

Report of the International Symposium on

Component-Based Software Engineering

 Ivica Crnkovic1, Ralf Reussner2, Heinz Schmidt3,

Kevin Simons4, Judith Stafford5, Kurt Wallnau6
1Mälardalen University, Department of Computer Engineering, Sweden, ivica.crnkovic@mdh.se

2Universität Oldenburg, Germany, reussner@informatik.uni-oldenburg.de
3Monash University, Australia, Heinz.Schmidt@csse.monash.edu.au

4Tufts University, Department of Computer Science, USA, kevin.simons@tufts.edu
5Tufts University, Department of Computer Science, USA, jas@cs.tufts.edu

6Software Engineering Institute, Carnegie Mellon University, USA, kcw@sei.cmu.edu

Abstract
The International Symposium on Component-Based
Software Engineering (CBSE7) was held at 28th
International Conference on Software Engineering in
Edinburgh, Scotland, May 24-25, 2004. The Symposium
brought together researchers and practitioners from
several communities: component technology, composition
languages, compositional analysis, software architecture,
software certification and scientific computing. The
primary goal of the symposium was to continue clarifying
the concepts, identifying the main challenges and findings
of predictable assembly of software components. This
report gives a comprehensive summary of the position
papers, of the symposium, its findings, and its results.

1 Introduction
The International Symposium on Component-Based

Software Engineering was held at the International
Conference of Software Engineering 2004 (ICSE 2004) is
a direct continuation of the previous CBSE workshops
[5].

The first in the ICSE CBSE series of workshops to
focus on predictable assembly, CBSE4, was held in
Toronto, Canada May 2001. CBSE4 focused on reasoning
about properties of assemblies based on properties of
components and their interactions [1]. Researchers from
three communities: component technology, software
architecture, and software certification, joined the
workshop, resulting in lively discussion and increased
understanding of how the domains can be mutually
informing. The need for a model problem, to be utilized
for further research of different aspects of predictable
assembly, was identified.

The specification of model problems was discussed at
a follow-up workshop held at the Carnegie Mellon

University’s Software Engineering Institute in Pittsburgh,
U.S.A. The aims of CBSE5 were defined at the SEI
workshop: to more deeply study the problem of
predictable assembly, focusing on the sub-problem of
compositional reasoning, and benchmarks of the
effectiveness of compositional reasoning [2]. Submitters
were asked to address the community model problem,
either directly or indirectly by adopting the vocabulary of
its specification. Much of the discussion during CBSE5
revolved around the nature of compositional reasoning,
resulting in a decision to focus CBSE6 on this topic.

CBSE6 was held in 2003 with the primary goal of
achieving better understanding of the state of the art in
automated compositional reasoning and prediction. While
emphasizing state of the art, the workshop aimed at
bridging theory and practice [3]. Attendees of CBSE6
represented a growing community of committed
researchers and practitioners focusing on the problem of
predictable assembly and it was decided to during the
final session of the workshop to mature the CBSE series
of workshops into a Symposium and thus the first
International Symposium on Component-Based Software
Engineering was held in Edinburgh in 2004.

This rest of this report is organized as follows: Section
2 gives an overview of the symposium purpose and goal.
Section 3 describes symposium participation and Section
4 describes the four tracks of the symposium. The paper
concludes with description of future plans.

2 The Aim of the Symposium
Component-based Software Engineering (CBSE) is

concerned with the development of software intensive
systems from reusable parts (components), the
development of such reusable parts, and with the
maintenance and improvement of systems by means of
component replacement and customization. Although it

ACM SIGSOFT Software Engineering Notes Page 1 May 2005 Volume 30 Number 3

- Development environment and tools for building
component-based systems

holds considerable promise, there are still many
challenges facing both researchers and practitioners in
establishing CBSE as an efficient and proven engineering
discipline. CBSE has been the focus of six workshops,
which have been held consecutively at the most recent six
International Conferences on Software Engineering. The
premise of the last three CBSE workshops was that the
long-term success of component-based development
depends on the viability of an established science and
technology foundation for achieving predictable quality in
component-based systems. The intent of this symposium
was to build on this premise, and to provide a forum for
more in-depth and substantive treatment of topics
pertaining to predictability. This symposium brought
together researchers and practitioners from a variety of
disciplines related to CBSE to help establish cross-
discipline insights, to provide a forum for presenting and
discussing innovative approaches to CBSE, and to
improve cooperation and mutual understanding. As a
result of growing interest in CBSE from different
communities and increased impact of the research results
the contributions to CBSE7 have achieved a maturity and
relevance level which called for their publications in
conference proceedings. Indeed the accepted papers have
been published in the symposium proceedings [4].

