
A component-based development framework for supporting
functional and non-functional analysis in control system design

Johan Fredriksson
Mälardalen University

Mälardalen Real-Time Research Centre
Västerås, Sweden

johan.fredriksson@mdh.se

Abstract

This extended abstract reports on research that show how
component-based software engineering may be used for realizing
embedded systems; and how component technologies for use inem-
bedded vehicular systems can reduce resource usage withoutcom-
promising non-functional requirements, such as timeliness.

1 Introduction
During recent decades processors have become more powerfuland
more cost efficient. They are now of interest in areas where not
used before, permitting the development of ever more complex sys-
tem applications. To manage the increasing complexity of applica-
tions, Industry is constantly looking for new software development
strategies. One paradigm found to be of use in desktop comput-
ing systems is Component-Based Software Engineering (CBSE).
However, embedded systems have requirements that are not re-
garded in desktop applications, such as low memory utilization,
low processor overhead and predictability. Many embedded sys-
tems are safety-critical because they control applications in our so-
ciety. If these applications malfunction they can have disastrous
consequences. Hence, non-functional characteristics (such as reli-
ability) are very important in these types of applications.One im-
portant class of non-functional requirements are real-time require-
ments. These requirements define within what time a task mustbe
performed.

The notion of components is rarely used in real-time systems. On
the other hand, current component technologies usually do not in-
clude non-functional properties typical of real-time systems. To be
able to use a component approach, which makes the system de-
velopment process more efficient, and at the same time guarantees
system behaviour, both how the component technology uses non-
functional properties, and how components are allocated tothe run-
time systems are important.

The research presented has been focused on four related areas;
non-functional properties and the relation to industry, component-
based development considering real-time systems, mappingbe-
tween components and real-time tasks, and run-time techniques for
decreasing pessimism of real-time analysis. Section 2 gives a sum-
mary of our research. Sections 3 to 7 explains further each ofthe
four parts of our research. For the full licentiate thesis please refer
to [1].

2 Research Summary

Component-technologies available today have not been usedexten-
sively in the embedded systems domain. To understand why this
is the case we have conducted a survey and performed evaluations

of the requirements of the vehicular industry with respect to soft-
ware and software development. The purpose of the evaluation is
to provide a foundation for defining models, methods and tools for
component-based software engineering.

We propose a component-model designed for resource constrained
embedded real-time systems that use powerful compile-timetech-
niques to realize the component-based approach and ensure pre-
dictable behaviour.

The main contribution of our research is the implementationand
evaluation of a framework for resource-efficient mappings between
component-models and real-time systems. We show how efficient
mappings can reduce memory usage and CPU-overhead. An im-
plemented framework utilizes genetic algorithms to find feasible,
resource efficient mappings. Finally we propose a resource reclaim-
ing strategy for component-based real-time systems in order to de-
crease the impact of pessimistic execution time predictions.

Along this line there is a growing interest towards standardizations
through standard bodies such as the OSEK and AutoSAR comittess.
The market for advanced development tools and technologiesis still
small, though this is indeed the place where much productivity can
have gain.

3 Non-functional properties
In order to find out which properties are important for the vehicular
industry, a survey was performed on different vehicular companies.
Representatives of the companies were requested to prioritize qual-
ity attributes (extendibility, maintainability, usability, predictabil-
ity, security, safety and reliability) regarding importance. An eval-
uation of existing component technologies with respect to indus-
trial requirements was also conducted. The technologies evaluated
were PECT [9], Koala [8], Rubus CM [2, 3], PBO [7], PECOS [10]
and CORBA based technologies [4]. The technologies were chosen
firstly on the basis that there is enough information available, and
secondly that the authors claim that they are suitable for embedded
systems. CORBA, however, was chosen as a reference technology
to represent the desktop/Internet domain.

The evaluation points out which requirements that are partly ful-
filled by a component technology, and which are not. The require-
ments were gathered from an industrial case-study performed at
Volvo Construction Equipment and at CC-Systems.

4 Component models for embedded systems
As described in the previous section, our research has pointed out
that there are few component models that support some of the im-
portant non-functional attributes. We show how CBSE can be used
for embedded real-time systems with high requirements on analyz-



ability and low memory footprint. We consider the non-functional
attributes predictability, reliability, safety and usability which are all
expressed as important by the vehicular domain. Existing commer-
cial component technologies often have powerful run-time mech-
anisms to realize the component-based approach, which is a dis-
advantage in terms of resource utilization for resource constrained
systems. The defined component model is based on the pipe-and-
filter interaction model and uses a Read-Execute-Write paradigm;
all in-ports of a component are read, the component executesand
finally writes all its out ports. This execution model has theadvan-
tage of being highly analyzable. Moreover, the control systems in
vehicles are often suitable for the pipe-and-filter paradigm. End-
to-end deadlines are imposed to the model and are augmented with
start and completion jitters. A middleware is proposed to handles
all communication between the component model and the underly-
ing run-time system.

