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Abstract 
 
Fundamental to case-based reasoning is the idea that similar problems have 
similar solutions. The meaning of the concept of “similarity” can vary in 
different situations and remains an issue. Since we want to identify and retrieve 
truly useful or relevant cases for problem solving, the metrics of similarity must 
be defined suitably to reflect the utility of cases for solving a particular target 
problem. A framework for utility-oriented similarity modeling is developed in 
this paper. The main idea is to exploit a case library to obtain adequate samples 
of utility from pairs of cases. The task of similarity modeling then becomes the 
customization of the parameters in a similarity metric to minimize the 
discrepancy between the assessed similarity values and the utility scores desired. 
A new structure for similarity metrics is introduced which enables the encoding 
of single feature impacts and more competent approximation of case utility.  
Preliminary experimental results have shown that the proposed approach can be 
used for learning with a surprisingly small case base without the risk of over-
fitting and that it yields stable system performance with variations in the 
threshold selected for case retrieval.  
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1. Introduction 

Case-based reasoning (CBR) [1] attempts to solve problems via analogy with 
problems previously solved. The underlying assumption is that similar 
problems have similar solutions and therefore it appears to be logical to 
consider previous similar problems and their solutions in coping with a new 
situation. As previous case data are utilized directly, CBR eases the knowledge 
acquisition bottleneck and facilitates learning from experiences without 
inducing an explicit knowledge model.  
 
   However, to be able to perform various CBR tasks successfully, the notion of 
similarity needs to be further clarified. The key concern here is to determine 
which kinds of cases should be considered as “similar” given a new situation. 
As our purpose is to retrieve truly useful or relevant cases for ultimately solving 
a new target problem, primary measurements such as Hamming distance, 
Euclidean distance and Canberra metric are insufficient as they merely consider 
synthetical differences between the entities to be compared. Suitable semantics 
of similarity must be defined in terms the specific application scenario in 
consideration. The goal is to ensure that the cases assessed as similar are those 
most useful in offering qualified or adaptable solutions to the new problem. 
Utility oriented similarity modeling has become a significant trend for 
advanced CBR research [2].  
 
     So far the main stream of the works involving similarity models has been 
focused on feature weighting [17]. Features are assigned with different weights 
in accordance with their importance, and the global similarity metric is defined 
as a weighted sum of the matching values in single attributes. Different 
approaches of interest have been proposed for identifying such weights 
automatically. Incremental learning attempts to modify feature weights 
according to success/failure feedback of retrieval results [3, 14]. Probability-
based techniques, addressed in [7] and [5], utilized the conditional probabilities 
of classes and the probability of ranking principle respectively in the 
assignment of weight values to features. Case-ranking information was utilized 
in [4, 6,15] for weight adaptation towards similarity degrees of retrieved cases 
consistent with a desired order. Accuracy improvement represents another way 
for determining the set of weights as discussed in [11] and [13]. Nevertheless, 
the capability of these similarity learning methods for utility approximation is 
inherently constrained by their similarity structure, which excludes the 
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possibility of yielding a similarity assessment other than a weighted average of 
the local matching degrees in individual attributes.  
 
   This objective of this paper is to promote more flexible and accurate 
similarity assessments capturing the utility of cases with respect to a target 
problem. A new similarity metric is suggested which encodes single feature 
impacts on case utility into suitable local matching functions. The identification 
of parameters for a metric as such is realized by resorting to the case library. 
The basic idea is that the case library, with its known solutions for all the cases 
it contains, is an indispensable resource for providing adequate samples about 
the different appropriateness of solutions in various situations. With these 
samples at hand, similarity modeling can then be transformed to the task of 
parameter updating in the structured metric to imitate the desired utility values 
in outcomes. Preliminary case studies in data classification have shown that our 
proposed approach can be employed for learning with surprisingly small case 
bases without the risk of over-fitting and that it yields stable system 
performance against variations in the threshold selected for case retrieval. 
 
   The paper is organized as follows. In the next section we highlight the role of 
similarity assessments in a CBR cycle. A new structure for similarity metric is 
introduced in section 3, followed by a framework for learning concrete 
similarity metrics in section 4. Section 5 then presents experimental results for 
evaluation. Relevant previous works are outlined in section 6 and finally 
section 7 contains our conclusion and remarks. 
 