- Components for real-time, secure, safety critical
and/or embedded systems

Eighty-two papers were received, of which twelve long
and 13 short papers were accepted. All papers were
reviewed by at least three, independent reviewers. Papers
of PC members were reviewed by four non-conflicted
reviewers. Approximately sixty persons attended the
Symposium.

3 Symposium Sessions and Presented
Papers

After a brief welcome to the Symposium, Oscar
Nierstrasz of the Software Composition Group,
University of Bern, Switzerland presented the first
keynote talk in which he discussed how software
components can help reduce the negative effects of
change on long-lived software systems. Next, attendees
selected to attend one of two tracks for the next two
sessions of the symposium. Each track consisted of a set
of short paper presentations, which was followed after
lunch by a session devoted to discussion of issues raised
during the talks. The final session of the day brought all
participants together to review results from the tracks and
discuss common themes. Day two began with a keynote
talk by Hans Jonker from Philips Research Laboratories
Eindhoven, The Netherlands on the topic in which he
discussed required characteristics of component interfaces
to truly support composition. Reports from the four tracks
follow.

2.1 Symposium Objectives
The primary goal of CBSE7 is to achieve better

understanding of the state of the art in automated
compositional reasoning and prediction. While
emphasizing state of the art, the symposium aims at
bridging theory and practice.

Issues of particular interest included:
3.1 Track I –Generation and Adaptation of

Component-Based Systems - Measurement and Prediction of Extra-Functional
Properties

The session started with a short presentation of five
papers followed by a working session on the topic.

- Generation and adaptation of component-based
systems

- Verification, testing and checking of component
systems 3.1.1 Paper Presentations

- Compositional reasoning techniques for component
models

The work on “An Open Component Model and Its
Support in Java” by E. Bruneton, T. Coupaye, M.
Leclercq, V. Quema and J-B. Stefani was presented by
Thierry Coupaye. The paper introduces a novel flexible
component system developed at France Telecom,
including aspect-oriented component adapters such as
controllers and interceptors for hierarchical and dynamic
component composition. Marija Mikic-Rakic presented
her project on “Software Architectural Support for
Disconnected Operations” co-authored by N. Medvidovic.
The project aims at a compositional approach to designing
and monitoring component-based mobile distributed
systems for achieving predictable availability. Soo Dong
Kim presented on “Using Smart Connectors to Resolve
Partial Matching Problems in COTS Component

- Measurement and prediction models for component
assemblies

- Patterns and frameworks for component-based
systems

- Extra-functional system properties of components
and component-based systems

- Static and execution-based measurement of system
properties

- Assurance and certification of components and
component-based systems

- Component specifications

ACM SIGSOFT Software Engineering Notes Page 2 May 2005 Volume 30 Number 3

Acquisition” by H.G. Min, S.W. Choi and himself. His
generated connectors bridge between a given specification
of required interfaces and mismatching provided
interfaces of partially suitable components implementing
these interfaces. Common adaptations in include
parameter value range adaptations, signature mismatch
and protocol or workflow adaptations. “Correctness of
Component-Based Adaptation” by S. S. Kulkarni and
K.N. Biyani was presented by the first author with a focus
on identifying invariants to be preserved by correct
dynamic adaptations of components. Finally, Sascha Alda
presented “Strategies for a Component-Based Self-
adaptability Model in Peer-to-Peer Architectures” co-
authored with A.B. Cremers. Self-adaptable components
were identified and components reacting with adaptations
to exceptional conditions. Consequently an architecture
was introduced for managing and detecting peer-to-peer
failures and interaction constraint violations as a common
platform for self-adaptable components.

• Managing CB adaptation and evolution across
several levels and maintaining the integrity
and stability of a system including required
extra-functional system properties such as
availability and other performance properties;

• Lack of a taxonomy of adaptation and
adapters, such as restricted to parameter data,
signature renaming, interface, assembly,
hierarchical architectural composition etc.;

• Interface versus component behavior
adaptation;

• First-class adapters and the reification of
adaptation and evolution mechanisms;

• Fundamental self-similarity of evolving
component-based systems.

3.2 Track II – Tools and Building Frameworks
3.1.2 Discussion As with the other sessions, the Tools and Building

Frameworks session began with brief presentations of the
accepted papers and was followed by an in-depth
discussion of common themes running throughout the
papers. A brief summary of the presentations is offered
here, with an overview of the discussion that followed.

