
Mälardalen University Master Thesis

Abstract Interpretation and
Abstract Domains

with special attention to the congruence domain

Stefan Bygde

May 2006

Department of Computer Science and Electronics
Mälardalen University

Väster̊as, Sweden

Abstract

This thesis is a survey on a framework for program analysis known as Abstract interpre-
tation. Abstract interpretation uses abstract semantics to obtain important properties of
programs. Different abstract semantics can be used in abstract interpretation, to obtain
different properties. For instance there are semantics that spots upper and lower limits
for the values of the variables of the program. These different semantics are called
abstract domains and this thesis is meant to summarize different numerical abstract
domains as well as give mathematical properties to them. The thesis also offers a small
survey of free software libraries that implements abstract domains. Special attention
will be given to thecongruence domain. The congruence domain was implemented in
a program analysis tool developed at M¨alardalen University. In the congruence domain
the property ”variablex is always congruent ton modulom” is obtained. Abstract
operators for this domain are presented and new bit-operators are introduced.

Contents

1 Introduction 4
1.1 Static analysis and WCET . .. 4
1.2 SWEET . 5
1.3 Motivation and results . 7
1.4 Related work 7
1.5 Outline . 7

2 Collecting semantics 8
2.1 Definitions. 8
2.2 The transition system .. 9

3 Abstract Interpretation 9
3.1 The idea of abstraction. 10
3.2 Galois connections . .. 10

3.2.1 An example . .. 11
3.3 Relational and non-relational domains. 11

3.3.1 Non-relational domains. 11
3.3.2 Relational domains . .. 12

3.4 More definitions 12

4 Abstract operators 13
4.1 An example 13

5 The abstract transition function 14
5.1 Classifying program points . .. 14
5.2 Definition of the abstract function 15
5.3 An example 16
5.4 Widening/Narrowing .. 17

6 Existing domains 18
6.1 Non-relational domains. 18

6.1.1 Property domains 18
6.1.2 The interval domain .. 19
6.1.3 The congruence domain 19

6.2 Relational domains . .. 20
6.2.1 The polyhedral domain. 20
6.2.2 The linear congruence domain. 20
6.2.3 Weakly relational domains 20
6.2.4 Combinations & operators 21

7 Manipulating Abstract Domains 21
7.1 Closure operators 21
7.2 Direct and Reduced product .. 22
7.3 Complement 23
7.4 Powerset domains 23
7.5 An example 23

1

8 Software libraries 23
8.1 Convex polyhedra libraries . .. 24
8.2 The Octagon Abstract Domain Library. 24

9 The Congruence domain revisited 24
9.1 Mathematical preliminaries . .. 24

9.1.1 Number Theory. 24
9.1.2 Bits 24

9.2 Important definitions .. 25
9.2.1 Equivalence classes . .. 25
9.2.2 Singleton and non-singleton values 26

9.3 Modification of the domain . .. 26
9.4 An example 27

10 Abstract operators of the congruence domain 27
10.1 Arithmetic Operators .. 27
10.2 Conditionals and relations . .. 28
10.3 Bit operators 28

10.3.1 The NOT operator . .. 30
10.3.2 The AND, OR and XOR operators 30
10.3.3 Left shifting . .. 30
10.3.4 Right shifting .. 32
10.3.5 Truncating . .. 32
10.3.6 Extensions . .. 33

11 SWEET and the congruence domain 33
11.1 Implementation 33

12 Conclusions and discussion 34

13 Future Work 35

A Domain summaries 38
A.1 The interval domain . .. 38
A.2 The congruence domain. 38

2

Acknowledgments

This Master’s Thesis has been written at M¨alardalen University, Department of Com-
puter Science and Electronics between January 2005 and April 2006.

I would especially like to thank my supervisor Bj¨orn Lisper and Andreas Ermedahl
at the department for help, useful suggestions, comments and for developing the idea
for the thesis. Also, thanks go to Jan Gustafsson and Christer Sandberg from the WCET
project. Thanks also to Jan Carlsson for recommending me the WCET project.

3

1 Introduction

Static program analysis is an automatic process that obtains properties of a program
by analysing its source code or object code. It has been widely used in optimizing
compilers, for instance. But as software becomes more and more important in our so-
ciety and as the reliability of software becomes safety-critical, static program analysis
has become more important. Program analysis can and has been used to find errors in
software or to verify correctness of programs. Obtaining information about the time
a program will take to execute is also possible with program analysis. However, it is
not possible to get exact information about programs with static analysis. For example,
it would be (very) nice if program analysis could guarantee that a program is correct
or if it could tell the how exact time that a certain program will take to execute but
such problems are undecidable (that is, impossible for a mechanical process to solve).
Instead of solving undecidable problems, program analysis can introduce some sort of
approximation to transform it to a decidable problem to the cost of loosing information.

Abstract interpretation is a framework for program analysis introduced by Radhia
and Patrick Cousot [CC77]. Generally, abstract interpretation can be regarded as a
theory of abstracting for complete lattices. In practice, the lattice to be abstracted cor-
responds to the state space of a program. The basic idea is that a (possibly infinite)
set of states is approximated by oneabstract state. This abstraction is made based on
some property of interest. The variables and functions of a program is also abstracted
using the same property. This leads to a computable set of states which correctly ap-
proximates the program.

Abstract interpretation has been used in different contexts as theory for abstraction.
For instance, it has been used in model checking. Model checking is an approach to
formal verification, that requires exhaustive search of the state space of a program.
Since the state space in general is far too vast to be explored exhaustively, abstraction
is typically required. This abstraction can be done using the framework for abstract
interpretation.

Abstract interpretation simulates execution with an abstract semantics over a pro-
gram. Different abstract semantics gives information about different properties of the
program. The different forms of abstraction over the semantics are calledabstract
domains.

1.1 Static analysis and WCET

A hard real-time system is a system where the importance of the program meeting its
deadlines are as important as the correctness of the program itself (in fact, the program
is considered to be incorrect if the deadlines are not met). Typically, safety-critical
systems are hard real-time systems. In this context it is important to have information
about the execution time of a program. Execution time, of course, depends on hard-
ware, software platform, input, etc. The execution time varies from time to time and
measuring the execution time on one system may not agree with measurements on an-
other. An important notion when it comes to measuring execution time is the WCET
(Worst Case Execution Time) which is, as the name suggests, the maximal time it can
take for a certain piece of code to execute on a specific system. The WCET is impor-
tant to know because one can be sure that the piece of code always takes less than or
equal the amount of time of the WCET, thus, the WCET is a time-measure. However,
to determine the WCET for a piece of code on a system automatically is impossible
due to the difficulty caused by schedulers, cache-memories, execution path’s etc. It is,

4

however, possible to determine asafe upper bound for the WCET of a piece of code.
A safe upper bound of the WCET is any time value that is equal to or greater than the
real WCET. For example, an ”infinite amount of time” would be a safe upper bound
for any WCET, but it would not give any useful information about the actual WCET.
Therefore, the ambition is to calculate such atight upper bound as possible, that is to
say an upper bound that is as close as possible to the actual WCET.

To be able to calculate a safe upper bound for a WCET of a program, we must
consider both the source code of the program and the given hardware. A WCET tool
usually implement this in two different phases and then combines the results to give
the final result. These phases are calledhigh-level analysis(for the source/object code),
low-level analysis (for the target platform) and thecalculation phase(where the results
from high- and low-level analysis are combined). High-level analysis analyses the
source or object code to find loop-bounds or execution counts for basic blocks, whereas
low-level analysis calculates execution times on atomic parts of the program based
on the hardware model. The hardware model must take pipe-lines, cache memories,
etc. into account. Finally, the results from the different phases are combined in the
calculation phase. This calculation can be done with different techniques. Calculation
techniques include, for example IPET(Implicit Path Enumeration Technique).

1.2 SWEET

A static time analysis tool is currently under development at M¨alardalen University
[MdH06]. This tool is called SWEET (SWEdish Execution time Tool). The purpose
of SWEET is to find a safe upper bound to WCET of a program automatically, without
active user-interaction or annotations.

In SWEET, the high-level analysis is performed in four steps: program reduction,
value analysis, syntactic analysis and abstract execution. The program reduction pre-
pares the program for the other phases by eliminating variables that are not important
for the control flow, from the program. The value analysis uses abstract interpretation
to get information about possible values for the variables. The syntactical analysis tries
to find known patterns of loops to give an estimation of the loop bounds. The abstract
execution simulates program execution over abstract states. The simulation is based on
abstract interpretation.

The analysis is performed over an intermediate language called NIC (New Inter-
mediate Code), developed at Uppsala University [GLSB03]. That it is an intermediate
language means that it is on a lower level than the source code but on a higher level
than the object code. There are benefits in performing the abstract interpretation on
an intermediate language; it is close to the object code, so the code won’t change too
much when compiled but it also contains more information than the object code which
will give a richer analysis.

NIC stores values of integers as bit-strings of length8,16 or 32. The type informa-
tion is not as precise as it is in C in NIC. In C, an integer can be declared as signed or
unsigned. This type information is not explicitly expressed in NIC. The abstract inter-
pretation that we shall be interested in deals only with bitstrings interpreted as integers
, therefore, Table 1 shows the integer- and bit operators that NIC supports.

The number inside parentheses is the number of arguments that the operator takes.
All operators except the relational ones returns integers and all arguments are integers,
the relational ones returns booleans. Some operators has signed and unsigned versions
because the operators are implemented differently on a lower level. A signed operator
asserts thats all its arguments are interpreted as signed, and an unsigned interprets all

5

Arithmetic operators
neg (1) negation
add (2) addition
sub (2) subtraction
u mul (2) unsigned multiplication
s mul (2) signed multiplication
u div (2) unsigned division
s div (2) signed division
u mod (2) unsigned remainder
s mod (2) signed remainder
Bit operators
l shift (2) left shift (second argument is number of steps)
r shift (2) right shift (second argument is number of steps)
r shift a (2) arithmetical right shift (second argument is number of steps)
not (2) bitwise not
and (2) bitwise and
or (2) bitwise or
xor (2) bitwise xor
trunc (2) truncate bits (second argument is number of bits)
z ext(2) zero-extend bits (second argument is number of bits)
s ext(2) signed-extend bits (second argument is number of bits)
Relational operators (returns true/false)
cmp eq(2) compare integers for equality
cmp ne(2) compare integers for non-equality
u cmp lt(2) unsigned less than comparison
s cmp lt(2) signed less than comparison
u cmp ge(2) unsigned greater than or equal comparison
s cmp ge(2) signed greater than or equal comparison
u cmp gt(2) unsigned greater than comparison
s cmp gt(2) signed greater than comparison
u cmp le(2) unsigned less than equal comparison
s cmp le(2) signed less than or equal comparison

Table 1: Integer operators supported by NIC

6

its arguments as unsigned. Therefore, it is possible to determine the sign of a variable
when it is applied to a signed or unsigned operator.

