

A Tool for Exploring Software Systems Merge Alternatives

Rikard Land1, Miroslav Lakotic2

1Mälardalen University, Department of Computer Science and Electronics
PO Box 883, SE-721 23 Västerås, Sweden

2University of Zagreb, Faculty of Electrical Engineering and Computing
Unska 3, HR-10000 Zagreb, Croatia

rikard.land@mdh.se, miroslav.lakotic@fer.hr, http://www.idt.mdh.se/~rld

Abstract
The present paper presents a tool for exploring

different ways of merging software systems, which may
be one way of resolving the situation when an
organization is in control of functionally overlapping
systems. It uses dependency graphs of the existing
systems and allows intuitive exploration and
evaluation of several alternatives.

1. Introduction
It is well known that successful software systems has
to evolve to stay successful, i.e. it is modified in
various ways and released anew [11,15,16]. Some
modification requests concern error removal; others
are extensions or quality improvements. A current
trend is to include more possibilities for integration
and interoperability with other software systems.
Typical means for achieving this is by supporting open
or de facto standards [13] or (in the domain of
enterprise information systems) through middleware
[4]. This type of integration concerns information
exchange between systems of mainly complementary
functionality. There is however an important area of
software systems integration that has so far been little
researched, namely of systems that are developed in-
house and overlap functionally. This may occur when
systems, although initially addressing different
problems, evolve and grow to include richer and richer
functionality. More drastically, this also happens after
company acquisitions and mergers, or other types of
close collaborations between organizations. A new
system combining the functionality of the existing
systems would improve the situation from an
economical and maintenance point of view, as well as
from the point of view of users, marketing and
customers.

1.1 Background Research
To investigate how organizations have addressed this
challenge, which we have labeled in-house integration,

we have previously performed a qualitative multiple
case study [21] consisting of nine cases in six
organizations.

At a high level, there seems to be four strategies
that are analytically easy to understand [10]: No
Integration (i.e. do nothing), Start from Scratch (i.e.
initiate development of a replacing system, and plan
for retiring the existing ones), Choose One (choose the
existing system that is most satisfactory and evolve it
while planning for retiring the others), and – the focus
of the present paper – Merge (take components from
several of the existing systems, modify them to make
them fit and reassemble them).

There may be several reasons for not attempting a
Merge, for example if the existing systems are
considered aged, or if users are dissatisfied and
improvements would require major efforts. Reusing
experience instead of implementations might then be
the best choice. Nevertheless, Merge is a tempting
possibility, because users and customers from the
previous systems would feel at home with the new
system, no or very little effort would be spent on new
development (only on modifications), and the risk
would be reduced in the sense that components are of
known quality. It would also be possible to perform
the Merge in an evolutionary manner by evolving the
existing systems so that more and more parts are
shared; this might be a necessity to sustain
commitment and focus of the integration project.
Among the nine cases of the case study, only in one
case was the Merge clearly chosen as the overall
strategy and has also made some progress, although
there were elements of reuse between existing systems
also in some of the other cases. Given this background
research, we considered the Merge strategy to be the
least researched and understood and the least
performed in practice, as well as the most intellectually
challenging.

1.2 Continuing with Merge
To explore the Merge strategy further, we returned to
one of the cases and performed follow-up interviews
focused on compatibility and the reasons for choosing
one or the other component. The organizational
context is a US-based global company that acquired a
slightly smaller global company in the same business
domain, based in Sweden. The company conducts
physics computer simulations as part of their core
business, and both sites have developed their own 3D
physics simulator software systems. Both systems are
written in Fortran and consist of several hundreds of
thousands lines of code, a large part of which are a
number of physics models, each modeling a different
kind of physics. The staff responsible for evolving
these simulators is less than a handful on each site, and
interviews with these people are our main source of
information [9].

