
Ning Xiong, Peter Funk. Building similarity metrics reflecting utility in case-based reasoning.
Journal of Intelligent & Fuzzy Systems, IOS Press, pp. 407-416.

Building Similarity Metrics Reflecting Utility in Case-Based Reasoning

Ning Xiong and Peter Funk
Department of Computer Science and Engineering

Mälardalen University
SE-72123 Västerås, Sweden

{ning.xiong, peter.funk@mdh.se}

Abstract

Fundamental to case-based reasoning is the idea that similar problems have
similar solutions. The meaning of the concept of “similarity” can vary in
different situations and remains an issue. Since we want to identify and retrieve
truly useful or relevant cases for problem solving, the metrics of similarity must
be defined suitably to reflect the utility of cases for solving a particular target
problem. A framework for utility-oriented similarity modeling is developed in
this paper. The main idea is to exploit a case library to obtain adequate samples
of utility from pairs of cases. The task of similarity modeling then becomes the
customization of the parameters in a similarity metric to minimize the
discrepancy between the assessed similarity values and the utility scores desired.
A new structure for similarity metrics is introduced which enables the encoding
of single feature impacts and more competent approximation of case utility.
Preliminary experimental results have shown that the proposed approach can be
used for learning with a surprisingly small case base without the risk of over-
fitting and that it yields stable system performance with variations in the
threshold selected for case retrieval.

 -

 2

1. Introduction

Case-based reasoning (CBR) [1] attempts to solve problems via analogy with
problems previously solved. The underlying assumption is that similar
problems have similar solutions and therefore it appears to be logical to
consider previous similar problems and their solutions in coping with a new
situation. As previous case data are utilized directly, CBR eases the knowledge
acquisition bottleneck and facilitates learning from experiences without
inducing an explicit knowledge model.

 However, to be able to perform various CBR tasks successfully, the notion of
similarity needs to be further clarified. The key concern here is to determine
which kinds of cases should be considered as “similar” given a new situation.
As our purpose is to retrieve truly useful or relevant cases for ultimately solving
a new target problem, primary measurements such as Hamming distance,
Euclidean distance and Canberra metric are insufficient as they merely consider
synthetical differences between the entities to be compared. Suitable semantics
of similarity must be defined in terms the specific application scenario in
consideration. The goal is to ensure that the cases assessed as similar are those
most useful in offering qualified or adaptable solutions to the new problem.
Utility oriented similarity modeling has become a significant trend for
advanced CBR research [2].

 So far the main stream of the works involving similarity models has been
focused on feature weighting [17]. Features are assigned with different weights
in accordance with their importance, and the global similarity metric is defined
as a weighted sum of the matching values in single attributes. Different
approaches of interest have been proposed for identifying such weights
automatically. Incremental learning attempts to modify feature weights
according to success/failure feedback of retrieval results [3, 14]. Probability-
based techniques, addressed in [7] and [5], utilized the conditional probabilities
of classes and the probability of ranking principle respectively in the
assignment of weight values to features. Case-ranking information was utilized
in [4, 6,15] for weight adaptation towards similarity degrees of retrieved cases
consistent with a desired order. Accuracy improvement represents another way
for determining the set of weights as discussed in [11] and [13]. Nevertheless,
the capability of these similarity learning methods for utility approximation is
inherently constrained by their similarity structure, which excludes the

 -

 3

possibility of yielding a similarity assessment other than a weighted average of
the local matching degrees in individual attributes.

 This objective of this paper is to promote more flexible and accurate
similarity assessments capturing the utility of cases with respect to a target
problem. A new similarity metric is suggested which encodes single feature
impacts on case utility into suitable local matching functions. The identification
of parameters for a metric as such is realized by resorting to the case library.
The basic idea is that the case library, with its known solutions for all the cases
it contains, is an indispensable resource for providing adequate samples about
the different appropriateness of solutions in various situations. With these
samples at hand, similarity modeling can then be transformed to the task of
parameter updating in the structured metric to imitate the desired utility values
in outcomes. Preliminary case studies in data classification have shown that our
proposed approach can be employed for learning with surprisingly small case
bases without the risk of over-fitting and that it yields stable system
performance against variations in the threshold selected for case retrieval.