1.3 Motivation and results

As mentioned, important parts of the flow analysis in SWEET uses abstract interpreta-
tion. Currently, the abstract interpretation uses theinterval domain which is an abstract
domain that can determine safe lower and upper limits program variables. However,
there are many abstract domains and they can be used to obtain different properties
of programs. The choice of abstract domain is a trade-off between efficiency and pre-
cision. The main purpose of this thesis is to examine the possibility to enhance the
abstract interpretation used in SWEET. This has resulted in a formal introduction to
abstract interpretation, a summary of invented numerical abstract domains, a summary
of free software libraries of abstract domains, a small survey on mathematical prop-
erties of abstract domains and finally a special study of the congruence domain. The
congruence domain seems like a reasonable domain to add to the SWEET tool. Since
SWEET analyses low-level code, the congruence domain has to be enhanced with bit-
level operators to work fully. No such operators has to our knowledge been published,
so we will introduce bit-operators for the congruence domain in this thesis. A prototype
implementation of the congruence domain has also been developed, a brief description
of this implementation is also included in this work.

1.4 Related work

The original idea of abstract interpretation was presented by Patrick and Radhia Cousot
[CC77]. They have extended their work in several papers, such as [CC79].

An introduction to program analysis in general (including abstract interpretation) is
given in [NNH05]. Introduction to lattice theory, which is an important part of abstract
interpretation, can be found in [DP90].

As several abstract domains will be presented in this thesis, a list of the inventors
and the domains, as well as pointers to the original work is provided.

• Antoine Miné - The octagon domain [Min06]

• Patrick Cousot/Nicolas Halbwachs - The convex polyhedra domain [CH78]

• Philippe Granger - The congruence domains [Gra89].

• Patrick Cousot - The interval domain [CC77]

The original idea of manipulating domains by regarding them as elements of a
lattice was also first presented by Cousot & Cousot [CC79]. Later expanded by com-
plementation [CFG+97].

Publications on the SWEET tool can be found on [MdH06]. Important publications
includes [Gus00] and [Erm03].

1.5 Outline

The first part of the thesis is an introduction to abstract interpretation. It will build the
idea of abstract interpretation step-by-step in sections 2 through 5.

Section 6 will then work as a survey of existing abstract domains with discussion
on their properties and complexity.

7

Figure 1: Flowchart nodes

A brief introduction to the nature of abstract domains as mathematical objects and
their properties is presented in section 7, followed by a list of implemented and free-
to-use software libraries of abstract domains in section 8.

The congruence domain is then studied in detail in Secion 9, where abstract opera-
tors of this domain is summerized, and new bit-operators are introduced.

A prototype implementation of the abstract congruence domain has been imple-
mented and it is described in section 11.1.

Conclusions, discussions and future work are in Sections 12 through 13

2 Collecting semantics

The following sections will introduce abstract interpretation in a fashion quite close
to the original description by the Cousots. It will begin by introducing a concrete
collecting semantics which is the foundation on which abstract interpretation is built,
followed by a section about abstraction and finally defining the abstract interpretation.

The semantics of a program defines the mathematicalmeaning of a program. The
semantics is defined for each part of a programming language’s constructs and maps
each program to a mathematical representation of its meaning. For imperative lan-
guages, the semantics often computes thestates of a program. The collecting seman-
tics is a semantics that computes all possible memory states that can occur during the
execution of the program. However, in most cases the calculation for finding out all the
exact memory states that occurs during execution is practically impossible. But since
it in theory computes the exact states, it is a good foundation to build program analyses
on. Abstract interpretation uses the collecting semantics as base for theory.

2.1 Definitions

To be somewhat language independent in the presentation we will consider a program
as a flowchart with five types of nodes (see figure 1): start, exit, assignment, conditional
and merge nodes. A program is assumed to start at the start node and, if the program
terminates, it will do so at the exit node. An assignment node assigns a program vari-
able to an expression. The conditional node has two emerging edges called thetrue
and thefalse edge. The true edge is followed if the conditionalP is true for the current
memory configuration, otherwise the false edge is followed. The merge nodes has at
least two incoming edges. This representation demands that the language is imperative
but not so much more.

Let Prg be a program, then we define IDENTPrg to be the set of identifiers (vari-
ables) in the programPrg. However, the more convenient notation IDENT will be used
when there is no risk of ambiguity. LetV be the set of values that each identifier can
be assigned to. Before an identifier has been assigned to a value it is assumed to be
assigned to the special value⊥ ∈ V . If a value is assigned to⊥ it means that it is

8

uninitialized. The values that each identifier, at a certain moment, is assigned to can be
represented as a mapσ : IDENT → V so that each identifier is associated with a value.
Such a map will be called anenvironment. Thus, an environment can be regarded as a
memory that holds the values for each identifier. The set of all possible environments
will be denoted ENV. It is assumed that every instruction is executed in an environment
and that the instruction possibly can update this environment.

A program point is an edge of the flowchart, that is a pair〈i1, i2〉wherei1 andi2 are
nodes of the flowchart. The set of possible program points will usually be denotedQ.
Each program point can be associated with one or several environments. It is natural to
associate a program point〈i1, i2〉 with the environment that was updated by the nodei 1

and in whichi2 will execute. An environment associated with a certain program point
q ∈ Q is called astate. A state is denotedSq (whereq is a program point) or possibly
〈σ, q〉 whereσ ∈ ENV, q ∈ Q. The set of all states is denoted STATES = ENV × Q
and the set of all states associated with a certain program pointq is denoted STATESq.
With this terminology, we can define a collecting semantics.

2.2 The transition system

The goal of the semantics is to collect all environments that can possible occur at each
program point during execution. The semantics can be described with a transition
system which maps a set of states to a new set of states depending on the type of
program point.

τ : P(STATES) → P(STATES)

The actual definition of this function depends on the program. The states are then
collected by solving a fixed point equation. This computation simulates execution of
the program with all possible input. So after the computation is done, aset of states
is associated with each program point. A set of states at a program point is called a
context (Thus, a context is an element from the setP(ENV)). Such a context represents
all values that all variables assume under execution of the program with all possible
input. So after applying the transition function and a fix point is reached, a context is
associated with each program point.

The subsets of the set ENV (in other words the set of contexts) constitutes a com-
plete lattice:

(S,�,�,�,	,⊥) ⇔ (P(ENV),∩,∪,⊆, ENV, ∅)

This lattice is calledthe concrete semantic domain. Now, with the concrete se-
mantic domain and the transition system we have the tools for computing all different
states that can possible occur for any given input during execution. Unfortunately this
is too good to be true; the computation gives exact information of the program for all
possible input and is uncomputable at compile time. If this calculation could be made,
the halting problem could have been solved, which is impossible. Luckily, there are
ways to deal with this problem. The key is to simulate this semantics over anabstract
domain to make it computable. In next section we define the concept of abstraction.

3 Abstract Interpretation

The concrete semantic domain is clearly to advanced to be of practical use. If we
replace the concrete semantic domain with something simpler, it is possible to get
an approximate result in finite time. This result will not be as precise as the ”real”

9

Figure 2: The lattice of signs

uncomputable result from the concrete semantic domain. An abstract domain is in
some way an abstraction of the concrete semantic domain. In the abstract domain
we ”forget” some of the properties of the concrete semantic domain in order to get
the domain computable and computer-representable. The abstract domain has to be
correct in the sense that all states derived in the concrete semantic domain should
also be derived in the abstract domain, but the abstract domain will also include some
states that actually not will occur in the concrete one – we get an over approximated
result. To mimic the concrete semantic domain, the abstract domain should also be a
complete lattice. There should then be a correspondence between the concrete semantic
domain and the abstract domain to make sure that the abstract domain actually is a
sound approximation of the concrete semantic domain.

3.1 The idea of abstraction

Suppose thatV = Z∪{⊥} is the set of values that identifiers can be assigned to. Since
we cannot compute the exact context for a program point, we drop some information
in order to get a computable model. For instance, drop all information about every
variable except whether it is positive, negative or zero at a program point. This can be
done by replacingV with the setV̂sign = {⊥,−, 0, +,	}, where⊥ means that the
variable has no value,	 means that we don’t know the sign of the variable and−, 0
and+ has the obvious meanings. It is easy to see that each value inV corresponds to
a value inV̂sign. We can arrange the values ofV̂sign in a complete lattice as shown in
figure 2. We will refer toV̂sign as thesign domain. We say that̂Vsign is anabstraction
of V because it contains less information about the variable than the setV , even though
the information is ”correct”. The idea of abstraction will be formalized in next section.

3.2 Galois connections

Given two latticesC andA, we can define a pair of maps
(α, γ) ∈ (C → A) × (A → C). Further, for(α, γ) the following properties should
hold:

α ◦ γ � idA andγ ◦ α � idC

whereidX is the identity function onX . A pair of maps with these properties is known
as aGalois connection. If it also holds that

α ◦ γ = idA

Then the maps are called aGalois insertion. When used in abstract interpretation we
call α the abstraction map andγ the concretization map. If (α, γ) are given for an

10

abstractionA of C, thenA is a sound abstraction ofC. That is, we can be sure that
A correctly abstracts the information ofC. In the context of abstract interpretation we
shall say thatA abstracts C if there is a galois connection(α, γ) ∈ (C → A) × (A →
C).

3.2.1 An example

Consider the sign abstraction from Section 3.1. LetA = V̂sign andC = P(Z). Then
we can define a galois connection betweenA andC as follows:

• αsign(A) = +, if all elements inA are greater than zero

• αsign(A) = −, if all elements inA are less than zero

• αsign({0}) = 0

• αsign(∅) = ⊥
• αsign(A) = 	, otherwise

• γsign(+) = Z+

• γsign(−) = Z−

• γsign(0) = {0}
• γsign(⊥) = ∅

• γsign() = Z

whereZ+ = {x ∈ Z|x > 0}, Z− = {x ∈ Z|x < 0}. It is easy to verify that this is
in fact also a Galois insertion.