The initial discussion circled around the difference
between adapters and components.

On the one hand, clearly, adapters are not components
but are connector-like. Unlike regular connectors
however, it was agreed, adapters deal with and fix
mismatches in component interfaces or ports. Adaptation
requires mismatch. Adapters and adaptation are based on
a suitable definition of ‘match’ and ‘mismatch’ in the
given context. A boundary was drawn between
adaptation and the twins, customization and
configuration. For example internationalizations such as
switches between languages were put into the
customization/configuration box, while protocol
converters were considered examples of adapters.

3.2.1 Paper Presentations

The work “Correct Components Assembly for a
Product Data Management Cooperative System” was
presented by Valentina Presutti on behalf of Massimo
Tivoli, Paola Inverardi, Alessandro Forghieri and
Maurizio Sebastianis. A tool developed by this group
automatically generated component connectors that
ensure correct coordination policies, based on the
component interface specifications given in Microsoft
Interface Definition Language (MIDL) and the
coordination policies given as Linear Temporal Logic
(LTL).

On the other hand, adapter libraries or generators, offer
adapters as a kind of components – however not self-
contained or independent but always relative to specific
interfaces of other components. Adaptation moreover is a
more general concept than adapters: components may
adapt to changing context of deployment (for example in
a mobile environment), in that they change their behavior
dynamically and in response to external failure, the
presence or absence of certain other components or
services. Adapters, in contrast, are more static offering
conversion of fixed protocols or interfaces in an
anticipated fashion.

The software management perspective was presented
by Louis Taborda in his work, “The Release Matrix for
Component-Based Software Systems”. This presentation
highlighted the challenges associated with managing
software releases for component-based systems. The
release matrix approach generalized the software release
plan, illustrating the complex coordination between
releases of a software product, as well as versions of the
components that make up the product.

The following problem areas were identified under this
theme of component-based adapters, adaptation and
generation:

John Hutchinson presented a work he co-authored with
Gerald Kontonya entitled “Viewpoints for Specifying
Component-Based Systems”. Hutchinson’s presentation
highlighted the difficulties of specifying component-
based system using traditional requirements elicitation
techniques. This paper outlines a new method called

• Adaptation as change or evolution aiming to
break the stability of a system at one level to
achieve stability at another;

ACM SIGSOFT Software Engineering Notes Page 3 May 2005 Volume 30 Number 3

Component-Oriented Requirements Expression (COREx).
The COREx method involves specifying a set of
viewpoints, specifying Actor and Stakeholder
requirement. A set of filters are applied to these views in
order to facilitate component selection. This process of
component selection acknowledges that component
specifications will not meet all of the requirements, and is
therefore a process of compromise.

The session continued with the presentation of Kevin
Simons and Judith Stafford’s submission “CMEH:
Container-Managed Exception Handling for Increased
Assembly Robustness”. Simons presented the deficiencies
with current exception-handling techniques in
component-based systems. A framework for handling and
recovering from exceptions in COTS-based systems was
presented.

“A Framework for Constructing Adaptive Component-
Based Applications: Concepts and Experiences” was
presented by Humberto Cervantes, a paper co-authored by
Richard Hall. This work leverages GRAVITY, a
component framework that allows for run-time adaptation
of functionality based on the availability of constituent
components. The framework manages the application
through relationships specified between component
interfaces, based on cardinality requirements, policies and
filters.

The final presentation was entitled “Testing
Framework Components”. This work, co-authored by
Benjamin Tyler and presented by Neelam Soundarajan,
presents a method for testing object-oriented framework
components. These frameworks provide templates with
“hook” methods that are implemented by application
developers to facilitate the creation of new systems. The
leveraging of polymorphism in these systems makes it
very difficult to test based on functional specifications.
This work presents a method for testing these framework
components based on interaction specifications
(describing the templates’ use of the hook methods),
which require no modification to the framework source
code.

3.2.2 Discussion

Following the presentations, the attendees participated
in an open discussion, facilitated by Kurt Wallnau. One of
the initial discussions involved the applicability of the
release matrix approach of release management of
component-based systems to applications built using the
GRAVITY framework. It was proposed the perhaps a
system with a constantly changing component makeup
may pose a challenge to the release matrix, an approach
created with a more or less fixed system in mind.
However, while the definition of a release is both loose
and dynamic in a GRAVITY application, the release

matrix scheme of software management may still prove to
be useful.

The remainder of the discussion focused on finding a
common thread amongst the remaining papers and
presentations. There was an immediately connection
drawn between the presentation involving the automatic
generation of coordinating connectors and the exception
handling paper. Both seemed to be based on enforcing
some sort of policy decision (be it coordination or the
handling of erroneous behavior) outside of the component
itself, in some sort of connector or interceptor.

