (l). Otherwise, no
propagation of new distances is necessary.

If some arc (i, j) is deleted from a graph, then either a new path is found
along the cheapest, relatively to source l, edge incoming to j or, if (i, j) is not
contained in T (l) which does not violate optimality of T (l).

The correctness of the method described above can be proved from the def-
inition of reduced costs for the shortest path trees and shortest path optimality
conditions. For a closer description of sensitivity analysis for shortest paths
and minimum spanning trees see [26, 19].

In a case, when the shortest path tree is modified due to cost change, in-
sertion or deletion, it is important to limit the number of scanned edges while
searching for an arc which restores the optimality of a shortest path tree. The
authors of [12] solve this problem by maintaining a priority queue of incom-
ing and outgoing edges for each node in the graph. This increases the space
complexity of their algorithm with 2 ∗m, where m is the number of edges in
the graph. However, in the case of maintaining all–pairs shortest path it would
require 2 ∗ n ∗m space to store all such information.

To limit the space usage, we sort all incoming and outgoing edges of each
node according to their cost. This method is based on observation that many
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shortest path trees in graphs of cardinality constraints share common subtrees.
This is especially visible in the case of global cardinality constraint and con-
straint of difference, where there is only one outgoing edge from a node repre-
senting a variable.

5.10 Computational Evaluation

We evaluate the presented methods on the global cardinality constraint with
costs as defined in [22, 23]. The size of the generated benchmarks varies be-
tween instances from 50 variables and 300 values to instances with 1000 vari-
ables and 2500 values. The value networks for these instances vary in size from
352 to 3502 nodes and between 15 thousands edges and ca. 2.5 millions edges.
The residual graphs for computed instances varies in size during the computa-
tion since the number of edges between value nodes and the source node can be
doubled in the worst case. Even the number of edges between variable nodes
and sink can increase with the same amount.

In our implementation, a graph is a set of edges, and every node in a graph
is a list of pointers to the incoming and outgoing edges of a node. Although,
such representation of a graph does not require much memory, the space re-
quirements can be reduced even more by representing a graph as an array of
nodes and edges as pointers between elements of the array.

The consistency of a constraint is established by finding the minimum cost
flow using the successive shortest path algorithm, which in turn uses the Fi-
bonacci heap implementation of the Dijkstra algorithm. This implementation
is proved to have the best theoretical bounds and it performs well in practice
[5]. While computing minimum cost flow each iteration of the shortest path
algorithm is terminated when the shortest path to the specific target node is
found (see [1], pp. 323–324).

The results presented in figures 5.1 and 5.2 shows the times for comput-
ing the consistency of a dynamic global cardinality constraint with costs. The
problem size is expressed in terms of the number of variables times the number
of values in the problem. The evaluation was conducted on an IBM ThinkPad
X30 with a Mobile Intel Pentium III CPU–M 1200 MHz and 512 MB RAM.

Figure 5.1 shows the average times for restoring consistency of a gcc with
costs by updating the minimum cost flow in the value network of a constraint.
The tests has been conducted for one change at the time. The times given in
the figure are the worst computing times for a single change.

The times given in Figure 5.1 refer to situations where the optimality of
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Cost Bound Add/remove Add/remove
Problem size Restart Change Change a value variable/value

to/from a domain
50 × 300 0.02 s 0.001 s 0.002 s 0.002 s 0.003 s
50 × 500 0.03 s 0.002 s 0.003 s 0.01 s 0.003 s
50 × 1000 0.07 s 0.006 s 0.006 s 0.02 s 0.007 s