3.3 Relational and non-relational domains

The concrete semantic domainC is defined as the complete lattice of environments, or
formally C = P(IDENT → V). Thus, a domain which abstracts the concrete semantic
domain is an abstraction of concrete environments. The abstractions of the concrete
semantic domain fall into two important categories; those that preserves relations be-
tween variables and those that don’t. These two categories are known asrelational
domains andnon-relational domains.

3.3.1 Non-relational domains

In a non-relational domain all identifiers are abstracted independent of each other. In
this case a concrete context is abstracted throughone map. We will formalize how an
non-relational domain abstracts a set of concrete environments (i.e. a context). Let
C = P(IDENT → V) be the concrete semantic domain. Also, let there be a galois
connection(αV , γV) ∈ (V → V̂ , V̂ → V). Then we can construct a galois connection
between the concrete semantic domainC and a non-relational abstract domainA =
IDENT → V̂ through the following galois connection:

γNR(a) = {λx.v|v ∈ (γV ◦ a)(x)}

11

αNR(c) = λx.αV (
⋃

{τ(x)|τ ∈ c})
wherea ∈ A, c ∈ C. A non-relational domain relies on an abstraction between the set
of valuesV and an abstraction̂V . Each identifier is then approximated independent of
each other. To summarize, a non-relational domain is a map which maps each variable
on anabstract value. This approach yields an effective but rather imprecise analysis.

To give an example of an non-relational domain, consider the sign abstraction from
Section 3.1. Set(αV , γV) = (αSign, γSign) in the definitions above and we get an
abstract domain a non-relational abstract domain of signs.

3.3.2 Relational domains

Consider the sign domain mentioned above. Suppose that, in a certain program point,
the variablex always is positive iffy is negative, and thatx is negative iffy is positive in
the concrete contextc, further suppose that neitherx nory can be zero. If we compute
the result ofαNR(c) of the sign domain, we would get a mapping which mapsx to
{−, +} andy to {−, +}. Evidently, this is a great loss of information, but sinceαNR

treats each variable independently, this is actually the smallest correct mapping we can
do with a non-relational domain. To increase precision we might take dependencies
between variables into consideration, to the cost of a less efficient analysis of course.
To do this, we cannot let a single map approximate an abstract environment. Rather, in
this case, we would like to approximate the context withtwo maps – one map where
[x �→ +][y �→ −] and one where[x �→ −][y �→ +]. These two maps abstracts the
concrete context and respects dependencies between the two variables which makes
the set of them an abstraction of the concrete semantic domain.

We are not going to define a generalα andγ for non-relational domains as we did
for relational ones because relational domains can be constructed in different ways. For
instance, we do not need abstract values (likeV̂) to construct relational domains.

To summarize, non-relational domains are more efficient than non-relational do-
mains but they give a less precise analysis because they ignore the relationship between
variables. So generally, if more precision is desired, choose a relational domain and if
a faster analysis is required, a non-relational one may be a better choice.

3.4 More definitions

As mentioned, to make an interpretation of a program computable, we want to have an
abstract interpretation dealing with abstract domains. We shall therefore summarize the
abstract versions of the concepts of values, environments and states that was defined in
Section 2.1.

• An abstract value is an element from a set̂V which through a galois connection
abstracts the set of valuesV of a program. For instance is+ an abstract value
of the sign domain. Note that in some relational domains there is no need for
abstract values.

• An abstract context is an abstraction (through a Galois connection) of a concrete
context. The set of abstract environments is denoted̂CTX. Note that in a non-
relational domain, an abstract context isone map, whereas in a relational domain
it is a set of maps.

12

• An abstract state is an abstract context associated with a program point (similar
to the concrete definition). An abstract state is usually denotedŜq, whereq is a
program point.

4 Abstract operators

In an assignment in a program, a variable is often assigned to an arithmetic expression.
In an abstract domain, the exact value of a variable is not known and hence not the
exact value of an expression (if it contains variables). To be able to give an abstract
estimation of an expression, all the operators in the expression must be abstracted. How
to do this is formalized in this section. Letf : V n → V be anyn-ary operator in a
program language. Then we can create another operatorfP : P(Vn) → P(V) which
is defined as

fP(M) = {f(zn)|zn ∈ M} (1)

Now, let V̂ be an abstraction ofV . An abstract operator is an operatorf̂ : V̂n → V̂
such that

fP(M) � γ ◦ f̂ ◦ α(M) (2)

for all M ∈ P(V).
In the same way, it is possible to abstract relations on the form∼: V n → {True, False}

to an abstract version̂∼ : V̂ → {⊥, T rue, False,	}.

4.1 An example

Consider the sign domain from Section 3.1. The sign abstraction abstractsZ. Suppose
that we want to make an abstract version of the operator∗ : Z × Z → Z. To do so we
begin by examining the properties of∗P . By (1) we have

A ∗P B = {a ∗ b|(a, b) ∈ A × B}
So, by (2) it is required that

{a ∗ b|(a, b) ∈ A × B} ⊆ γ(α(A)∗̂Signα(B))

The product of any two integers is positive and so are the product of any two negative
integers. Thus, anyset of positive integers multiplied (with∗P) with another positive
set yields another set of positive integers. It is therefore safe to make the conclusion
that

+∗̂Sign+ = +

sinceγ(+) = Z+ andZ+ is certainly a superset to any set of positive integers. By
simple reasoning one can also conclude that

−∗̂− = +
−∗̂+ = −
0∗̂z = 0, ∀z ∈ V̂Sign\{⊥}
	∗̂z = 	, ∀z ∈ V̂Sign\{⊥, 0}
⊥∗̂z = ⊥, ∀z ∈ V̂Sign

The rest of the cases follows from the commutativity of∗̂.

13

To demonstrate an abstract relation, consider the relation≤ on integers. In the sign
domain it is easy to verify that:

− ≤̂ − = 	
− ≤̂ 0 = True

− ≤̂ + = True

0 ≤̂ − = False

0 ≤̂ 0 = True

0 ≤̂ + = True

+ ≤̂ − = False

+ ≤̂ 0 = False

+ ≤̂ + = 	
	 ≤̂ z = z ≤̂ 	 = 	, ∀z ∈ V̂Sign\{⊥}
⊥ ≤̂ z = z ≤̂ ⊥ = ⊥, ∀z ∈ V̂Sign

where	 denotes that the condition may or may not be true.
It is important to realize that arithmetic operators like+ and ∗ are defined for

integers, hence they can be abstracted only by domains abstractingZ. In abstract in-
terpretation we use abstraction ofcontexts. So in order to do abstractions of+ and∗,
we have to have a proper definition of these operators for contexts. In non-relational
domains, however, variables are abstracted independently of other variables and each
variable is an abstraction ofV , so if V = Z ∪ {⊥} then the regular abstractions of+
and∗ can be used.

5 The abstract transition function

With a collecting semantics defined and a notion of abstraction and abstract domains,
we can now define how the framework for abstract interpretation works. To mimic the
semantics over an abstract domain we shall define theabstract transition function:

τ̂ : P(ŜTATES) → P(ŜTATES)

The abstract transition function is defined in terms of the considered program. There-
fore, next section will begin by classifying all program points.

5.1 Classifying program points

The program points of a program (i.e. the edges of the flowchart) can be categorized in
five different groups.

• A program point〈n1, n2〉 is called astart point iff n1 is the start node of a
program.

• 〈n1, n2〉 is called anassignment point iff n1 is an assignment node.

• 〈n1, n2〉 is called aconditional true point iff the point corresponds is the true
edge from a conditional noden1.

14

• 〈n1, n2〉 is called aconditional false point iff the point corresponds is the false
edge from a conditional noden1.

• Finally, 〈n1, n2〉 is called amerge point iff n1 is a merge node.

5.2 Definition of the abstract function

Two important operators will be defined before the abstract transition function can be
presented

pre: Q → P(Q)

and
suc: Q → P(Q)

whereQ is the set of program points. The mappre simply maps the set of possible
predecessors of a program point (that is, all program points that could immediately pre-
cede it). Similarly,suc maps a program point to all its possible immediate successors.
Formally:

pre〈n1, n2〉 = {〈n, n1〉|n ∈ NODES}
suc〈n1, n2〉 = {〈n2, n〉|n ∈ NODES}

where NODESis the set of nodes in the considered flowchart. Note that|preq| > 1 iff
q is a merge point and the|sucq| > 1 iff q is an edge to an conditional node. Now we
can define the abstract transition map.

The abstract transition map̂τ maps from a set of abstract states to a new updated
set of abstract states. In the following definition, letŜ be a set of abstract states and
let Ŝ′ = τ̂ (S). Also, let Ŝq and Ŝ′

q denote the abstract context associated with the

program pointq in Ŝ and Ŝ′ respectively. The abstract transition function will be
defined in terms of̂Sq andŜ′

q, so that we get a system of equations.

Initial program point Since we are consideringall input of a program, we assume
that every variable can assumeany value. This is (for every abstract domain)
modeled by the top element of the abstract domain, hence:

Ŝ′
q = 	

if q is an initial program point.

Assignment To avoid complexity, only this type of program point will only be ex-
plained for non-relational domains, where each program point is associated with
one abstract environment only. In a non-relational domainŜq is a function from
variables to abstract values.