This discussion led (inevitably) to the differences
between connectors and interceptors, as well as the
difference between connectors in this sense and
architectural connectors. Some argued the difference
between connectors and interceptors is a matter of
transparency; interceptors are a transparent means of
cross-cutting method invocations and applying some sort
of policy. However, no conclusions were agreed upon in
terms of the transparency of connectors. In the example of
the coordinating connectors, the connector is itself
transparent to the components. The components simply
invoke methods on other components, and the connector
coordinates the temporal interaction policy.

The GRAVITY container was also examined in order
to see if its binding policy enforcement related to the
policies enforced by the coordination and exception
handling policy.

Despite the lack of consensus on terminology, one
finding became very clear through these discussions.
There is a definite need for some sort of connectors or
interceptors for enforcing policies outside of the
components. While there are certain policies that can be
self-contained within a component, there are some
policies that need to be handled outside of the
components. It’s not that these policies can’t be handled
inside components; it’s that they shouldn’t be handled
inside the components. Components are meant to be
reusable units of software deployment. The component
should not be concerned with the coordination policy of
the entire system. It should simply be able to perform its
task as specified, and the coordination policies can be
enforced by the system assembler via connectors,
interceptors, etc.

There are a tremendous number of future research
directions involving using interceptors and connectors for
enforcing policies external to the components. Currently,
there is work being performed in ensuring Quality of
Service, security, error and exception handling,
coordination and many more, both through automatically
generated and hand-coded connectors.

ACM SIGSOFT Software Engineering Notes Page 4 May 2005 Volume 30 Number 3

3.3 Track III – Components for Real-Time
Embedded systems

This track has shown that there is a clear trend of
CBSE adoption in real-time and embedded systems
domains.

3.3.1 Paper Presentations

The paper “Industrial Requirements on Component
Technologies for Embedded Systems”, with co-authors
Anders Möller, Joakim Fröberg, Mikael Nolin was
presented by Anders Möller. The work has focused on
feasibility of component-based technologies in embedded
system domain, in particular vehicular systems. Software
component technologies have not yet been generally
accepted by embedded-systems industries. In order to
better understand why this is the case, the work presents
a set of requirements, based on industrial needs, that are
deemed decisive for introducing a component technology.
The requirements present are aimed for evaluation of
existing component technologies before introducing them
in an industrial context. One of the findings of the paper is
that a major source of requirements is non-technical in its
nature. For a component technology to become a valuable
solution in an industrial context, its impact on the overall
development process needs to be addressed. This includes
issues like component life-cycle management, and
support for the ability to gradually migrate into the new
technology.

The paper “Prediction of Run-time Resource
Consumption in Multi-task Component-Based Software
Systems”, authors Johan Muskens and Michel Chaudron
was presented by Johan Muskens. The authors start from
a permission that embedded systems must be cost-
effective. This imposes strict requirements on the resource
consumption of their applications. It is therefore desirable
to be able to determine the resource consumption of
applications as early as possible in its development. This
paper discusses a method for predicting run-time resource
consumption in multi-task component-based systems
based on a design of an application. Previously the
authors have presented a scenario based resource
prediction technique and showed that it could be applied
to non-pre-emptive non-processing resources, like
memory. In this paper the authors extend this technique,
which enables to handle pre-emptive processing resources
and their scheduling policies. Examples of these classes
of resources are CPU and network. For component-based
software engineering the challenge is to express resource
consumption characteristics per component, and to
combine them to do predictions over compositions of
components. Finally the authors present a model and
tools, for combining individual resource estimations of
components. These composed resource estimations are

then used in scenarios (which model run-time behavior) to
predict resource consumption.

Kristian Sandström presented a paper “Introducing a
Component Technology for Safety Critical Embedded
Real-Time Systems” co-authored by Kristian Sandström,
Johan Fredriksson, and Mikael Åkerholm. The work was
focused on development of a component model adjusted
to the requirements of embedded systems. In the paper the
authors show how to use component based software
engineering for low footprint systems with very high
demands on safe and reliable behaviour. The key concept
of the approach is to provide expressive design time
models and yet resource effective runtime models by
statically resolving resource usage and timing by
powerful compile time techniques. This results in a
component technology for resource effective and
temporally verified mapping of a component model to a
commercial real-time operating system.