 The paper is organized as follows. In the next section we highlight the role of
similarity assessments in a CBR cycle. A new structure for similarity metric is
introduced in section 3, followed by a framework for learning concrete
similarity metrics in section 4. Section 5 then presents experimental results for
evaluation. Relevant previous works are outlined in section 6 and finally
section 7 contains our conclusion and remarks.

2. Case-Based Reasoning and Similarity Assessments

 An overview of the procedure for case-based problem solving is depicted in
Fig. 1. Given a target problem P we look for its relevant counterparts in the
case library. The matching of target P and a known case C in the library is
guided by a similarity metric, which will be addressed in the following section.
A library case is retrieved as long as its similarity value relative to P is not
below a threshold, say α. As the result we get a set R of retrieved cases as:

 { }α≥∈=),(CPSimCLCR (1)

 -

 4

where CL is the case library and Sim(P, C) denotes the degree of similarity of C
respect to P. The elements in R along with their similarity scores are delivered
to the block “decision fusion” for finalizing the solution to P.

?

Decision
Fusion

Target P Solution

Similarity
degrees

Library of
known cases

Retrieved
cases

Fig. 1 An overview of case-based problem solving

 The solutions of the retrieved cases are aggregated in the decision fusion step,
the similarities of cases being regarded as estimates of the utility or
appropriateness of their solutions for solving the new problem. Thus cases with
higher similarity degrees will have more influence in determining the final
solutions. For instance, for numerical prediction problems, the outcome of the
target problem P is predicted to be a weighted average of the outcomes of the
retrieved cases as given by

),(

)(),(
)(

i
RC

ii
RC

CPSim

COutCPSim
POut

i

i

∑
∑

∈

∈

⋅
= (2)

 -

 5

where Out(P) are Out(Ci) are the output values for target P and case Ci
respectively. Should the problem be a classification one, we need to launch a
voting procedure to choose the most possible class from a set of candidates.
The values of similarity of the retrieved cases that have the same outcome can
be accumulated into a voting score (VS) for the associated class. In general, the
voting score for a candidate class B is calculated by

 ∑
∈ 

 =

=
RC

ii

i
otherwise

BCClassifCPSim
BVS

,0
)(),,(

)((3)

Finally we select the class with the largest voting score as the estimated class
for target P, i.e.,

 [])(max)(arg BVSPClass = (4)

 At this point we can clearly see that similarity matching plays a central role in
both case retrieval and decision fusion in a CBR task. Concretely speaking,
designing accurate matching functions for similarity assessments is paramount
in the following three aspects:

(i) A suitable similarity metric is required to retrieve the most relevant or
useful cases.

(ii) Precise similarity assessments on retrieved cases are crucial for the final
outcomes of decision fusion, as exemplified in (2) and (3).

(iii) Precise similarity assessments on all individual cases help to make
system performance more stable, less sensitive to the threshold α used
in (1) or the number of cases to be retrieved.

3. A New Similarity Metric for Utility Approximation

This section aims to introduce a new similarity metric with thoughts about
utility. The point of departure is assuming that the appropriateness of the
solution of a known case to solve a new problem is dependent upon the
difference between the problem and the case’s condition part. The less distinct
between both, the more usable is the case solution. This motivates us to
consider differences in values of attributes when addressing similarity
assessments for estimating utility.

 -

 6

 As basic notations for the rest of the paper, we suppose that there are n
relevant features in the underlying domain. A case Ci in the case base is indexed
by an (n+1) tuple: ()iiniii sxxxC ,,,, 21 L= where inii xxx ,,, 21 L denote the
attribute values in this case and si is the corresponding solution. Similarly we
use an n-tuple ()nyyy ,,, 21 L to represent a target problem P with yj referring to
the value of the jth attribute in the problem. All attribute values in both the
library cases and the target problem are normalized for further analysis.

 The task now is to compare the condition part of case Ci and the target
problem P to obtain a similarity assessment to estimate the utility for solution si.
The key role herein is taken by the difference of values ijjij xyd −= in single
attributes in the sense that every difference as such contributes more or less to a
degradation of the utility. In the following, we begin by discussing local
matching functions taking feature differences as arguments, and then in the
aggregation part we present a method that combines local matching values into
a global similarity degree.