Assuming that every arithmetic operator∗ of V has an abstract version̂∗ (see
Section 4), we can also for every expressionE create an abstract version of the
expressionÊ(Ŝq) by replacing all operators∗ in E with ∗̂ and all constantsn
with α(n). Further, all identifiersx in E has to be replaced witĥSq(x), which
means that the identifiers are taken from the abstract valueŜq.

x = E

15

yields the equation
Ŝ′

q = Ŝpre q[x �→ Ê(Ŝpre q)]

if q is an assignment point. The functionf [x �→ a] is the functionf but with
f(x) = a. Note thatŜpre q always is justone abstract state because an assign-
ment point always has one predecessor.

conditional-true A condition is a boolean expression A condition (i.e. a boolean
expression)cond is assumed to have an abstract version̂cond(Ŝq) where each
arithmetical expressionE is replaced byÊ(Ŝq), each relational operator∼ re-
placed by∼̂ and each boolean operator∗ replaced by∗̂. At a conditional-true
point, the conditional is assumed to be true. The values of the identifiers has
not been changed since the last program point, though. So reasonably, at a
conditional-true point, an identifier can only have the values it had at the pre-
vious program point which satisfies the predicate conditional. Therefore, we
have

Ŝ′
q =

⊔
{s|s � Ŝpre q ∧ ĉond(s) � True}

whereq is a conditional-true point.

conditional-false Following the discussion above we let (ifq is a conditional false)

Ŝ′
q =

⊔
{s|s � Ŝpre q ∧ ĉond(s) � False}

merge Finally, at a merge point, each of the ”incoming” states may be true, hence:

Ŝ′
q =

⊔
Ŝpre(q)

if q is a merge point.

The abstract interpretation is then performed by solving the equation:

Ŝi = τ̂ (Ŝi)

whereŜ0 = ⊥, Ŝi = τ̂(Ŝi−1). In order for this function to have a solution is that
τ̂ is a monotone function. That is,S � S ′ ⇒ τ̂ (S) � τ̂(S′) for all S andS ′. This
equation can be solved by computing the sequence(S i)i∈N = Ŝ0 � Ŝ1 � Ŝ2 � ...1

until Ŝi+1 = Ŝi for somei.

5.3 An example

As an illustration of abstract interpretation, consider the flowchart in Figure 3. If the
abstract domain of signs (see Section 3.1) is used then the abstract transition function
yields the following system of equations.

1or equivalently⊥̂ � τ̂(⊥̂) � τ̂(τ̂(⊥̂)) � ...

16

Figure 3: Flowchart

Ŝq0 = [x �→]

Ŝq1 = Ŝq0 [x �→ α(2)] = Ŝq0 [x �→ +]

Ŝq2 = Ŝq1 � Ŝq1

Ŝq3 =
⊔

{s|s � Ŝq2 ∧ Ŝq2(x)≤̂0 � False}
Ŝq4 =

⊔
{s|s � Ŝq2 ∧ Ŝq2(x)≤̂ 0 � True}

Ŝq5 = Ŝq4 [x �→ Ŝq4(x) ∗̂ α(−1)] = Ŝq4 [x �→ Ŝq4(x) ∗̂ −]

To solve this system of equations, we begin by settingŜqn = ⊥ for all program
pointsqn. Then the left hand side is replaced by the right hand side of the system. The
process is iterated until the left hand side equals the right hand side. The iterations is
shown in figure 4. A fixed point is reached after seven iterations (iterations seven and
eight yields the same result).

5.4 Widening/Narrowing

There is a risk that the fix point calculation will never terminate even though abstract
semantics is used. This is because, the lattice of an abstract domain might contain infi-
nite chains. If the chain(Ŝi)i∈N never stabilizes to a constant, then the calculation will
never terminate. Sometimes the calculation terminates but takes too much time. There
are solutions to these problems however. In order to ensure (or in some cases just speed
up) termination, awidening operator is needed. This operator ensures termination but

17

Program point Iter 0 1 2 3 4 5 6
q0 ⊥ [x �→] [x �→] [x �→] [x �→] [x �→] [x �→]
q1 ⊥ [x �→ +] [x �→ +] [x �→ +] [x �→ +] [x �→ +] [x �→ +]
q2 ⊥ ⊥ [x �→ +] [x �→ +] [x �→ +] [x �→] [x �→]
q3 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [x �→ −]
q4 ⊥ ⊥ ⊥ [x �→ +] [x �→ +] [x �→ +] [x �→]
q5 ⊥ ⊥ ⊥ ⊥ [x �→] [x �→] [x �→]

Figure 4: Iterations of applying the abstract transition function

may over approximate the result. To give a somewhat better approximation there is
also a somewhat dual concept ofnarrowing.

Definition 5.1. Let L be a lattice and ∇ : L × L → L be a function. Then ∇ is a
widening operatorif

x � x∇y and y � x∇y for all x, y ∈ L

and that for every increasing chain (y i)i∈N the increasing chain (yi
∇)i∈N defined by

• y0
∇ = y0

• yi+1
∇ = yn

∇∇yn

after a while stabilizes to a constant. That is, ∃j∀k(k ≥ j ⇒ xk = xj).

If the original chain is replaced with the widening chain in the fix point equation
then termination is guaranteed. Let(Ŝi)i∈N be a chain of abstract states (as described in
Section 5.2). If the abstract domain contains infinite chains, then, to ensure termination,
the abstract domain must have a widening operator for the abstract contexts in the
domain. Then we can construct the chainŜm

∇ and a solution to the equation̂Sm
∇ =

τ̂ (Ŝm
∇) is always guaranteed.
Because of the loss of information when using widening, it is possible to get a

slightly better result with a narrowing operator [CC77]. When the over approximated
fixed point has been reached, the result can gradually be better with narrowing. The
narrowing is defined in the same way as widening but as a decreasing chain that is
always an over-approximation of the fixed point.

6 Existing domains

In this section some existing (and used) abstract domains will be presented. Only
numerical domains will be considered here though, in fact we shall assume thatV =
Z ∪ {⊥} in all domains.

6.1 Non-relational domains

6.1.1 Property domains

The simplest domains are those that only collect simple properties of variables. The
sign domain presented in Section 3.1 is a property domain describing the integer prop-
erty of being positive, negative or zero. Another property domain is theparity domain.
It is a simple lattice where

⊥ � odd � 	

18

and
⊥ � even � 	

It is easy to lift ordinary operators like+ and∗ to this abstract domain. We give an
example of the abstract addition operator+̂:

even +̂ even = even
even +̂ odd = odd
odd +̂ even = odd
odd +̂ odd = even
	+̂ x = x +̂ 	 = 	 if x �= ⊥
⊥+̂ x = x +̂ ⊥ = ⊥

6.1.2 The interval domain

The idea of abstracting values to properties will not give very precise information about
the values - a far more precise domain is the interval domain [CC77]. In this domain,
a set of integers are approximated by the least single interval enclosing them. A setZ
of integers is approximated with[a, b] wherea = min Zi∈N, b = maxZi∈N. However,
sometimes it is not possible to know about the upper/lower limit of a set of integers so
we will also allow intervals[a, b] wherea may be−∞ and/orb may be∞.

This domain is indeed a lattice. We introduce the ordering� such that[a, b] � [c, d]
iff the whole interval[a, b] is contained inside of[c, d] or equally,a ≥ c andb ≤ d. The
top element	 is then the interval(−∞,∞) since each interval is contained inside it.
The bottom element⊥ is an empty interval which contains no elements. This lattice has
infinite height and contains infinite chains and therefore it needs a widening operator,
which can be found in [CC77].

This lattice is fast and easy to deal with, but it has some severe drawbacks. For
instance, consider the set{−100, 5000} (cardinality= 2). This set of two values will
be approximated as a much greater set[−100, 5000] (cardinality= 5101) which is an
immense over-approximation. A summary of important operators of this domain is
given in Appendix A.

6.1.3 The congruence domain

It is possible to generalize the parity domain discussed above to the congruence domain
[Gra89]. In the congruence domain a set of values are mapped to the least common set
where each variable has the formaZ + b. By least common set we mean that the value
of a shall be maximized. Thus, an abstract element represents an infinite, discrete,
equal-spaced set of integers. The parity domain is a special case of this domain where
a is fixed to2. A summary of some important operators for this domain is given in
Appendix A. The congruence domain and the interval domain models quite orthogonal
concepts. The interval domain gives upper and lower bounds for a variable’s possible
values, whereas the congruence domain measures density of its values. As we shall
see in Section 7 it is possible to combine properties of different abstract domains to
obtain new, more precise domains. There is much more on the congruence domain in
Section 9.

19

6.2 Relational domains

6.2.1 The polyhedral domain

The domain of convex polyhedra was suggested by Cousot & Halbwachs [CH78] for
which a full description is given in [Hal79]. This is one of the most commonly used
numerical relational abstract domain. A polyhedron inn-space (wheren is the number
of variables in the program) describes limits for the variables. A polyhedron can be
described on the form:

Ax ≤ b

whereA is ann × n matrix andx andb are vectors. A polyhedron can be described
as above; as a system of linear equations, that is, a finite intersection of half-spaces.
The polyhedron represents all integers enclosed within the polyhedron, and each di-
mensional axis represent a program variable.

The linear equation is not the only way to represent a convex polyhedron however.
In fact we will need an alternative representation to use convex polyhedra as an abstract
domain. Consider a set of pointsS ∈ Zn. Theconvex hull of these points is the least
polyhedron enclosing all points. A subset ofS entirely determines the convex hull,
and these points are calledvertices. If we have no bounds for the setS (i.e. S is
infinite), the vertices will not provide enough information to represent a unbounded
polyhedron. A vector for which any positive combination of it still is contained inside
the polyhedron is called aray. A set of raysR and the a of verticesV , is enough
information to determine a polyhedron. The reason for having two representation is
for implementation purposes. The intersection of two polyhedra (represented by linear
constraints) is easily constructed by adding the constraints from one polyhedron to the
other, but if we are computing the convex hull of two polyhedra (represented by vertices
and rays), the new set of vertices is simply the union of the two vertex sets and the same
for the rays. Therefore it seems that a conversion between the two representations is
needed. The polyhedral domain gives really good limits for variables as long as the
relations are linear, sadly it is very complex and as the number of variables grow it is
hard to deal with.

6.2.2 The linear congruence domain

It is simple to add relationships between variables to the non-relational congruence do-
main above [Gra91]. An integral lattice (of dimension equal to the number of variables)
has the form:

Ax ≡ aZ + b

An element of this domain is the set of variables that can be written as a linear combi-
nation of the row vectors ofA, where all coefficients are positive. This is a slower but
more precise version of the non-relational congruence domain.

6.2.3 Weakly relational domains

A compromise between the efficiency of non relational domains and the precision of
relational ones are so-calledweakly relational domains [Min02] which preserve some
relationships between variables on the formx − y ∈ C, whereC is a non-relational
domain. A special case of such domains are the difference-bound matrices where one
can detect relations of the formx − y ≤ b or ±x ≤ b. The octagon domain [Min06],

20

Figure 5: The relation among domains

which is a restriction of the convex polyhedral domain, is an extension of difference-
bound matrices. The relation with respect to precision among the comparable domains
signs, intervals, octahedra and polyhedra is shown in figure 5.