 
2.  Case-Based Reasoning and Similarity Assessments  
 
   An overview of the procedure for case-based problem solving is depicted in 
Fig. 1. Given a target problem P we look for its relevant counterparts in the 
case library. The matching of target P and a known case C in the library is 
guided by a similarity metric, which will be addressed in the following section. 
A library case is retrieved as long as its similarity value relative to P is not 
below a threshold, say α. As the result we get a set R of retrieved cases as: 
 
                            { }α≥∈= ),( CPSimCLCR                                                   (1) 
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where CL is the case library and Sim(P, C) denotes the degree of similarity of C 
respect to P. The elements in R along with their similarity scores are delivered 
to the block “decision fusion” for finalizing the solution to P. 
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Fig. 1 An overview of case-based problem solving 

 
   The solutions of the retrieved cases are aggregated in the decision fusion step, 
the similarities of cases being regarded as estimates of the utility or 
appropriateness of their solutions for solving the new problem. Thus cases with 
higher similarity degrees will have more influence in determining the final 
solutions. For instance, for numerical prediction problems, the outcome of the 
target problem P is predicted to be a weighted average of the outcomes of the 
retrieved cases as given by 
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where Out(P) are Out(Ci) are the output values for target P and case Ci 
respectively. Should the problem be a classification one, we need to launch a 
voting procedure to choose the most possible class from a set of candidates. 
The values of similarity of the retrieved cases that have the same outcome can 
be accumulated into a voting score (VS) for the associated class. In general, the 
voting score for a candidate class B is calculated by 

 

                   ∑
∈ 

 =

=
RC

ii

i
otherwise

BCClassifCPSim
BVS

,0
)(),,(

)(                      (3) 

 
Finally we select the class with the largest voting score as the estimated class 
for target P, i.e., 

                       [ ])(max)( arg BVSPClass =                                                    (4) 

   At this point we can clearly see that similarity matching plays a central role in 
both case retrieval and decision fusion in a CBR task. Concretely speaking, 
designing accurate matching functions for similarity assessments is paramount 
in the following three aspects: 

(i) A suitable similarity metric is required to retrieve the most relevant or 
useful cases. 

(ii) Precise similarity assessments on retrieved cases are crucial for the final 
outcomes of decision fusion, as exemplified in (2) and (3). 

(iii) Precise similarity assessments on all individual cases help to make 
system performance more stable, less sensitive to the threshold α used 
in (1) or the number of cases to be retrieved.   

 
 
3.   A New Similarity Metric for Utility Approximation  
 
This section aims to introduce a new similarity metric with thoughts about 
utility. The point of departure is assuming that the appropriateness of the 
solution of a known case to solve a new problem is dependent upon the 
difference between the problem and the case’s condition part. The less distinct 
between both, the more usable is the case solution. This motivates us to 
consider differences in values of attributes when addressing similarity 
assessments for estimating utility. 
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   As basic notations for the rest of the paper, we suppose that there are n 
relevant features in the underlying domain. A case Ci in the case base is indexed 
by an (n+1) tuple: ( )iiniii sxxxC ,,,, 21 L=  where inii xxx ,,, 21 L  denote the 
attribute values in this case and si is the corresponding solution. Similarly we 
use an n-tuple ( )nyyy ,,, 21 L  to represent a target problem P with yj referring to 
the value of the jth attribute in the problem. All attribute values in both the 
library cases and the target problem are normalized for further analysis. 
 
   The task now is to compare the condition part of case Ci and the target 
problem P to obtain a similarity assessment to estimate the utility for solution si. 
The key role herein is taken by the difference of values ijjij xyd −=  in single 
attributes in the sense that every difference as such contributes more or less to a 
degradation of the utility. In the following, we begin by discussing local 
matching functions taking feature differences as arguments, and then in the 
aggregation part we present a method that combines local matching values into 
a global similarity degree. 
 