100 × 300 0.03 s 0.003 s 0.017 s 0.003 s 0.01 s
100 × 500 0.08 s 0.006 s 0.011 s 0.01 s 0.01 s
100 × 1000 0.15 s 0.012 s 0.051 s 0.01 s 0.02 s
300 × 400 0.3 s 0.015 s 0.17 s 0.013 s 0.02 s
300 × 500 0.36 s 0.018 s 0.19 s 0.03 s 0.09 s
300 × 1000 0.5 s 0.04 s 0.2 s 0.03 s 0.09 s
500 × 800 1.2 s 0.067 s 0.53 s 0.004 s 0.08 s
500 × 1000 1.6 s 0.075 s 0.83 s 0.005 s 0.2 s
500 × 1500 1.8 s 0.12 s 0.9 s 0.025 s 0.2 s

1000 × 1500 3.3 s 0.19 s 0.7 s 0.02 s 0.5 s
1000 × 2000 6.5 s 0.21 s 0.9 s 0.02 s 0.5 s
1000 × 2500 8.4 s 0.37 s 1.4 s 0.027 s 0.9 s

Figure 5.1: Restoring optimality of the flow in the value network of a global
cardinality constraint by iterations of Dijkstra’s algorithm.

the flow is violated and needs to be restored by multiple iterations of Dijkstra’s
algorithm. These times includes also the time for pushing the flow along the
found path. In a situation, when the optimality of the flow through an arc is not
violated, the computing time is limited to just checking if a flow through this
arc and its reduced costs satisfy lower bounds and the reduced costs optimality
conditions. In such cases the computing time is limited to few microseconds.

The times given in column 6 of Figure 5.1 are mostly the times for re-
computing the constraints after adding a value to domains of several variables.
Computing consistency of a gcc after adding a value is usually more costly
than after adding a variable. It is because adding a variable often requires only
one iteration of Dijkstra algorithm. Similarly, when a variable is removed only
one iteration of the shortest path algorithm is required. The times required for
adding and removing a variable are similar to those of adding and removing a
value from domain of a variable in column 5.

Figure 5.2 shows computational times for the filtering phase of a global
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Problem size From scratch Dynamic
50 × 300 0.16 s 0.017 s
50 × 500 0.17 s 0.017 s
50 × 1000 0.2 s 0.017 s

100 × 300 0.16 s 0.01 s
100 × 500 0.18 s 0.01 s
100 × 1000 0.19 s 0.01 s
300 × 400 0.19 s 0.016 s
300 × 500 0.19 s 0.016 s
300 × 1000 0.2 s 0.19 s
500 × 800 0.19 s 0.3 s
500 × 1000 0.19 s 0.9 s
500 × 1500 0.15 s 0.9 s

1000 × 1500 0.2 s 1 s
1000 × 2000 0.2 s 1.2 s
1000 × 2500 0.21 s 1.2 s

Figure 5.2: Computing times for the filtering phase.

cardinality constraint with costs for changes to a constraint which does require
redirecting the flow in the value network of a constraint. It is clear, that the
method presented in Section 5.9 performs better than executing the filtering
phase from scratch for small instances of gcc. However, for larger instances the
relative performance degrades. This degradation is caused by a need of multi-
ple traversing dynamically allocated linked lists representing arcs of a graph.
The performance of the algorithm can be easily improved by implementing a
graph with data structures requiring less dynamically allocated memory.

5.11 Conclusions and Future Work
In this paper, we have shown, how the consistency of a number of cardinality
constraints with costs can be maintained by means of sensitivity analysis for
minimum cost flows. We show, both by complexity analysis and computational
evaluation that the introduced method outperforms recomputing a cardinality
constraint from scratch.

Moreover, we show how the consistency of values with a cardinality con-
straint for small instances can be maintained using dynamic single source short-
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est paths algorithm, under the assumption that a modification of a constraint
does not influence the flow in the residual graph in a constraint.

We also discuss issues related to maintaining the all pairs shortest paths in
a directed graph. We believe, that algorithms dealing with this problem need
to be further improved in order to be effective in practice. Such improvements
needs to be done by improving the effectiveness of accessing data structures
maintained by such algorithms or by reformulating the model used for com-
puting this problem. In this context we believe that formulating dynamic all
pairs shortest paths as a problem of dynamic multicommodity flow might be
worth further study.
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