3.1 Compatibility Measure on a Single Attribute

At the first step we perform matching on single attributes to see how the values
in the condition part of the case are compatible with their counterparts in the
target problem. The extent of compatibility is assessed by a compatibility
measure mij for each attribute. Intuitively the value of mij depends on the
feature difference dij: it has its maximum value of unity with identical feature
values. It is otherwise reduced by a magnitude approximately proportional to
the feature difference. This leads to modeling of the compatibility measure mij
by a triangular function as:

(]
()
()








∈−
−∉
−∈+

=

jijjij

jjij

jijjjij

ijij

wdifwd
wwdif

wdifwwd
dm

,2,2

,2,1

,1,1,1

,0,1
,,0
0,,)(

)((5)

where w1,j and w2,j are function parameters that must be specified appropriately
in advance.

 -

 7

 It is worth noting that there is no absolute/independent compatibility criterion
for an attribute and any measure for this must be defined relative to a specific
application domain. The parameters w1,j and w2,j in equation (5) reflect the
information about the importance of the associated attribute. This is illustrated
in Figs. 2a, 2b, and 2c where a variation of compatibility measures is created by
three distinct sets of parameters. Fig. 2a shows a compatibility measure
characterized by w1,j=w2,j=1, which means that the value of compatibility
becomes zero only when the largest feature difference occurs. Reducing the
values for both w1,j and w2,j to less than unity, we arrive at the matching
function in Fig. 2b which can be considered as related to some more critical
attribute. The measure in that figure decreases more quickly with feature
differences and thus reaches a zero degree earlier than the function in Fig. 2a. In
contrast, a situation with a relatively weak attribute can be modeled by setting
the parameters greater than unity as shown in Fig. 2c. The function drawn there
appears less sensitive to the feature difference and remains non-zero even when
the largest difference is encountered.

mij

-1.0 1.0 0 dij

Fig. 2a. The compatibility measure with its parameters set to unity

mij

dij-1.0 1.0 0 -w1,j w2,j

Fig. 2b. The compatibility measure with its parameters less than unity

 -

 8

mij

dij-1.0 1.0 0 -w1,j w2,j

Fig. 2c. The compatibility measure with its parameters greater than unity

 In addition, although the compatibility functions described above are
explicitly targeted to handle numerical attributes, they are also applicable to
symbolic attributes as long as the discrete symbolic values can be ordered on a
scale or numerical quantities assigned for each.

3.2 Global Similarity in View of Multi-criteria Satisfaction

After performing feature matching on every relevant feature between case Ci
and target problem P, we get a collection of compatibility values (mi1, mi2, …,
min). One can consider that the need of compatibility in an individual attribute is
one criterion to be satisfied for the case to be relevant for the target. In
particular, the score mij can be seen as a degree of satisfaction of the criterion
Gj:

 The jth attribute in the target is compatible with the jth attribute in the
library case

The next step is to aggregate the satisfaction degrees for those criteria in single
attributes to yield an overall similarity (utility) assessment.

 Since the similarity between a case and the target problem is contingent upon
the compatibility in each of the attributes, satisfying all the criteria Gj (j=1…n)
is required for the case to be identified as relevant or usable. This leads to
expressing the global similarity metric as equivalent to a logical statement as
follows:

 Sim(P, Ci) = G1 and G2 and G3 and … and Gn (6)

 -

 9

The logical and is used in the above to make connections between the
individual criteria. An established tool for implementing this connective with
multi-valued logic is the t-norm [9]. The algebraic product is employed herein
as a concrete form for the t-norm, and thus we obtain the similarity assessment
as an overall satisfaction of the criteria by

)()()(),(2211 ininiiiii dmdmdmCPSim ×××= L (7)

 Defining the similarity metric as a t-norm as specified by (7) can be justified
by considering CBR for system modeling and prediction in an industrial
environment. The outcome of an underlying process is determined therein by a
set of feature variables as inputs. It follows that the accuracy of using a known
output from a library case to predict the outcome in a new situation is fully
dependent on the differences in all inputs. A highly usable case must possess
compatible input values in each dimension in order to be selected, and a
difference in one dimension too large would suffice to invalidate a candidate
case in predicting process outcomes.