The paper “A Hierarchical Framework for Component-
Based Real-Time Systems”, co-authored by Giuseppe
Lipari, Paolo Gai, Michael Trimarchi, Giacomo Guidi
and Paolo Ancilotti, was presented by Giuseppe Lipari.
This paper describes a methodology for the design and the
development of component-based real-time systems. In
the presented model, a component consists of a set of
concurrent real-time threads that can communicate by
means of synchronized operations. In addition, each
component can specify its own local scheduling
algorithm. The paper also discusses the support that must
be provided at the operating system level, and present an
implementation in the shark operating system.

Finally, the paper “Design Accompanying Analysis of
Component-Based Embedded Software” was presented
by its author Walter Maydl. The paper presents a design
accompanying analysis techniques for component-based
embedded systems based on the dataflow paradigm.
Components are modeled as functions on streams of
signal data which allows describing the behavior of
dataflow components precisely by constraints. Static
constraints, e.g., equality of sampling periods, may be as
complex as multivariate polynomials and are enforced by
a new interface type system. Dynamic constraints, e.g.,
describing communication protocols, are checked using a
novel model checking technique based on fifo automata.
The objective of these mathematically well-founded
analysis techniques is to detect as many program errors as
possible during design. Moreover, the component model
is compositional resulting in well-defined hierarchical
abstraction. Altogether, the aim of this approach is to
achieve a more reliable development of complex
applications in a shorter design time.

ACM SIGSOFT Software Engineering Notes Page 5 May 2005 Volume 30 Number 3

3.3.2 Discussion

The first part of the discussion was related to question
whether component-based approach has advantages or
not in development of real-time and embedded systems.
Component-based approach addresses business concerns
(for example more efficient development, reuse), but not
the characteristic requirements of real-time and embedded
systems. Further some concepts of CBSE, such as higher
abstraction may hurt analyzability of the system which is
very important for RT systems. So the main question was
whether component-based approach can help in
development and maintenance of such RT system?. The
experience from the PECOS project, which aim was
providing support for development of small embedded
systems, has shown that specification of component
model was a crucial part for a successful performance and
results of the project. This component model was
designed for satisfying time, space, energy constraints

Another question discussed was should the component-
based approach include predicting qualities of systems,
and support for building systems with predictable
qualities. Related to these questions is a question to what
extent are specific properties, such as real time
properties, a necessary part of a component model? In
real-time analysis the concern is for interaction among
tasks (or objects, or primitives of “time”). Should we keep
these concerns outside component models or should they
be an incorporated part of the component models? The
experience in use of general-purpose component models
has shown that different problems may appear if these
concerns are not built in a component model. For this
reason it is important that component models explicitly
address them and that the components include
specifications of these properties. It was noticed that
components are “componentized” by separation of a
certain kind of concern, and for RT systems there exist
particular separation criteria related to RT properties
which should be incorporated into RT component models.

Embedded systems are usually resource-restricted and
for this reason it is important that component models do
not consume additional resources. For example
composition should have a “zero effect” at the run-time.
This opens a question to which extent should component
model be enriched with capabilities for specification of
different properties and providing support for
composability of these properties. The answer is that a
tradeoff between implicitly, efficiency and composability
must be found and the result will be existence of different
component models considering different concerns.

3.4 Track IV – Extra-functional properties of
components and component-based systems

As with the other sessions, this session began with the
paper presentations including discussion of paper related

questions. Then we moved on to a general discussion on
quality of service for components and component based
systems

3.4.1 Paper Presentations

The session started with the presentation Olivier
Defour, Jean-Marc Jézéquel, and Noel Plouzeau’s paper,
“Extra-functional Contract Support in Components”. In
this presentation, a language for specifying QoS contracts
was introduced and, through example, it was shown how
to use this language for validating components and
component assemblies. In addition, it was shown how to
derive from the contracts QoS constraints of the CLP
(constraint logic programming language).

Paola Inverardi gave a presentation for Antonia
Bertolino and Raffaela Mirandola on “CB-SPE: Putting
Component-Based Performance Engineering into
Practice”. In this presentation an extension of the
Software Performance Engineering approach (SPE) by C.
Smith with reusable component performance
specifications was introduced. In addition to this
conceptual extension, a novel tool using the real-time
UML performance profile for supporting component-
based SPE was presented.

The presentation on “Component Technology and QoS
Management” by Goerge T. Heineman, Joseph Loyall,
and Richard Schantz discussed current approaches to QoS
management, such as static analysis and prediction
techniques, run-time enforcement of QoS and QoS
middleware extensions. Thereafter, "quoskets", a
packaged unit of reusable QoS related behavior and
policy were introduced. Similar to components, qoskets
can be composed to larger qoskets and can be
decomposed. This approach supports reasoning on system
QoS requirements in terms of component QoS
requirements.