3.1   Compatibility Measure on a Single Attribute 
 
At the first step we perform matching on single attributes to see how the values 
in the condition part of the case are compatible with their counterparts in the 
target problem. The extent of compatibility is assessed by a compatibility 
measure mij for each attribute. Intuitively the value of mij   depends on the 
feature difference dij: it has its maximum value of unity with identical feature 
values. It is otherwise reduced by a magnitude approximately proportional to 
the feature difference. This leads to modeling of the compatibility measure mij 
by a triangular function as: 
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where w1,j and w2,j are function parameters that must  be specified appropriately 
in advance.  
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   It is worth noting that there is no absolute/independent compatibility criterion 
for an attribute and any measure for this must be defined relative to a specific 
application domain. The parameters w1,j and w2,j in equation (5) reflect the 
information about the importance of the associated attribute. This is illustrated 
in Figs. 2a, 2b, and 2c where a variation of compatibility measures is created by 
three distinct sets of parameters. Fig. 2a shows a compatibility measure 
characterized by w1,j=w2,j=1, which means that the value of compatibility 
becomes zero only when the largest feature difference occurs. Reducing the 
values for both w1,j and w2,j to less than unity, we arrive at the matching 
function in Fig. 2b which can be considered as related to some more critical 
attribute. The measure in that figure decreases more quickly with feature 
differences and thus reaches a zero degree earlier than the function in Fig. 2a. In 
contrast, a situation with a relatively weak attribute can be modeled by setting 
the parameters greater than unity as shown in Fig. 2c. The function drawn there 
appears less sensitive to the feature difference and remains non-zero even when 
the largest difference is encountered. 

                     

mij  
 

-1.0 1.0  0 dij 
 

Fig. 2a. The compatibility measure with its parameters set to unity 
 

                              

mij 

dij-1.0 1.0  0 -w1,j w2,j 
 

Fig. 2b. The compatibility measure with its parameters less than unity 
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mij 

dij-1.0 1.0  0 -w1,j w2,j 
 

Fig. 2c. The compatibility measure with its parameters greater than unity 
 

   In addition, although the compatibility functions described above are 
explicitly targeted to handle numerical attributes, they are also applicable to 
symbolic attributes as long as the discrete symbolic values can be ordered on a 
scale or numerical quantities assigned for each. 
 
3.2    Global Similarity in View of Multi-criteria Satisfaction  
   
After performing feature matching on every relevant feature between case Ci 
and target problem P, we get a collection of compatibility values (mi1, mi2, …, 
min). One can consider that the need of compatibility in an individual attribute is 
one criterion to be satisfied for the case to be relevant for the target. In 
particular, the score mij can be seen as a degree of satisfaction of the criterion 
Gj: 

      The jth attribute in the target is compatible with the jth attribute in the 
library case 

The next step is to aggregate the satisfaction degrees for those criteria in single 
attributes to yield an overall similarity (utility) assessment.  
 
   Since the similarity between a case and the target problem is contingent upon 
the compatibility in each of the attributes, satisfying all the criteria Gj (j=1…n) 
is required for the case to be identified as relevant or usable. This leads to 
expressing the global similarity metric as equivalent to a logical statement as 
follows: 

                  Sim(P, Ci) = G1 and G2 and G3 and … and Gn                             (6) 
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The logical and is used in the above to make connections between the 
individual criteria. An established tool for implementing this connective with 
multi-valued logic is the t-norm [9]. The algebraic product is employed herein 
as a concrete form for the t-norm, and thus we obtain the similarity assessment 
as an overall satisfaction of the criteria by  

                    )()()(),( 2211 ininiiiii dmdmdmCPSim ×××= L                             (7)     

   Defining the similarity metric as a t-norm as specified by (7) can be justified 
by considering CBR for system modeling and prediction in an industrial 
environment. The outcome of an underlying process is determined therein by a 
set of feature variables as inputs. It follows that the accuracy of using a known 
output from a library case to predict the outcome in a new situation is fully 
dependent on the differences in all inputs. A highly usable case must possess 
compatible input values in each dimension in order to be selected, and a 
difference in one dimension too large would suffice to invalidate a candidate 
case in predicting process outcomes.  
 
     An advantage of the similarity metrics structured above is that they are quite 
easy to be customized to approximate an arbitrary degree of utility. The way to 
do this is to adapt the parameters w1,j and w2,j, in accordance with local 
compatibility measures, given a set of feature differences, and so that the global 
similarity score appears to be very close to the desired utility value. As a simple 
extreme, if the known utility is zero, we need to set only one parameter (w1,j or 
w2,j depending on the sign of the feature difference) small enough to reach a 
zero compatibility in the corresponding attribute. In the other extreme, should a 
highest utility estimate be preferred, excellent compatibility in all the attributes 
must be enforced and this can be achieved by assigning sufficiently large values 
to the related parameters in each local compatibility measure. 
 