 An advantage of the similarity metrics structured above is that they are quite
easy to be customized to approximate an arbitrary degree of utility. The way to
do this is to adapt the parameters w1,j and w2,j, in accordance with local
compatibility measures, given a set of feature differences, and so that the global
similarity score appears to be very close to the desired utility value. As a simple
extreme, if the known utility is zero, we need to set only one parameter (w1,j or
w2,j depending on the sign of the feature difference) small enough to reach a
zero compatibility in the corresponding attribute. In the other extreme, should a
highest utility estimate be preferred, excellent compatibility in all the attributes
must be enforced and this can be achieved by assigning sufficiently large values
to the related parameters in each local compatibility measure.

 Finally we would like to add that, although the utility of a case demands all
of its features to be compatible, the semantics of compatibility varies from
attribute to attribute as indicated by the parameters w1,j and w2,j in (5).
Individual attributes are enabled to impose different influences on the assessed
similarity because the compatibility measures utilized in (7) are subject to
variable semantic meanings.

 -

 10

4. Utility Oriented Similarity Modeling

With the structure of similarity having been proposed in the preceding section,
we now turn to discussing the identification of the parameters to build a
concrete similarity metric. Our aim is to elicit similarity assessments that can be
regarded as reliable and precise estimates of utility. This means that we wish
for the relation),(),(ii sPUtilityCPSim = for any target problem P from the
domain and any case Ci from the case base, with si denoting the solution to Ci.
For reducing the discrepancy between assessed similarity and domain-decided
utility, we need the involvement of a learning mechanism to revise the
similarity metric. This is illustrated in Fig. 2 in which a modeling algorithm is
tasked to adapt the parameters of the similarity metric using approximation
errors as the feedback.

 Fig. 3. Revising the similarity metric to approximate utility

 However a difficulty arises when implementing the general perspective
depicted in Fig. 2 for similarity modeling. The reason is that the utility of case
Ci with respect to problem P is determined by the application domain but
generally is unknown a priori, due to the unavailability of adequate domain
knowledge. As a result no correct feedback can be acquired from examining

 Domain

Similarity
Metric

Modeling
Algorithm

P

Ci

P

Utility

 Similarity

Error

 -

 11

approximation errors, which disables the proper function of the employed
modeling algorithm.

 To circumvent the difficulty stated above we suggest narrowing down the
scope of P in Fig. 2 to the case base. The advantage of doing so is that, since
the solution of P is now known from the case library, it is a straight forward
matter to derive the utility of other cases by comparing their solutions with that
of P. In addition, presuming the case library as covering adequate typical cases,
it is also justified to focus on the case library rather than the whole application
domain in the similarity modeling. A feasible means of revising the similarity
metric based on known cases is illustrated in Fig. 3, where the problem P in
Fig. 2 has been replaced by a library case Cj and the utility between cases is
derived as will be detailed in the following subsection.

 Fig. 4. Revising the similarity metric using known cases

4.1 Deriving Utility Values between Cases

Utility values between library cases can be derived directly by only matching
their known solutions. Principally, owing to the reflexivity property of
similarity, all case solutions stored in the case library are assumed to be
optimal. Our point is that, given two cases Ci and Cj, the utility of Ci with
respect to Cj is determined by the relation between their optimal solutions, si

Similarity
Metric

Modeling
Algorithm

Ci

Cj

Utility

 Similarity

Error

Utility
Derivation

Cj

 -

 12

and sj respectively. The closer the similarity of solution si is to solution sj, the
more adaptable is solution si for problem solving in case Cj and the less
expensive it is to adapt. In view of this, we define the utility between cases as
equivalent to the similarity between their solutions. Thus we can write:

),(),(ijij ssSimCCUtility = (8)

 The criterion of similarity between solutions is usually domain dependent,
and thus we cannot further concretize equation (8) without considering problem
context and specifics. Nevertheless, for some common CBR applications such
as classification and numerical prediction, the following measurements, which
we consider to be reasonable functions under their respective circumstances,
can be recommended.

1. In classification problems with symbolic classes without orders, the

similarity between classes can be defined by a binary function as





≠
=

=
ij

ij
ij ssif

ssif
ssSim

0
1

),((9)

2. In classification problems with symbolic classes having ordinal values, the

similarity between classes should reflect the relative distance in the order:







≠−

=
=

ij
ij

ij

ij ssif
K

ssh
ssif

ssSim),(
1

1
),((10)

where K is the total number of classes and h(sj, si) denotes the number of
classes between sj and si in the order.