6.2.4 Combinations & operators

It is possible to combine quite orthogonal concepts from above to get interesting do-
mains, for example theZ-polyhedra.Z-polyhedra are exactly the intersection between
the linear congruence domain and the polyhedral domain (which is called the reduced
product, see Section 7.2). Thus, the domain is integral lattices bounded by polyhedra.

The Trapezoidal domain [Mas92] has mixed the idea of intervals and linear con-
gruences. This domain describes sets on the formux+ vy ∈ [a, b] mod q. Some of the
ideas can be formalized, which we will see in the following section.

7 Manipulating Abstract Domains

It is possible to generalize the concept of abstract domains further in order to find
interesting theoretic properties of them. In this section abstract domains will be seen
as elements of the set ofall abstract domains. As will be revealed, that set is a lattice
which allows us to perform lattice operators on abstract domains. The actual theory
and of the ideas presented here are out of scope of this thesis, so the ideas will merely
be introduced with a pointer to the original text.

7.1 Closure operators

Definition 7.1. Let D be a lattice and ϕ : D → D an operator on D. Then ϕ is a
(upper) closure operatoron D if:

• d � ϕ(d) (Extensiveness)

• d � d′ ⇒ ϕ(d) � ϕ(d′) (Monotonicity)

21

• ϕ(d) = ϕ(ϕ(d)) (Idempotence)

A closure operator maps elements of certain subsets to the most abstract element
of that subset (d is more abstract thand′ iff d′ � d). The image ofD through a closure
operatorϕ constitutes by itself a complete lattice. So the image of a closure operator
can be seen as an abstraction ofD. Now, letuco(D) be the set of closure operators on
D, thenuco(D) is a lattice(uco(D),�,�,�, λx.	, λx.x). We give the definition of
�:

ϕ � ϕ′ ⇔ ϕ(d) � ϕ′(d) for all d ∈ D

The reason for introducing closure operators is that Galois insertions(α, γ) will
not alone suffice to show that the set of abstract domains is a lattice. A Galois insertion
is dependent on the internal representation of elements in an abstract domain, thus
making it hard to see differences and similarities. Therefore, we need a more general
definition. It can be proved [DP90] that the mapγ ◦α is a closure operator onC. Thus,
any abstract domain defined by a Galois insertion is isomorphic to a closure operator
on the concrete semantic domain. The result is thatuco(D), whereD is the concrete
semantic domain, and the set of abstract domains onD is isomorphic, and the set of
abstract domains in itself is indeed a complete lattice!

Since the set of abstract domains over the concrete semantic domain is a lattice, it is
natural to ask how the lattice operators are defined on this lattice. First, we observe that
the bottom element is the identity closure operator which corresponds to no abstraction
at all. The top element is the closure operator mapping each element to the top element,
yielding no information at all (i.e the abstract domain with only one element).

7.2 Direct and Reduced product

Consider two abstract domainsA andB and suppose that we want a domain that cap-
tures the properties from both domains. A straightforward approach to do this is to
consider elementsa ∈ A × B. Further we define the concretization map for this do-
main as

γA×B〈a, b〉 = γA(a) ∩ γB(b)

The domainA×B is called thedirect product of A andB. This domain forms a Galois
connection but in general not a Galois insertion.

Remember from Section 3.2 that a Galois insertion is a Galois connection whereα◦
γ = idA. Every Galois connection can be reduced to a Galois insertion by introducing
a equivalence relation on elements ofA, such thata ∼ a ′ iff α(a) = α(a′) and then
work with the abstract elements modulo∼. This procedure is known asreducing a
domain.

The reduced product is the domain that remains after reducing the direct product
domain. The reduced product corresponds to the lattice operator� of the uco(C)
lattice. To implement an abstract domain which is a direct product of two domains
is straight forward; all operators are performed component wise (this holds for the
abstraction map as well). Thus, the direct product of two domains can be implemented
by running the analysis with the two domains simultaneously and returning the reduced
intersection of the result. More on analysis with direct and reduced product can be
found in [CMB+93].

22

7.3 Complement

It is natural to ask whether it is a inverse concept of the reduced product. That is,
given a domain, we want to know which domains it is a reduced product of. This
can be interesting because it gives a possibility to decompose a domain which was not
originally defined by composition. however, quotients does not always exist. Before
we make a formal definition of a complement, we need to define a few notions.

A pseudo complement for an elementa in a lattice is the most general elementb
such thata � b = ⊥. That is the pseudo complementa∗ for a is:

a∗ = �{x|a � x}

A domain is calledpseudo complemented iff every element in the domain has a pseudo
complement. We can now give a formal definition of complements of abstract domains
(according to [CFG+97]).

Definition 7.2. Let B be an abstract domain abstracting another abstract domain A
(that is, A � B). If A is pseudo complemented, then the complementof B relative to
A is the pseudo complement B∗. We denote this complement A ∼ B.

If × represents the reduced product, then(A ∼ B) × A = B.

7.4 Powerset domains

The sign domain maps sets of integer to the setV̂Sign. From this abstraction we can
define a new, more precise abstractionP(V̂Sign). By definingγ : V → P(V̂):

γP(Sign)(A) =
⋃

{γSign(a)|a ∈ A}

This has a well defined meaning. For instance, the element{+, 0} corresponds to non-
negative values and{−, +} a non-zero element. Simply put, a power set domain is
the lifting of an abstract set̂V to its power setP(V̂). A power set domain is more
precise but slower than the original. Since power set domains often has infinite chains,
suggestions on how to construct widenings on them are given in [BHRZ03].

7.5 An example

A domain that is using the concept of the reduced product is theZ-polyhedra [SPR00].
TheZ-polyhedra domain is the reduced product of the convex polyhedra and the linear
congruence domain. This analysis can give very precise results since it is relational and
uses two very different analyses at the same time. However, since an implementation
must run both the already costly polyhedral domain and the linear congruence domain,
this domain isvery costly.

8 Software libraries

In this section a few (free) software libraries that implements some of the classic ab-
stract domains will be presented. All libraries are working under GCC (GNU Compiler
Collection).

23

8.1 Convex polyhedra libraries

TheParma Polyhedra Library (PPL) [Par06] is a C++ library that implements the con-
vex polyhedra domain. The library is well documented and the source code is free.
The regular polyhedra operators (including two widening operators) are available. It
also features an implementation of the power set domain of convex polyhedra as well
as special cases where the polyhedrons are not closed. Documentation for users as well
as developers is provided.New Polka [New06]is another software library implement-
ing convex polyhedra (mainly based on Polylib below). Polylib [Pol06] is a C library
with free source code. This library also implements the convex polyhedra domain, or
rather, the convex polyhedra power set domain, since it is implemented as finite unions
of polyhedra. But the linear congruence domain is implemented as well. Finally, op-
erators for theZ-polyhedra are included. A newer version is available as ”PolyLib”.
This library is mainly focused on the power set domain of convex polyhedra.

8.2 The Octagon Abstract Domain Library

This is a fully documented C library for UNIX systems. It contains operators for the
octagon abstract domain (including widenings).

9 The Congruence domain revisited

In the following sections, the congruence domain will be studied in detail. Granger’s
original work will be briefly summerized and then some enhancements for low-level
analysis in this domain will be introduced.

9.1 Mathematical preliminaries

The details about the abstract operators of the congruence domain requires some mathe-
matical preliminaries. The congruence domain and its operators are founded on number
theory, so some knowledge in elementary number theory is expected from the reader. It
will be assumed that the reader is familiar with terms such asgreatest common divisor
andleast common multiple as well as basic modular arithmetic and the division algo-
rithm. If not it can be found in any elementary textbook in algebra or number theory,
for example[Kos02]. Since bit-operators will be developed in the following sections,
some preliminaries of bit-strings will also be given here.

9.1.1 Number Theory

We will use the common definition of modulo in this thesis.

Definition 9.1. a ≡ b mod m iff m|(a − b)

A direct consequence of this isa ≡ b mod m iff ∃q(a = mq + b).

9.1.2 Bits

Bit strings are ordinary numbers represented in base2. However, there are several ways
to deal with negative integers. The most common way (and the way we are going to
use) to represent negative numbers as bit strings istwos complement. To acquire the
negative representation of a given integer through two’s complement is to ”flip” all bits

24

of the given integer and then add one. That is if the number2 is represented by the byte
00000010, then−2 is 11111110. With this representation it is the most significant bit
that decides whether an integer is negative or not. This bit will be referred to as the
signed bit.

9.2 Important definitions

The congruence domain consists of abstract values denoted,aZ + b, Whereb ∈ Z and
a ∈ N. We will call a themodulo andb theremainder.

The lattice operators� and� are defined as follows (due to [Gra89]).

(aZ + b) � (a′Z + b′) = gcd{a, a′, |b − b′|}Z + min{b, b′}
(aZ + b) � (a′Z + b′) = lcm{a, a′}Z + b′′ if b ≡ b′ mod gcd{a, a′}
(aZ + b) � (a′Z + b′) = ⊥ otherwise.

whereb′′ ≡ b mod a and b′′ ≡ b′ mod a′. Other cases follows from the lattice
axioms.

The abstraction and concretization maps for this domain are defined as follows:

α({n}) = 0Z + n

α(M) = gcd{|b − b′||b, b′ ∈ M}Z + min{b|b ∈ M} γ(aZ + b) = {an + b|∀n ∈ Z}
γ() = 1Z + 0 = Z

γ(⊥) = ∅

In words the setγ(aZ + b) contains all integers that are congruent tob modulo
a. Often it will be convenient to talk about the values in the setγ(aZ + b). These
values will be referred to as elements of anabstract value and we will often use the
abusive notationd ∈ aZ + b rather than the more correctd ∈ γ(aZ + b). In the rest of
the text, wheneverabstract value is mentioned, we shall mean an abstract value of the
congruence domain.