 Rob Armstrong reported on “Computational Quality
of Service for Scientific Components”, a paper written by
Rob, Boyana Norris, Jaideep Ray, Lois C. McInnes,
David E. Bernholdt, Wael R. Elwasif, Allen D. Malony,
and Sameer Shende. When components are used in
scientific computing, performance is of utmost
importance. This fact and the usual massively parallel
environment lead to very specific requirements to
component models. The talk discussed how these
requirements shaped the CCA (common component
architecture) for computational sciences. In addition, the
talk discussed was reported on the QoS of such CCA
components, namely performance and accuracy of
scientific simulations.

The paper of Rakesh Shukla, Paul Strooper, and David
Carrington, entitled “A Framework for Reliability
Assessment of Software Components” describes a

ACM SIGSOFT Software Engineering Notes Page 6 May 2005 Volume 30 Number 3

conceptual framework for measuring the reliability of
software components. The framework combines statistical
testing, as known for example from the cleanroom
approach and oracle tests, for self checking of
components. The framework supports the execution of
test cases and the evaluation of their output. Given a
usage-profile, the framework also supports the generation
of test cases.

The presentation of Markus Meyerhöfer and Christoph
Neumann introduced “TESTEJB -- A Measurement
Framework for EJBs”. This framework uses interceptors
to measure the QoS of Enterprise Java Beans. After a
discussion on the usage of the interceptor-pattern and
measurements for the open-source EJB server JBOSS, the
presentation looked at the details of a specific interceptor
for response time measurements. However, the
framework itself supports measurements of many other
QoS properties by using different interceptors.

Last, but not least Sten Loecher gave a presentation on
“Model-Based Transaction Service Configuration for
Component-Based Development. The talk summarized
the current situation of transaction management services
and discussed issues related to attribute-based approaches
to transaction service specification, such as restricted
attribute sets, unclear responsibilities and missing support
for requires-interfaces. Thereafter, a model-based
procedure for transaction service configuration was
presented. This approach has the benefit of early detection
of configuration errors in designs and an increased
predictability of the design through analysis.

3.4.2 Discussion

As containers and interceptors were mentioned in
several talks, we started the discussion on containers and
their impact on component run-time behavior. However,
we soon realized that containers or, more generally
interceptors, are a solution technique. The problem they
solve is how to add aspects to a system and how to weave
extra-functional attributes to a system (e.g.,
superimposing transactional services to a system). In
discussions related to quality attributes, we agreed that a
quality of service (QoS) is not a constant property of a
component, but highly depends on the component’s
environment. It was recognized that this is not a new
insight as it has been previously discussed in other
Component-Based Software Engineering forums
including ECBS 2002 [7], and WCOP 2003 [8], but this
phenomenon has not been solved and is sufficiently
important to be worthy of further discussion. We
concluded that component QoS must be modeled as a
function of three parameter groups:

- QoS of run-time environment: for example, the
performance of a component is influenced by the
virtual-machine it runs on, the operating system (and

its resource scheduling policy) and the underlying
hardware. Similar arguments hold for reliability.

- QoS of external services: as a component service
most often relies on the results of external services
called, the QoS of such external service influences
the "end-to-end" QoS the component service has.
(For example, for reliability this fact is demonstrated
by models and measurements).

- The usage profile: The way a component is used,
influences its QoS. This is true per definition for
reliability, as software reliability is modeled as a
function of the usage profile. However, even QoS
attributes which are not always modeled as a function
of the usage profile (such as the various performance
metrics), usually depend on the parameters given by
the service call.

Because these factors are not part of the component,
but rather of the component’s environment, one needs
parametric component QoS descriptions. However,
parametric component description will only allow
prediction of the quality of provided component services
in dependency of the above mentioned parameters. A
harder problem is to compute QoS requirements a
component requests from its environment and the
externally called services in dependency of requested QoS
of the component. This is because, there is a functional
dependency from external QoS factors to the QoS of
provided services, but this function is not injective. Many
different combinations of values of the above-mentioned
influence factor will result in the same QoS of a provided
service. For example, one may think about a slower run-
time environment but (some) fast external services may
be as good as a fast run-time environment combined with
some slow external services. This fact hinders the
functional description of the dependency of external
requested QoS on the QoS requested from a component
by its users. Instead, one can use constraints; given a QoS
requirement to a component and a component to fulfill
this requirement, one can state a set of constraints on the
QoS of the run-time environment and the external
services having a given usage-profile.