3. For problems of numerical predictions, the similarity between outputs could
be defined only measuring syntactical differences such that

{ } { }kkkk

ij
ij ss

ss
ssSim

minmax
1),(

−

−
−= (11)

 -

 13

 Once the derivation of utility between known cases is established, we can
collect many sampled utility values by working on pairs of cases from the case
library. Next we will show that these sampled values can be utilized as training
patterns to build a competent similarity metric.

4.2 Similarity Learning Based on Utility Samples

The utility derivation between known cases enables us to acquire many sample
utility values given pairs of cases in the case library. These derived samples can
then be treated as training examples for the similarity metric to mimic. The task
of the learning algorithm in Fig. 5 is to adapt the parameters in the similarity
metric to minimize the differences between the utility values specified by the
training patterns and the similarity degrees assessed by the similarity model.

 Fig. 5. Learning of similarity based on training patterns

 As many pairs of cases are included in the training data set, we must consider
the total sum of the modeling errors in order to improve the overall accuracy for
utility approximation. The total error function is given by

 ∑
∈

−=
SIji

ijijnn CCSimCCutilitywwwTE
),(

,2,11,21,1),(),(),,,,(w L (12)

Similarity
Metric

Learning
Algorithm

Utilities

∑ Err Pairs of
cases

Utility
values

Training Data

Similarities

 -

 14

and it supplies feedback information to the learning procedure in Fig. 5. By SI
in (12) we denote the set of pairs of case indexes corresponding to the pairs of
cases included in the training data set. Should we only focus on classification
and diagnosis, this general error function in (12) can be specialized into

 ∑
∈ 




≠
=−

=
SIji ijij

ijij
nn ssifCCSim

ssifCCSim
wwwTE

),(
,2,11,21,1),(

),(1
),,,,(w L (13)

and ∑
∈ 








≠−







−

=−

=
SIji ijij

ij

ijij

nn ssifCCSim
K

ssh
ssifCCSim

wwwTE
),(

,2,11,21,1),(
),(

1

),,(1
),,,,(w L (14)

which are suitable for treating non-ordered classes and classes with ordinal
values respectively.

 Any effective method may be chosen as the learning algorithm in the
framework. Certain mathematical optimization methods such as simplex or
conjugate gradient algorithms are feasible options in cases with a small number
of attributes. However, to scale up to high dimensional environments, we prefer
more powerful and robust learning algorithms for successful searching in more
complex spaces. We consider that the genetic algorithm outlined in the
following offers a strong alternative for this purpose.

4.3 Learning of Similarity Metrics by GA

 A Genetic Algorithm (GA) is an effective tool for searching and learning based
on the principle of natural selection and evolution [10]. Compared with other
traditional optimization techniques, GAs demonstrate their strength in the global
exploration of complex, ill-structured problem spaces and require no differential
information of the objective functions. Moreover, the property of convergence
ensured by GAs is of considerable benefit for the similarity learning in our
framework.

 The GA customized in this paper is mainly based upon a standard version
introduced in [10] but uses strings of real numbers rather than binary strings in

 -

 15

the population. Our algorithm for optimizing a set of parameters to minimize
the total error function in (12) consists of the following steps:

Step 0 (Initialization): Generate an initial population containing Npop strings of
real-valued numbers with Npop being the population size. In this stage each
element in a string is assigned a positive real number stochastically, using an
appropriate distribution function.

Step 1 (Initial evaluation): Apply every similarity metric created initially to all
the pairs of cases in the case base to get assessed similarity degrees which can
then be compared with the desired utility values to yield an overall error
quantity according to (12).

Step 2 (Selection): Select 0 5. N pop pairs of strings from the current population.
The selection probability prob(Sr) for a string Sr in a population ψ is specified
as:

∑ ∈
−

−
=

ψ max

max

)}()({
)()(

)(
rS r

r
r STETE

STETE
Sprob

ψ
ψ (15)

where { }ψψ ∈= rr SSTETE)(max)(max (16)

Step 3 (Crossover): For every pair of parents (strings of real numbers) to be
combined, choose one or more breakpoints at random. At the breakpoints the
parent elements are passed on to the offspring alternatively. This means that the
offspring get elements from one of the parents until a breakpoint is encountered,
at which they switch and take elements from the other parent. This operation is
subject to a crossover probability approximately 0.867.