At both sites, there were problems with their
model for a particular kind of physics, and both sites
had plans to improve it significantly (independent of
the merge). There was a strategic decision to integrate
or merge the systems in the long term, the starting
point being this specific physics module. This study
involved interviewing more people. It should be noted
that although the interviewees met in a small group to
discuss alternatives, they did not use our tool, since the
tool has been created after, and partly influenced by,
these events. The case is nevertheless used as an
example throughout the present paper, to illustrate
both the possibilities of the tool and motivate its
usefulness in practice.

In an in-house integration project, there is
typically a small group of architects who meet and
outline various solutions [10]. This was true for the
mentioned case as well as several others in the
previous study. In this early phase, variants of the
Merge strategy should be explored, elaborated, and
evaluated. The rest of the paper describes how the tool
is designed to be used in this context. The tool is not
intended to automatically analyze or generate any parts
of the real systems, only serve as a decision support
tool used mainly during a few days’ meeting. One
important design goal has therefore been simplicity,
and it can be seen as an electronic version of a
whiteboard or pen-end-paper used during discussions,
although with some advantages as we will show.

1.3 Related Work
Although the field of software evolution has been
maturing since the seventies [11,16], there is no
literature to be found on software in-house integration
and merge. Software integration as published in
literature can roughly be classified into: Component-

Based Software Engineering [19,20], b) standard
interfaces and open systems [13], and c) Enterprise
Application Integration (EAI) [6,18]. These fields
typically assume that components or systems are
acquired from third parties and that modifying them is
not an option, which is not true in the in-house
situation. Also, these fields address components or
systems complementing each other (with the goal of to
reducing development costs and time) rather than
systems that overlap functionally (with rationalization
of maintenance as an important goal).

Although there are methods for merging source
code [3,12], these approaches are unfeasible for
merging large systems with complex requirements,
functionality, quality, and stakeholder interests. The
abstraction level must be higher.

We have chosen to implement a simple
architectural view, the module view [5,7] (or
development view [8]), which is used to describe
development abstractions such as layers and modules
and their relationships. Such dependency graphs, first
defined by Parnas [14], are during ordinary software
evolution the natural tool to understand how
modifications propagate throughout a system.

2. The Tool
The tool was developed by students as part of a project
course. The foundation of the tool is a method for
software merge. As this is ongoing work, this paper is
structured according to the method but focuses on the
tool. We also intend to publish the method separately,
as it has been refined during the tool implementation –
after which it is time to further improve the tool.

The method makes use of dependency graphs of
the existing systems. There is a formal model at the
core, with a loosely defined process on top based on
heuristics and providing some useful higher-level
operations. The tool conceptually makes the same
distinction: there are the formally defined concepts and
operations which cannot be violated, as well as higher-
level operations and ways of visualizing the model, as
suggested by the informal process. In this manner, the
user is gently guided towards certain choices, but
never forced. A fundamental idea with both the
method and the tool is that they should support the
exploratory way of working – not hinder it.

The actual tool is implemented as an Eclipse plug-
in [1]. The model of the tool is based on the formal
model mentioned above, and its design follows the
same rules and constraints. The model was made using
Eclipse Modeling Framework, and presented by
Graphics Eclipse Framework combined using the
Model-Controller-View architecture. This makes the
tool adaptable and upgradeable.

2.1 Preparatory Phase
There are two preparatory activities:

Activity P-I: Describe Existing Systems. The
user first needs to describe the existing systems as well
as outline a desired future system. The current
implementation supports two existing systems, but the
underlying model is not limited to only two.

Activity P-II: Describe Desired Future
Architecture. The suggestion of the final system is
determined simply by choosing which modules are
preferred in the outcome. Any system, A or B can then
be experimented upon, and the progress can be
followed through a scenario tree. Figure 1 shows a
snapshot of the tool with the two existing systems at
the top and the future system at the bottom. It might be
noted that the existing systems have – and must have –
identical structures (this assumption is further
discussed in section 2.3).