After discussing these problems of QoS specification,
the group questioned what CBSE QoS researchers can
learn from prior work in similar issues of hardware.
Obviously, in hardware QoS is also of concern. However,
we soon saw that there are also fundamental differences
between hardware and software QoS models, even is the
actual QoS property has the same name. For example,
hardware reliability is usually modeled as a function of
time (the older a product is, the more likely it fails). As
there is no aging process for software (taking aside issues
like architectural drift, etc which occur by manipulations
of software over the time), it makes no sense to model
software reliability as a function of the age of the software
(at least if the software is not changed). Hence, there is an

ACM SIGSOFT Software Engineering Notes Page 7 May 2005 Volume 30 Number 3

The first question that emerged was: “what value is
added to system design by using components?” The
participants were searching for answers that went beyond
the usual vague generalities of “better, faster, and
cheaper” Eventually, the discussion began to focus on the
software components and software component technology
as exhibiting a kind of architectural style or design pattern
that, in effect, restricts developers of components and
their assemblies in certain pre-ordained ways. But
restricted to what end? On this question a consensus
arose that these restrictions serve to make the
development of certain classes, or families of systems
systematic and with predictable quality.

urgent need to come up with specific software reliability
models. Unfortunately, the ones we have (taking the
usage profile into account) still do not reflect important
influence factors (such as code complexity, programmer's
experience or quality assurance measures, such as
reviews, etc). Similar arguments also hold for other
quality attributes, as software and hardware differ in
many fundamental properties. For example, side-effects
between software units are different in nature to the
various physical side effects between hardware units.

Given these issues for good QoS models it was asked
whether there is at least one quality attribute that we can
claim to understand. We went through a list of possible
answers and reliability immediately was ruled not to be a
good candidate, for the reasons discussed above. Memory
consumption was also not considered as such. Although it
might look simple at the first glance, it is not clear how to
model indirectly used memory or shared memory. Power
consumption also was considered as difficult, because of
its intriguing dependencies to hardware and software
usage. Finally, we concluded that time is understood in a
sense that we at least know how to measure it. As we
realized in the later discussion, the term "understood" can
be interpreted quite differently, such as "we can measure
it", which is true for time and power consumption, or "we
have models for it with somewhat precise predictions", as
we have for some timing properties, or we have
"compositional models", which is currently a topic for
research. As models cannot be validated (falsified)
without knowing how to measure the property, we agreed
that “we can measure it” is the minimal requirement on
"understanding" a property.

This merely begged the further question, however:
“What is the nature of analytic models for predicting the
behavior of component-based systems? Are such models
different in any way from models of non-component-
based systems?” This led, inevitably, to a discussion of
compositionality, and to the relation between the syntactic
composition of software components (on their interfaces)
and the analytic composition of behavior of those same
components. Unlike previous workshops, the discussion
did not founder on the topic of compositionality. Instead,
the participants discussed those behaviors for which
compositional analysis is reasonably well understood
(e.g., resource consumption, such as time, power, and
memory) and those which are not well understood (e.g.,
reliability).

Given that there are at least some behaviors for which
compositional theories are obtainable, the next question
is: “Can we deduce, from these theories, the restrictions
that must ultimately be expressed as design restrictions in
a component technology?” Several presentations at the
workshop suggested a “yes” answer to this question—
Mikic-Rakic’s presentation of Prism-MW, Chaudron’s
presentation of Robocop, Fioukov’s presentation of
APPEAR, Nierstrasz’s keynote references to PECOS, to
name just a few, were all evidence in support of the
affirmative.

When comparing internal software properties, such as
maintainability, one has several problems (a) how to
define it formally, (b) how to measure it (which depends
on the definition of course) and (c) how to find simple
measures that can be measured early in the software
development process and that correlate with the internal
quality property. Therefore, these properties are probably
least understood. Among other problems, it is unclear
how to formally define these properties. From here the discussion turned to the question: “Are

there common or perhaps canonical characteristics of
component models lurking within these exemplars of
component-based predictability?” The large group made
it impractical to undertake an analysis of the various
component technologies presented during the workshop.
There was, however, a renewed call for some form of
cross-project collaborative study of common features of
component models for predictability.

The session concluded, leaving open the question of
how to model the influence of usage profiles and
measurable quality attributes on the quality of component
services.

4 Closing Session
The closing session was organized as a large-group

facilitated discussion. The question “what is the key
result of this workshop?” was offered as an opening
gambit. As expected, there was no shortage of opinions.
The result of the discussions, however, was not an answer
to the opening question, but rather a series of related, and
more detailed questions.