Step 4 (Mutation): Each element of the child strings generated by the crossover
operation undergoes a disturbance with its magnitude determined by a Gaussian
distribution function. Every mutated element less than zero must be set back to
its lower limit to retain its physical significance.

Step 5 (Selective breeding): Employ the error function (12) to evaluate each
child string in the offspring set. After this, select the best Npop individuals from
the current population and the offspring set to form the next generation.

Step 6 (Termination test): If a pre-specified generation number has not then
been reached, go to Step 2, otherwise terminate the search procedure and return

 -

 16

the best individual in the population as the solution for the similarity metric to
be modeled.

5. Experimental Evaluations

We have applied our proposed approach to the problems of classification and
diagnosis. In this section some experimental results obtained from a real world
problem of wine data classification will be presented. The wine data set is
downloadable from the address: ftp.ics.uci.edu/pub/machine-learning-
databases. It consists of 178 samples of three classes, the condition part of
every sample being depicted by 13 continuous attributes. We are ignorant of the
order of the three wine classes

 In this wine problem, a feasible presumption is that the compatibility in each
attribute is symmetric and consequently the global similarity metric is also
symmetric. Owing to the symmetry property each compatibility measure for
single attributes can be characterized by only one parameter, i. e., w1,j = w2,j = wj
for all j. If we further take into account all pairs of library cases as training
patterns, the total error function in this scenario can be rewritten as:

 ∑∑
−

= += 



≠
=−

=
1

1 1
1321),(

),(1
),,,(w

M

i

M

ij ijij

ijij

ssifCCSim
ssifCCSim

wwTE L (17)

where M is the size of the case base. Experiments in similarity modeling were
performed for the proposed similarity metric in (7). Corresponding to the
calculation of the product in (7), the threshold α for case retrieval was
intuitively defined in our tests as 13βα = with [)1,0∈β .

5.1 Learning Ability on the Case Library

To examine the learning ability of our method, all the 178 instances in the data
set were treated as a case library. GA-based similarity modeling was then
performed using utility patterns derived from all case pairs. The quality of the
similarity metric learned was examined by applying it to classification of
individual cases as targets. In table 1 we show the “leave-one-out” accuracy of
the learnt metric on the case library against different values of β for the

 -

 17

threshold of case retrieval. It is seen clearly from the table that the classification
accuracy remains rather stable under threshold variations. This is because
precise similarity assessments are enforced globally on all library cases such
that the decision fusion procedure remains robust against such changes in the
threshold.

Table 1: Classification accuracy on the whole data set as the case base

The value of β Leave-one-out accuracy
0.0 93.2584%
0.1 93.2584%
0.2 93.2584%
0.3 93.2584%
0.4 93.2584%
0.5 93.2584%
0.6 93.2584%
0.7 93.2584%
0.8 93.2584%
0.9 92.6966%

5.2 Generalization Ability on Test Cases

To test the generalization ability of our similarity modeling method on
problems that are not included in the case library, experiments were also
made with division of the whole data set into two subsets: one as the case
base used for learning and the other as the test data set assumed to contain
target problems. The similarity metric learnt with the case base was applied
to classification of problems in the test set. Preliminary studies as shown in
the following reveal that our modeling algorithm conveys generalized
results, it can survive with even very small case libraries without the risk of
over-fitting.

 In Table 2 we illustrate the classification accuracy of the learnt similarity
metrics on the test data in a 10-fold cross-validation, for which the entire
wine data was partitioned into 10 parts and only one part was used as the
case base for learning and the remaining nine parts were taken as the test
data in each of the ten trials. Surprisingly, despite the extremely small sized
case bases with 17-18 instances in each, acceptable accuracy was achieved

 -

 18

by the learned similarity metrics when applied to the test data. This can be
attributed to the pair-wise comparison of cases in the case library, which
produces multiplication of training patterns for the utility oriented similarity
modeling.