9.2.1 Equivalence classes

The above givenα andγ are not an Galois insertion becauseγ is not injective. This is
shown by the following example:

γ(2Z + 1) = {2n + 1|∀n ∈ Z} = {2n + 3|∀n ∈ Z} = γ(2Z + 3)

The domain is easily reduced by introducing the equivalence classaZ + bã ′Z + b′

iff γ(aZ + b) = γ(a′Z + b′). However, we want to have a representing value that
represents the equivalence class. A good choice of representing value is to choose the
smallest positive b in the equivalence class. This implies that ifa �= 0 thenb < a. Any
abstract value with this property is said to be onstandard form. This also implies that
b is the least positive integer inγ(aZ + b).

25

9.2.2 Singleton and non-singleton values

In the special case wherea = 0 in an abstract valueaZ + b, we verify that

γ(0Z + b) = {0n + b|∀n ∈ Z} = {b}

This means that the abstract value actually represent a single value. In the case where
a is greater than0, the setγ(aZ + b) is an infinite set.

9.3 Modification of the domain

Bit-strings with the signed bit set can always be interpreted in two ways – as signed
and as unsigned which results in two different integer values. Depending on how we
interpret a bit-string, we will get different abstract values when applying the abstraction
function to it. To give an example, if we are working with 8-bit strings, then the string
10011100 represents156 as signed, but as unsigned it represents the number−100. It
can be shown that the difference between the signed and the unsigned value is always
2B (whereB is the number of bits we work with). In this section we will develop
a solution to this problem by abstracting both the signed and the unsigned values to
get the abstract value. LetB be a bit-string of lengthn, and letB signed be its signed
interpretation andBunsigned its unsigned interpretation. Then

α({Bsigned, Bunsigned}) = α(Bsigned) � α(Bunsigned)
= (0Z + Bsigned) � (0Z + Bunsigned)

= gcd(0, Bsigned − Bunsigned)Z + min(Bsigned, Bunsigned)
= gcd(0, 2n)Z + Bsigned = 2nZ + Bsigned = 2nZ + Bunsigned

The last equality demonstrates the fact that the signed and the unsigned value of
a bit string always are congruent modulo2n. When abstracting a value which has
its signed bit set we say that the abstract value isuncertain. If the signed bit is not
set, thenBsigned andBunsigned are the same andα behaves it did in the definition
in Section 9 (becausen will be zero). We will denote an uncertain abstract value
with an asterisk(2nZ + B∗). Uncertain abstract values will make the domain loose
precision quite considerably. A single value would be abstracted to a singleton value,
but uncertain values are abstracted to an infinite non-singleton value. However, since
we have assumed that each concrete value is represented withn bits, the only values in
γ(2nZ + B∗) that can be represented withn bits isBsigned andBunsigned. These two
values inγ(2nZ + B∗) is the only ones we’d be interested in and we wish to eliminate
one of them. In a later phase of the analysis, it might be possible to determine which
interpretation of the bitstring that is the appropriate one (for instance by observing
which operators the bit-string is applied to). In this case, an uncertain abstract value
can be turned into a non-uncertain one. This will be formalized using two operators,
signed andunsigned that takes an abstract value (uncertain or not) and returns an
abstract value which isnot uncertain.

signed(2nZ + B∗) = 0Z + 2n − B
signed(aZ + b) = aZ + b
signed(⊥) = ⊥
unsigned(2nZ + B∗) = 0Z + b
unsigned(aZ + b) = aZ + b
unsigned(⊥) = ⊥

26

where2nZ + B∗ is any uncertain value andaZ + b is any non-uncertain value. As
can be seen, non-uncertain values are not effected bysigned or unsigned. Note that it
is safe to applysigned or unsigned to an uncertain valueonly if the interpretation is
known (that is, that the value is applied to some operator with known sign).

9.4 An example

We give an example using one of NIC:s operators (see Section 1.2). Let̂s mul be the
abstract version ofs mul. The operators mul corresponds tosigned multiplication,
hence it is safe to use thesigned operator on both sides like below.

signed(aZ + b) ŝ mul signed(a′Z + b′)

Note that
signed(α({Bsigned, Bunsigned})) = α(Bsigned)

and that
unsigned(α({Bsigned, Bunsigned})) = α(Bunsigned)

10 Abstract operators of the congruence domain

In the following sections will abstract versions of an array of common integer opera-
tors be presented. The arithmetic abstract operators was already introduced by Philippe
Granger in [Gra89]. These operators will briefly be summarized in the following sec-
tion.

10.1 Arithmetic Operators

Abstract versions of common arithmetic operators are defined and proved to be correct
for the congruence domain in [Gra89]. All abstract operators in this domain arestrict,
that is, whenever the bottom value(⊥) occurs in some argument, then the result is the
bottom value as well. All theorems in this section are due to [Gra89].

The abstract operators for addition, subtraction and multiplication follow:

Theorem 10.1. Let D = aZ + b and a′Z + b′ be two non-bottom abstract values of
the congruence domain. Then

D±̂D′ = gcd(a, a′)Z ± min(b, b′)

is a correct approximation of addition and subtraction.

Theorem 10.2. Let aZ + b and a′Z + b′ be two non-bottom abstract values. Then

(aZ + b)(a′Z + b′) = gcd{aa′, ab′, a′b}Z + bb′

is a correct approximation of multiplication.

Integer division is defined as� n
m�. That is the largest integer that is less than or

equal to the real quotient. The result of abstract integer division between two non-
bottom, non-singular abstract values in the congruence domain is unfortunately always
the top element. Formally:

27

Theorem 10.3. Let D and D ′ be two non-bottom, non-singular abstract values. Then
the best approximation for ⌊

D

D′

⌋
is Z

Theorem 10.4. Let D = aZ+b and D ′ = a′Z+b′ be two non-bottom abstract values.
Then

D m̂od D′ = gcd{a, a′, b′}Z + b

is the best correct abstraction for modulo.

10.2 Conditionals and relations

The setγ(aZ + b) of an non-singular abstract value contains an infinite amount of
values. It contains values which are greater than any arbitrary number and also values
that are smaller than any arbitrary number. That is for all integersn there exists values
d0, d1 ∈ γ(aZ + b) such thatn < d0, n > d1. This implies that relational operators
is not working well on the congruence domain. In fact, the abstract version of<, >,≤
and≥ is the mappingλ(x, y).	 if x andy are non-bottom, non-singleton values.

10.3 Bit operators

To be able to create a lower-level analysis, the lower-level bit-operators also have to be
abstracted. No bit-operators were developed in Granger’s work, therefore these opera-
tors will be defined and proved to be correct in this section. The abstract bit operators
that will be developed is: NOT,AND,OR,XOR, left shift, right shift, truncating and
extension.

In general the abstract congruence domain doesn’t fit too well when working with
bits. When the abstracting the arithmetic operators, one can rely on that every bit-string
has aninterpretation as one or two integers. Bitwise operators, however, need to know
about the actual bits, not just the representation as an integer. In general, for any fixed
bit, say bitk there are valuesd0, d1 ∈ γ(aZ + b) such that bitk is one ind0 and
zero ind1. That is, unlessa = 2m for somem > 0. Before introducing the abstract
bit-operators, some important lemmas and definitions will be presented.

In the following lemmas we shall interpretγ(aZ + b) as a set of bit-strings rather
than a set of integers.

Lemma 10.5. The set 2NZ for some N ∈ N is the set of bit-strings in which (at least)
the N least significant bits are all zeros.

Proof. Let N = 0. Then20Z = Z = all bit-strings. So the caseN = 0 is trivial,
therefore assume thatN = K and2K−1Z is the set of all bit-strings in which theK−1
least significant bits are all zeros. Then2KZ = 2 ∗ 2K−1Z. Now takeb ∈ 2K−1Z
arbitrary. Multiplication by two is equivalent to left shifting a bit-string. But sinceb
ends withK − 1 zeros, it will after a left shift (multiplication by two) ”insert” another
zero from the left and theK least significants bits will be zeros, and the theorem is
proved.

From this lemma it follows that ifB is anN -digit bit string, thenB interpreted as
an integer belongs to2KZ for someK ≤ N if and only if B ends inK zeros. Another
important consequence, if an abstract value is on standard form (that isb < a if a �= 0)

28

and ifa is a power of two, all integers in the abstract value will end in the bit stringb.
That is, all elements inγ(2mZ + b) has itsm least significant bits equal tob.

Lemma 10.6. Let a be any integer. Let a be written on the form a = 2kc for some
k ∈ N, such that 2 � c (which is obviously possible for all integers), then 2k is the least
significant non-zero digit of a, when a is interpreted as a bit-string.

Proof. Sincec is odd, and it is a well known fact that an integer, interpreted as a bit
string, has its least significant bit set. Multiplication with2k corresponds shifting this
least significant bitk steps, making2k the least significant non-zero digit.

Lemma 10.7. Let a be an integer represented by N bits. Then gcd(2N , a) = 2k where
2k is the least significant non-zero bit of a.

Proof. We rewritea as2kc, wherek ∈ N, 2 � c, as Lemma 10.6 suggests, and we have:

gcd(2N , a) = gcd(2N , 2kc)

Clearlyk ≤ N , so we may write

gcd(2N , 2kc) = 2kgcd(2N−k, c)

Sincec is odd and2N−k is one or even, we havegcd(2N−k, c) = 1 and hence draw
the conclusion:

gcd(2N , a) = gcd(2N , 2kc) = 2k

Lemma 10.7 tells us that2k is the least significant non-zero bit (interpreted as a bit-
string) ofa.

The results above motivates to introduce aweakening operator, which is defined as:

ξ(aZ + b) = gcd(2N , a)Z + b if a �= 0

whereN equals the number of bits the values are assumed to have.

Lemma 10.8. Let aZ + b be an abstract value, then:

aZ + b � ξ(aZ + b)

Proof. By definition aZ + b � a′Z + b′ iff a′|a and b ≡ b′ mod a′. Again, by
definition we have thatgcd(2N , a)|a. And sinceb is unaffected by theξ operator, we
naturally have thatb ≡ b′ mod gcd(2N , a).

The idea behind the weakening operator is that the modulo of a value applied to
the operator is guaranteed to be a power of two (by Lemma 10.7). However, the value
gained after applying the weakening operator is more abstract and using it will loose
precision. The motivation to use it is to simplify information about bits in abstract
values.