2.2 Exploratory Phase
The goal of the exploration is two system descriptions
where some modules have been exchanged, so that the
systems are evolved in parallel towards the desired
future, merged system. The goal is not only to describe
the future system (one graph would then be enough,
and no tool support needed) but to arrive at next
releases of the systems, in order to perform the merge
gradually, as a sequence of parallel releases of the two

existing systems until they are identical. This will
involve many tradeoffs on the behalf of the architects
(and other stakeholders) between e.g. efforts to be
spent only on making things fit for the next release and
more effort to include the more desired modules,
which will delay next release of a system. The tool
does not solve these tradeoffs but supports reasoning
about them. There are four activities defined in the
exploratory phase, with a rough ordering as follows,
but also a number of iterations.

Activity E-I: Introduce Desired Changes. The
starting point for exploration is to introduce some
desired change. In the case, it was imperative to start
by assuming a newly developed physics module (PX
in the figures) to be shared by both systems. In other
situations, the actual module to start with might not be
given. In the tool, this is done by choosing the
preferred module in the final system view, by clicking
on the checkboxes. A new module can also be attached
to the old system. This is done by clicking on the node
in final system, and then clicking on the button
“Create” in the Actions View. This will also require
user input for the name of the new module and effort
needed for its implementation (this could be zero for a
pre-existing component such as a commercial or open
source component, or a component to be reused in-
house). After the module has been created, it can be
used as any other module. The change to the system

Figure 1: Initial systems state.

structure is made by clicking on the nodes and links in
the input systems A and B. The modules the systems
are using can be set up in the Status View for every
node in any input system.

Activity E-II: Resolve Inconsistencies. As
changes are introduced, the tool will highlight
inconsistencies between modules by painting the
dependency arrows orange (see Figure 2). In the
model, two module instances from the same system are
consistent without further adaptation. Two modules
from different systems are consistent only if some
measure has been taken to ensure it, i.e., if either
module have been adapted to work with the other. The
actual adaptations made could in practice be of many
kinds: some wrapping or bridging code as well as
modifications of individual lines of code.

Another way to resolve an inconsistency is to
describe adaptations to either of the inconsistent
modules, in order to make them match. This is done by
clicking on the incompatible link, and one of “Add …”
buttons in the Actions View. This will require the user
to enter an estimated effort for resolving this
inconsistency (a number, in e.g. man-months), and a
free text comment how to solve it, such as “we will
modify each call to methods x() and y(), and must also
introduce some new variables z and w, and do the
current v algorithm in a different way” (on some level
of detail found feasible). (As said, the tool does not do
anything with the real systems automatically, but in
this sense serves as a notebook during rapid
explorations and discussions.) It can be noted that a
module that will be newly developed would be built to
fit. Nevertheless there is an additional complexity in
building something to fit two systems simultaneously,
which is captured by this mechanism.

There is also a third possibility to resolve an
inconsistency: to let two modules for the same role live
side by side, see Figure 3. Although allowing the same
thing to be done in different ways is clearly a violation
of the system’s conceptual integrity, it could be
allowed during a transition period (until the final,
merged system is delivered) if the system’s correct
behavior can be asserted. For example, it might be
allowed for some stateless fundamental libraries, but
not when it is fundamentally assumed that there is only
one single instance responsible for a certain
functionality, e.g. for managing central resources, such
as thread creation and allocation, access control to
various hardware or software resources, security). The
tool cannot know whether it would be feasible in the
real system, this is up to the users to decide when and
whether to use this possibility. The current version
does not model the potential need for communication
and synchronization of two modules doing same role.

Figure 2: Example of highlighted inconsistencies.

Figure 3: Two modules with same role.

Figure 4: The History View.

Activity E-III: Branch Scenarios. As changes are
made, the operations are added to a scenario tree in the
History View (see Figure 4). At any time, it is possible
to click any choice made earlier in the tree, and branch
a new scenario from that point. The leaf of each
branch represents one possible version of the system.
When clicking on a node, the graphs are updated to
reflect the particular decisions leading to that node.
Any change to the systems (adaptations, exchanging
modules, etc.) results in a new node being created;
unless the currently selected node is a leaf node, this
means a new branch is created. All data for adaptations
entered are however shared between scenarios; this
means that the second time a particular inconsistency
is about to be resolved, the previous description and
effort estimation will be used. As information is
accumulated, the exploration will be more and more
rapid.