      Finally we would like to add that, although the utility of a case demands all 
of its features to be compatible, the semantics of compatibility varies from 
attribute to attribute as indicated by the parameters w1,j and w2,j in (5). 
Individual attributes are enabled to impose different influences on the assessed 
similarity because the compatibility measures utilized in (7) are subject to 
variable semantic meanings. 
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4. Utility Oriented Similarity Modeling 

With the structure of similarity having been proposed in the preceding section, 
we now turn to discussing the identification of the parameters to build a 
concrete similarity metric. Our aim is to elicit similarity assessments that can be 
regarded as reliable and precise estimates of utility. This means that we wish 
for the relation ),(),( ii sPUtilityCPSim = for any target problem P from the 
domain and any case Ci from the case base, with si denoting the solution to Ci. 
For reducing the discrepancy between assessed similarity and domain-decided 
utility, we need the involvement of a learning mechanism to revise the 
similarity metric. This is illustrated in Fig. 2 in which a modeling algorithm is 
tasked to adapt the parameters of the similarity metric using approximation 
errors as the feedback.  

                            

                      Fig. 3. Revising the similarity metric to approximate utility 

   However a difficulty arises when implementing the general perspective 
depicted in Fig. 2 for similarity modeling. The reason is that the utility of case 
Ci with respect to problem P is determined by the application domain but 
generally is unknown a priori, due to the unavailability of adequate domain 
knowledge. As a result no correct feedback can be acquired from examining 
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approximation errors, which disables the proper function of the employed 
modeling algorithm.  

   To circumvent the difficulty stated above we suggest narrowing down the 
scope of P in Fig. 2 to the case base. The advantage of doing so is that, since 
the solution of P is now known from the case library, it is a straight forward 
matter to derive the utility of other cases by comparing their solutions with that 
of P. In addition, presuming the case library as covering adequate typical cases, 
it is also justified to focus on the case library rather than the whole application 
domain in the similarity modeling. A feasible means of revising the similarity 
metric based on known cases is illustrated in Fig. 3, where the problem P in 
Fig. 2 has been replaced by a library case Cj and the utility between cases is 
derived as will be detailed in the following subsection.  

                           

                         Fig. 4. Revising the similarity metric using known cases 
 
4.1  Deriving Utility Values between Cases 
 
Utility values between library cases can be derived directly by only matching 
their known solutions. Principally, owing to the reflexivity property of 
similarity, all case solutions stored in the case library are assumed to be 
optimal. Our point is that, given two cases Ci and Cj, the utility of Ci with 
respect to Cj is determined by the relation between their optimal solutions, si 
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and sj respectively. The closer the similarity of solution si  is to solution sj, the 
more adaptable is solution si for problem solving in case Cj  and the less 
expensive it is to adapt. In view of this, we define the utility between cases as 
equivalent to the similarity between their solutions. Thus we can write: 

                                    ),(),( ijij ssSimCCUtility =                                             (8) 
 
   The criterion of similarity between solutions is usually domain dependent, 
and thus we cannot further concretize equation (8) without considering problem 
context and specifics. Nevertheless, for some common CBR applications such 
as classification and numerical prediction, the following measurements, which 
we consider to be reasonable functions under their respective circumstances, 
can be recommended. 
 
1. In classification problems with symbolic classes without orders, the 

similarity between classes can be defined by a binary function as 
 

                             




≠
=

=
ij

ij
ij ssif

ssif
ssSim

0
1

),(                                                  (9) 

 
2. In classification problems with symbolic classes having ordinal values, the 

similarity between classes should reflect the relative distance in the order:     
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where K is the total number of classes and h(sj, si) denotes the number of 
classes between sj and si in the order. 

3. For problems of numerical predictions, the similarity between outputs could 
be defined only measuring syntactical differences such that 
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   Once the derivation of utility between known cases is established, we can 
collect many sampled utility values by working on pairs of cases from the case 
library. Next we will show that these sampled values can be utilized as training 
patterns to build a competent similarity metric.  
 