29

10.3.1 The NOT operator

The operator bitwiseNOT has an easy interpretation in the decimal system as well,
which we are going to use. ifn is aB-bit number, thenNOT (n) = 2B −n− 1. From
this, we can verify that

NOT (an + b) = 2B − (an + b) − 1 = an + 2B − b − 1

for all n ∈ Z. This implies that that the abstract NOT-operator will be

N̂OT (aZ + b) = aZ + (2B − b − 1)

where it is assumed that we are working withB-bit numbers.

10.3.2 The AND, OR and XOR operators

The abstract versions of the bitwise AND, OR and XOR operators need information
about the bits in the abstract values. Therefore, the weakening operator introduced in
Section 10.3 will be used.

Lemma 10.9. Let aZ + b and a′Z + b′ be two non-bottom abstract values. And let

ξ(aZ + b) = 2nZ + b and ξ(a′Z + b′) = 2mZ + b′

Then the following are correct approximations of AND, OR and XOR.

(aZ + b)ÂND(a′Z + b′) = 2min(n,m)Z + (b AND b′)

(aZ + b)ÔR(a′Z + b′) = 2min(n,m)Z + (b OR b′)

(aZ + b)X̂OR(a′Z + b′) = 2min(n,m)Z + (b XOR b′)

Proof. All integers in 2nZ + b ends with the bit stringb which containsn bits (it
follows from Lemma 10.5). All integers in2mZ + b′ ends with the bit stringb′ which
is m bits long. This means that we can compare the bits from themin(n, m) last bits
and perform the desired bit operator on these known bits.

10.3.3 Left shifting

We will define a left shift as multiplication by2 (this holds for unsigned as well as
signed values). The left shifting operator is denoted<<. Hence, the operationa <<n
corresponds to multiplya with 2n. In the analysis however, we have abstract values
on the left hand as well as on the right hand. In the following letA = aZ + b and
A′ = a′Z + b′, and letD = γ(A) = {an + b|∀n ∈ Z} andD′ = γ(A′) = {a′m +
b′|∀m ∈ Z}. The concrete left shift on the setsD andD ′ is for all n ∈ Z:

D <<D′ = 2D′
D = {2D′

(an + b)|n ∈ Z} = {2D′
an + 2D′

b|n ∈ Z} (3)

The left shift operator is assumed to take a non-negative right hand side, so in
the abstract version we shall only regard the non-negative integers ofD ′ (if negative
integers ofD′ were allowed, then2D′

would not always be an integer).
Equation (3) actually describes a set of abstract values, namely

2D′
aZ + 2D′

b

30

This implies that a correct definition of the abstract left shift operator is:

A<̂<A′ =
⊔

{2d′
aZ + 2d′

b|d′ ∈ D′}

The least upper bound of these abstract values constitutes a correct approximation of
them.⊔

{2d′
aZ + 2d′

b|d′ ∈ D′} = gcd{2d′
a, |2d′

0b − 2d′
1b| |d′, d′0, d′1 ∈ D′}Z + min{2d′

b}
gcd{2d′

a, b|2d′
0 − 2d′

1| |d′, d′0, d′1 ∈ D′}Z + min{2d′
b}

Sinceb′ is the least positive number inD ′, it is clear thatgcd{2D′
a} = 2b′a, and also

thatmin{2D′
b} = 2b′b. Hence, we have a correct approximation as:

A<̂<A′ = gcd(2b′a, b|2d′
0 − 2d′

1|)Z + 2b′b

for all d′
0, d

′
1 ∈ D′ and alln ∈ Z. Now we need to find out which values that may

occur in the set{b|2d′
0 − 2d′

1| : d′0, d
′
1 ∈ D′}. Without restriction we can assume that

d′1 ≤ d′0. Then we can writeb|2d′
0 − 2d′

1 | as

2d′
1b|2d′

0−d′
1 − 1| = 2d′

1b|2ka′ − 1| (4)

for somek ∈ N and for alld′
1 ∈ D′. Since the set (4) is used in agcd computation,

the only relevant value of2d′
1 will be the least one. Trivially the leastd′

1 ∈ D′ is b′,
therefore we have can define the abstract operator as

A<̂<A′ = gcd(2b′a, b2b′ |2ka − 1|)Z + 2b′b

for somek ∈ N.

Theorem 10.10. (Fermat)
If n = m mod p−1 where p is a prime, then zn = zm mod p for all integers z ∈ Z.

Now consider only the factor|2ka′−1| from (4). We know thatka′ = 0 mod a′ for
all k ∈ Z. As a result of the preceding theorem we have:2ka′

= 20 = 1 mod a′+1 if
a′+1 is prime. So ifa′+1 is prime, it follows from (4) that2ka′ −1 = 0 mod a′+1.
That is to say thata′ + 1 divides2ka′ − 1 if a′ + 1 is prime (whateverk might be).
Apart from this, it is very hard to determine which values that might occur in the set
2ka′ − 1.

Theorem 10.11. Let A = aZ + b and A′ = a′Z + b′ be two non-bottom abstract
values. Then a correct abstraction of the left shift operator is:

A<̂<A′ = (2b′gcd(a, b(a′ + 1)))Z + 2b′b

if a′ + 1 is prime and

A<̂<A′ = (2b′gcd(a, b))Z + 2b′b

if a′ + 1 is not a prime.

Proof. We know thatA<̂<A′ � gcd(2b′a, b2b′ |2ka′ − 1|)Z + 2b′b
= gcd(2b′a, b2b′ |2ka′ − 1|)Z + 2b′b, for somek ∈ N. We will be satisfied with a
common divisor instead of the greatest common divisor in this case. We will use the

31

fact thatgcd(x, y)|gcd(x, yz) for any x, y, z to get a common divisor. This means
thatgcd(x, y) is a common divisor forx andyz but not necessarily the greatest one.
Therefore we will, unlessa′ + 1 is prime, drop the factor|2ka′ − 1| from the gcd
calculation and obtain a common divisor (we will do this due to the complicated nature
of the factor). A consequence of dropping a factor from the calculation is that we will
loose some precision; we don’t have the best approximation for the left shift. We can
conclude:

A<̂<A′ � gcd(2b′a, b2b′(a′ + 1))Z + 2b′b

if a′ + 1 is prime and

A<̂<A′ � gcd(2b′a, b2b′)Z + 2b′b

if not. The factor2b′ is common in bothgcd computations and can be factorized.

10.3.4 Right shifting

To right shift one step is equivalent to make an integer division by2 (this holds for
signed as well as unsigned numbers). To simplify the proofs, the weakening operator
will be applied to all abstract elements. That is, we will approximateaZ+b>̂>a′Z+b′

with ξ(aZ+ b)>̂>ξ(a′Z+ b′). This implies that we can assume that all abstract values
have the form2nZ + b.

Lemma 10.12. Let 2nZ + b be a non-bottom abstract value and let k be a singular
abstract value. Then

2nZ + b>̂>k = 2n−kZ + (b >>k) if k < n

is a correct approximation of the right shifting operator. If k ≥ n then the best approx-
imation (if the abstract values are weakened) is Z.

Proof. The set2nZ + b is the set of bit strings ending with the exact bit-stringb ac-
cording to lemma 10.5. If we right-shift such a stringk steps, then of course it will end
with b >>k. Since the ending of a string (bits on the right side of then:th bit) is all we
know about the string, right-shifting will force to reduce2n to 2n−k. If k is equal ton
we will haveZ; and any right-shift ofZ will result in Z.

Theorem 10.13. Let 2nZ + b and 2n′
Z + b′ be two non-bottom, non-singular abstract

values. Then the best approximation (if the abstract values are weakened) of

2nZ + b>̂>2n′
Z + b′

is Z.

Proof. Since2n′
Z + b′ is non-singular, there is a valued ∈ 2n′

Z + b′ such thatd ≥ n.
According to lemma 10.12 the best approximation of2 nZ + b >>d if d ≥ n is Z.
Since2nZ + b >>d must be included to the resulting set, the theorem follows.

10.3.5 Truncating

Definition 10.14. Let B be a N -digit number. Then TRUNCn(B), for a non-negative
integer n such that n ≤ N is defined as the n least significant digits of B.

Lemma 10.15. Let B be a N -digit number. Then (B ≡ TRUNCn(B)) mod 2n.

32

Proof.

(B ≡ TRUNCn(B)) mod 2n ⇔ 2n|(B−TRUNCn(B)) ⇔ B−TRUNCn(B) ∈ 2nZ

Which is by Lemma 10.5 equivalent to say thatB − TRUNCn(B) ends inn zeros.
Since then least significant digits ofB by definition are the same as ofTRUNCn(B),
the least significant digits of the difference between the least significant digits of ofB
andTRUNCn(B) is a string ofn zeros.

Theorem 10.16. Let D = aZ + b be a non-bottom abstract value. Then

̂TRUNCn(aZ + b) = gcd(2n, a)Z + b

is a correct approximation of the truncating operator.

Proof. From Lemma 10.15 we know thatTRUNCn(ak + b) ≡ ak + b mod 2n for
everyk ∈ Z. This is implies that:

TRUNCn(ak + b) ∈ 2nZ + ak + b

This holds for allk ∈ Z, that is

̂TRUNCn(aZ + b) ∈ 2nZ + aZ + b = gcd(2n, a)Z + b

10.3.6 Extensions

The extension of all bit-strings inγ(aZ + b) from n to m bits wheren < m does not
effect the values ofγ(aZ + b). Therefore, in mathematical terms, the abstract version
of ”zero extend” and ”sign extend” is the identity mapping on abstract values.

11 SWEET and the congruence domain

As mentioned, important parts of SWEET are based on abstract interpretation. SWEET
currently uses the interval domain (see Section 6.1.2) to find upper and lower bounds
of variables. The interval domain is not a very precise domain, and higher precision of
the domain is desired. Since the congruence domain complements the interval domain
very well, it seemed a good reason to implement this domain as well. Another reason
for selecting the congruence domain was that the pointer analysis of SWEET often
yields over approximations as pointers in real programs often ”steps” in non-unit steps,
and analysis with a congruence domain can easily detect such behavior.