The last question addressed to the group was whether it
could produce a question that defines the component-
based software community (in the sense that Kuhn
asserted that a science communities are defined by a tacit
agreement on which questions are worth answering)? The

ACM SIGSOFT Software Engineering Notes Page 8 May 2005 Volume 30 Number 3

agreed community question(s)—or at least a first
approximation—was stated as:

“What design and engineering qualities can be made
observable, measurable, and predictable, in a component-
based setting? And can we define theories and
mechanisms for composing these qualities, and
understand the limits of these theories and mechanisms?”

With this formulation the workshop adjourned.

5 Workshop Results and Future Plan

5.1 Publication of Results
The proceedings of the symposium are available as

Lecture Notes in Computer Science, Volume 3054/2004
[4]. The call for papers and symposium program are
available on the web at both the Software Engineering
Institute [2] and Monash University [3].

5.2 Future Plans
CBSE 2005, the International Symposium on

Component-Based Software Engineering, will be co-
located with the International Conference on Software
Engineering in St. Louis, Missouri in May 14-15, 2005.

6 Acknowledgement
We would like to thank the program committee who
contributed greatly to the success of the workshop.

The program committee:
Uwe Aßmann, Linköping University, Sweden
Jakob Axelsson, Volvo Car Corporation, Sweden
Mike Barnett, Microsoft Research, USA
Judith Bishop, University of Pretoria, South Africa
Jan Bosch, University of Groningen, The Netherlands
Michel Chaudron, University Eindhoven, The
Netherlands
Wolfgang Emmerich, University College London, UK
Jacky Estublier, LSR-IMAG, France
Andre van der Hoek, University of California, Irvine,
USA
Kathi Fisler, WPI, USA
Dimitra Giannakopoulou, NASA Ames, USA
Richard Hall, Imag/Lsr, France
Bengt Jonsson, Uppsala University, Sweden
Dick Hamlet, Portland State University, USA
George Heineman, WPI, USA
Paola Inverardi, University of L'Aquila, Italy
Shriram Krishnamurthi, Brown University, USA
Jeff Magee, Imperial College University, UK
Nenad Medvidovic, University of Southern California,
USA
Magnus Larsson, ABB, Sweden

Rob van Ommering, Philips, The Netherlands
Heinz Schmidt, Monash University, Australia
Judith Stafford, Tufts University
Dave Wile, Teknowledge, Corp., USA
Kurt Wallnau, SEI, Carnegie Mellon University, USA

7 References
[1] I. Crnkovic, H. Schmidt, J. Stafford, K. Wallnau, 4th

ICSE Workshop on Component-Based Software
Engineering: Component Certification and System
Prediction, Software Engineering Notes, November
2001.

[2] I. Crnkovic, H. Schmidt, J. Stafford, K. Wallnau,
5th ICSE Workshop on Component-Based
Software Engineering: Benchmarks for Predictable
Assembly, Software Engineering Notes,
September 2002.

[3] I. Crnkovic, H. Schmidt, J. Stafford, K. Wallnau, 6th
ICSE Workshop on Component-Based Software
Engineering: Component Certification and System
Prediction, Software Engineering Notes, May 2004.

[4] I. Crnkovic, H. Schmidt, J. Stafford, K. Wallnau ,
7th International Symposium, Edinburgh,
Scotland, May 24-25, 2004, Proceedings Series:
Lecture Notes in Computer Science, Vol. 3054,
ISBN: 3-540-21998-6

[5] http://www.csse.monash.edu.au/~hws/cgi-bin/JSS-
ACBSE/

[6] http://www.sei.cmu.edu/pacc/events.html

[7] http://www.idt.mdh.se/ecbse/2002/

[8] http://research.microsoft.com/~cszypers/events/WCO
P2003/

ACM SIGSOFT Software Engineering Notes Page 9 May 2005 Volume 30 Number 3

	Introduction
	The Aim of the Symposium
	Symposium Objectives

	Symposium Sessions and Presented Papers
	Track I –Generation and Adaptation of Component-B
	Paper Presentations
	Discussion

	Track II – Tools and Building Frameworks
	Paper Presentations
	Discussion

	Track III – Components for Real-Time Embedded sys
	Paper Presentations
	Discussion

	Track IV – Extra-functional properties of compone
	Paper Presentations
	Discussion

	Closing Session
	Workshop Results and Future Plan
	Publication of Results
	Future Plans

	Acknowledgement
	References