4.2 Similarity Learning Based on Utility Samples 
 
The utility derivation between known cases enables us to acquire many sample 
utility values given pairs of cases in the case library. These derived samples can 
then be treated as training examples for the similarity metric to mimic. The task 
of the learning algorithm in Fig. 5 is to adapt the parameters in the similarity 
metric to minimize the differences between the utility values specified by the 
training patterns and the similarity degrees assessed by the similarity model.  

                                      

                              Fig. 5. Learning of similarity based on training patterns 

   As many pairs of cases are included in the training data set, we must consider 
the total sum of the modeling errors in order to improve the overall accuracy for 
utility approximation. The total error function is given by 
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and it supplies feedback information to the learning procedure in Fig. 5. By SI 
in (12) we denote the set of pairs of case indexes corresponding to the pairs of 
cases included in the training data set. Should we only focus on classification 
and diagnosis, this general error function in (12) can be specialized into  
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which are suitable for treating non-ordered classes and classes with ordinal 
values respectively. 
 
   Any effective method may be chosen as the learning algorithm in the 
framework. Certain mathematical optimization methods such as simplex or 
conjugate gradient algorithms are feasible options in cases with a small number 
of attributes. However, to scale up to high dimensional environments, we prefer 
more powerful and robust learning algorithms for successful searching in more 
complex spaces. We consider that the genetic algorithm outlined in the 
following offers a strong alternative for this purpose.   
 
4.3 Learning of Similarity Metrics by GA 
 
 A Genetic Algorithm (GA) is an effective tool for searching and learning based 
on the principle of natural selection and evolution [10]. Compared with other 
traditional optimization techniques, GAs demonstrate their strength in the global 
exploration of complex, ill-structured problem spaces and require no differential 
information of the objective functions. Moreover, the property of convergence 
ensured by GAs  is of considerable benefit for the similarity learning in our 
framework. 
 
   The GA customized in this paper is mainly based upon a standard version 
introduced in [10] but uses strings of real numbers rather than binary strings in 
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the population. Our algorithm for optimizing a set of parameters to minimize 
the total error function in (12) consists of the following steps: 

Step 0 (Initialization): Generate an initial population containing Npop strings of 
real-valued numbers with Npop being the population size. In this stage each 
element in a string is assigned a positive real number stochastically, using an 
appropriate distribution function. 

Step 1 (Initial evaluation): Apply every similarity metric created initially to all 
the pairs of cases in the case base to get assessed similarity degrees which can 
then be compared with the desired utility values to yield an overall error 
quantity according to (12). 

Step 2 (Selection): Select 0 5. N pop  pairs of strings from the current population. 
The selection probability prob(Sr) for a string Sr in a population ψ is specified 
as: 
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ψ max
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ψ                                 (15)    

 
where                         { }ψψ ∈= rr SSTETE )(max)(max                                  (16)                             
 
Step 3 (Crossover): For every pair of parents (strings of real numbers) to be 
combined, choose one or more breakpoints at random. At the breakpoints the 
parent elements are passed on to the offspring alternatively. This means that the 
offspring get elements from one of the parents until a breakpoint is encountered, 
at which they switch and take elements from the other parent. This operation is 
subject to a crossover probability approximately 0.867. 

Step 4 (Mutation): Each element of the child strings generated by the crossover 
operation undergoes a disturbance with its magnitude determined by a Gaussian 
distribution function. Every mutated element less than zero must be set back to 
its lower limit to retain its physical significance. 

Step 5 (Selective breeding): Employ the error function (12) to evaluate each 
child string in the offspring set. After this, select the best Npop individuals from 
the current population and the offspring set to form the next generation.  

Step 6 (Termination test): If a pre-specified generation number has not then 
been reached, go to Step 2, otherwise terminate the search procedure and return 
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the best individual in the population as the solution for the similarity metric to 
be modeled. 