5 Allocating components to real-time tasks
Many component-based systems today use one-to-one allocations
between design-time components and real-time tasks, or other rudi-
mentary allocations. Finding allocations that co-allocate several
components to one real-time task leads to better memory and CPU
usage. However, the one-to-one allocations have the benefitof be-
ing highly analyzable, which is often a strong requirement in em-
bedded systems, especially in embedded systems that handletime-
critical functions such as engine control and breaking systems.

Due to the combinatorial explosion of possible allocationsfrom
components to tasks, the problem is complex by nature. An alloca-
tion from components to a task is evaluated considering schedula-
bility (timeliness) and isolation, where isolation is defined as mu-
tual exclusion of components regarding shared resources orother
legitimate engineering reasons. Because the problem is inherently
complex the strategy is to evaluate our allocation approachby im-
plementing a framework that utilizes a meta-heuristic search tech-
nique

Each allocation is validated with respect to period-times,isolation,
end-to-end deadlines and schedulability to ensure that an alloca-
tion is feasible. A proposed framework gives the possibility to op-
timize allocations regarding the properties memory consumption
and CPU-overhead to find a resource efficient solution. The re-
sults from the evaluation were satisfactory, and we have found that
for industrially representative systems memory consumption and
CPU-overhead can be decreased by as much as 32% and 48% re-
spectively compared to a one-to-one mapping.

6 Resource Reclaiming
In real-time systems there are often unused resources in terms of
CPU-time due to pessimistic predictions. These resources can be
used for executing tasks, e.g., more often, or with higher quality
(longer time).

We show how component technologies can be extended with multi-
ple services to provide different quality levels dependingon resid-
ual time in real-time systems. We do this by combining the multiple
versions paradigm [6], with the adaptive threshold algorithm [5].
The multiple versions paradigm allows us to have several versions
(services) of the same component. In this research the multiple
versions is used for the same functionality with different quality;
consider, e.g., more or less iterations in a numerical approxima-
tion. Each quality level is associated with a value which is accu-
mulated to the system as that quality level is chosen and executed.
The Adaptive threshold algorithm allows us to provide a system
that strives to maximize the total system value by choosing the ap-

propriate quality level dependent on the residual time of the sys-
tem. However, the multiple versions and adaptive thresholdalgo-
rithm generates some extra overhead in the system, both in terms of
memory and CPU-time. Thus this approach may not be appropriate
for very small systems with extreme requirements on keepingthe
memory and CPU-overhead low.

7 Conclusion
Component-based development has proven itself to be a promis-
ing approach for effectively produce complex systems. In this ex-
tended abstract we have presented research that begin to take the
component-based appraoch into the embedded by; investigating the
needs of the indusrty and providing efficient pre-run-time and run-
time mechanisms and tools for deploying component-based sys-
tems on resource limited platforms.

8 References

[1] J. Fredriksson. Transformation of component models to real-
time models. Technical report, Technology Licentiate Thesis
No.47, ISSN 1651-9256, ISBN 91-88834-55-7, Mälardalen
Real-Time Reseach Centre, Mälardalen University, 4 2005.

[2] K. L. Lundbäck. Rubus os reference manual. general con-
cepts. arcticus systems: http://www.arcticus.se.

[3] K. L. Lundbäck, J. Lundbäck, and M. Lindberg. Component-
based development of dependable real-time applications,
2003.

[4] OMG. The common object request broker: Architecture and
specification. Technical report, OMG Formal Documatation
(formal/01-02-10), February 2001.

[5] N. A. R. Davis, S. Punnekkat and A. Burns. Flexible schedul-
ing for adaptable real-time systems.Proceedings of IEEE
Real-Time Technology and Applications Symposium, May
1995.

[6] J. A. Stankovic and K. Ramamritham. What is predictabil-
ity for real-time systems?Real-Time Systems, 2(4):247–254,
November 1990.

[7] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of dy-
namically reconfigurable real-time software using port-based
objects. In IEEE Transactions on Software Engineering,
pages 759–776. IEEE, December 1997.

[8] R. van Ommering, F. van der Linden, and J. Kramer. The
koala component model for consumer electronics software. In
IEEE Computer, pages 78–85. IEEE, March 2000.

[9] K. C. Wallnau and J. Ivers. Snapshot of ccl: A language for
predictable assembly. Technical report, Software Engineering
Institute, Carnegie Mellon University, 2003. CMU/SEI-2003-
TN-025.

[10] M. Winter, R. Genssler, A. Christoph, O. Nierstraszn,
S. Ducasse, R. Wuyts, G. Arevalo, P. Muller, C. Stich, and
B. Schönhage. Components for embedded software . the
pecos apporach. InProceedings of Second International
Workshop on Composition Languages In conjunction with
16th European Conference on Object-Oriented Programming
(ECOOP) Malaga, Spain, June 2002.