11.1 Implementation

A prototype of the congruence domain for the SWEET tool has been implemented.
SWEET is written in standard C++ and the current version works with the GCC com-
piler. SWEET is implemented so that new abstract domains easily can be added to the
code. Abstract domains are arranged in subclasses of a general class of abstract values.
Important direct subclasses of this general class are the classes for abstract integers,
abstract pointers and abstract floats. The class for abstract interval integers (i.e. an
implementation of the interval domain) is directly inherited from the class of abstract

33

integers and so is the congruence domain. The abstract domains are then arranged in
an abstract superclass of the domain and then subclasses where8, 16 and32-bits values
has its own class. Since NIC does not provide as good type information as C does, a
special class for unspecified values is also needed. If no type information is provided,
a value is treated as ”unspecified” until type information can be determined. A spe-
cial class for bottom values is inherited directly from the class of abstract values. All
bottom values are instances of this class, no matter which domain is used.

An implementation of an abstract domain is mainly an implementation of abstract
versions of NICs operators. All abstract operators exist in the general class of abstract
values, but most of them are virtual2.

When this is written, the implementation is not fully integrated with SWEET and
no results about the implementation can be presented here.

12 Conclusions and discussion

We have presented abstract interpretation in a formal way by presenting the collect-
ing semantics and how to make an abstract version of it by using abstract domains.
A short summary of the most common numerical abstract domains has been given,
this summary includes (among others), the interval domain, the congruence domain
and the polyhedral domain. The abstract congruence domain (invented by Philippe
Granger) has been studied in more detail. This thesis has contributed by enhancing the
congruence domain to lower-level analyses. The enhancement is done by introducing
abstract bit-operators for the abstract congruence domain. To be able to find abstract
bit operators we have introduced a weakening operator that obtains information of a
set of bit-strings by studying the least significant bit that is common for the whole set.
A suggestion to a solution to the signed/unsigned-problem has also been proposed.
This solution is based on the idea of temporary abstracting different interpretations
of a bit-string to one abstract (but still correct) value and later, when the appropriate
interpretation of the bit-string has been determined, the temporary abstraction can be
resolved into a more accurate one. A prototype written in C++ of the congruence do-
main for the SWEET tool has been implemented. The prototype implements Granger’s
original abstract operators as well as the bit-operators introduced in this thesis, while
not fully integrated with SWEET, no results about the implementation is given in this
thesis.

Abstract interpretation is a relatively new science, and it is being developed con-
stantly. As more domains are being developed and more will be known about abstract
domains in general it will probably be even more useful in the future. The choice of
abstract domain for a specific need will probably be easier as tools for custom made
abstract domains probably will be richer.

The congruence domain is a harsh domain to deal with, since it quite often happens
that a set of values is abstracted to the top element. This is because almost all operators
includes agcd computation which will return the top element if two relatively prime
numbers are in the same set. Thus, this domain works very poorly when used alone.
However, combining it with other domains with for instance the reduced product can
be very effective. The domain is fast and does not need any widening or narrowing
operators so it will probably not slow the analysis down so much.

2i.e. they contain no implementation and have to be overridden.

34

13 Future Work

• As abstract interpretation presumably will increase in popularity, more abstract
domains will probably be invented. The choice of an abstract domain is a delicate
balance between precision and complexity. The key to find a suitable abstract
domain will be to keep an eye on the research in the area.

• The operators of the congruence domain are correct, but several of them are
not thebest approximation of the concrete operator. It is certainly possible to
increase the precision of some of the operators.

• As the congruence domain in itself is even less precise than the interval domain,
the idea behind the implementation was to combine it with the interval domain
using the direct product. The direct product is a simple thing to implement. The
combined domain could then win some precision on reducing it.

• When the prototype implementation has been fully integrated with SWEET it
would be interesting with an evaluation of the results.

• Other abstract domains would certainly interesting to use in SWEET, for instance
some relational ones. A relational domain would not be that easy to implement,
however, because NIC uses pointers, arrays and structures, and it may be trou-
blesome to determine what can be regarded as a variable.

References

[BHRZ03] R. Bagnara, P. Hill, E. Ricci, and E. Za. Precise widening operators for
convex polyhedra, 2003.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints. InProc. 4 th ACM Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles, January 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. InConference Record of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
269–282, San Antonio, Texas, 1979. ACM Press, New York, NY.

[CFG+97] Agostino Cortesi, Gilberto Fil´e, Roberto Giacobazzi, Catuscia
Palamidessi, and Francesco Ranzato. Complementation in abstract
interpretation.ACM Trans. Program. Lang. Syst., 19(1):7–47, 1997.

[CH78] Patrick Cousot and Nicholas Halbwachs. Automatic discovery of linear
restraints among variables of a program. InProc. 5th ACM Symposium on
Principles of Programming Languages, pages 84–97, 1978.

[CMB+93] M. Codish, A. Mulkers, M. Bruynooghe, M. García de la Banda,
and M. Hermenegildo. Improving abstract interpretations by combining
domains. InPEPM ’93: Proceedings of the 1993 ACM SIGPLAN sympo-
sium on Partial evaluation and semantics-based program manipulation,
pages 194–205, New York, NY, USA, 1993. ACM Press.

35

[DP90] B. Davey and H. Priestley.introduction to lattices and order. Cambridge
University Press, 1990.

[Erm03] Andreas Ermedahl.A Modular Tool Architecture for Worst-Case Execu-
tion Time Analysis. PhD thesis, Uppsala University, Dept. of Information
Technology, Box 325, Uppsala, Sweden, June 2003.

[GLSB03] Jan Gustafsson, Bj¨orn Lisper, Christer Sandberg, and Nerina Bermudo.
A tool for automatic flow analysis of C-programs for WCET calcula-
tion. In Bob Werner, editor,Proc. 8th IEEE International Workshop on
Object-oriented Real-time Dependable Systems (WORDS 2003), Guadala-
jara, Mexico, 2003. IEEE.

[Gra89] Philippe Granger. Static Analysis of Arithmetical Congruences.Interna-
tional Journal of Computer Mathematics, pages 165–199, 1989.

[Gra91] Philippe Granger. Static analysis of linear congruence equalities among
variables of a program. InTAPSOFT ’91: Proceedings of the international
joint conference on theory and practice of software development on Col-
loquium on trees in algebra and programming (CAAP ’91): vol 1, pages
169–192, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[Gus00] Jan Gustafsson.Analyzing Execution-Time of Object-Oriented Programs
Using Abstract Interpretation. PhD thesis, Dept. of Information Technol-
ogy, Uppsala University, May 2000.

[Hal79] Nicholas Halbwachs.Détermination automatique de relations linéaires
vérifiées par les variables d’un programme. Thèse de 3eme cycle, Univ.
de Grenoble, March 1979.

[Kos02] Thomas Koshy.Elementary Number Theory with Applications. HAR-
COURT/ACADEMIC PRESS, 2002.

[Mas92] Francois Masdupuy. Array abstractions using semantic analysis of trape-
zoid congruences. InICS ’92: Proceedings of the 6th international con-
ference on Supercomputing, pages 226–235, New York, NY, USA, 1992.
ACM Press.

[MdH06] Mälardalen University WCET project homepage, 2006.
www.mrtc.mdh.se/projects/wcet.

[Min02] Antoine Miné. A few graph-based relational numerical abstract domains.
In Manuel V. Hermenegildo and German Puebla, editors,Proc. 9th Int.
Symposium on Static Analysis, volume 2477 ofLecture Notes in Comput.
Sci., pages 117–132, Madrid, Spain, September 2002. Springer-Verlag.

[Min06] A. Min é. The octagon abstract domain.Higher-Order and Symbolic Com-
putation, 2006.

[New06] New Polka website, 2006.
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html.

[NNH05] F. Nielson, H. R. Nielson, and C. Hankin.Principles of Program Analysis,
2nd edition. Springer, 2005. ISBN 3-540-65410-0.

36

[Par06] PPL: The Parma Polyhedra Library, 2006.
http://www.cs.unipr.it/ppl/.

[Pol06] Polylib - A library of polyhedral functions , 2006.
http://www.ee.byu.edu/beta/faculty/wilde/polyhedra.html.

[SPR00] Kumar Nookala Sunder Phani and Tanguy Risset. a library for z-
polyhedral operations, 2000. technical report 1330, institut de recherche
en informatique et systemes aleatories.

37

Appendix A Domain summaries

In this appendix a brief summary of important operators from two important numerical
abstract domains is given. For more information about notation, see the sections corre-
sponding to the domains. In all domains we will assume that+̂ and∗̂ are strict, that is
a+̂⊥ = ⊥+̂a = ⊥ anda∗̂⊥ = ⊥∗̂a = ⊥ for all a ∈ A. Moreover,γ(⊥) = ∅ for all
domains.

Appendix A.1 The interval domain

An element of the interval domain is denoted[a, b] wherea ∈ Z∪{−∞}, b ∈ Z∪{∞}.
All operators are taken from [CC77].

Operator Interval domain
� [a, b] � [a′, b′] = [min(a, a′), max(b, b′)]
� [a, b] � [a′, b′] = [max(a, a′), min(b, b′)]
� [a, b] � [a′, b′] ⇔ [a, b] ⊆ [a′, b′] ⇔ a ≥ a′ ∧ b ≤ b′

∇ [a, b]∇[a′, b′] = [cond(a ≤ a′, a,−∞), cond(b ≥ b′, b,∞)]
∆ [a, b]∆[a′, b′] = [cond(a = −∞, a′, a), cond(b = ∞, b′, b)]
+̂ [a, b]+̂[c, d] = [a + c, b + d]
Elements
	 (−∞,∞)
⊥ ∅
Galois connection
α α(k) = [k, k]
γ γ([a, b]) = {x ∈ Z|a ≤ x ≤ b}

Appendix A.2 The congruence domain

An element of the congruence domain is denotedaZ+ b. The operators are taken from
[Min02].

Operator Congruence
� (aZ + b) � (a′Z + b′) = gcd{a, a′, b − b′}Z + min(b, b′)
� (aZ + b) � (a′Z + b′) = cond(b ≡ b′ mod gcd(a, a′), lcm(a, a′)Z + b′′,⊥)
� (aZ + b) � (a′Z + b′) ⇔ a′|a andb ≡ b′ mod a′

∇ N/A
∆ N/A
+̂ (aZ + b)+̂(a′Z + b′) = gcd(a, a′)Z + (b + b′)
Elements
	 Z (that is,a = 1, b = 0)
⊥ ∅
Galois connection
α α(k) = 0Z + k
γ γ(aZ + b) = {ak + b|k ∈ Z} if a �= 0

γ(aZ + b) = {b} if a = 0

38