Table 2: Classification accuracy on the test data in a 10-fold cross-validation

Number of
Trials

Best accuracy
β∈{0, 0.1, …0.9}

Worst Accuracy
β∈{0, 0.1, … 0.9}

1 88.1988% 87.5776 %
2 85.6250% 79.3750%
3 72.5000% 69.3750%
4 81.2500% 81.2500%
5 91.2500% 88.1250%
6 91.2500 % 89.3750%
7 91.2500 % 90.6250%
8 95.0000% 94.3750%
9 86.2500% 86.2500%

10 90.6832% 84.4720%
Average 87.3257% 85.0800%

5.3 Regarding Conventional Similarity Function

Traditionally, the global similarity function has taken the form of a weighted
sum of local matching values as defined by:

)1(),(
1

ij

n

j
ji dWCPSim −=∑

=

 (18)

where Wj are the feature weights with Wj∈[0, 1] and 1
1

=∑ =

n

j jW . Could this

similarity function be customized to approximate case utility as has been done
with the proposed similarity metric?

 Our answer is negative. This is because the weighted average in (18)
guarantees that its outcomes remain between the minimum and the maximum of
the local matching degrees and therefore we cannot reach anything beyond that
range no matter whatever weights are assigned to features. Especially in the

 -

 19

case of 5.0=ijd for all j, the global similarity degree is fixed at 0.5 regardless
of the weights assigned. In [18] we showed that updating the weights in (18) to
imitate the desired utility in the wine problem led to both large modeling errors
and low classification accuracy.

 Another way is to adapt the feature weights for direct improvement of
classification accuracy. Weights were identified by GA to maximize the leave-
one-out accuracy for the entire wine data and a high performance of 98.3146%
was achieved under the threshold α = 0.75. However, such accuracy quickly
decreased to 75.2809% and 43.2584% when α was set to 0.7 and 0.6
respectively. This indicates the high sensitivity of the system performance in
relation to the threshold deviations.

6. Related Works

As has been stated in the introduction, feature weighting appears to be a
common means of building similarity metrics in CBR. Since a set of weights
assigned is at least partially responsible for the problem solving performance,
methods have been proposed which attempt to update the values of weights
using system performance as feedback [8, 11, 12, 13]. However such methods,
with the exclusive goal of performance/accuracy optimization, do not account
for the utility of cases directly and as a consequence the improvement of
similarity assessments cannot be enforced down to the level for individual
target-case pairs. Besides, weighting through performance feedback could make
results dependent on the adaptation procedure employed, which challenges the
potential meaning of derived weights for features.

 Investigations into similarity modeling were also made using information
about the rank of retrieved cases as the learning signal [4, 6, 15, 16]. The works
in [4] and [6] aimed at adapting personal feature weights to reflect customer
preferences in E-commerce. Case order feedback was utilized in [15] and [16]
for attaining degrees of similarity of the retrieved cases consistent with a
desired order. Unfortunately, the learning of similarity based on case order may
be subject to two disadvantages. Firstly, the learning signal only contains
comparative statements and thus lacks the quantitative information required for
precise utility estimations. Secondly, the rank information on the retrieved

 -

 20

cases is partial by giving no attention to other cases not retrieved. It follows that
the learning algorithm cannot recognize and respond to such circumstance if a
highly relevant case is not retrieved due to an ill-defined similarity metric.
 Reinforcement learning [3, 14] presents an any-time algorithm to update
feature weights according to the feedback from a case retrieval. The idea is to
increase the weights on matching attributes while decrease the weights on non-
matching attributes if the retrieval is successful, otherwise the opposite is done
in the weight updating. This can be considered as an incremental procedure
given successive test problems and we conjecture that the convergence of
learning results would require a relatively long process.

7. Conclusion

 This paper aims to promote more flexible and accurate similarity assessments
capturing the utility of cases. The contribution of the paper is two-fold. Firstly,
a general framework for utility-oriented similarity modeling is developed. The
basic idea is to exploit the case library to derive adequate samples of utility
from pairs of cases. The task of similarity modeling then turns to the
customization of the parameters in a similarity metric in order to minimize the
discrepancy between assessed similarity values and utility scores desired.
Secondly a new similarity structure is proposed. We have explained that this
new structure of similarity approximates utility more competently than
traditional similarity functions. Moreover, the learned similarity model can be
regarded as a kind of knowledge container in the sense that it encodes
information about the importance of individual attributes in its local
compatibility measures.

 In summary, the novel features offered by the presented framework of
similarity modeling include:
• The enforcement of direct minimization of utility estimation errors on

individual cases, leading to more accurate similarity assessments. In many
application scenarios, precise similarity values play a crucial role for
distinguishing cases quantitatively and also for decision fusion from relevant
cases.