Figure 5: The Status View.

Activity E-IV: Evaluate Scenarios. The exploration
is a continuous iteration between changes being made
(activities E-II and E-III) and evaluation of the
systems. Apart from the information of the graphs
themselves, the Status View presents some additional
information, see Figure 5. The branching mechanism
thus allow the architects to try various ways of
resolving inconsistencies, undo some changes (but not
loosing them) and explore several alternatives in a
semi-parallel fashion, abandon the least promising
branches and evaluate and refine others further. The
total effort for an alternative can be accessed by
clicking the “History Analysis” button, which is
simply the sum of all individual adaptation efforts. It
also becomes possible to reason about efforts related to
modifications that actually lead towards the desired
future system, efforts required only to make modules
fit only for the next delivery (and later discarded).

The tool’s advantage over using a whiteboard lies
in the possibility to switch back and forth among
(temporary) decisions made during the exploration (by
means of the scenario tree), make some further
changes (through simple point-and-click operations),
and constantly evaluate the resulting systems (by
viewing the graphs, the status view, and retrieve the
total effort for the scenario).

Finally, although not implemented yet, one would
extract the free texts associated with the scenario into a
list of implementation activities.

2.3 Similar Structures?
The tool (and the model) assumes that the existing
systems have identical structures, i.e. the same set of
module roles (e.g. one module instance each for file
handling, for physics X etc.) with the same
dependencies between them. This may seem a rather
strong assumption, but there are three motivations for
this, based on our previous multiple case study [10].
First, our previous observations strongly suggest that
similar structures are a prerequisite for merge to make
sense in practice. Second, we also observed that it is
not so unlikely that systems in the same domain, built
during the same era, are indeed similar. And third, if
the structures are not very similar, it is often possible
to find a higher level of abstraction where the systems
are similar.

With many structural differences, Merge is less likely
to be practically and economically feasible, and some
other high-level integration strategy should be chosen
(i.e. Start from Scratch or Choose One). A common
type of difference, that should not pose large
difficulties in practice, is if there is a set of identical
module roles and dependencies, and some additional
modules that are only extensions to this common
architecture. (For example, in the case we could
imagine one of the systems to have a module modeling
one more physics model PW than the other.) However,
architects need in reality not be limited by the current
version: a simple workaround solution is to introduce
virtual module instances, i.e. modules that do not exist
in the real system (which are of course not desired in
the future system).

3. Future Research & Development
The tool is still in prototype stage and needs to be
further developed. Neither the method nor the tool has
been validated in a real industrial case (although their
construction builds heavily on industrial experiences).

In reality there are numerous ways to make two
components fit, for example as an adapter mimicking
some existing interface (which requires little or no
modifications of the existing code) or switches
scattered through the source code (as runtime
mechanisms or compile-time switches). Such choices
must be considered by the architects: a high-
performance application and/or a resource constrained
runtime environment might not permit the extra
overhead of runtime adapters, and many compile-time
switches scattered throughout the code makes it
difficult to understand. The method in its current
version does not model these choices explicitly but has
a very rough representation: the users can select which
of the two inconsistent modules that should be
adapted, and add a free text description and an effort
estimation.

Another type of extension would be to include
several structural views of the architecture, including
some runtime view.

Yet another broad research direction is to extend
the method and the tool to not focus so much on
structure as the software architecture field usually does
[2,17]. Structure is only one high-level measure of
similarity between systems. Existing data models, and
the technological frameworks chosen (in the sense
“environment defining components”) are also
important additional issues to evaluate [10], and needs
to be included in any merge discussions in reality, and
should be included in future extensions of the merge
method and the tool.

4. Acknowledgements
We would like to thank the interviewees and their
organization for sharing their experiences and allowing
us to publish them. Thanks to Mathias Alexandersson,
Sebastien Bourgeois, Marko Buražin, Mladen Čikara,
Lei Liu, and Marko Pecić for implementing the tool.
Also thanks to Laurens Blankers, Jan Carlson, Ivica
Crnkovic, and Stig Larsson for previous and current
research collaborations related to this paper.