 
5. Experimental Evaluations 
 

We have applied our proposed approach to the problems of classification and 
diagnosis. In this section some experimental results obtained from a real world 
problem of wine data classification will be presented. The wine data set is 
downloadable from the address: ftp.ics.uci.edu/pub/machine-learning-
databases. It consists of 178 samples of three classes, the condition part of 
every sample being depicted by 13 continuous attributes. We are ignorant of the 
order of the three wine classes  
 
  In this wine problem, a feasible presumption is that the compatibility in each 
attribute is symmetric and consequently the global similarity metric is also 
symmetric. Owing to the symmetry property each compatibility measure for 
single attributes can be characterized by only one parameter, i. e., w1,j = w2,j = wj  
for all j. If we further take into account all pairs of library cases as training 
patterns, the total error function in this scenario can be rewritten as: 
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where M is the size of the case base. Experiments in similarity modeling were 
performed for the proposed similarity metric in (7). Corresponding to the 
calculation of the product in (7), the threshold α for case retrieval was 
intuitively defined in our tests as 13βα =  with [ )1,0∈β . 
 
5.1 Learning Ability on the Case Library 
 
To examine the learning ability of our method, all the 178 instances in the data 
set were treated as a case library. GA-based similarity modeling was then 
performed using utility patterns derived from all case pairs. The quality of the 
similarity metric learned was examined by applying it to classification of 
individual cases as targets. In table 1 we show the “leave-one-out” accuracy of 
the learnt metric on the case library against different values of β for the 
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threshold of case retrieval. It is seen clearly from the table that the classification 
accuracy remains rather stable under threshold variations. This is because 
precise similarity assessments are enforced globally on all library cases such 
that the decision fusion procedure remains robust against such changes in the 
threshold.  

 
Table 1:  Classification accuracy on the whole data set as the case base 

The value of β Leave-one-out accuracy 
0.0 93.2584% 
0.1 93.2584% 
0.2 93.2584% 
0.3 93.2584% 
0.4 93.2584% 
0.5 93.2584% 
0.6 93.2584% 
0.7 93.2584% 
0.8 93.2584% 
0.9 92.6966% 

 
5.2 Generalization Ability on Test Cases 
 
To test the generalization ability of our similarity modeling method on 
problems that are not included in the case library, experiments were also 
made with division of the whole data set into two subsets: one as the case 
base used for learning and the other as the test data set assumed to contain 
target problems. The similarity metric learnt with the case base was applied 
to classification of problems in the test set. Preliminary studies as shown in 
the following reveal that our modeling algorithm conveys generalized 
results, it can survive with even very small case libraries without the risk of 
over-fitting.  
 
   In Table 2 we illustrate the classification accuracy of the learnt similarity 
metrics on the test data in a 10-fold cross-validation, for which the entire 
wine data was partitioned into 10 parts and only one part was used as the 
case base for learning and the remaining nine parts were taken as the test 
data in each of the ten trials. Surprisingly, despite the extremely small sized 
case bases with 17-18 instances in each, acceptable accuracy was achieved 



 - 

 18

by the learned similarity metrics when applied to the test data. This can be 
attributed to the pair-wise comparison of cases in the case library, which 
produces multiplication of training patterns for the utility oriented similarity 
modeling. 

Table 2: Classification accuracy on the test data in a 10-fold cross-validation 

Number of 
Trials 

Best accuracy 
β∈{0, 0.1, …0.9} 

Worst Accuracy 
β∈{0, 0.1, … 0.9} 

1         88.1988% 87.5776 % 
2 85.6250% 79.3750% 
3 72.5000% 69.3750% 
4 81.2500% 81.2500% 
5 91.2500% 88.1250% 
6 91.2500 % 89.3750% 
7 91.2500 % 90.6250% 
8 95.0000%        94.3750% 
9 86.2500% 86.2500% 

10 90.6832% 84.4720% 
Average 87.3257% 85.0800% 

 
5.3 Regarding Conventional Similarity Function 
 
Traditionally, the global similarity function has taken the form of a weighted 
sum of local matching values as defined by: 
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where Wj are the feature weights with Wj∈[0, 1] and 1
1

=∑ =

n

j jW . Could this 

similarity function be customized to approximate case utility as has been done 
with the proposed similarity metric? 
 