• The possibility of deriving sufficient utility samples for similarity modeling.
The way to achieve this is pair-wise comparison of cases from the case base

 -

 21

such that a multiplication of utility samples can be created from cases
available. This is a very attractive property, reducing the risk of over-fitting,
particularly when the case library is very small.

• The implementation of global similarity metrics without weights. The point is
that information about the importance of features is already contained in the
local compatibility measures and as a result feature weighting is no longer
necessary. Our analysis also reveals that the similarity model structured in
this paper performs utility approximation more competently than traditional
schemes using weights.

 References

[1] A. Aamodt and E. Plaza, Case-based reasoning: foundational issues,
methodological variations, and system approaches, Artificial Intelligence Com.
7 (1994), 39-59.

[2] R. Bergmann, M. Richter, S. Schmitt, A. Stahl and I. Vollrath, Utility-
oriented matching: A new research direction for case-based reasoning, in:
Proceedings of The German Conference on Professional Knowledge
Management, 2001, pp. 264-274.

[3] A. Bonzano, P. Cunningham and B. Smith, Using introspective learning to
improve retrieval in CBR: A case study in air traffic control, in: Proceedings of
The 2nd International Conference on Case-based Reasoning, Providence RI,
USA, 1997, pp. 291-302.

[4] K. Branting, Acquiring customer preferences from return-set selections, in:
Proceedings of The 4th International Conference on Case-Based Reasoning,
2001, pp. 59-73.

[5] N. Cercone, A. An and C. Chan, Rule-induction and case-based reasoning:
Hybrid architectures appear advantageous, IEEE Trans. Knowledge and Data
Engineering 11 (1999), 166-174.

[6] L. Coyle and P. Cunningham, Improving recommendation ranking by
learning personal feature weights, in: Proceedings of The 7th European
Conference on Case-Based Reasoning, 2004, pp. 560-572.

[7] R. H. Creecy, B. M. Masand, S. J. Smith and D. J. Waltz, Trading MIPS and
memory for knowledge engineering, Communications of the ACM 35 (1992),
48-64.

 -

 22

[8] W. Dubitzky and F. Azuaje, A genetic algorithm and growing cell structure
approach to learning case retrieval structures, in: Soft Computing in Case Based
Reasoning, S. K. Pal, T. S. Dillon and D. S. Yeung, eds, Springer, 2001, pp.
115-146.

[9] D. Dubois and H. Prade, A review of fuzzy sets aggregation connectives,
Information Sciences 36 (1985), 85-121.

[10] D. E. Goldberg, Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, New York, 1989.

[11] J. Jarmulak, S. Craw and R. Rowe, Genetic algorithms to optimize CBR
retrieval, in: Proceedings of The European Workshop on Case-Based
Reasoning (EWCBR 2000), 2000, pp. 136-147.

[12] R. Kohavi, P. Langley and Y. Yun, The utility of feature weighting in
nearest neighbor algorithms, in: Proceedings of The European Conference on
Machine Learning (ECML-97), 1997.

[13] D. Lowe, Similarity metric learning for a variable-kernel classifier, Neural
Computation 7 (1995), 72-85.

[14] F. Ricci and P. Avesani, Learning a local similarity metric for case-based
reasoning, in: Proceedings of The International Conference on Case-Based
Reasoning (ICCBR-95), Sesimbra, Portugal, Oct. 23-26, 1995.

[15] A. Stahl, Learning feature weights from case order feedback, in:
Proceedings of The 4th International Conference on Case-Based Reasoning,
2001, pp. 502-516.

[16] A. Stahl and T. Gabel, Using evolution programs to learn local similarity
measures, in: Proceedings of The 5th International Conference on Case-Based
Reasoning, 2003, pp. 537-551.

[17] D. Wettschereck and D. Aha, Weighting features, in: Proceedings of The
1st International Conference on Case-based Reasoning, 1995, pp. 347-358.

[18] N. Xiong and P. Funk, Learning similarity measures for improved utility
assessment, in: Proceedings of The Annual Swedish Artificial Intelligence and
Learning Systems Event, Västerås, 12-14 Apr. 2005, pp. 177-191.