5. References
 [1] Eclipse.org home, URL: www.eclipse.org,

2006.
 [2] Bass L., Clements P., and Kazman R., Software

Architecture in Practice (2nd edition), ISBN 0-
321-15495-9, Addison-Wesley, 2003.

 [3] Berzins V., “Software merge: semantics of
combining changes to programs”, In ACM
Transactions on Programming Languages and
Systems (TOPLAS), volume 16, issue 6, pp.
1875-1903, 1994.

 [4] Britton C. and Bye P., IT Architectures and
Middleware: Strategies for Building Large,
Integrated Systems (2nd edition), ISBN
0321246942, Pearson Education, 2004.

 [5] Clements P., Bachmann F., Bass L., Garlan D.,
Ivers J., Little R., Nord R., and Stafford J.,
Documenting Software Architectures: Views
and Beyond, ISBN 0-201-70372-6, Addison-
Wesley, 2002.

 [6] Cummins F. A., Enterprise Integration: An
Architecture for Enterprise Application and
Systems Integration, ISBN 0471400106, John
Wiley & Sons, 2002.

 [7] Hofmeister C., Nord R., and Soni D., Applied
Software Architecture, ISBN 0-201-32571-3,
Addison-Wesley, 2000.

 [8] Kruchten P., “The 4+1 View Model of
Architecture”, In IEEE Software, volume 12,
issue 6, pp. 42-50, 1995.

 [9] Land R., Interviews on Software Systems
Merge, MRTC report ISSN 1404-3041 ISRN
MDH-MRTC-196/2006-1-SE, Mälardalen
Real-Time Research Centre, Mälardalen
University, 2006.

 [10] Land R. and Crnkovic I., “Software Systems In-
House Integration: Architecture, Process

Practices and Strategy Selection”, In
Information & Software Technology, accepted
for publication, 2006.

 [11] Lehman M. M. and Ramil J. F., “Software
Evolution and Software Evolution Processes”,
In Annals of Software Engineering, volume 14,
issue 1-4, pp. 275-309, 2002.

 [12] Mens T., “A state-of-the-art survey on software
merging”, In IEEE Transactions on Software
Engineering, volume 28, issue 5, pp. 449-462,
2002.

 [13] Meyers C. and Oberndorf P., Managing
Software Acquisition: Open Systems and COTS
Products, ISBN 0201704544, Addison-Wesley,
2001.

 [14] Parnas D. L., “Designing Software for Ease of
Extension and Contraction”, In IEEE
Transaction on Software Engineering, volume
SE-5, issue 2, pp. 128-138, 1979.

 [15] Parnas D. L., “Software Aging”, In Proceedings
of The 16th International Conference on
Software Engineering, pp. 279-287, IEEE Press,
1994.

 [16] Perry D. E., “Laws and principles of evolution”,
In Proceedings of International Conference on
Software Maintenance (ICSM), pp. 70-70,
IEEE, 2002.

 [17] Perry D. E. and Wolf A. L., “Foundations for
the study of software architecture”, In ACM
SIGSOFT Software Engineering Notes, volume
17, issue 4, pp. 40-52, 1992.

 [18] Ruh W. A., Maginnis F. X., and Brown W. J.,
Enterprise Application Integration, A Wiley
Tech Brief, ISBN 0471376418, John Wiley &
Sons, 2000.

 [19] Szyperski C., Component Software - Beyond
Object-Oriented Programming (2nd edition),
ISBN 0-201-74572-0, Addison-Wesley, 2002.

 [20] Wallnau K. C., Hissam S. A., and Seacord R.
C., Building Systems from Commercial
Components, ISBN 0-201-70064-6, Addison-
Wesley, 2001.

 [21] Yin R. K., Case Study Research : Design and
Methods (3rd edition), ISBN 0-7619-2553-8,
Sage Publications, 2003.