   Our answer is negative. This is because the weighted average in (18) 
guarantees that its outcomes remain between the minimum and the maximum of 
the local matching degrees and therefore we cannot reach anything beyond that 
range no matter whatever weights are assigned to features. Especially in the 
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case of 5.0=ijd  for all j, the global similarity degree is fixed at 0.5 regardless 
of the weights assigned. In [18] we showed that updating the weights in (18) to 
imitate the desired utility in the wine problem led to both large modeling errors 
and low classification accuracy.  
 
   Another way is to adapt the feature weights for direct improvement of 
classification accuracy. Weights were identified by GA to maximize the leave-
one-out accuracy for the entire wine data and a high performance of 98.3146% 
was achieved under the threshold α = 0.75.  However, such accuracy quickly 
decreased to 75.2809% and 43.2584% when α was set to 0.7 and 0.6 
respectively. This indicates the high sensitivity of the system performance in 
relation to the threshold deviations. 
 
6. Related Works  
 
As has been stated in the introduction, feature weighting appears to be a 
common means of building similarity metrics in CBR. Since a set of weights 
assigned is at least partially responsible for the problem solving performance, 
methods have been proposed which attempt to update the values of weights 
using system performance as feedback [8, 11, 12, 13]. However such methods, 
with the exclusive goal of performance/accuracy optimization, do not account 
for the utility of cases directly and as a consequence the improvement of 
similarity assessments cannot be enforced down to the level for individual 
target-case pairs. Besides, weighting through performance feedback could make 
results dependent on the adaptation procedure employed, which challenges the 
potential meaning of derived weights for features.   
 
   Investigations into similarity modeling were also made using information 
about the rank of retrieved cases as the learning signal [4, 6, 15, 16]. The works 
in [4] and [6] aimed at adapting personal feature weights to reflect customer 
preferences in E-commerce. Case order feedback was utilized in [15] and [16] 
for attaining degrees of similarity of the retrieved cases consistent with a 
desired order. Unfortunately, the learning of similarity based on case order may 
be subject to two disadvantages. Firstly, the learning signal only contains 
comparative statements and thus lacks the quantitative information required for 
precise utility estimations. Secondly, the rank information on the retrieved 
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cases is partial by giving no attention to other cases not retrieved. It follows that 
the learning algorithm cannot recognize and respond to such circumstance if a 
highly relevant case is not retrieved due to an ill-defined similarity metric. 
   Reinforcement learning [3, 14] presents an any-time algorithm to update 
feature weights according to the feedback from a case retrieval. The idea is to 
increase the weights on matching attributes while decrease the weights on non-
matching attributes if the retrieval is successful, otherwise the opposite is done 
in the weight updating. This can be considered as an incremental procedure 
given successive test problems and we conjecture that the convergence of 
learning results would require a relatively long process. 
    

 
7. Conclusion  
 
 This paper aims to promote more flexible and accurate similarity assessments 
capturing the utility of cases.  The contribution of the paper is two-fold. Firstly, 
a general framework for utility-oriented similarity modeling is developed. The 
basic idea is to exploit the case library to derive adequate samples of utility 
from pairs of cases. The task of similarity modeling then turns to the 
customization of the parameters in a similarity metric in order to minimize the 
discrepancy between assessed similarity values and utility scores desired. 
Secondly a new similarity structure is proposed. We have explained that this 
new structure of similarity approximates utility more competently than 
traditional similarity functions. Moreover, the learned similarity model can be 
regarded as a kind of knowledge container in the sense that it encodes 
information about the importance of individual attributes in its local 
compatibility measures.  
 
   In summary, the novel features offered by the presented framework of 
similarity modeling include: 
• The enforcement of direct minimization of utility estimation errors on 

individual cases, leading to more accurate similarity assessments. In many 
application scenarios, precise similarity values play a crucial role for 
distinguishing cases quantitatively and also for decision fusion from relevant 
cases. 

• The possibility of deriving sufficient utility samples for similarity modeling. 
The way to achieve this is pair-wise comparison of cases from the case base 
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such that a multiplication of utility samples can be created from cases 
available. This is a very attractive property, reducing the risk of over-fitting, 
particularly when the case library is very small. 

• The implementation of global similarity metrics without weights. The point is 
that information about the importance of features is already contained in the 
local compatibility measures and as a result feature weighting is no longer 
necessary. Our analysis also reveals that the similarity model structured in 
this paper performs utility approximation more competently than traditional 
schemes using weights. 
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